
MST125

Essential mathematics 2

Number theory

blp29
Typewritten Text

blp29
Typewritten Text

blp29
Typewritten Text

blp29
Typewritten Text

blp29
Typewritten Text



This publication forms part of the Open University module MST125 Essential mathematics 2.
Details of this and other Open University modules can be obtained from Student Recruitment, The
Open University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom (tel. +44 (0)300 303 5303;
email general-enquiries@open.ac.uk).

Alternatively, you may visit the Open University website at www.open.ac.uk where you can learn
more about the wide range of modules and packs offered at all levels by The Open University.

To purchase a selection of Open University materials visit www.ouw.co.uk, or contact Open
University Worldwide, Walton Hall, Milton Keynes MK7 6AA, United Kingdom for a catalogue
(tel. +44 (0)1908 274066; fax +44 (0)1908 858787; email ouw-customer-services@open.ac.uk).

Note to reader

Mathematical/statistical content at the Open University is usually provided to students in
printed books, with PDFs of the same online. This format ensures that mathematical notation
is presented accurately and clearly. The PDF of this extract thus shows the content exactly as
it would be seen by an Open University student. Please note that the PDF may contain
references to other parts of the module and/or to software or audio-visual components of the
module. Regrettably mathematical and statistical content in PDF files is unlikely to be
accessible using a screenreader, and some OpenLearn units may have PDF files that are not
searchable. You may need additional help to read these documents.

The Open University, Walton Hall, Milton Keynes, MK7 6AA.

First published 2015.

Copyright c© 2015 The Open University

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted
or utilised in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without
written permission from the publisher or a licence from the Copyright Licensing Agency Ltd. Details of such
licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Ltd, Saffron
House, 6–10 Kirby Street, London EC1N 8TS (website www.cla.co.uk).

Open University materials may also be made available in electronic formats for use by students of the
University. All rights, including copyright and related rights and database rights, in electronic materials and
their contents are owned by or licensed to The Open University, or otherwise used by The Open University as
permitted by applicable law.

In using electronic materials and their contents you agree that your use will be solely for the purposes of
following an Open University course of study or otherwise as licensed by The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any medium (including electronic storage or
use in a website), distribute, transmit or retransmit, broadcast, modify or show in public such electronic
materials in whole or in part without the prior written consent of The Open University or in accordance with
the Copyright, Designs and Patents Act 1988.

Edited, designed and typeset by The Open University, using the Open University TEX System.

Printed in the United Kingdom by Latimer Trend and Company Ltd, Plymouth.

ISBN 978 1 4730 0345 3

2.1



Contents

Contents

Introduction 5

1 Euclid’s algorithm and congruences 7

1.1 The division theorem 7
1.2 Euclid’s algorithm 11
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Introduction

Introduction

Number theory is a branch of mathematics concerned with properties of
the integers,

. . . ,−2,−1, 0, 1, 2, 3, . . . .

The study of number theory goes back at least to the Ancient Greeks, who
investigated the prime numbers,

Carl Friedrich Gauss
(1777–1855)

2, 3, 5, 7, 11, 13, 17, . . . ,

which are those integers greater than 1 with the property that each integer
is divisible only by itself and 1.

The foundations of modern number theory were laid out by the eminent
German mathematician Carl Friedrich Gauss, in his influential book
Disquisitiones Arithmeticae (published in 1801). This text, which builds
on the work of other number theorists such as Fermat, Euler, Lagrange
and Legendre, was written when Gauss was only 21 years old!

Number theory continues to flourish today and it attracts popular
attention through its many famous unsolved problems. Among these is
Goldbach’s conjecture, which asserts that every even integer greater than 2
can be written as the sum of two prime numbers. The German
mathematician Christian Goldbach (1690–1764) made this conjecture in
1742, and yet it remains unproved today (although it has been verified by
computer for all even integers up to 1014).

Other famous conjectures in number theory have been proved in recent
years, notably Fermat’s last theorem, which says that it is impossible to
find positive integers a, b and c that satisfy

Pierre de Fermat (c. 1601–65)

an + bn = cn, where n is an integer greater than 2.

This assertion was made by the French lawyer and gifted amateur
mathematician Pierre de Fermat. Fermat wrote in his copy of the classic
Greek text Arithmetica that he had a truly wonderful proof of the
assertion, but the margin was too narrow to contain it. After years of
effort, with contributions by many mathematicians, the conjecture was
finally proved in 1994, by the British mathematician Andrew Wiles
(1953–). This proof is over 150 pages long and uses many new results so it
seems highly unlikely that Fermat really did have a proof of his last
theorem!

The early parts of Gauss’s Disquisitiones Arithmeticae are about
congruences, which are mathematical statements used to compare the
remainders when two integers are each divided by another integer. Much
of this unit is about congruences, and arithmetic involving congruences,
which is known as modular arithmetic.

Modular arithmetic is sometimes described as ‘clock arithmetic’ because it
is similar to the arithmetic you perform on a 12-hour clock. For example,
if it is 9 o’clock now then in 5 hours’ time it will be 2 o’clock, as illustrated
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Introduction

by the clocks in Figure 1 (in which the hour hands, but not the minute
hands, are shown).
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Figure 1 The left-hand clock shows 9 o’clock and the right-hand clock
shows 5 hours later, 2 o’clock

The main goal of this unit is for you to become proficient at modular
arithmetic, without the use of a calculator. In fact, you can put your
calculator away, because you won’t need it here at all.

There are many useful applications of modular arithmetic, and you’ll see a
selection of these later on. For instance, you’ll learn about strategies using
modular arithmetic for testing whether one integer is divisible by another.
After reading about this, you’ll be able to determine quickly whether the
number

48 015 253 835 029

is divisible by 9.

You’ll also find out how modular arithmetic is used to help prevent errors
in identification numbers, such as the International Standard Book
Number (ISBN) of a modern edition of Disquisitiones Arithmeticae, shown
in Figure 2. The last digit of that ISBN, namely 6, is a ‘check digit’, which

1 278013 0009451 278013 946

Figure 2 ISBN of
Disquisitiones Arithmeticae

can be found from the other digits using modular arithmetic.

At the very end of the unit, you’ll get a taste of how modular arithmetic is
used to create secure means of disguising messages in the subject of
cryptography. This subject is of particular importance in the modern era
because of the large amount of sensitive data that is transferred
electronically. You’ll learn about a collection of processes for disguising
information called affine ciphers, which, although relatively insecure, share
many of the features of more complex processes in cryptography.
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1 Euclid’s algorithm and congruences

1 Euclid’s algorithm and congruences

Central to this section is the observation that when you divide one integer
by another, you are left with a remainder, which may be 0. You’ll see how
this observation is applied repeatedly in an important technique called
Euclid’s algorithm, which can be used to obtain the highest common factor
of two integers. Towards the end of the section, you’ll learn about an
effective way of communicating properties of remainders using statements
called congruences.

1.1 The division theorem

Let’s begin by reminding ourselves of some terminology about numbers.
The integers are the numbers

. . . ,−2,−1, 0, 1, 2, 3, . . . ,

and the positive integers or natural numbers are

1, 2, 3, . . . .

It can be useful to represent the integers by equally spaced points on a
straight line, as shown in Figure 3. This straight line is known as the
number line. There are other points on the number line that don’t
correspond to integers, such as 1/2,

√
3 or π, but in this unit we’ll focus

most of our attention on integers.

7−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 3 The integers on the number line

An integer a is said to be divisible by a positive integer n if there is a
third integer k such that a = nk. We also say that a is a multiple of n, or
n is a factor or divisor of a. For example, 84 is a multiple of 12; also 84 is
divisible by 12, and 12 is a factor or divisor of 84. In fact, 84 = 12× 7.
Sometimes mathematicians write n|a to mean that a is divisible by n, but
that notation won’t be used in this module.

Now consider the integers 38 and 5. Clearly, 38 is not a multiple of 5; in
fact,

7× 5 < 38 < 8× 5,

or equivalently,

7 <
38

5
< 8.

We have ‘trapped’ 38/5 between two consecutive integers 7 and 8. The
integer 7 on the left is known as the quotient on dividing 38 by 5.
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Since 7× 5 = 35, we see that 38 is 3 more than a multiple of 5. The
number 3 is known as the remainder on dividing 38 by 5. You can write

38 = 7× 5 + 3
" "

quotient remainder

This equation is represented on the number line in Figure 4.

−5 0 5 10 15 20 25 30 35
38
40

Figure 4 Dividing 38 by 5 on the number line

You obtain a quotient and remainder in this way whenever you divide one
positive integer a by another positive integer n. The remainder is 0 if a is
divisible by n, and otherwise it is a positive integer less than n.

Let’s suppose now that a is negative. For example, suppose you wish to
divide −38 by 5. You can trap −38/5 between two consecutive integers as
follows:

−8 < −38

5
< −7.

Once again, the quotient is the integer on the left, namely −8. The
remainder is then the difference between −8× 5 = −40 and −38,
namely 2. You can write

−38 = (−8)× 5 + 2
" "

quotient remainder

This equation is represented on the number line in Figure 5.

−38
−40 −35 −30 −25 −20 −15 −10 −5 0 5

Figure 5 Dividing −38 by 5 on the number line

8



1 Euclid’s algorithm and congruences

This time, the quotient is negative (the first eight jumps are to the left,
rather than to the right), but it is chosen so that the remainder is still
positive. The reason why we choose the quotient in this way to give a
positive remainder is because this choice simplifies Euclid’s algorithm,
which you’ll meet in the next subsection.

These observations about division can be summarised in the division

theorem, sometimes known as the division algorithm, stated below.
You can also find the division theorem and all the other important facts,
definitions and techniques from this module in the MST125 Handbook.

The division theorem

Suppose that a is an integer and n is a positive integer. Then there
are unique integers q and r such that

a = qn+ r and 0 ≤ r < n.

As you’ve learned already, the integer q is called the quotient of the
division, and r is called the remainder. When a = 29 and n = 7, for
example,

4 <
29

7
< 5,

so the quotient is 4. Or when a = −29 and n = 7, for example,

−5 < −29

7
< −4,

so the quotient is −5. Once you’ve found the quotient, you can then find
the remainder by rearranging a = qn+ r to give r = a− qn. The
remainder satisfies 0 ≤ r < n, so, in particular, it is always positive or 0. It
is 0 when a is divisible by n.
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Example 1 Finding quotients and remainders

For each of the following numbers a and n, find the quotient q and
the remainder r when you divide a by n, and write down the equation
a = qn+ r.

(a) a = 32, n = 9 (b) a = −32, n = 9

Solution

(a) Observe that 3 < 32/9 < 4. The quotient is the left-hand

value.

q = 3,

Find the remainder using r = a− qn.

r = 32− 3× 9 = 5,

Write down the equation a = qn+ r.

and so

32 = 3× 9 + 5.

(b) Observe that −4 < −32/9 < −3. The quotient is the left-hand

value.

q = −4,

Find the remainder using r = a− qn.

r = −32− (−4)× 9 = 4,

Write down the equation a = qn+ r.

and so

−32 = −4× 9 + 4.

Activity 1 Finding quotients and remainders

For each of the following numbers a and n, find the quotient and remainder
when you divide a by n, and write down the equation a = qn+ r.

(a) a = 59, n = 7 (b) a = 84, n = 12 (c) a = 100, n = 9

(d) a = 9, n = 100 (e) a = 0, n = 11 (f) a = −58, n = 5

(g) a = −100, n = 9 (h) a = −96, n = 12 (i) a = −4, n = 5
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1.2 Euclid’s algorithm

The highest common factor (HCF), or greatest common divisor, of
two integers a and b is the greatest positive integer n that is a divisor of
both a and b. For instance, the HCF of 18 and 30 is 6, because 6 is a
divisor of both 18 and 30, and no integer greater than 6 is a divisor of
both 18 and 30.

This subsection is about a procedure, known as Euclid’s algorithm
(‘Euclid’ is pronounced ‘you-clid’), for finding the HCF of two integers.
This important procedure is widely used in fields such as algebra,
computer science and cryptography.

Euclid’s Elements

Euclid was a Greek mathematician who worked in Alexandria around

A fragment of Euclid’s
Elements, dating from around
100 AD

300 BC. His most famous work was the influential textbook Elements,
in which geometry is developed rigorously from a few foundational
principles. Elements also contains some number theory, including
observations about prime numbers and the procedure now known as
Euclid’s algorithm. The oldest complete text of Elements dates from
the ninth century AD and is kept in the Bodleian library in Oxford.

An algorithm is a step-by-step procedure. One algorithm for finding the
highest common factor of two integers involves finding the prime

factorisation of each integer; that is, writing each integer as a product of
prime numbers. Consider, for example, the two integers 252 and 120.
Their prime factorisations are

252 = 2× 2× 3× 3× 7 and 120 = 2× 2× 2× 3× 5.

Now examine the prime factors of 252 and 120 one by one, and each time
you find a factor that occurs in both factorisations place a circle round
each of the matching factors, making sure that you ignore factors that are
already circled. You obtain

252 = 2 × 2 × 3 × 3× 7 and 120 = 2 × 2 × 2× 3 × 5.

The product of the circled primes give the highest common factor,
namely 2× 2× 3 = 12. This method works well for small numbers like 252
and 120, but calculating prime factorisations of larger numbers can be a
lengthy task. In fact, huge numbers with hundreds of digits often cannot be
factorised into primes using even the most powerful computers in existence.

Euclid’s algorithm is a much faster way of working out the highest
common factor of two integers. In fact, if you apply the algorithm to the
integers 252 and 120 then it produces the HCF so quickly that it’s hard to
get a good idea of how the method works! Here’s a description of the
algorithm for the pair of integers 207 and 60. The first step is to apply the
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division theorem to write down an expression of the form 207 = q × 60 + r.
You find that

207 = 3× 60 + 27.

Ignore the quotient 3 for now, and instead focus on 60 (the smaller of our
original pair of integers), and the remainder 27. Apply the division
theorem to these two integers to obtain

60 = 2× 27 + 6.

Again, ignore the quotient 2, and apply the division theorem to 27 and 6
to obtain

27 = 4× 6 + 3.

Then apply the division theorem to 6 and 3 to obtain

6 = 2× 3 + 0.

Now stop, because you have obtained a remainder 0. In practice, you
should list the equations one under another:

207 = 3 × 60 + 27

60 = 2 × 27 + 6

27 = 4 × 6 + 3

6 = 2 × 3 + 0.

With each step of Euclid’s algorithm, the remainders decrease. This is
because, for example, in the second step the remainder 6 is the remainder
on dividing 60 by 27 and must therefore be less than 27 which is the
remainder from the first step. It follows that there will eventually be a
final step with remainder 0.

The remainder in the second-to-last step, which in this case is 3, is the
highest common factor of our original integers 207 and 60 (as you’ll see
shortly).

You’ve now seen a description of how to apply Euclid’s algorithm but
haven’t seen an explanation of why it works. In order to get a better
understanding of why it works, first write down the pairs of integers used
at each stage of the algorithm:

207, 60 −→ 60, 27 −→ 27, 6 −→ 6, 3.

The HCF of the pair 207, 60 is the same as the HCF of the pair 60, 27. To
see why this is so, recall the first equation from Euclid’s algorithm:

207 = 3× 60 + 27.

12



1 Euclid’s algorithm and congruences

If 207 and 60 are both divisible by an integer n, then 3× 60 is also
divisible by n. This implies that 207 − 3× 60 is divisible by n. So 27,
which is equal to 207− 3× 60, is divisible by n as well. Therefore any
factor of both 207 and 60 is also a factor of both 60 and 27. Using the
same kind of argument you can see that any factor of both 60 and 27 is
also a factor of both 207 and 60. It follows that the HCF of 207 and 60 is
equal to the HCF of 60 and 27.

With similar reasoning, you find that each pair of integers in the chain of
arrows has the same HCF. The HCF of the final pair is 3, which is the
remainder obtained in the second-to-last step of Euclid’s algorithm.
Therefore this remainder 3 is the HCF of 207 and 60.

Strategy:
To find a highest common factor using Euclid’s algorithm

Suppose that a and b are positive integers.

1. By applying the division theorem repeatedly, form a list of
equations:

a = q1b + r1
b = q2r1 + r2
r1 = q3r2 + r3
r2 = q4r3 + r4
r3 = q5r4 + r5

...
...

2. Stop when you obtain an equation in which the remainder is 0.

3. The highest common factor of a and b is the remainder in the
second-to-last equation.

13
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Example 2 Using Euclid’s algorithm to find an HCF

Find the highest common factor of 209 and 78.

Solution

Apply the division theorem repeatedly until a remainder of 0 is
obtained.

Euclid’s algorithm gives

209 = 2× 78 + 53

78 = 1× 53 + 25

53 = 2× 25 + 3

25 = 8× 3 + 1

3 = 3× 1 + 0.

The highest common factor is the remainder found in the
second-to-last equation.

So the highest common factor of 209 and 78 is 1.

In this example, we could have omitted the last equation as we know that
the remainders decrease at each stage. So, once we obtain a remainder
of 1, we know that the remainder at the next stage must be 0 and so the
highest common factor must be 1.

Activity 2 Using Euclid’s algorithm to find HCFs

Using Euclid’s algorithm, find the highest common factor of each of the
following pairs of integers.

(a) 93 and 21 (b) 138 and 61 (c) 231 and 49

14



1 Euclid’s algorithm and congruences

1.3 Bézout’s identity

One of the many uses of Euclid’s algorithm is to establish Bézout’s

identity (‘Bézout’ is pronounced ‘beh-zoot’).

Bézout’s identity

Suppose that a and b are integers, not both 0, and let d be their
highest common factor. Then there are integers v and w such that

av + bw = d.

For example, 2 is the highest common factor of 14 and 10, and

14× 3 + 10× (−4) = 2.

Like Euclid’s algorithm, Bézout’s identity is an extremely useful tool. You

Étienne Bézout (1730–83)

will need it later on when studying division in modular arithmetic.

Bézout’s identity is named after the French mathematician
Étienne Bézout. In fact, Bézout proved a more general result than the
one given here, which was proved much earlier by another French
mathematician, Claude Gaspard Bachet de Méziriac (1581–1638).
Both Bachet’s result and Bézout’s more general result are usually
referred to as Bézout’s identity (or Bézout’s lemma). As well as
making important contributions to algebra, Bézout also wrote popular
textbooks. Among these is the six-volume work Cours complet de

mathématiques, published between 1770 and 1782. These books were
used by students taking the entrance exams of the prestigious École
Polytechnique in France, and they were also translated from French
to English and employed by institutions such as Harvard University.

Let’s work out how to find the integers v and w in Bézout’s identity for the
pair of integers 207 and 60 considered earlier. The same method works
whenever a and b are positive integers. Towards the end of this subsection
you’ll learn how to find v and w when a and b are not both positive.

We found that the HCF of 207 and 60 is 3, so we need v and w to satisfy

207v + 60w = 3.

First write down the steps of Euclid’s algorithm again, omitting the final
step, with remainder 0:

207 = 3× 60 + 27

60 = 2× 27 + 6

27 = 4× 6 + 3.
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It is helpful to circle all the numbers apart from the quotients, like so:

207 = 3× 60 + 27

60 = 2× 27 + 6

27 = 4× 6 + 3 .

Now rearrange each of these three equations to make the remainders on
the right the subjects of the equations:

27 = 207 − 3× 60

6 = 60 − 2× 27

3 = 27 − 4× 6 .

Next we use a process known as backwards substitution, in which we
substitute into the bottom equation each of the expressions given on the
right-hand side of this list of equations, working upwards one equation at a
time. In doing this, we never combine the circled numbers with other

numbers to simplify them: for example, we write 3× 60 rather than 180,

even though 3× 60 = 180. The circles help you to remember not to
simplify; think of a circled number as a variable.

Let’s carry out backwards substitution. First substitute the expression

for 6 from the second equation into the third equation:

3 = 27 − 4×
(

60 − 2× 27
)

.

This reduces to

3 = 9× 27 − 4× 60 .

Now substitute the expression for 27 from the first equation into this
equation:

3 = 9×
(

207 − 3× 60
)

− 4× 60 .

This reduces to

3 = 9× 207 − 31× 60 .

This equation is of the form described by Bézout’s identity, namely,

207v + 60w = 3,

where v = 9 and w = −31.

(Check: 207 × 9 + 60× (−31) = 1863 − 1860 = 3.)

When calculating the integers v and w in Bézout’s identity, you don’t have
to circle numbers as we have done here, although you may find that doing
so avoids confusion.
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Here’s another example.

Example 3 Finding integers v and w with av + bw = d when

a and b are both positive

Find the highest common factor d of 185 and 49, and then find
integers v and w such that 185v + 49w = d.

Solution

Apply Euclid’s algorithm.

Euclid’s algorithm gives

185 = 3× 49 + 38

49 = 1× 38 + 11

38 = 3× 11 + 5

11 = 2× 5 + 1

5 = 5× 1 + 0.

The highest common factor is the remainder found in the
second-to-last step.

So the highest common factor of 185 and 49 is 1.

Rearrange all but the last equation to make the remainder the
subject of each equation.

Rearranging the equations gives

38 = 185 − 3× 49

11 = 49 − 1× 38

5 = 38 − 3× 11

1 = 11 − 2× 5 .

Use backwards substitution to find integers v and w
with 185v + 49w = 1. First substitute the third equation into the
fourth equation and simplify.

Backwards substitution gives

1 = 11 − 2×
(

38 − 3× 11
)

= 7× 11 − 2× 38 .

17
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Substitute the second equation into this expression and
simplify.

= 7×
(

49 − 1× 38
)

− 2× 38

= 7× 49 − 9× 38

Substitute the first equation into this expression and simplify.

= 7× 49 − 9×
(

185 − 3× 49
)

= 34 × 49 − 9× 185

So 185× (−9) + 49× 34 = 1.

(Check: 185× (−9) + 49× 34 = −1665 + 1666 = 1.)

Try the following activities, remembering to check your answers.

Activity 3 Finding integers v and w with av + bw = d when a and b

are both positive

(a) Find the highest common factor d of 93 and 42, and then find
integers v and w such that 93v + 42w = d.

(b) Find the highest common factor d of 70 and 29, and then find
integers v and w such that 70v + 29w = d.

So far in this subsection you’ve learned how to apply Euclid’s algorithm
and backwards substitution with positive integers a and b to obtain the
equation av + bw = d of Bézout’s identity.

The next example shows you how to obtain the equation av + bw = d
when the integers a and b are not both positive.

18
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Example 4 Finding integers v and w with av + bw = d when

a and b are not both positive

Find the highest common factor d of 126 and −33, and then find
integers v and w such that 126v − 33w = d.

Solution

The HCF of 126 and −33 is the same as the HCF of the positive

integers 126 and 33, which you can find using Euclid’s algorithm.

Euclid’s algorithm gives

126 = 3× 33 + 27

33 = 1× 27 + 6

27 = 4× 6 + 3

6 = 2× 3 + 0.

So the HCF of 126 and 33 is 3, and hence the HCF of 126 and −33 is
also 3.

To find integers v and w such that 126v − 33w = d, you should
begin by finding integers v′ and w′ such that 126v′ + 33w′ = d in the
usual way. First rearrange all but the last equation above to make the
remainder the subject of each equation.

Rearranging the equations gives

27 = 126 − 3× 33

6 = 33 − 1× 27

3 = 27 − 4× 6 .

Apply backwards substitution.

Backwards substitution gives

3 = 27 − 4×
(

33 − 1× 27
)

= 5× 27 − 4× 33

= 5×
(

126 − 3× 33
)

− 4× 33

= 5× 126 − 19 × 33 .

So 126 × 5 + 33× (−19) = 3.

19
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This equation only needs to be changed slightly,
using 33× (−19) = −33× 19, to give an equation of the

form 126v − 33w = 1.

and hence

126 × 5− 33 × 19 = 3.

This is the equation 126v − 33w = d with v = 5 and w = 19.

(Check: 126× 5− 33× 19 = 630 − 627 = 3.)

Activity 4 Finding integers v and w with av + bw = d when a and b

are not both positive

(a) Find the highest common factor d of −112 and −91, and then find
integers v and w such that −112v − 91w = d.

(b) Find the highest common factor d of −105 and 39, and then find
integers v and w such that −105v + 39w = d.

Here’s a puzzle that you might like to try to solve using Euclid’s algorithm
and backwards substitution.

Activity 5 Using Euclid’s algorithm and backwards substitution to

solve a puzzle

Suppose you have two buckets of capacities 23 litres and 16 litres, and a
cauldron, which has capacity over 200 litres. You are able to fill the
buckets with water from a tap. By using these buckets, you can obtain
certain quantities of water in the cauldron. For example, you could
obtain 7 litres of water in the cauldron by filling the 23-litre bucket from
the tap and pouring it into the cauldron, and then filling the 16-litre
bucket from the cauldron and emptying it out.

Is it possible to use a similar method to obtain exactly 1 litre of water in
the cauldron? If so, describe how you would do this.

When working through many of the activities in this section, you’ll have
carried out several calculations. In the next activity you’ll see how you can
use the computer algebra system to carry out such calculations more
quickly. This can be especially helpful when you’re working with large
numbers.

20



1 Euclid’s algorithm and congruences

Activity 6 Using the computer algebra system for number theory

Work through Section 4 of the Computer algebra guide.

1.4 Congruences

In this subsection you’ll learn about a useful way of comparing the
remainders of two integers, called a congruence. Later on, congruences will
be used in modular arithmetic. This type of arithmetic is central to number
theory, and it also has applications in other disciplines, as you’ll see.

Before discussing the full definition of a congruence, let’s first look at a
special case.

Two integers a and b are said to be congruent modulo 5 if they each
have the same remainder on division by 5. For example, 7 and 22 are
congruent modulo 5 because each has remainder 2 on division by 5. The
integers 7 and 22 are marked on the number line in Figure 6. You can see
that they are congruent modulo 5 because they each lie two places to the
right of a multiple of 5.

0 5 7 10 15 20 22

Figure 6 The integers 7 and 22 are congruent modulo 5

In contrast, the integers −12 and 6 are not congruent modulo 5 because
−12 has remainder 3 on division by 5 whereas 6 has remainder 1 on
division by 5. The integers −12 and 6 are marked on the number line in
Figure 7. You can see that they are not congruent modulo 5 because −12
lies three places to the right of a multiple of 5 whereas 6 lies only one place
to the right of a multiple of 5.

−15 −12 −10 −5 0 5 6

Figure 7 The integers −12 and 6 are not congruent modulo 5
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The full definition of what it means to be congruent modulo n is similar to
the definition of what it means to be congruent modulo 5, but with a
positive integer n instead of 5.

Congruences

Let n be a positive integer. Two integers a and b are congruent

modulo n if they each have the same remainder on division by n. If
this is so then you write

a ≡ b (mod n).

Such a statement is called a congruence.

For example, 19 and 12 are congruent modulo 7; that is,

19 ≡ 12 (mod 7),

because 19 and 12 each have remainder 5 on division by 7. Also, −8
and 10 are congruent modulo 6; that is,

−8 ≡ 10 (mod 6),

because −8 and 10 each have remainder 4 on division by 6. The integers
−8 and 10 are marked on the number line shown in Figure 8. You can see
that they are congruent modulo 6 because they each lie four places to the
right of a multiple of 6.

−12 −8 −6 0 6 10 12

Figure 8 The integers −8 and 10 are congruent modulo 6

It is important to remember when working with congruences that to find
the remainder of a negative integer such as −8, on division by a positive
integer n, you must find the multiple of n immediately to the left of −8 on
the number line, and from this multiple of n count the number of places to
the right you must move to get to −8. You’ll get plenty of practice at
finding remainders of negative integers in the rest of this unit.
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Activity 7 Checking congruences

Which of the following congruences are true?

(a) 11 ≡ 26 (mod 5) (b) 9 ≡ −9 (mod 5)

(c) 28 ≡ 0 (mod 7) (d) −4 ≡ −18 (mod 7)

(e) −8 ≡ 5 (mod 13) (f) 38 ≡ 0 (mod 13)

When working through this activity, you may have noticed that the
congruence

a ≡ 0 (mod n),

which says that a has remainder 0 on division by n, is the same as the
statement that a is divisible by n. For example,

24 ≡ 0 (mod 6)

because 24 is divisible by 6.

The word ‘congruent’ means ‘in agreement’. The term makes its first
appearance in modular arithmetic in Gauss’s Disquisitiones

Arithmeticae, which features in the introduction to this unit, although
it was used much earlier than this by geometers. Gauss chose the
symbol ≡ because it is similar, but not identical, to the more familiar
equals symbol = . Congruences share many properties with, but are
not identical to, equations.

For the next activity, which is about congruences modulo 10, remember
that the digits of an integer are the numbers 0, 1, 2, . . . , 9 that make up
that integer. The digits of 7238, for example, are 7, 2, 3 and 8.

Activity 8 Understanding congruences modulo 10

(a) Suppose that a and b are positive integers. By comparing the final
digits of a and b, can you determine whether they are congruent
modulo 10?

(b) Does the method suggested in (a) work if a is a positive integer but b
is a negative integer?
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In Activity 7, you checked whether two integers were congruent modulo n
by finding their remainders modulo n. There is an alternative method for
checking congruences, which is usually easier to apply.

Alternative method for checking congruences

The following statements are equivalent:

• a and b are congruent modulo n

• a− b is divisible by n.

So to check whether two integers a and b are congruent modulo n you
can check the second of these statements rather than the first.

For example, according to this alternative method, 27 and 12 are
congruent modulo 5 because 27− 12 = 15, which is divisible by 5. In
contrast, 9 and −4 are not congruent modulo 7 because 9− (−4) = 13,
which is not divisible by 7. In fact, 27 and 12 both have remainder 2 on
division by 5 so they are indeed congruent modulo 5. Also, 9 has
remainder 2 and −4 has remainder 3 on division by 7, so it is true that 9
and −4 are not congruent modulo 7.

To understand why this alternative method works, you may find it is
helpful to think of a number line.

If two integers a and b are congruent modulo n, then they have the same
remainder modulo n. So the distance between a and b on the number line
is an integer multiple of n. This distance is equal to a− b when a ≥ b, and
to b− a = −(a− b) when b > a. In either case, it follows that a− b is
divisible by n.

Similarly, if a and b are not congruent modulo n, then the distance between
a and b is not an integer multiple of n; that is, a− b is not divisible by n.

You can practise using the alternative method in the next activity. It will
help you to remember that you can either test whether a− b is divisible by
n, or test whether b− a is divisible by n, because the two tests are
equivalent.

Activity 9 Checking congruences using the alternative method

Which of the following congruences are true and which are false?

(a) 63 ≡ 14 (mod 7) (b) −39 ≡ 39 (mod 7)

(c) 63 ≡ 14 (mod 12) (d) −8 ≡ 16 (mod 12)

(e) −30 ≡ −17 (mod 13) (f) 43 ≡ −87 (mod 13)
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Another way of stating that a− b is divisible by n is to state that there is
an integer k (which may be negative) such that

a− b = kn;

that is,

a = b+ kn.

This useful observation allows you to replace a congruence by an equation.

Writing a congruence as an equation

The congruence a ≡ b (mod n) is equivalent to the statement that
there is an integer k such that

a = b+ nk.

For example, the congruence 7 ≡ 22 (mod 5) is equivalent to the statement
that there is an integer k such that

7 = 22 + 5k.

There certainly is such an integer k, namely k = −3.

You should use this technique to approach the next activity.

Activity 10 Understanding congruences modulo 2

Explain why every odd number is congruent to 1 modulo 2. Explain why
every even number is congruent to 0 modulo 2.

Let’s finish this subsection with three basic properties of congruences,
some of which you may have assumed to hold already. You might have
realised, for example, that it is equivalent to write

3 ≡ 7 (mod 4) or 7 ≡ 3 (mod 4).

This follows from the second property in the next box.

Properties of congruences

• a ≡ a (mod n)

• if a ≡ b (mod n) then b ≡ a (mod n)

• if a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n)
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The first property just says that a has the same remainder as itself on
division by n. The second property is true because both congruences say
that a and b have the same remainder on division by n. The final property
says that if a and b have the same remainder on division by n, and b and c
have the same remainder on division by n, then this is also true of a and c.

The three properties are known, in order, as reflexivity, symmetry and
transitivity of congruences. You won’t need these terms in this module,
but they are important mathematical concepts which you may meet again
in the future.

You’ll find that you use these properties of congruences without explicitly
thinking about them. The third property shows, for example, that instead
of writing

9 ≡ 2 (mod 7) and 2 ≡ −5 (mod 7),

it makes sense to write

9 ≡ 2 ≡ −5 (mod 7).

You can join several congruences together in this way, and only
include (mod n) at the very end.

Activity 11 Checking congruences involving several integers

Which of the following statements are true and which are false? (All of the
congruences in a statement must be true in order for the whole statement
to be true.)

(a) −7 ≡ 7 ≡ 17 (mod 10) (b) −17 ≡ 3 ≡ 31 ≡ 67 (mod 2)

(c) −84 ≡ 0 ≡ 108 (mod 12)

1.5 Residue classes

You have already seen that many integers have the same remainder on
division by a positive integer n. For example, you saw that all the odd
numbers are congruent to 1 modulo 2 and all the even numbers are
congruent to 0 modulo 2. The odd integers are sometimes described as the
residue class of 1 modulo 2. More generally, we have the following
definition.

Residue class

Given any integer a, the collection of all integers congruent
to a modulo n is known as the residue class, or congruence class,
of a modulo n.
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The word ‘residue’ means ‘remainder’. This term is used because the
residue class of a modulo n is the class of those integers that have the same
remainder on division by n as a does. For example, the residue class of 1
modulo 3 is shown on the number line in Figure 9.

13−8 −5 −2 1 4 7 10

Figure 9 The residue class of 1 modulo 3

Because 1, 4 and −2 are all congruent modulo 3, you could also describe
the class of integers marked in Figure 9 as the residue class of 4 modulo 3,
or as the residue class of −2 modulo 3.

Figure 10 shows the residue class of 0 modulo 3. These are the integers
that are divisible by 3.

−9 −6 −3 0 3 6 9 12

Figure 10 The residue class of 0 modulo 3

Activity 12 Plotting residue classes on a number line

(a) Plot the residue class of 2 modulo 3 on a number line.

(b) Plot the residue class of 1 modulo 4 on a number line.

(c) Plot the residue class of −1 modulo 4 on a number line.

(d) Plot the residue class of 0 modulo 5 on a number line.

You learned earlier (when you met the division theorem) that when you
divide an integer a by a positive integer n, the remainder r satisfies

0 ≤ r < n,

that is, r is one of the numbers 0, 1, . . . , n− 1. Since a and r each have the
same remainder (namely r) when divided by n, it follows that

a ≡ r (mod n).

The remainder r is also known as the least residue of a modulo n, because
it is the smallest number equal to or greater than 0 in the residue class
of a modulo n. In the next section you’ll learn about modular arithmetic,
and there you’ll find that a calculation involving an integer a can often be
greatly simplified by performing the same calculation but using the least
residue of a modulo n instead of a.
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Least residues

The least residue of a modulo n is the remainder r that you obtain
when you divide a by n.

The integer r is one of the numbers 0, 1, . . . , n− 1, and it satisfies

a ≡ r (mod n).

Example 5 Finding the least residue

Find the least residue of −33 modulo 7.

Solution

Find the quotient and remainder when you divide −33 by 7.
To do this, first notice that −5 < −33/7 < −4, so the quotient is −5.

The remainder is then given by a− qn.

Since −33 = 7× (−5) + 2, the least residue is 2.

Activity 13 Finding least residues modulo 10

Find the least residues of the following integers modulo 10.

(a) 17 (b) 50 (c) 6 (d) −1 (e) −38

Activity 14 Finding least residues modulo 3

Find the least residues of the following integers modulo 3.

(a) 17 (b) 9 (c) −2 (d) −10 (e) 3

Here’s a puzzle that you might like to try to solve using residues.

Activity 15 Finding the day of the week in 1000 days’ time

What day of the week will it be in 1000 days’ time?
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2 Modular arithmetic

Modular arithmetic is the application of the usual arithmetic operations
– namely addition, subtraction, multiplication and division – for
congruences. Addition, subtraction and multiplication are often simpler to
carry out in modular arithmetic than they are normally, because you can
use congruences to reduce large numbers to small numbers. For example,
the multiplication 572 × 863 is difficult to calculate in your head, but
working with congruences modulo 10 gives

572 ≡ 2 (mod 10) and 863 ≡ 3 (mod 10),

and you’ll see later that this implies that

572 × 863 ≡ 2× 3 ≡ 6 (mod 10).

You have to be more careful with division than the other arithmetic
operations in modular arithmetic, so we leave division until the next
section.

2.1 Addition and subtraction

Let’s begin with two basic properties of congruences, which are useful for
simplifying additions and subtractions.

Addition and subtraction rules for congruences

If a ≡ b (mod n) and c ≡ d (mod n), then

a+ c ≡ b+ d (mod n)

a− c ≡ b− d (mod n).

To see why the first rule is true, remember that if a ≡ b (mod n)
and c ≡ d (mod n), then both a− b and c− d are divisible by n. It follows
that (a− b) + (c− d) is divisible by n. But

(a− b) + (c− d) = (a+ c)− (b+ d),

so (a+ c)− (b+ d) is divisible by n. Therefore a+ c ≡ b+ d (mod n).
A similar argument can be used to establish the second rule.

With practice, you’ll soon get used to applying these rules, without the
need to refer back to them. You’ll find them helpful, for instance, in
simplifying long additions with check digits later in this section. Let’s look
at some examples that highlight how the rules can be applied effectively.
Suppose, for instance, that you are asked to find the least residue
of 19 + 37 modulo 18. One way to solve this is to first add 19 and 37 to
get 56, and then find the least residue of 56 modulo 18, which is 2. There
is an alternative method though: you can find the least residues
of 19 and 37 modulo 18 before you add them.
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You find that

19 ≡ 1 (mod 18) and 37 ≡ 1 (mod 18),

so, by the addition rule,

19 + 37 ≡ 1 + 1 ≡ 2 (mod 18).

It is important to remember that the least residue of the sum of two
integers isn’t necessarily equal to the sum of the least residues of those
integers. For example, the least residue of 19 + 18 modulo 10 is 7 (since
19 + 18 = 27). On the other hand, the least residues of 19 and 18 modulo
10 are 9 and 8, respectively, so the sum of these residues is 17. You need to
carry out one further step and note that the least residue of 17 modulo 10
is equal to 7 in order to obtain the least residue of the sum.

It is not always simpler to find least residues modulo n before adding or
subtracting. Suppose, for example, that you want to find the least residue
of 85− 84 modulo 7. It is much easier to simply subtract 84 from 85
without first finding the least residues of each of these integers modulo 7.
Sometimes there is scope for ingenuity in adding and subtracting in
congruences, as the next example demonstrates.

Example 6 Adding and subtracting in modular arithmetic

Find the least residue of 171 + 169 modulo 17.

Solution

You could first find the least residues of 171 and 169 modulo 17,
but in this case it’s easier to notice that both 171 and 169 are
within 1 of 170, a multiple of 17, so they are congruent to 1 or −1
modulo 17.

171 ≡ 1 (mod 17) and 169 ≡ −1 (mod 17)

Apply the addition rule for congruences.

Therefore

171 + 169 ≡ 1 + (−1) ≡ 0 (mod 17).

So the least residue is 0.

You don’t have to solve the problem in this way though. You could instead
calculate 171 + 169 = 340, and then observe that 340 ≡ 0 (mod 17).

In the following activities you should try to find each least residue using as
simple a method as you can. Your methods may differ from those of the
solutions provided, because there are many ways to carry out modular
arithmetic. There’s no need to use a calculator here; in fact, you’ll develop
a better understanding of modular arithmetic if you approach the activity
without one.
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Activity 16 Adding and subtracting modulo 6

Find the least residues of the following integers modulo 6.

(a) 7 + 3 (b) 7− 3 (c) 23− 24

(d) −3− 19 (e) 67 + 68 (f) 601 − 6001

Activity 17 Adding and subtracting modulo 10

Find the least residues of the following integers modulo 10.

(a) 6 + 4 (b) 14− 7 (c) 13− 15

(d) −21− 17 (e) 101 + 11 + 1 (f) 101− 11− 1

2.2 Multiplication and powers

Multiplication in modular arithmetic is simpler than multiplication in
normal arithmetic because you can often replace the integers to be
multiplied with simpler numbers before you multiply them. This is
because of the following rule.

Multiplication rule for congruences

If a ≡ b (mod n) and c ≡ d (mod n), then

ac ≡ bd (mod n).

To see why this rule is true, first note that if both a− b and c− d are
divisible by n, then (a− b)c+ (c− d)b is also divisible by n. But

(a− b)c+ (c− d)b = ac− bd,

so ac− bd is divisible by n. Hence ac ≡ bd (mod n).

You’ll soon become familiar with the rules for addition, subtraction and
multiplication, so you needn’t commit them to memory. Let’s consider an
example. Suppose you wish to find the least residue of 52× 37 modulo 7.
It is difficult to work out 52× 37 in your head. Instead, observe that

52 ≡ 3 (mod 7) and 37 ≡ 2 (mod 7),

so, using the multiplication rule,

52× 37 ≡ 3× 2 ≡ 6 (mod 7).
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We simplified this multiplication by working with the least residues of 52
and 37 modulo 7. Sometimes it is better to choose an integer in a residue
class other than the least residue, as the following example demonstrates.

Example 7 Multiplying in modular arithmetic

Find the least residue of 17× 14 modulo 19.

Solution

Find integers small in absolute value that are congruent to 17 and
14 modulo 19.

17 ≡ −2 (mod 19) and 14 ≡ −5 (mod 19)

Apply the multiplication rule for congruences.

Therefore

17× 14 ≡ (−2)× (−5) ≡ 10 (mod 19).

So the least residue is 10.

Activity 18 Multiplying modulo 7

Find the least residues of the following integers modulo 7.

(a) 3× 6 (b) 22 × 29 (c) (−5)× 16

(d) 51× 74 (e) 47× (−25) (f) (−29)× (−44)

Activity 19 Multiplying modulo 8

Find the least residues of the following integers modulo 8.

(a) 4× 4 (b) 17 × 26 (c) (−6)× 34

(d) 16× 457 (e) 47× (−25) (f) (−61) × (−46)

If a ≡ b (mod n) then the multiplication rule for congruences gives

a2 ≡ b2 (mod n).

You can now apply the multiplication rule to

a ≡ b (mod n) and a2 ≡ b2 (mod n)

to give

a3 ≡ b3 (mod n).
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Carrying on in this fashion, you obtain the power rule for congruences.

Power rule for congruences

If a ≡ b (mod n), and m is a positive integer, then

am ≡ bm (mod n).

For example, suppose you wish to find the least residue of 195 modulo 9.
Since 19 ≡ 1 (mod 9), it follows that

195 ≡ 15 ≡ 1 (mod 9),

so the least residue is 1. This is a particularly simple application of the
power rule. You’ll usually need to do more working than this, as you’ll see
in the next example.

Example 8 Raising to a power in modular arithmetic

Find the least residue of 116 modulo 9.

Solution

Use the power rule for congruences.

Since

11 ≡ 2 (mod 9),

it follows that

116 ≡ 26 (mod 9).

Start calculating powers of 2.

Calculating powers of 2 gives

22 = 4 and 23 = 8.

You could continue in this way to obtain 26 = 64, and then find
the least residue of 64 modulo 9. There is a quicker method though.
Since 8 ≡ −1 (mod 9), it follows that 23 ≡ −1 (mod 9). You can then

jump straight to 26 = 23 × 23.

Since

23 ≡ −1 (mod 9),

it follows that

26 ≡ 23 × 23 ≡ (−1)× (−1) ≡ 1 (mod 9).

So the least residue is 1.
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Try the following activities. You may find that you use different methods
to those given in the solutions.

Activity 20 Raising to a power modulo 6

Find the least residues of the following integers modulo 6.

(a) 2525 (b) (−9)4 (c) 206

Activity 21 Raising to a power modulo 13

Find the least residues of the following integers modulo 13.

(a) 2525 (b) 544 (c) 169

2.3 Fermat’s little theorem

Fermat’s little theorem is a fundamental result in number theory that
helps you to calculate powers modulo n when n is a prime number. Not
only is Fermat’s little theorem central to number theory, it also has
numerous applications in disciplines that require numeric computations;
perhaps most significantly, it plays an essential role in RSA ciphers, which
are widely used systems for disguising sensitive information. At the end of
this unit, you’ll learn about some other, similar, methods called
affine ciphers that are used for disguising information.

Fermat’s little theorem was conceived by the French amateur
mathematician Pierre de Fermat (referred to in the introduction) who
in 1640 communicated the result in a letter to a friend along with the
comment ‘I’d send you the proof, but I fear that it is too long’. In
fact, the earliest proof was published in 1736 by the Swiss
mathematician Leonhard Euler (1707–83).

Before looking at Fermat’s little theorem about powers modulo a general
prime number, let’s investigate the properties of powers modulo the prime
number 5.
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Activity 22 Raising to the fourth power modulo 5

Find the least residues of the following integers modulo 5.

(a) 14 (b) 24 (c) 34 (d) 44 (e) 74

From parts (a) to (d) of this activity you should have found that

14 ≡ 24 ≡ 34 ≡ 44 ≡ 1 (mod 5).

Suppose now that a is any integer that is not a multiple of 5. We know
that either

a ≡ 1 (mod 5), a ≡ 2 (mod 5), a ≡ 3 (mod 5) or a ≡ 4 (mod 5).

Therefore the power rule for congruences, together with the result of
Activity 22, tells us that

a4 ≡ 1 (mod 5).

This observation about powers modulo 5 is a special case of Fermat’s little
theorem.

Fermat’s little theorem

Let p be a prime number, and let a be an integer that is not a
multiple of p. Then

ap−1 ≡ 1 (mod p).

Since 5 is a prime number, Fermat’s little theorem tells us immediately
that all the least residues in Activity 22 are 1. Also, for example, 13 is a
prime number, so

612 ≡ 1 (mod 13) and (−15)12 ≡ 1 (mod 13).

When applying Fermat’s little theorem, remember that the integer a must
not be a multiple of p. After all, if a is a multiple of p, then a ≡ 0 (mod p),
so ap−1 ≡ 0 (mod p).

In some other texts the congruence ap−1 ≡ 1 (mod p) in Fermat’s little
theorem is replaced with the alternative congruence

ap ≡ a (mod p).

You can obtain this congruence from ap−1 ≡ 1 (mod p) by multiplying
both sides by a. The theorem is less easy to apply in this alternative form
but has the advantage that it is valid even if a is a multiple of p. This is
because, if a is a multiple of p, then a ≡ 0 (mod p), so

ap ≡ a ≡ 0 (mod p).
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Carmichael numbers and the Hardy–Ramanujan number

Fermat’s little theorem tells us that if n is a prime number, then

an ≡ a (mod n)

for any integer a. This congruence may fail if n is not a prime
number; for example, if n = 4 and a = 2 then

24 ≡ 16 ≡ 0 6≡ 2 (mod 4).

There are, however, some positive integers n that are not prime
numbers and yet have the property that the congruence
an ≡ a (mod n) is true for every integer a. These positive integers are
known as Carmichael numbers after the American mathematician
Robert Daniel Carmichael (1879–1967) who discovered the smallest
such number, namely 561.

The next two Carmichael numbers are 1105 and 1729, and there are
infinitely many more of them. The integer 1729 is also known as the
Hardy–Ramanujan number after a famous anecdote by the
distinguished British mathematician Godfrey Harold Hardy
(1877–1947) about a conversation he had with his friend Srinivasa
Ramanujan. Ramanujan was an Indian mathematician of
extraordinary talent who was ill in hospital at the time of the
incident. Hardy gave the following account of their exchange on
page 147 of an article titled ‘The Indian Mathematician Ramanujan’
which was published in 1937 in The American Mathematical Monthly

(vol. 44, no. 3, pp. 137–55):

I remember once going to see him when he was ill at Putney.
I had ridden in taxi cab number 1729 and remarked that the
number seemed to me rather a dull one, and that I hoped it was
not an unfavorable omen. ‘No,’ he replied, ‘it is a very interesting
number; it is the smallest number expressible as the sum of two
cubes in two different ways.’

In fact,

1729 = 13 + 123 = 93 + 103.

Let’s leave the justification of Fermat’s little theorem for now – we’ll
return to it in a later unit – and instead consider an example of how the
theorem can help us to calculate powers in modular arithmetic.
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Example 9 Applying Fermat’s little theorem

Find the least residue of 420 modulo 7.

Solution

As 7 is a prime number, we can apply Fermat’s little theorem.

By Fermat’s little theorem,

46 ≡ 1 (mod 7).

Therefore

412 ≡ (46)2 ≡ 12 ≡ 1 (mod 7),

418 ≡ (46)3 ≡ 13 ≡ 1 (mod 7),

and so forth; in fact, 4 to the power of any positive multiple of 6 is
congruent to 1 modulo 7. In light of this, you can simplify the
problem by writing 20 as a multiple of 6 plus a remainder term.

Since

20 = 3× 6 + 2,

we obtain

Recall the usual index laws for calculating powers, which tell us
that 43×6+2 = 43×6 × 42 = (46)3 × 42.

420 ≡ (46)3 × 42

≡ 13 × 42

≡ 16

≡ 2 (mod 7).

So the least residue is 2.

Activity 23 Applying Fermat’s little theorem with p = 7

Find the least residues of the following integers modulo 7.

(a) 56 (b) 1818 (c) (−11)33

Activity 24 Applying Fermat’s little theorem with p = 11

Find the least residues of the following integers modulo 11.

(a) 710 (b) (−5)31 (c) 1385
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Riffling

Riffling is a process for shuffling a deck of cards whereby you split the
deck into two piles and then combine the two piles in such a way that
the cards are interleaved. In a perfect riffle of a 52-card deck, the two
piles each have 26 cards, and they are combined alternately, as shown
below.

27271

1282

28293

2304

525125

265226

The cards used here are numbered 1, 2, . . . , 52 according to their
position in the original deck, with 1 the original top card and 52 the
original bottom card. The deck is split into two piles, 1, 2, . . . , 26
and 27, 28, . . . , 52, as shown on the left in Figure 2.3. After the riffle,
the card originally at position x is moved to position a,
where a ≡ 2x (mod 53). For example,

position 7 −→ position 14, and

position 27 −→ position 1

because 27× 2 = 54 and 54 ≡ 1 (mod 53). It follows that after two
consecutive perfect riffles, the card originally at position x is moved
to position b, where b ≡ 22x (mod 53). Similarly, after 52 perfect
riffles, the card originally at position x is moved to position c,
where c ≡ 252x (mod 53).

Fermat’s little theorem tells us that

252 ≡ 1 (mod 53),

which implies that c ≡ x (mod 53). That is, after 52 perfect riffles,
the cards are returned to their original order!
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2.4 Divisibility tests

Let’s take a break from developing the properties of modular arithmetic, to
look at how it is used in divisibility tests. A divisibility test is a method
for checking whether one integer is divisible by another. For example, an
integer is divisible by 2 if its last digit is 0, 2, 4, 6 or 8. Here you’ll learn
how modular arithmetic can be used to give a method for checking
whether an integer is divisible by 3. This method can be adapted to give a
test for divisibility by 9, as you’ll see at the end of the subsection.

Let’s start by looking at the test for divisibility by 3, then later on you’ll
see an explanation for how it works, using modular arithmetic. The digit

sum of an integer is the number you obtain by adding together the digits
of that number. For example, the digit sum of 5847 is 24, because

5 + 8 + 4 + 7 = 24.

If the integer is negative, then you should ignore the minus sign when
working out the digit sum. For example, the digit sum of −5847 is also 24.
The divisibility by 3 test is based on the following observation.

Divisibility by 3

If an integer is divisible by 3, then its digit sum is divisible by 3, and
vice versa.

For instance, 6847 is not divisible by 3 because its digit sum 25 is not
divisible by 3, whereas 5847 is divisible by 3 because its digit sum 24 is
divisible by 3. With large numbers it may be difficult to tell whether the
digit sum itself is divisible by 3, in which case you may need to find
another digit sum, as shown in the next example.

Example 10 Testing divisibility by 3

Is the number 8 675 038 695 divisible by 3?

Solution

Find the digit sum of 8 675 038 695.

The digit sum of 8 675 038 695 is

8 + 6 + 7 + 5 + 0 + 3 + 8 + 6 + 9 + 5 = 57

To determine whether 57 is divisible by 3, you can now find its

digit sum.

and the digit sum of 57 is

5 + 7 = 12.

Since 12 is divisible by 3, so is 57, and hence so is 8 675 038 695.
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Activity 25 Testing divisibility by 3

Which of the following numbers are divisible by 3?

(a) 982 (b) 753 (c) 8364 (d) −9245

(e) 98 285 385 335 (f) 10100

Let’s now see why the test for divisibility by 3 works. This explanation
involves a four digit number; similar reasoning applies to a number with
more (or fewer) digits. Any four digit number n can be written as
103a+ 102b+ 10c+ d, where a, b, c and d are the digits of the number.

For instance,

7263
︸︷︷︸

n

= 103 × 7
︸ ︷︷ ︸

103a

+102 × 2
︸ ︷︷ ︸

102b

+10× 6
︸ ︷︷ ︸

10c

+ 3.
︸︷︷︸

d

Since

10 ≡ 1 (mod 3),

it follows that, for any positive integer n,

10n ≡ 1n ≡ 1 (mod 3).

Therefore

103a+ 102b+ 10c+ d ≡ a+ b+ c+ d (mod 3).

This shows that n and its digit sum a+ b+ c+ d both have the same
remainder on division by 3, so one is divisible by 3 as long as the other is
divisible by 3.

This argument also works with congruences modulo 9 instead of modulo 3,
and so there is a similar test for divisibility by 9.

Divisibility by 9

If an integer is divisible by 9, then its digit sum is divisible by 9, and
vice versa.

For instance, 5847 is not divisible by 9 because its digit sum is 24 which is
not divisible by 9, whereas 5841 is divisible by 9 because its digit sum is 18
which is divisible by 9.
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Activity 26 Testing divisibility by 9

Which of the following numbers are divisible by 9?

(a) 8469 (b) 6172 (c) 7 989 989 897 979 897

Other divisibility tests

There are other tests that you can perform to test divisibility by
numbers other than 3 and 9. Here are some of the simpler tests of
this type.

To test whether an integer is divisible by 11, you should first find the
alternating digit sum of the integer. The alternating digit sum is
found by alternately adding and subtracting the digits of the integer,
starting from the units digit, and working backwards through the
other digits.

For example, the alternating digit sum of 673 148 is

8− 4 + 1− 3 + 7− 6 = 3.

If the integer is divisible by 11, then its alternating digit sum is
divisible by 11, and vice versa. Therefore 673 148 is not divisible
by 11.

To test whether an integer is divisible by 4, you should first find the
number formed from the final two digits of the original integer. For
example, the final two digits of the integer 673 148 give the
number 48. If the original integer is divisible by 4, then the number
formed from the final two digits is divisible by 4, and vice versa.
Therefore 673 148 is divisible by 4, as 48 is divisible by 4.

A similar divisibility test works for powers of 2 other than 4. For
example, to test whether an integer is divisible by 8 (note
that 8 = 23), you just need to check whether the number formed from
the final three digits of the integer is divisible by 8.

The correctness of these divisibility tests can be proved by using
modular arithmetic.
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2.5 Check digits

Groceries often have an identification number printed on them,
accompanied by a barcode. The barcode is just a way of formatting the
identification number so that it can easily be read by a scanner, and then
identified from a database on a computer. Two barcodes are shown in
Figure 11. On the left is an example of a Universal Product Code (UPC),
which is a system of numbering used on many objects sold in the United
Kingdom. On the right is an example of an International Standard Book
Number (ISBN), which is a system of numbering used on books.

9 876543 21098287654 32109 89

(a)

1 107647 83555810764 78351

(b)

Figure 11 (a) A UPC (b) an ISBN

Sometimes errors may occur in communicating identification numbers; for
example, a shop assistant may type an identification number incorrectly
into a cash register. To help prevent such errors, the last digit is used as a
check. It is known as a check digit. Here you’ll learn how check digits
work for ISBNs, using modular arithmetic. Check digits for other schemes
work in a similar manner. Actually, you’ll learn about 10-digit ISBNs,
which were used before the introduction of 13-digit ISBNs in 2007. These
13-digit ISBNs also have check digits, but the explanation of how they
work, although similar, is slightly more complicated.

Let’s label the digits a1, a2, . . . , a10 of an ISBN in reverse order, so that a1
is the check digit, as shown below for the ISBN of Silent Spring, by Rachel
Carson.

a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

0 1 4 1 3 9 1 5 2 9

check digit

The digits a2, a3, . . . , a10 identify the language, publisher and title of the
book. The check digit a1 is then defined to be the integer from
{0, 1, 2, . . . , 10} that satisfies

a1 ≡ −2a2 − 3a3 − 4a4 − 5a5 − 6a6 − 7a7 − 8a8 − 9a9 − 10a10 (mod 11).

Rearranging this congruence gives

a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10 ≡ 0 (mod 11).

An ISBN must satisfy this congruence in order to be valid. If the
congruence is not satisfied, then there is an error and the number is not an
ISBN. Let’s check the ISBN of Silent Spring, using the symbol · as a
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shorthand for the multiplication symbol ×. The congruence check is
satisfied because

a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10

≡ 9 + 2 · 2 + 3 · 5 + 4 · 1 + 5 · 9 + 6 · 3 + 7 · 1 + 8 · 4 + 9 · 1 + 10 · 0
≡ 9 + 4 + 15 + 4 + 45 + 18 + 7 + 32 + 9 + 0

≡ 9 + 4 + 4 + 4 + 1 + 7 + 7 + 10 + 9

≡ 55

≡ 0 (mod 11).

The check digit a1 is one of the integers 0, 1, 2, . . . , 10. When a1 is 10, it is
denoted in the ISBN by an X (the Roman numeral for 10) to ensure that it
is represented by a single symbol.

The two most common types of errors when communicating ISBNs are
interchanging two adjacent digits in the ISBN (for example,
typing 123546789X instead of 123456789X) or altering a single digit (for
example, typing 723456789X instead of 123456789X). The 10-digit code
fails the ISBN congruence check if one of these errors occurs. To see why
this is so, let’s consider a valid ISBN with digits a1, a2, . . . , a10, in reverse
order, which must satisfy the congruence check S ≡ 0 (mod 11), where

S = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10.

Suppose that in typing the ISBN you accidentally interchange a6 and a7
(but make no other errors). Your ISBN congruence check will now involve
the sum

T = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a7 + 7a6 + 8a8 + 9a9 + 10a10.

Unless a6 = a7 (in which case interchanging a6 and a7 won’t matter) you
obtain

T − S ≡ (6a7 + 7a6)− (6a6 + 7a7) ≡ a6 − a7 6≡ 0 (mod 11)

(where 6≡ means ‘is not congruent to’). Since S ≡ 0 (mod 11), it follows
that T 6≡ 0 (mod 11). Therefore your number fails the ISBN congruence
check, so you know that you have made an error.

Next let’s suppose instead that in typing the ISBN you accidentally
change a10 to a different digit a′10 (but make no other errors). This time
your congruence check will involve the sum

T = a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a′10.

Then

T − S ≡ 10a′10 − 10a10 (mod 11).

Remember that 10 ≡ −1 (mod 11). Therefore

T − S ≡ (−1)× a′10 − (−1)× a10 ≡ a10 − a′10 6≡ 0 (mod 11),

so again T 6≡ 0 (mod 11). Since your number fails the ISBN congruence
check, you know that you have made an error.
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In this example of a single digit error we have assumed that a10 is the
incorrect digit. If the error was in a different digit, then the argument to
show that

T − S 6≡ 0 (mod 11)

is similar, but uses the idea of multiplicative inverses modulo 11, which
you’ll meet in the next section.

You’ve now seen that the congruence check will detect whether one of the
two most common errors has occurred. However, it won’t necessarily
detect whether more than one of these errors has occurred, or if a different
error has occurred.

Example 11 Checking whether a 10-digit code could be an ISBN

Does the following 10-digit code satisfy the ISBN congruence check?

0521683726

Solution

Label the digits a1, a2, a3, . . . , a10 in reverse order, and evaluate
a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10

a1 + 2a2 + 3a3 + 4a4 + 5a5 + 6a6 + 7a7 + 8a8 + 9a9 + 10a10

≡ 6 + 2 · 2 + 3 · 7 + 4 · 3 + 5 · 8 + 6 · 6 + 7 · 1 + 8 · 2 + 9 · 5 + 10 · 0
≡ 6 + 4 + 21 + 12 + 40 + 36 + 7 + 16 + 45 + 0

Simplify modulo 11.

≡ 6 + 4 + 10 + 1 + 7 + 3 + 7 + 5 + 1

≡ 44

≡ 0 (mod 11)

So 0521683726 satisfies the ISBN congruence check.

You may find it helpful in carrying out the ISBN congruence check to
remember that

10 ≡ −1 (mod 11), 9 ≡ −2 (mod 11) and 8 ≡ −3 (mod 11).
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Activity 27 Checking whether 10-digit codes could be ISBNs

Do the following 10-digit codes satisfy the ISBN congruence check?

(a) 0412606100 (b) 020142278X (c) 0691118809

3 Multiplicative inverses and linear

congruences

In this section you’ll learn about multiplicative inverses modulo n, which
give you a way of dividing in modular arithmetic. You’ll use them to solve
linear congruences; these are congruences such as

5x ≡ 2 (mod 12),

where x is an unknown.

In the subject of cryptography, linear congruences are used in procedures
for disguising information called ciphers. At the end of the section you’ll
learn how to unravel particular types of ciphers, called affine ciphers, by
solving linear congruences.

3.1 Multiplicative inverses

You’ve seen how to add, subtract and multiply in modular arithmetic, and
now you’ll learn how to divide in modular arithmetic. Let’s begin with an
example which demonstrates that you cannot divide both sides of a
congruence by an integer in the way you might expect. Consider the
congruence

20 ≡ 8 (mod 6).

Even though 20 and 8 are each divisible by 4, with 20/4 = 5 and 8/4 = 2,
you cannot divide both sides of the congruence by 4 because

5 6≡ 2 (mod 6).

We need a different concept of division in modular arithmetic. To motivate
this new concept, recall that in normal arithmetic, dividing by the integer
4, for example, is the same as multiplying by the reciprocal of 4, namely 1

4
.

The reciprocal 1
4
satisfies

4× 1
4
= 1.
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In modular arithmetic, the only numbers used are integers, so we cannot
multiply by the fraction 1

4
. Instead we need numbers that perform the

same role as reciprocals, called multiplicative inverses modulo n.

Multiplicative inverses modulo n

A multiplicative inverse of a modulo n is an integer v such that

av ≡ 1 (mod n).

For example, 5 is a multiplicative inverse of 2 modulo 9 because

2× 5 ≡ 1 (mod 9).

Activity 28 Finding multiplicative inverses modulo 9

Find a multiplicative inverse modulo 9 of each of the following integers.

(a) 1 (b) 5 (c) 7 (d) 16

For some integers a and positive integers n, there is no multiplicative
inverse of a modulo n. For example, 3 doesn’t have a multiplicative inverse
modulo 9. To see this, suppose on the contrary that v is a multiplicative
inverse of 3 modulo 9. Then

3v ≡ 1 (mod 9).

Let’s now use the method explained near the end of Subsection 1.4 for
writing a congruence as an equation. This method shows that our
congruence is equivalent to the statement

3v = 1 + 9k,

for some integer k. However, the left-hand side of this equation is divisible
by 3, but the right-hand side is not (because 3 is a factor of 9k, so 1 + 9k is
one more than a multiple of 3). This is impossible and so 3 doesn’t have a
multiplicative inverse modulo 9 after all.

Activity 29 Showing that some integers don’t have a multiplicative

inverse modulo 9

Show that each of the following integers doesn’t have a multiplicative
inverse modulo 9.

(a) 0 (b) 6 (c) 18
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What’s special about the integer 3 and each of the integers in Activity 29
is that they each share a common factor (other than 1) with 9. For
instance, 3 and 9 share a common factor of 3. With reasoning similar to
that used to solve Activity 29, you can show that any integer that shares a
common factor (other than 1) with 9 doesn’t have a multiplicative inverse
modulo 9.

In contrast, the integer 2 and each of the integers from Activity 28 share
no common factors with 9 other than 1. In other words, the highest
common factor of any one of these integers and 9 is 1. Two integers whose
highest common factor is 1 are said to be coprime. If a and 9 are coprime
integers, then a does have a multiplicative inverse modulo 9. To see why
this is so, remember that Bézout’s identity tells us that if the highest
common factor of a and 9 is 1, then there are integers v and w such that

av + 9w = 1.

Therefore

av = 1− 9w.

Using the method for writing a congruence as an equation, in reverse, we
see that

av ≡ 1 (mod 9).

Therefore v is a multiplicative inverse of a modulo 9.

Arguing in a similar way but using modulo n rather than modulo 9, you
can obtain the following rule for deciding whether an integer a has a
multiplicative inverse modulo n.

Existence of multiplicative inverses modulo n

• If the integers a and n are coprime, then there is a multiplicative
inverse of a modulo n.

• If a and n are not coprime, then there is not a multiplicative
inverse of a modulo n.
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You saw earlier that 5 is a multiplicative inverse of 2 modulo 9. It’s not
the only multiplicative inverse of 2 modulo 9 though; every integer that is
congruent to 5 modulo 9 is a multiplicative inverse of 2 modulo 9. For
example,

14 ≡ 5 (mod 9), so 2× 14 ≡ 2× 5 ≡ 1 (mod 9),

−4 ≡ 5 (mod 9), so 2× (−4) ≡ 2× 5 ≡ 1 (mod 9),

and so 14 and −4 are also multiplicative inverses of 2 modulo 9. Remember
that the collection of integers congruent to 5 modulo 9 is called the residue
class of 5 modulo 9. Among these integers is the least residue of 5
modulo 9, which is 5 itself. When you are asked to find a multiplicative
inverse modulo n it is usually clearest to give the least residue.

So far, you’ve found multiplicative inverses modulo n by trying the
values 1, 2, 3, . . . , n− 1 one by one. This method can, however, be very
time consuming if n is large! In the next example, you’ll see how to find
multiplicative inverses by using Euclid’s algorithm and backwards
substitution.

In general, you can use whichever method you wish, although a helpful
rule to follow is that you should use the first method when n ≤ 13, and
otherwise use the second method. The reason for the integer 13 is that in
modular arithmetic modulo n, where n ≤ 13, the only pairs of integers
that you’ll need to multiply together are those that fall within the
familiar 1 to 12 multiplication tables (providing that each of your integers
is a least residue modulo n).

Sometimes you’ll be able to find a multiplicative inverse with an intelligent
guess, without using either of these methods. For example, to find the
multiplicative inverse of 29 modulo 30, you just need to observe that

29 ≡ −1 (mod 30),

so

29× 29 ≡ (−1)× (−1) ≡ 1 (mod 30).

Therefore 29 is its own multiplicative inverse modulo 30.
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Example 12 Finding multiplicative inverses modulo n

For each of the following values of a and n, determine whether a
multiplicative inverse of a modulo n exists and, if it does, find one.

(a) a = 5, n = 13 (b) a = 30, n = 73

Solution

(a) To determine whether there is a multiplicative inverse, check
whether 5 and 13 are coprime. They must be coprime, as they
are both prime numbers.

The integers 5 and 13 are coprime, so there is a multiplicative
inverse of 5 modulo 13.

Since n ≤ 13, try the values 1, 2, 3, . . . one by one until you
find the multiplicative inverse modulo 13. You needn’t necessarily
check the integer 1, as clearly 5× 1 6≡ 1 (mod 13).

5× 1 ≡ 5 (mod 13) 5× 2 ≡ 10 (mod 13)

5× 3 ≡ 15 ≡ 2 (mod 13) 5× 4 ≡ 20 ≡ 7 (mod 13)

5× 5 ≡ 25 ≡ 12 (mod 13) 5× 6 ≡ 30 ≡ 4 (mod 13)

5× 7 ≡ 35 ≡ 9 (mod 13) 5× 8 ≡ 40 ≡ 1 (mod 13)

Stop, as you have found an integer v such that
5v ≡ 1 (mod 13).

So 8 is a multiplicative inverse of 5 modulo 13.

You may have noticed a short cut that saves some
calculations. You saw that 5× 5 ≡ 12 ≡ −1 (mod 13), so
(−5)× 5 ≡ −12 ≡ 1 (mod 13). Since −5 ≡ 8 (mod 13), it follows

that a multiplicative inverse of 5 modulo 13 is 8.

(b) To determine whether there is a multiplicative inverse, check
whether 30 and 73 are coprime. The numbers are quite large so
use Euclid’s algorithm to find the highest common factor.

Euclid’s algorithm gives

73 = 2× 30 + 13

30 = 2× 13 + 4

13 = 3× 4 + 1

4 = 4× 1 + 0.

Since the second-to-last remainder is 1, the integers 30 and 73 are
coprime, so there is a multiplicative inverse of 30 modulo 73.

Rearrange all but the last equation and then apply backwards
substitution to find integers v and w with 30v + 73w = 1. The
integer v will be a multiplicative inverse of 30 modulo 73 since
30v = 1− 73w.
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Rearranging the equations gives

13 = 73 − 2× 30

4 = 30 − 2× 13

1 = 13 − 3× 4 .

Backwards substitution gives

1 = 13 − 3×
(

30 − 2× 13
)

= 7× 13 − 3× 30

= 7×
(

73 − 2× 30
)

− 3× 30

= 7× 73 − 17 × 30 .

(Check: 7× 73− 17× 30 = 511 − 510 = 1.)

Write the equation 7× 73− 17× 30 = 1 as a congruence
modulo 73 to give the multiplicative inverse.

Since

(−17) × 30 = 1− 7× 73,

we obtain

(−17) × 30 ≡ 1 (mod 73).

So −17 is a multiplicative inverse of 30 modulo 73.

The solution could end here, however, it is helpful to also find a
multiplicative inverse that is a least residue modulo 73.

Since

−17 ≡ 56 (mod 73),

56 is also a multiplicative inverse of 30 modulo 73.

Activity 30 Finding multiplicative inverses modulo n

For each of the following values of a and n, determine whether a
multiplicative inverse of a modulo n exists and, if it does, find one.

(a) a = 10, n = 13 (b) a = 12, n = 21 (c) a = 18, n = 19

(d) a = 0, n = 11 (e) a = 7, n = 16 (f) a = 10, n = 57

(g) a = 84, n = 217 (h) a = 43, n = 96
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Basketball circles

Suppose 7 basketball players stand in a circle, equally spaced. One
player has a ball and she throws it to the player 3 places to her right.
The receiver then throws the ball 3 places to his right, and so forth.
Let’s label the people 0, 1, 2, . . . , 6 anticlockwise, starting with player 0
who begins with the ball. The path the ball follows is shown in
Figure 12(a). After m throws, the ball is with the player congruent to

3 + 3 + · · ·+ 3
︸ ︷︷ ︸

m copies of 3

= 3m

modulo 7. For example, after 7 throws, player 0 has the ball again,
because 3× 7 ≡ 0 (mod 7). After 5 throws, player 1 has the ball,
because 3× 5 ≡ 1 (mod 7).

Now suppose there are n basketball players (rather than 7) and each
player throws the ball a places (rather than 3) to his or her right.
After m throws, the ball is with the player congruent to am modulo n.
Therefore player 1 receives the ball when m is a multiplicative inverse
of a modulo n. If a and n are not coprime, then player 1 never
receives the ball, as is the case in Figure 12(b).

6

(b)

0

1

2

3

23

4

14

5

05

7 8

6 9

(a)

Figure 12 (a) A basketball circle with 7 players and throws of 3
places to the right (b) a basketball circle with 10 players and throws
of 4 places to the right
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3.2 Linear congruences

Congruences such as

5x ≡ 2 (mod 12),

in which there is an unknown x, are called linear congruences.

Linear congruences

A linear congruence is a congruence of the form

ax ≡ b (mod n),

where a and b are known, and x is unknown.

The process of finding the values of x for which a linear congruence is true
is called solving the linear congruence. Any number x for which the linear
congruence is true is a solution of the linear congruence. If x is a solution
of a linear congruence, then any number in the same residue class as x
modulo n is also a solution. So the solutions are given by linear
congruences of the form

x ≡ c (mod n).

In this subsection, you’ll learn how to solve linear congruences in which a
and n are coprime. You’ll learn about linear congruences in which a and n
are not coprime in the next subsection. You’ll see that some linear
congruences have no solutions.

You saw earlier that, if a and n are coprime, then a has a multiplicative
inverse modulo n. In fact, you saw that a has many multiplicative inverses
modulo n. You’ll now see how a multiplicative inverse v of a modulo n can
be used to solve the linear congruence ax ≡ b (mod n). First, multiply
both sides of the linear congruence by v:

vax ≡ vb (mod n).

Since va ≡ 1 (mod n), it follows that the solutions of the linear congruence
ax ≡ b (mod n) are given by

x ≡ vb (mod n).
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Solving linear congruences when a and n are coprime

If a and n are coprime, then the linear congruence ax ≡ b (mod n)
has solutions. The solutions are given by

x ≡ vb (mod n),

where v is any multiplicative inverse of a modulo n.

For example, consider the linear congruence

5x ≡ 6 (mod 9).

You saw earlier that 2 is a multiplicative inverse of 5 modulo 9 because

2× 5 ≡ 10 ≡ 1 (mod 9)

and so the solutions of the linear congruence are given by

x ≡ 2× 6 ≡ 12 ≡ 3 (mod 9);

that is,

x ≡ 3 (mod 9).

In other words, the solutions of the linear congruence consist of those
integers congruent to 3 modulo 9 (such as . . . ,−15,−6, 3, 12, 21, . . . ).
You can check this by substituting x = 3 back in to the original linear
congruence:

5× 3 ≡ 15 ≡ 6 (mod 9).

In fact, for this particular linear congruence, it would be quicker simply to
try out the values 1, 2, 3, . . . one by one until you find a solution. We
suggest that you apply this direct method for solving a linear congruence
whenever n ≤ 13. Let’s consider some examples of linear congruences of
this type, and return to linear congruences with n > 13 later on.
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Example 13 Solving a linear congruence when a and n are

coprime and n ≤ 13

Solve the linear congruence

11x ≡ 7 (mod 8).

Solution

Simplify the linear congruence by replacing 11 with the least
residue of 11 modulo 8.

Since 11 ≡ 3 (mod 8), an equivalent linear congruence is

3x ≡ 7 (mod 8).

Check that this linear congruence has solutions.

As 3 and 8 are coprime, this linear congruence has solutions.

Try the values 1, 2, 3, . . . one by one until you find a solution.

Trying the values 1, 2, 3, . . . one by one, we find that

3× 1 ≡ 3 (mod 8) 3× 2 ≡ 6 (mod 8)

3× 3 ≡ 9 ≡ 1 (mod 8) 3× 4 ≡ 12 ≡ 4 (mod 8)

3× 5 ≡ 15 ≡ 7 (mod 8).

So the solutions are given by

x ≡ 5 (mod 8).

Activity 31 Solving linear congruences when a and n are coprime

and n ≤ 13

Solve the following linear congruences.

(a) 2x ≡ 5 (mod 7) (b) 7x ≡ 8 (mod 10) (c) 15x ≡ −13 (mod 11)

For large values of n, it is quicker to solve a linear congruence
ax ≡ b (mod n) by using the result you saw earlier. This states that the
solutions are given by

x ≡ vb (mod n),

where v is a multiplicative inverse of a modulo n.
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Example 14 Solving a linear congruence when a and n are

coprime and n > 13

Solve the linear congruence

7x ≡ 13 (mod 24).

Solution

Check that the linear congruence has solutions.

As 7 and 24 are coprime, the linear congruence has solutions.

Since 24 is a large integer, use a multiplicative inverse of 7 modulo
24 to find the solutions.

The solutions are given by

x ≡ 13v (mod 24),

where v is a multiplicative inverse of 7 modulo 24.

Use Euclid’s algorithm and backwards substitution to find v.

Euclid’s algorithm gives

24 = 3× 7 + 3

7 = 2× 3 + 1.

There is no need to write down the next equation given by Euclid’s
algorithm since this equation has remainder 1. Apply backwards
substitution to find integers v and w with 7v + 24w = 1. There are
only two equations, so you may choose not to rearrange them first.

Backwards substitution gives

1 = 7− 2× 3

= 7− 2(24 − 3× 7)

= 7× 7− 2× 24.

So

7× 7 ≡ 1 (mod 24),

and hence 7 is a multiplicative inverse of 7 modulo 24. So the
solutions are given by

x ≡ 13× 7 ≡ 91 ≡ 19 (mod 24).

Remember to check your answer. That is, check that if
x ≡ 19 (mod 24) then 7x ≡ 13 (mod 24). To do this, it helps to use

the congruence 19 ≡ −5 (mod 24).

(Check: 7× 19 ≡ 7× (−5) ≡ −35 ≡ 13 (mod 24).)
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Activity 32 Solving linear congruences when a and n are coprime

and n > 13

Solve the following linear congruences.

(a) 7x ≡ 8 (mod 20) (b) 3x ≡ −26 (mod 17)

(c) 13x ≡ 3 (mod 30)

Here’s a puzzle that you might like to try to solve using linear congruences.

Activity 33 Using linear congruences to solve a puzzle

10 pirates discover a treasure chest containing no more than 100 gold
coins. They share the coins out equally, but find there are 6 left over. In
frustration they throw 3 of their comrades overboard, and share the coins
out equally again among the remaining 7. This time the coins can be
distributed equally, with none left over. How many coins are there?

Hint: let N be the number of gold coins. When the 10 pirates first share
the N coins out, they find there are 6 left over. Write this observation as a
congruence modulo 10. After 3 pirates are thrown overboard, the
remaining 7 pirates succeed in sharing out the N coins equally among
themselves. Use this fact to write down an expression for N that you can
substitute into the congruence that you wrote down earlier to give you a
linear congruence.

3.3 More linear congruences

In this subsection you’ll learn about linear congruences ax ≡ b (mod n) for
which a and n are not coprime. This is a bit more complicated than the
case when a and n are coprime.

Let’s begin with an example, the linear congruence

6x ≡ 4 (mod 15).

This is unlike any of the linear congruences you met earlier because the
integers a and n (6 and 15) are not coprime: their highest common factor
is 3. If x is a solution of this linear congruence, then you can write

6x = 4 + 15k,

for some integer k. Subtracting 15k from both sides gives

6x− 15k = 4.

However, the left-hand side of this equation is divisible by 3 but the
right-hand side is not. This contradiction shows that there are no solutions
of the linear congruence 6x ≡ 4 (mod 15).
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Similar arguments can be used to obtain the following more general result.

Linear congruences without solutions

Let d be the highest common factor of the integers a and n,
where n > 1. The linear congruence

ax ≡ b (mod n)

has no solutions if b is not divisible by d.

For example, the linear congruence

−15x ≡ 8 (mod 20)

has no solutions, because the highest common factor of −15 and 20 is 5,
and 8 is not divisible by 5.

Activity 34 Showing that some linear congruences have no solutions

Show that the following linear congruences have no solutions.

(a) 4x ≡ 5 (mod 10) (b) −12x ≡ 8 (mod 42)

(c) 48x ≡ 70 (mod 111)

So far you’ve learned how to solve the linear congruence

ax ≡ b (mod n)

when a and n are coprime, and you’ve seen that the linear congruence has
no solutions when b is not divisible by the highest common factor of a
and n. Let’s suppose now that the linear congruence doesn’t fall into
either of these categories: so the highest common factor of a and n is
not 1, but it is a divisor of b. For example, consider the linear congruence

9x ≡ 21 (mod 24).

The highest common factor of 9 and 24 is 3, and 3 is a divisor of 21. The
linear congruence is equivalent to the statement that

9x = 21 + 24k, for some integer k.

If we divide each side of this equation by 3, the highest common factor of 9
and 24, then we obtain

3x = 7 + 8k, for some integer k.

Expressed as a linear congruence, this statement says that

3x ≡ 7 (mod 8).

This new linear congruence is equivalent to the original one,
9x ≡ 21 (mod 24). However, the new linear congruence is of the form
ax ≡ b (mod n), where a and n are coprime, so you can solve it using the
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methods of the previous subsection. In fact, you saw how to solve it in
Example 13; the solutions are given by

x ≡ 5 (mod 8).

Notice that the original linear congruence was a congruence modulo 24
whereas the solutions are given by a congruence modulo 8.

This method works with other linear congruences of a similar type. It is
summarised as follows.

Linear congruences with solutions

Let d be the highest common factor of the integers a and n,
where n > 1. The linear congruence

ax ≡ b (mod n)

has solutions if b is divisible by d. The solutions are given by the
solutions of the equivalent linear congruence

a

d
x ≡ b

d

(

mod
n

d

)

.

It’s worth emphasising here that if b is divisible by d then the numbers
a/d, b/d and n/d are all integers. (You should not write down a
congruence involving a number that is not an integer.) What is more, after
dividing a and n by their highest common factor d, you are left with
integers a/d and n/d with no common factors (other than 1). That is, a/d
and n/d are coprime, so you can solve the linear congruence

a

d
x ≡ b

d

(

mod
n

d

)

using the techniques of the previous subsection.

Notice that the statement in the box is true even if d = 1 (that is, even if a
and n are coprime) although in that case it doesn’t tell you anything useful
because if d = 1 then the two linear congruences

ax ≡ b (mod n) and
a

d
x ≡ b

d

(

mod
n

d

)

are identical.
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Example 15 Solving a linear congruence when a and n are

not coprime

Solve the linear congruence 12x ≡ 16 (mod 20).

Solution

Check that the linear congruence has solutions.

The highest common factor of 12 and 20 is 4. Since 16 is divisible
by 4, the linear congruence has solutions.

Divide each of the integers 12, 16 and 20 in the linear congruence
12x ≡ 16 (mod 20) by 4 to obtain an equivalent linear congruence.

and is equivalent to

3x ≡ 4 (mod 5).

Since the numbers involved are small, try the values 1, 2, 3, . . .
one by one until you find a solution.

Trying the values 1, 2, 3, . . . one by one, we find that

3× 1 ≡ 3 (mod 5) 3× 2 ≡ 6 ≡ 1 (mod 5)

3× 3 ≡ 9 ≡ 4 (mod 5).

So the solutions are given by

x ≡ 3 (mod 5).

Activity 35 Solving linear congruences when a and n are not

coprime

Solve the following linear congruences.

(a) 12x ≡ 6 (mod 15) (b) −25x ≡ 10 (mod 40)

(c) 18x ≡ 6 (mod 98)

You now know how to determine whether a linear congruence has solutions
and, if so, how to find the solutions. The results that you’ve met are
summarised as follows.
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Solving the linear congruence ax ≡ b (mod n)

Let d be the highest common factor of a and n.

• If d = 1, then the linear congruence has solutions. The solutions
are given by

x ≡ vb (mod n),

where v is any multiplicative inverse of a modulo n.

• If b is not divisible by d, then the linear congruence has no
solutions.

• If b is divisible by d, then the linear congruence has solutions and
the solutions are given by the solutions of the equivalent linear
congruence

a

d
x ≡ b

d

(

mod
n

d

)

.

You may also find the decision tree in Figure 13 helpful.

Try the values 1, 2, 3, . . .
for x one by one until
you find a solution.

yes no

yes no

yes no

Is n ≤ 13?

Is b divisible by d?

Solve the equivalent
linear congruence
a

d
x ≡ b

d

�
modn

d

�
.

Solve the equivalent

linear congruence
a

d
x

b

d
mod

n

d
.

The linear congruence

has no solutions.

one by one until

To solve the linear congruence
ax ≡ b (mod n), first find
the highest common factor

of a and n. Call it d.
Is d = 1?

The solutions are given by
x ≡ vb (mod n),

where v is a multiplicative
inverse of a modulo n.

Figure 13 A decision tree for solving a linear congruence
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Activity 36 Solving a variety of linear congruences

Solve the following linear congruences.

(a) 5x ≡ 21 (mod 9) (b) 11x ≡ 6 (mod 38)

(c) 21x ≡ 14 (mod 30) (d) −48x ≡ 24 (mod 28)

3.4 Affine ciphers

Usually, when a sensitive message is transmitted, it is first transformed to
disguise it from all but the intended recipients. The algorithm used to
transform a message is called a cipher, and the design of ciphers is called
cryptography. Ciphers have been used throughout history for military
and diplomatic communications and, in recent years, they have been
increasingly used to protect the electronic transfer of confidential
information and money.

Here you’ll learn about one particular type of cipher, called an affine

cipher, which uses some of the theory of linear congruences developed
earlier. Although it is too basic a cipher to be used for sensitive
information, many of the features of affine ciphers are shared by more
sophisticated ciphers.

Before you can apply an affine cipher, or a cipher of a similar type, you
must first replace the letters of the message you wish to transmit by
numbers. Throughout this subsection we use Table 1 to switch between
letters and numbers.

Table 1 A conversion table for letters and numbers

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

For example, using Table 1 you can write the message

HULLABALOO

as

7, 20, 11, 11, 0, 1, 0, 11, 14, 14.
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Now suppose that we wish to apply a cipher to this message; this process
is called enciphering. Many simple ciphers consist of a rule for reordering
the integers 0, 1, 2, . . . , 25 to disguise the message. For instance, you may
have a rule that says you should replace the integer x with the
integer E(x) from 0, 1, 2, . . . , 25 that satisfies

E(x) ≡ 5x+ 23 (mod 26).

Using this rule,

E(0) = 23, as 5× 0 + 23 ≡ 23 (mod 26),

E(1) = 2, as 5× 1 + 23 ≡ 28 ≡ 2 (mod 26),

E(2) = 7, as 5× 2 + 23 ≡ 33 ≡ 7 (mod 26),

and so on. Our message 7, 20, 11, 11, 0, 1, 0, 11, 14, 14 becomes

7, 20, 11, 11, 0, 1, 0, 11, 14, 14
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
6, 19, 0, 0, 23, 2, 23, 0, 15, 15.

You can check this yourself. To do so, it may help you to notice
that 23 ≡ −3 (mod 26), so the rule for enciphering the message can be
rewritten as

E(x) ≡ 5x− 3 (mod 26).

This cipher is an example of an affine cipher.

Affine ciphers

An affine cipher modulo 26 is a rule E for reordering the integers
0, 1, 2, . . . , 25 given by

E(x) ≡ ax+ b (mod 26),

where a and b are integers, and a and 26 are coprime.

This definition only allows affine ciphers modulo 26, because the only
ciphers you’ll meet here are those that use the 26 letters of the alphabet
represented by integers in Table 1. To encipher a message that uses a
different set of characters you can use an affine cipher of the form
E(x) ≡ ax+ b (mod n), where n is the number of characters you wish to
choose from, and a and n are coprime.

The integers a and 26 must be coprime so that a has a multiplicative
inverse modulo 26. The significance of this will be made clear shortly. For
now, you may like to practise enciphering a message using an affine cipher.

62



3 Multiplicative inverses and linear congruences

Activity 37 Enciphering a message with an affine cipher

Using Table 1 and the affine cipher

E(x) ≡ 3x+ 14 (mod 26),

encipher the message BROUHAHA.

The process of recovering the original message from an enciphered message
is called deciphering. With affine ciphers, it’s possible to decipher a
message if you know the particular affine cipher used to encipher the
message. For example, suppose that you receive the message

6, 19, 0, 0, 23, 2, 23, 0, 15, 15,

which you know has been created using the affine cipher
E(x) ≡ 5x+ 23 (mod 26) considered earlier. To decipher the first integer
from this message, namely 6, you must find the integer x from 0, 1, 2, . . . , 25
that satisfies E(x) = 6. That is, you must solve the congruence

5x+ 23 ≡ 6 (mod 26).

To find x, first subtract 23 from both sides of the congruence.
Since 6− 23 ≡ −17 ≡ 9 (mod 26), you obtain

5x ≡ 9 (mod 26).

This is a linear congruence. It follows from the results in the previous
subsection that this can be solved, since 5 and 26 are coprime, and the
solutions are given by

x ≡ 9v (mod 26),

where v is a multiplicative inverse of 5 modulo 26. The simplest way to
find a value for v is to observe that

5× 5 ≡ 25 ≡ −1 (mod 26),

so

(−5)× 5 ≡ 1 (mod 26)

and hence −5 is a multiplicative inverse of 5 modulo 26.
(Since 19 ≡ −5 (mod 26), the integer 19 is also a multiplicative inverse of 5
modulo 26; however, it’s easier to use −5.) So the solutions are given by

x ≡ (−5)× 9 ≡ −45 ≡ 7 (mod 26)

and hence x is the integer 7.
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You could decipher each of the integers of the enciphered message in this
way to recover the original message. If you were to do so, then you would
find that you perform a similar set of operations each time. A quicker
method to decipher the whole message is to obtain a ‘deciphering rule’ D
that undoes the enciphering rule E. Let’s explain how to find D. Suppose
that you wish to decipher the integer y. (You’ve just seen how to decipher
the integer 6.) You must find the integer x that satisfies E(x) = y.
That is, you must solve the congruence

5x+ 23 ≡ y (mod 26).

Subtracting 23 from both sides gives

5x ≡ y − 23 (mod 26).

Multiplying both sides by −5, which as you’ve seen is a multiplicative
inverse of 5 modulo 26, gives

x ≡ −5(y − 23) (mod 26).

So the rule D that undoes the transformation E is given by

D(y) ≡ −5(y − 23) (mod 26).

This strategy for obtaining a deciphering rule works for any affine cipher.

Deciphering rule for affine ciphers

The rule D for deciphering the affine cipher E(x) ≡ ax+ b (mod 26)
is given by

D(y) ≡ v(y − b) (mod 26),

where v is any multiplicative inverse of a modulo 26.

In the terminology of sets and functions, E is a one-to-one function and D
is the inverse function of E.
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Example 16 Deciphering a message that has been enciphered

using an affine cipher

Suppose you receive the enciphered message 3, 17, 18, 7, which you
know has been created using the affine cipher

E(x) ≡ 9x+ 21 (mod 26).

What does the message say?

Solution

Write down a rule for deciphering the message.

A rule D for deciphering the message is given by

D(y) ≡ v(y − 21) (mod 26),

where v is a multiplicative inverse of 9 modulo 26.

Find a multiplicative inverse of 9 modulo 26. You could apply
Euclid’s algorithm and backwards substitution, but it’s quicker to
notice that 3× 9 = 27.

Since

3× 9 ≡ 27 ≡ 1 (mod 26),

we see that 3 is a multiplicative inverse of 9 modulo 26. So

D(y) ≡ 3(y − 21) ≡ 3(y + 5) (mod 26).

Use the deciphering rule to decipher the message.

Hence

D(3) ≡ 3(3 + 5) ≡ 24 (mod 26),

D(17) ≡ 3(17 + 5) ≡ 66 ≡ 14 (mod 26),

D(18) ≡ 3(18 + 5) ≡ 69 ≡ 17 (mod 26),

D(7) ≡ 3(7 + 5) ≡ 36 ≡ 10 (mod 26).

So the deciphered message is

24, 14, 17, 10,

which, by Table 1, says

YORK.
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Activity 38 Deciphering messages that have been enciphered using

affine ciphers

Suppose you receive the following two messages that have been enciphered
using the specified affine cipher E. What do the messages say?

(a) 14, 10, 6, 22, 22, using E(x) ≡ 5x+ 10 (mod 26)

(b) 22, 8, 11, 22, 9, using E(x) ≡ −9x+ 6 (mod 26)

The ciphers that you have met in this section have all been very simple
and you could have cracked them without using modular arithmetic. The
ideas that you have met, however, are used in the construction of more
sophisticated ciphers.

The RSA factorising challenge

RSA ciphers are widely used in computing, business and military
communication. They are named after Ron Rivest, Adi Shamir and
Leonard Adleman who developed the algorithm in 1977. Modular
arithmetic is a fundamental tool in RSA ciphers, as it is in many
ciphers.

To encipher a message using the RSA algorithm, you must first
choose two large prime numbers p and q, and form their
product n = pq. The integer n can be made public, but p and q must
remain secret. If p and q are discovered, then the cipher can be
cracked. If p and q are sufficiently large, then it is extremely difficult
to find them even if you know the value of n. In 1991, RSA
Laboratories published a list of around fifty integers n, each a product
of two primes, with a challenge to factorise them. Cash prizes were
offered for factorising some of the larger numbers.

The smallest number in the list is known as RSA-100 because it
has 100 digits. It is

15226050279225333605356183781326374297180681149613

80688657908494580122963258952897654000350692006139.

Within a month of the challenge opening, RSA-100 had been
factorised into two primes:

37975227936943673922808872755445627854565536638199

× 40094690950920881030683735292761468389214899724061.

By 2007, when the challenge finished, fewer than half the numbers in
the list had been factorised.
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3 Summary

Summary

Following completion of this free OpenLearn course, Introduction to

Number Theory, as well as becoming proficient at modular arithmetic, you
should find that you are increasingly able to communicate mathematical
ideas and apply your knowledge and understanding to mathematics in
everyday life, in particular to applications, such as, the prevention of errors
in ID numbers and in cryptography.

You have learned:

• to find quotients and remainders from integer division,

• to apply Euclid’s algorithm and backwards substitution,

• definitions of congruences, residue classes and least residues,

• to add and subtract integers, modulo n, multiply integers and
calculate powers, modulo n,

• to determine multiplicative inverses, modulo n and to use them to
solve linear congruences.

This free OpenLearn course is an extract from the Open University
module, MST125, Essential mathematics 2. To see if you are ready to
study MST125, follow the ‘Am I ready?’ advice in the module description
(http://www.open.ac.uk/courses/modules/mst125) and/or to refresh your
knowledge of related mathematical topics consider MST124, Essential
mathematics 1 (http://www.open.ac.uk/courses/modules/mst124). If you
feel you are ready to move on but don’t have time to study a full Open
University module at this time, you might like to study the free
OpenLearn course, Introduction to Differential Equations, another adapted
extract from the Open University module, MST125, Essential
mathematics 2. If you are interested in statistics you may like to study the
free OpenLearn course, Prices, location & spread ; an adapted extract from
the Open University module M140, Introducing statistics.
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Solutions to activities

Solution to Activity 1

(a) The quotient q = 8 and the remainder r = 3.
So the equation a = qn+ r is

59 = 8× 7 + 3.

(b) q = 7, r = 0, and so 84 = 7× 12 + 0.

(c) q = 11, r = 1, and so 100 = 11× 9 + 1.

(d) q = 0, r = 9, and so 9 = 0× 100 + 9.

(e) q = 0, r = 0, and so 0 = 0× 11 + 0.

(f) q = −12, r = 2, and so −58 = −12× 5 + 2.

(g) q = −12, r = 8, and so −100 = −12× 9 + 8.

(h) q = −8, r = 0, and so −96 = −8× 12 + 0.

(i) q = −1, r = 1, and so −4 = −1× 5 + 1.

Solution to Activity 2

(a) Euclid’s algorithm gives

93 = 4× 21 + 9

21 = 2× 9 + 3

9 = 3× 3 + 0.

So the highest common factor of 93 and 21 is 3.

(b) Euclid’s algorithm gives

138 = 2× 61 + 16

61 = 3× 16 + 13

16 = 1× 13 + 3

13 = 4× 3 + 1

3 = 3× 1 + 0.

So the highest common factor of 138 and 61 is 1.

(c) Euclid’s algorithm gives

231 = 4× 49 + 35

49 = 1× 35 + 14

35 = 2× 14 + 7

14 = 2× 7 + 0.

So the highest common factor of 231 and 49 is 7.

Solution to Activity 3

(a) Euclid’s algorithm gives

93 = 2× 42 + 9

42 = 4× 9 + 6

9 = 1× 6 + 3

6 = 2× 3 + 0.

So the highest common factor of 93 and 42 is 3.
Rearranging the equations gives

9 = 93 − 2× 42

6 = 42 − 4× 9

3 = 9 − 1× 6 .

Backwards substitution gives

3 = 9 −
(

42 − 4× 9
)

= 5× 9 − 42

= 5×
(

93 − 2× 42
)

− 42

= 5× 93 − 11× 42 .

So 93× 5 + 42× (−11) = 3. This is the
equation 93v + 42w = d with v = 5 and
w = −11.

(Check: 93× 5 + 42× (−11) = 465− 462 = 3.)

(b) Euclid’s algorithm gives

70 = 2× 29 + 12

29 = 2× 12 + 5

12 = 2× 5 + 2

5 = 2× 2 + 1

2 = 2× 1 + 0.

The highest common factor of 70 and 29 is 1.
Rearranging the equations gives

12 = 70 − 2× 29

5 = 29 − 2× 12

2 = 12 − 2× 5

1 = 5 − 2× 2 .

Backwards substitution gives

1 = 5 − 2×
(

12 − 2× 5
)

= 5× 5 − 2 × 12

= 5×
(

29 − 2× 12
)

− 2× 12

= 5× 29 − 12× 12

= 5× 29 − 12×
(

70 − 2× 29
)

= 29× 29 − 12× 70 .
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So 70× (−12) + 29× 29 = 1. This is the
equation 70v + 29w = d with v = −12 and
w = 29.

(Check:
70× (−12) + 29× 29 = −840 + 841 = 1.)

Solution to Activity 4

(a) Euclid’s algorithm gives

112 = 1× 91 + 21

91 = 4× 21 + 7

21 = 3× 7 + 0.

So the HCF of 112 and 91 is 7, and hence the
HCF of −112 and −91 is also 7.

Rearranging the equations gives

21 = 112 − 1× 91

7 = 91 − 4× 21 .

Backwards substitution gives

7 = 91 − 4×
(

112 − 1× 91
)

= 5× 91 − 4× 112 .

So 112× (−4) + 91× 5 = 7 and hence

−112× 4− 91× (−5) = 7.

This is the equation −112v − 91w = d
with v = 4 and w = −5.

(Check:
−112× 4− 91× (−5) = −448 + 455 = 7.)

(b) Euclid’s algorithm gives

105 = 2× 39 + 27

39 = 1× 27 + 12

27 = 2× 12 + 3

12 = 4× 3 + 0.

So the HCF of 105 and 39 is 3, and hence the
HCF of −105 and 39 is also 3. Rearranging the
equations gives

27 = 105 − 2× 39

12 = 39 − 1× 27

3 = 27 − 2× 12 .

Backwards substitution gives

3 = 27 − 2×
(

39 − 1× 27
)

= 3× 27 − 2× 39

= 3×
(

105 − 2× 39
)

− 2× 39

= 3× 105 − 8× 39 .

So 105× 3 + 39× (−8) = 3 and hence

−105× (−3) + 39× (−8) = 3.

This is the equation −105v + 39w = d
with v = −3 and w = −8.

(Check:
−105× (−3) + 39× (−8) = 315− 312 = 3.)

Solution to Activity 5

In order to obtain 1 litre of water in the cauldron in
this way, we would need to find integers v and w
such that

23v + 16w = 1.

It is easy to see that the highest common factor of
the integers 23 and 16 is 1 and so the existence of
such integers v and w follows from Bézout’s
identity. So it is possible to obtain 1 litre of water
in the cauldron in this way.

In order to describe how to do this, we find the
integers v and w in the usual way. Euclid’s
algorithm gives

23 = 1× 16 + 7

16 = 2× 7 + 2

7 = 3× 2 + 1

3 = 3× 3 + 0.

Rearranging the equations gives

7 = 23 − 1× 16

2 = 16 − 2× 7

1 = 7 − 3× 2 .

Backwards substitution gives

1 = 7 − 3×
(

16 − 2× 7
)

= 7× 7 − 3× 16

= 7×
(

23 − 1× 16
)

− 3× 16

= 7× 23 − 10× 16 .
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So

23× 7 + 16× (−10) = 1.

So if we fill the 23-litre bucket from the tap and
pour it into the cauldron 7 times, then fill the
16-litre bucket from the cauldron and empty it out
10 times, we will be left with 1 litre of water in the
cauldron.

Solution to Activity 7

(a) True: 11 and 26 each have remainder 1 on
division by 5.

(b) False: 9 has remainder 4 on division by 5 and
−9 has remainder 1 on division by 5.

(c) True: 28 and 0 each have remainder 0 on
division by 7.

(d) True: −4 and −18 each have remainder 3 on
division by 7.

(e) True: −8 and 5 each have remainder 5 on
division by 13.

(f) False: 38 is not divisible by 13.

Solution to Activity 8

(a) The final digit of a positive integer is the
remainder that we obtain when we divide that
integer by 10. It follows that to check whether
two positive integers are congruent modulo 10,
we just need to check whether their final digits
are equal.

(b) The method described in (a) doesn’t work when
we compare a positive integer with a negative
integer. For example, −17 and 27 both have
final digit 7, but they are not congruent
modulo 10, because −17 has remainder 3
(not 7) when divided by 10.

Solution to Activity 9

(a) True: 63− 14 = 49, which is divisible by 7.

(b) False: −39− 39 = −78, which is not divisible
by 7.

(c) False: 63− 14 = 49, which is not divisible by 12.

(d) True: −8− 16 = −24, which is divisible by 12.

(e) True: −30− (−17) = −13, which is divisible
by 13.

(f) True: 43− (−87) = 130, which is divisible
by 13.

Solution to Activity 10

If a is an odd number, then we can write a = 1 + 2k
for some integer k. This means that a ≡ 1 (mod 2).

If a is an even number, then we can write a = 2k,
or a = 0 + 2k, for some integer k. This means
that a ≡ 0 (mod 2).

Solution to Activity 11

(a) False: −7 and 7 are not congruent modulo 10,
because 7− (−7) = 14, and 14 is not divisible
by 10.

(b) True: −17, 3, 31 and 67 are all odd integers, so
each has a remainder 1 when divided by 2.

(c) True: −84, 0 and 108 each have a remainder 0
when divided by 12.

Solution to Activity 12

(a)

−7 −4 −1 2 5 8

(b)

9−7 −3 1 5

(c)

−9 −5 −1 3 7

(d)

10−10 −5 0 5

Solution to Activity 13

(a) Since 17 = 1× 10 + 7, the least residue is 7.

(b) Since 50 = 5× 10 + 0, the least residue is 0.

(c) Since 6 = 0× 10 + 6, the least residue is 6.

(d) Since −1 = (−1)× 10 + 9, the least residue is 9.

(e) Since −38 = (−4)× 10 + 2, the least residue
is 2.
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Solution to Activity 14

(a) Since 17 = 5× 3 + 2, the least residue is 2.

(b) Since 9 = 3× 3 + 0, the least residue is 0.

(c) Since −2 = (−1)× 3 + 1, the least residue is 1.

(d) Since −10 = (−4)× 3 + 2, the least residue is 2.

(e) Since 3 = 1× 3 + 0, the least residue is 0.

Solution to Activity 15

There are 7 days in a week and so, in 1000 days’
time, the day will be the same as it is today plus
the remainder that you obtain when you divide
1000 by 7 (that is, the least residue of 1000 modulo
7). When you divide 1000 by 7 you obtain a
remainder of 6. Therefore 1000 ≡ 6 (mod 7).
Since 6 ≡ −1 (mod 7), it follows that in 1000 days’
time it will be the same day as yesterday!

Solution to Activity 16

(a) 7 + 3 ≡ 10 ≡ 4 (mod 6)

So the least residue is 4.

(The statement ‘So the least residue is . . .’ is
omitted in solutions to subsequent parts of this
activity. We follow a similar convention in later
activities.)

(b) 7− 3 ≡ 4 (mod 6)

(c) 23− 24 ≡ −1 ≡ 5 (mod 6)

(d) −3− 19 ≡ 3− 1 ≡ 2 (mod 6)

(e) 67 + 68 ≡ 1 + 2 ≡ 3 (mod 6)

(f) 601− 6001 ≡ 1− 1 ≡ 0 (mod 6)

Solution to Activity 17

(a) 6 + 4 ≡ 10 ≡ 0 (mod 10)

(b) 14− 7 ≡ 7 (mod 10)

(c) 13− 15 ≡ −2 ≡ 8 (mod 10)

(d) −21− 17 ≡ −1− 7 ≡ −8 ≡ 2 (mod 10)

(e) 101 + 11 + 1 ≡ 1 + 1 + 1 ≡ 3 (mod 10)

(f) 101− 11− 1 ≡ 1− 1− 1 ≡ −1 ≡ 9 (mod 10)

Solution to Activity 18

(a) 3× 6 ≡ 18 ≡ 4 (mod 7)

So the least residue is 4.

Here is an alternative solution.

3× 6 ≡ 3× (−1) ≡ −3 ≡ 4 (mod 7)

Again, we see that the least residue is 4.

There are many other solutions to this problem,
as there are to the other parts of this activity.
Your solutions may differ from those that are
given.

(b) 22× 29 ≡ 1× 1 ≡ 1 (mod 7)

(c) (−5)× 16 ≡ 2× 2 ≡ 4 (mod 7)

(d) 51× 74 ≡ 2× 4 ≡ 8 ≡ 1 (mod 7)

(e) 47× (−25) ≡ (−2)× 3 ≡ −6 ≡ 1 (mod 7)

(f) (−29)× (−44) ≡ 29× 44 ≡ 1× 2 ≡ 2 (mod 7)

Solution to Activity 19

(a) 4× 4 ≡ 16 ≡ 0 (mod 8)

(b) 17× 26 ≡ 1× 2 ≡ 2 (mod 8)

(c) (−6)× 34 ≡ 2× 2 ≡ 4 (mod 8)

(d) 16× 457 ≡ 0× 457 ≡ 0 (mod 8)

(e) 47× (−25) ≡ (−1)× (−1) ≡ 1 (mod 8)

(−61)× (−46) ≡ 61× 46(f)

≡ (−3)× (−2)

≡ 6 (mod 8)
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Solution to Activity 20

(a) Since 25 ≡ 1 (mod 6), it follows that

2525 ≡ 125 ≡ 1 (mod 6).

So the least residue is 1.

(b) Since −9 ≡ 3 (mod 6), it follows that

(−9)4 ≡ 34 (mod 6).

Calculating powers of 3 gives

32 = 9

and so

32 ≡ 3 (mod 6).

Therefore

34 ≡ 32 × 32 ≡ 3× 3 ≡ 9 ≡ 3 (mod 6).

In summary,

(−9)4 ≡ 3 (mod 6).

So the least residue is 3.

(c) Since 20 ≡ 2 (mod 6), it follows that

206 ≡ 26 (mod 6).

Calculating powers of 2 gives

22 = 4 and 23 = 8

and so

23 ≡ 2 (mod 6).

Therefore

26 ≡ 23 × 23 ≡ 2× 2 ≡ 4 (mod 6).

In summary,

206 ≡ 4 (mod 6).

So the least residue is 4.

Solution to Activity 21

(a) Since 25 ≡ −1 (mod 13), it follows that

2525 ≡ (−1)25 ≡ −1 ≡ 12 (mod 13).

So the least residue is 12.

(b) Since 54 ≡ 2 (mod 13), it follows that

544 ≡ 24 ≡ 16 ≡ 3 (mod 13).

So the least residue is 3.

(c) Since 16 ≡ 3 (mod 13), it follows that

169 ≡ 39 (mod 13).

Calculating powers of 3 gives

32 = 9 and 33 = 27

and so

33 ≡ 1 (mod 13).

Therefore

39 ≡ 33 × 33 × 33 ≡ 13 ≡ 1 (mod 13).

In summary,

169 ≡ 1 (mod 13).

So the least residue is 1.

Solution to Activity 22

(a) Since 14 = 1, the least residue is 1.

(b) Since

24 ≡ 16 ≡ 1 (mod 5),

the least residue is 1.

(c) Since

34 ≡ (−2)4 ≡ 16 ≡ 1 (mod 5),

the least residue is 1.

(Alternatively, since

34 ≡ 81 ≡ 1 (mod 5),

the least residue is 1.)

(d) Since

44 ≡ (−1)4 ≡ 1 (mod 5),

the least residue is 1.

(e) Since 7 ≡ 2 (mod 5) it follows from part (b)
that

74 ≡ 24 ≡ 1 (mod 5).

So the least residue is 1.
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Solution to Activity 23

(a) By Fermat’s little theorem,

56 ≡ 1 (mod 7).

So the least residue is 1.

(b) First, 18 ≡ 4 (mod 7) so

1818 ≡ 418 (mod 7).

By Fermat’s little theorem,

46 ≡ 1 (mod 7).

Since 18 = 3× 6, we obtain

418 ≡ (46)3

≡ 13

≡ 1 (mod 7).

So the least residue is 1.

(c) First, −11 ≡ 3 (mod 7) so

(−11)33 ≡ 333 (mod 7).

By Fermat’s little theorem,

36 ≡ 1 (mod 7).

Since 33 = 5× 6 + 3, we obtain

333 ≡ (36)5 × 33

≡ 15 × 33

≡ 27

≡ 6 (mod 7).

So the least residue is 6.

Solution to Activity 24

(a) By Fermat’s little theorem,

710 ≡ 1 (mod 11).

So the least residue is 1.

(b) First, −5 ≡ 6 (mod 11) so

(−5)31 ≡ 631 (mod 11).

By Fermat’s little theorem,

610 ≡ 1 (mod 11).

Since 31 = 3× 10 + 1, we obtain

631 ≡ (610)3 × 61

≡ 13 × 6

≡ 6 (mod 11).

So the least residue is 6.

(c) First, 13 ≡ 2 (mod 11) so

1385 ≡ 285 (mod 11).

By Fermat’s little theorem,

210 ≡ 1 (mod 11).

Since 85 = 8× 10 + 5, we obtain

285 ≡ (210)8 × 25

≡ 18 × 25

≡ 32

≡ 10 (mod 11).

So the least residue is 10.

Solution to Activity 25

(a) The digit sum of 982 is 9 + 8 + 2 = 19. This is
not divisible by 3, so 982 is not divisible by 3.

(b) The digit sum of 753 is 7 + 5 + 3 = 15. This is
divisible by 3, so 753 is divisible by 3.

(c) The digit sum of 8364 is

8 + 3 + 6 + 4 = 21.

This is divisible by 3, so 8364 is divisible by 3.

(d) The digit sum of −9245 is

9 + 2 + 4 + 5 = 20.

This is not divisible by 3, so −9245 is not
divisible by 3.

(e) The digit sum of 98 285 385 335 is

9 + 8 + 2 + 8 + 5 + 3 + 8 + 5 + 3 + 3 + 5 = 59.

The digit sum of 59 is 5 + 9 = 14. This is not
divisible by 3, so 59 is not divisible by 3, and
hence 98 285 385 335 is not divisible by 3.

(f) The digits of 10100 consist of a single 1 and one
hundred 0s. Therefore 10100 has digit sum 1,
which is not divisible by 3, so 10100 is not
divisible by 3.
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Solution to Activity 26

(a) The digit sum of 8469 is 8 + 4 + 6 + 9 = 27.
This is divisible by 9, so 8469 is divisible by 9.

(b) The digit sum of 6172 is 6 + 1 + 7 + 2 = 16.
This is not divisible by 9, so 6172 is not
divisible by 9.

(c) The digit sum of 7 989 989 897 979 897 is

7 + 9 + 8 + 9 + 9 + 8 + 9 + 8

+ 9 + 7 + 9 + 7 + 9 + 8 + 9 + 7 = 132.

The digit sum of 132 is 1 + 3 + 2 = 6. This is
not divisible by 9, therefore 132 is not divisible
by 9, and nor is 7 989 989 897 979 897.

Solution to Activity 27

0 + 2 · 0 + 3 · 1 + 4 · 6 + 5 · 0(a)

+ 6 · 6 + 7 · 2 + 8 · 1 + 9 · 4 + 10 · 0
≡ 0 + 0 + 3 + 24 + 0 + 36 + 14 + 8 + 36 + 0

≡ 0 + 0 + 3 + 2 + 0 + 3 + 3 + 8 + 3 + 0

≡ 22

≡ 0 (mod 11)

So 0412606100 satisfies the ISBN congruence check.

10 + 2 · 8 + 3 · 7 + 4 · 2 + 5 · 2(b)

+ 6 · 4 + 7 · 1 + 8 · 0 + 9 · 2 + 10 · 0
≡ 10 + 16 + 21 + 8 + 10 + 24 + 7 + 0 + 18 + 0

≡ 10 + 5 + 10 + 8 + 10 + 2 + 7 + 0 + 7 + 0

≡ 59

6≡ 0 (mod 11)

So 020142278X does not satisfy the ISBN
congruence check.

9 + 2 · 0 + 3 · 8 + 4 · 8 + 5 · 1(c)

+ 6 · 1 + 7 · 1 + 8 · 9 + 9 · 6 + 10 · 0
≡ 9 + 0 + 24 + 32 + 5 + 6 + 7 + 72 + 54 + 0

≡ 9 + 0 + 2 + 10 + 5 + 6 + 7 + 6 + 10 + 0

≡ 55

≡ 0 (mod 11)

So 0691118809 satisfies the ISBN congruence check.

(Alternatively, the solutions to parts (a), (b) and (c)
can be shortened by using congruences such as

10 ≡ −1 (mod 11),

9 ≡ −2 (mod 11),

8 ≡ −3 (mod 11).

For example, the congruences in (a) can be written
as

0 + 2 · 0 + 3 · 1 + 4 · 6 + 5 · 0
− 5 · 6− 4 · 2 − 3 · 1− 2 · 4− 1 · 0
≡ 0 + 0 + 3 + 24 + 0− 30− 8− 3− 8 + 0

≡ −22

≡ 0 (mod 11).)

Solution to Activity 28

(a) Since

1× 1 ≡ 1 (mod 9),

1 is itself a multiplicative inverse of 1 modulo 9.

(b) Since

5× 2 ≡ 1 (mod 9),

2 is a multiplicative inverse of 5 modulo 9.

(c) Trying the values 1, 2, 3, . . . one by one, we find
that

7× 4 ≡ 28 ≡ 1 (mod 9),

so 4 is a multiplicative inverse of 7 modulo 9.

(d) Since

16 ≡ 7 (mod 9),

16 has the same multiplicative inverse modulo 9
as 7, namely 4 (as you saw in part (c)), because

16× 4 ≡ 7× 4 ≡ 1 (mod 9).
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Solution to Activity 29

(a) The integer 0 doesn’t have a multiplicative
inverse modulo 9 because

0× v ≡ 0 (mod 9)

for any integer v.

(b) The congruence

6v ≡ 1 (mod 9)

is equivalent to the statement that

6v = 1 + 9k,

for some integer k. In this equation, the
left-hand side is divisible by 3, but the
right-hand side is not. This is impossible, so 6
does not have a multiplicative inverse modulo 9.

(Alternatively, suppose that v is a
multiplicative inverse of 6 modulo 9. Then 2v is
a multiplicative inverse of 3 modulo 9 because

3× 2v ≡ 6v ≡ 1 (mod 9).

However, we’ve seen already that 3 does not
have a multiplicative inverse modulo 9, so in
fact there is no such integer v. That is, 6
doesn’t have a multiplicative inverse modulo 9
after all.)

(c) The integer 18 doesn’t have a multiplicative
inverse modulo 9 because 18 ≡ 0 (mod 9), so

18v ≡ 0× v ≡ 0 (mod 9)

for any integer v.

Solution to Activity 30

(a) The integers 10 and 13 are coprime, so there is
a multiplicative inverse of 10 modulo 13. Trying
the values 2, 3, 4, . . . one by one, we find that

4× 10 ≡ 40 ≡ 1 (mod 13),

so 4 is a multiplicative inverse of 10 modulo 13.

(b) The integers 12 and 21 are not coprime (since
both are divisible by 3), so there is no
multiplicative inverse of 12 modulo 21.

(c) The integers 18 and 19 are coprime, so there is
a multiplicative inverse of 18 modulo 19. Since
18 ≡ −1 (mod 19) it follows that

18× 18 ≡ (−1)× (−1) ≡ 1 (mod 19).

Therefore 18 is a multiplicative inverse of 18
modulo 19.

(d) The integers 0 and 11 are not coprime (since
both are divisible by 11), so there is no
multiplicative inverse of 0 modulo 11.

(Alternatively, since 0× v ≡ 0 (mod 11), for
any integer v, there is no multiplicative inverse
of 0 modulo 11. Reasoning in the same way you
see that 0 doesn’t have a multiplicative inverse
modulo n, for any integer n.)

(e) The integers 7 and 16 are coprime, so there is a
multiplicative inverse of 7 modulo 16. Trying
the values 2, 3, 4, . . . one by one, we find that

7× 7 ≡ 49 ≡ 1 (mod 16),

so 7 is a multiplicative inverse of 7 modulo 16.

(f) Euclid’s algorithm gives

57 = 5× 10 + 7

10 = 1× 7 + 3

7 = 2× 3 + 1

3 = 3× 1 + 0.

A remainder 1 is obtained, so 10 and 57 are
coprime, and hence 10 has a multiplicative
inverse modulo 57. Rearranging the equations
gives

7 = 57 − 5× 10

3 = 10 − 1× 7

1 = 7 − 2× 3 .

Backwards substitution gives

1 = 7 − 2×
(

10 − 1× 7
)

= 3× 7 − 2× 10

= 3×
(

57 − 5× 10
)

− 2× 10

= 3× 57 − 17× 10 .

(Check: 3× 57− 17× 10 = 171− 170 = 1.)

Hence

(−17)× 10 ≡ 1 (mod 57)

and so −17 is a multiplicative inverse of 10
modulo 57. Since

−17 ≡ 40 (mod 57),

40 is also a multiplicative inverse
of 10 modulo 57.
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(g) Euclid’s algorithm gives

217 = 2× 84 + 49

84 = 1× 49 + 35

49 = 1× 35 + 14

35 = 2× 14 + 7

14 = 2× 7 + 0.

So 7 is a factor of both 84 and 217, and hence
there is no multiplicative inverse of
84 modulo 217.

(h) Euclid’s algorithm gives

96 = 2× 43 + 10

43 = 4× 10 + 3

10 = 3× 3 + 1

3 = 3× 1 + 0.

A remainder 1 is obtained, so 43 and 96 are
coprime, and hence 43 has a multiplicative
inverse modulo 96. Rearranging the equations
gives

10 = 96 − 2× 43

3 = 43 − 4× 10

1 = 10 − 3× 3 .

Backwards substitution gives

1 = 10 − 3×
(

43 − 4× 10
)

= 13× 10 − 3× 43

= 13×
(

96 − 2× 43
)

− 3× 43

= 13× 96 − 29× 43 .

(Check: 13× 96− 29× 43 = 1248− 1247 = 1.)

Hence

(−29)× 43 ≡ 1 (mod 96),

and so −29 is a multiplicative inverse of 43
modulo 96. Since

−29 ≡ 67 (mod 96),

67 is also a multiplicative inverse
of 43 modulo 96.

Solution to Activity 31

(a) As 2 and 7 are coprime, the linear congruence
has solutions. Trying the values 1, 2, 3, . . . one
by one, we find that

2× 6 ≡ 12 ≡ 5 (mod 7),

and so the solutions are given by

x ≡ 6 (mod 7).

(There is a clever alternative way of solving this
linear congruence. Notice that

5 ≡ −2 (mod 7),

and so the linear congruence is equivalent to

2x ≡ −2 (mod 7).

Thus the solutions are given by

x ≡ −1 ≡ 6 (mod 7).)

(b) As 7 and 10 are coprime, the linear congruence
has solutions. Trying the values 1, 2, 3, . . . one
by one, we find that

7× 4 ≡ 28 ≡ 8 (mod 10),

and so the solutions are given by

x ≡ 4 (mod 10).

(c) Since

15 ≡ 4 (mod 11) and − 13 ≡ 9 (mod 11),

the linear congruence is equivalent to

4x ≡ 9 (mod 11).

As 4 and 9 are coprime, this linear congruence
has solutions. Trying the values 1, 2, 3, . . . one
by one, we find that

4× 5 ≡ 20 ≡ 9 (mod 11),

and so the solutions are given by

x ≡ 5 (mod 11).
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Solution to Activity 32

(a) As 7 and 20 are coprime, the linear congruence
has solutions. The solutions are given by

x ≡ 8v (mod 20),

where v is a multiplicative inverse
of 7 modulo 20.

Since

3× 7 ≡ 21 ≡ 1 (mod 20),

we see that 3 is a multiplicative inverse
of 7 modulo 20. So the solutions are given by

x ≡ 8× 3 ≡ 24 ≡ 4 (mod 20).

(Check: 7× 4 ≡ 28 ≡ 8 (mod 20).)

(If you don’t guess the value 3 of a
multiplicative inverse of 7 modulo 20, then you
can calculate a multiplicative inverse using
Euclid’s algorithm and backwards substitution.
This method is used to calculate multiplicative
inverses in the remaining parts of this activity.)

(b) Since −26 ≡ 8 (mod 17), we can rewrite the
linear congruence as

3x ≡ 8 (mod 17).

As 3 and 17 are coprime, the linear congruence
has solutions. The solutions are given by

x ≡ 8v (mod 17),

where v is a multiplicative inverse of 3
modulo 17.

Euclid’s algorithm gives

17 = 5× 3 + 2

3 = 1× 2 + 1.

Backwards substitution gives

1 = 3− 2 = 3− (17− 5× 3) = 6× 3− 17.

So

6× 3 ≡ 1 (mod 17)

and hence 6 is a multiplicative inverse of 3
modulo 17. So the solutions are given by

x ≡ 8× 6 ≡ 48 ≡ 14 (mod 17).

(Check: 3× 14 ≡ 3× (−3) ≡ −9 ≡ 8 (mod 17).)

(c) As 13 and 30 are coprime, the linear congruence
has solutions. The solutions are given by

x ≡ 3v (mod 30),

where v is a multiplicative inverse of 13 modulo
30.

Euclid’s algorithm gives

30 = 2× 13 + 4

13 = 3× 4 + 1.

Backwards substitution gives

1 = 13− 3× 4

= 13− 3× (30− 2× 13)

= 7 × 13− 3× 30.

So

7× 13 ≡ 1 (mod 30)

and hence 7 is a multiplicative inverse of 13
modulo 30. So the solutions are given by

x ≡ 3× 7 ≡ 21 (mod 30).

(Check:
13× 21 ≡ 13× (−9) ≡ −117 ≡ 3 (mod 30).)

Solution to Activity 33

Let N be the total number of coins. There are
6 coins left over when the N coins are first shared
out among the 10 pirates, so

N ≡ 6 (mod 10).

The second time the N coins are shared out, among
the remaining 7 pirates, there are no coins left over,
so N = 7x, for some positive integer x. Substituting
N = 7x into the first congruence gives

7x ≡ 6 (mod 10).

Trying the values 1, 2, 3, . . . one by one, we find that

7× 8 ≡ 56 ≡ 6 (mod 10)

and so the possible solutions are given by

x ≡ 8 (mod 10).

Since the total number of coins N = 7x is no more
than 100, the only possibility is that
N = 7× 8 = 56.

77



Number theory

Solution to Activity 34

(a) The highest common factor of 4 and 10 is 2.
Since 5 is not divisible by 2, the linear
congruence has no solutions.

(b) The highest common factor of −12 and 42 is 6.
Since 8 is not divisible by 6, the linear
congruence has no solutions.

(c) To find the highest common factor of 48 and
111, we apply Euclid’s algorithm:

111 = 2× 48 + 15

48 = 3× 15 + 3

15 = 5× 3 + 0.

Therefore the highest common factor is 3. Since
70 is not divisible by 3, the linear congruence
has no solutions.

Solution to Activity 35

(a) The highest common factor of 12 and 15 is 3.
Since 6 is also divisible by 3, the linear
congruence can be solved and is equivalent to

4x ≡ 2 (mod 5).

Trying the values 1, 2, 3, . . . one by one, we find
that

4× 3 ≡ 12 ≡ 2 (mod 5).

So the solutions are given by

x ≡ 3 (mod 5).

(Check: 4× 3 ≡ 12 ≡ 2 (mod 5).)

(Alternatively, proceed as before to obtain the
linear congruence

4x ≡ 2 (mod 5).

Since 4 ≡ −1 (mod 5), this linear congruence is
equivalent to

−x ≡ 2 (mod 5).

Hence the solutions are given by

x ≡ −2 ≡ 3 (mod 5).)

(b) Since −25 ≡ 15 (mod 40), the linear congruence
can be rewritten as

15x ≡ 10 (mod 40).

The highest common factor of 15 and 40 is 5.
Since 10 is also divisible by 5, this linear
congruence has solutions and is equivalent to

3x ≡ 2 (mod 8).

Trying the values 1, 2, 3, . . . one by one, we find
that

3× 6 ≡ 18 ≡ 2 (mod 8).

So the solutions are given by

x ≡ 6 (mod 8).

(Check: 3× 6 ≡ 18 ≡ 2 (mod 8).)

(c) To find the highest common factor of 18 and 98,
you could apply Euclid’s algorithm, but it’s
probably easier to express each number as a
product of prime factors: 18 = 2× 32 and
98 = 2× 72. You can see that the highest
common factor is 2. Since 6 is divisible by 2,
the linear congruence has solutions and is
equivalent to

9x ≡ 3 (mod 49).

The solutions of this linear congruence are given
by

x ≡ 3v (mod 49),

where v is a multiplicative inverse of 9
modulo 49.

Euclid’s algorithm gives

49 = 5× 9 + 4

9 = 2× 4 + 1.

Backwards substitution gives

1 = 9− 2 × 4

= 9− 2(49− 5× 9)

= 11× 9− 2× 49.

So

11× 9 ≡ 1 (mod 49),

and hence 11 is a multiplicative inverse of 9
modulo 49. So the solutions are given by

x ≡ 3× 11 ≡ 33 (mod 49).

(Check:
9× 33 ≡ 9× (−16) ≡ −144 ≡ 3 (mod 49).)
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Solution to Activity 36

(a) Since 21 ≡ 3 (mod 9), we can rewrite the linear
congruence as

5x ≡ 3 (mod 9).

As 5 and 9 are coprime, the linear congruence
has solutions. Trying the values 1, 2, 3, . . . one
by one, we find that

5× 6 ≡ 30 ≡ 3 (mod 9).

So the solutions are given by

x ≡ 6 (mod 9).

(b) As 11 and 38 are coprime, the linear congruence
has solutions. The solutions are given by

x ≡ 6v (mod 38),

where v is a multiplicative inverse of 11 modulo
38.

Euclid’s algorithm gives

38 = 3× 11 + 5

11 = 2× 5 + 1.

Backwards substitution gives

1 = 11− 2× 5

= 11− 2(38− 3× 11)

= 7× 11− 2× 38.

So

7× 11 ≡ 1 (mod 38)

and hence 7 is a multiplicative inverse of 11
modulo 38. So the solutions are given by

x ≡ 6× 7 ≡ 42 ≡ 4 (mod 38).

(Check: 11× 4 ≡ 44 ≡ 6 (mod 38).)

(c) The highest common factor of 21 and 30 is 3.
Since 14 is not divisible by 3, the linear
congruence has no solutions.

(d) Since −48 ≡ 8 (mod 28), the linear congruence
can be rewritten as

8x ≡ 24 (mod 28).

The highest common factor of 8 and 28 is 4.
Since 24 is also divisible by 4, this linear
congruence has solutions and is equivalent to

2x ≡ 6 (mod 7).

Trying the values 1, 2, 3, . . . one by one, we find
that

2× 3 ≡ 6 (mod 7).

So the solutions are given by

x ≡ 3 (mod 7).

(Check: 2× 3 ≡ 6 (mod 7).)

Solution to Activity 37

Using Table 1, the message BROUHAHA becomes

1, 17, 14, 20, 7, 0, 7, 0.

Next, applying the affine cipher

E(x) ≡ 3x+ 14 (mod 26),

we find that

E(1) ≡ 3× 1 + 14 ≡ 17 (mod 26),

E(17) ≡ 3× 17 + 14 ≡ 65 ≡ 13 (mod 26),

E(14) ≡ 3× 14 + 14 ≡ 56 ≡ 4 (mod 26),

E(20) ≡ 3× 20 + 14 ≡ 74 ≡ 22 (mod 26),

E(7) ≡ 3× 7 + 14 ≡ 35 ≡ 9 (mod 26),

E(0) ≡ 3× 0 + 14 ≡ 14 (mod 26).

Therefore the enciphered message is

17, 13, 4, 22, 9, 14, 9, 14.

Solution to Activity 38

(a) A rule D for deciphering the message is given by

D(y) ≡ v(y − 10) (mod 26),

where v is a multiplicative inverse of 5 modulo
26.

Since

(−5)× 5 ≡ −25 ≡ 1 (mod 26),

we see that −5 is a multiplicative inverse
of 5 modulo 26. (You can also use Euclid’s
algorithm and backwards substitution to find a
multiplicative inverse of 5 modulo 26.) So

D(y) ≡ −5(y − 10) (mod 26).

Hence

D(14) ≡ −5(14− 10) ≡ −20 ≡ 6 (mod 26),

D(10) ≡ −5(10− 10) ≡ 0 (mod 26),

D(6) ≡ −5(6− 10) ≡ 20 (mod 26),

D(22) ≡ −5(22− 10) ≡ −60 ≡ 18 (mod 26).

So the deciphered message is

6, 0, 20, 18, 18,

which, using Table 1, says

GAUSS.
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(b) A rule D for deciphering the message is given by

D(y) ≡ v(y − 6) (mod 26),

where v is a multiplicative inverse of −9 modulo
26.

Since

(−3)× (−9) ≡ 27 ≡ 1 (mod 26),

we see that −3 is a multiplicative inverse
of −9 modulo 26. (You can also use Euclid’s
algorithm and backwards substitution to find a
multiplicative inverse of −9 modulo 26.) So

D(y) ≡ −3(y − 6) (mod 26).

Hence

D(22) ≡ −3(22− 6) ≡ −48 ≡ 4 (mod 26),

D(8) ≡ −3(8− 6) ≡ −6 ≡ 20 (mod 26),

D(11) ≡ −3(11− 6) ≡ −15 ≡ 11 (mod 26),

D(9) ≡ −3(9− 6) ≡ −9 ≡ 17 (mod 26).

So the deciphered message is

4, 20, 11, 4, 17,

which, using Table 1, says

EULER.
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