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Unit LA2 Linear equations and matrices

Introduction

Systems of simultaneous linear equations arise frequently in mathematics
and in many other areas. For example, in Unit LA1 you found the point of
intersection of a pair of non-parallel lines in R

2 by solving the two
equations of the lines as simultaneous equations—that is, by finding the
values for x and y that simultaneously satisfy both equations. In particular,
you found the solution to the system of simultaneous linear equations

{

3x − y = 1,
x − y = −1,

to be x = 1, y = 2. In other words, the two lines 3x− y = 1 and
x− y = −1 intersect at the point (1, 2).

The solution to a system of simultaneous linear equations in two unknowns
(x and y) corresponds to the points of intersection (if any) of lines in R

2.
Similarly, solutions to systems of linear equations in three unknowns Recall from Unit LA1,

Subsection 1.2, that an equation
of the form 2x+ 3y + 4z = 5
represents a plane in R

3.

correspond to the intersection (if any) of planes in R
3. Although systems

with more unknowns can be thought of in relation to intersections in
spaces of higher dimension, we develop a strategy for solving such systems
without the need to visualise a multi-dimensional world!

Matrices appear throughout mathematics. In this unit we assume no prior
knowledge of matrices, although you may well have met them before. We
use matrices as a concise way of representing systems of linear equations,
and then go on to study matrix algebra and determinants. Throughout
this unit we relate our results to the solutions of systems of simultaneous
linear equations. Many of the ideas and methods introduced here will be
used in the following three units on linear algebra.

In Section 1 we begin by considering simultaneous linear equations in two
and three unknowns. We introduce the idea of a solution set, and interpret
our results geometrically. We then generalise these ideas to systems of
m simultaneous linear equations in n unknowns, and introduce the method
of Gauss–Jordan elimination to solve them systematically.

In Section 2 we develop a strategy for solving systems of linear equations,
based on performing elementary row operations on the augmented matrix

of the system in question. We transform the augmented matrix to
row-reduced form, from which we can easily read off any solutions. This
method is algorithmic, and a computer can be programmed to perform it; Most computer programs use a

slightly modified version of this
method.

this enables large systems with many unknowns to be handled efficiently.

In Section 3 we study the algebra of matrices. We investigate the addition
and scalar multiplication of matrices, and see that matrices can be thought
of as a generalisation of vectors. We use the dot product of vectors to
define the multiplication of one matrix by another. Finally, we introduce
some important types of matrices, and the matrix operation of
transposition—interchanging the rows and columns of a matrix—which
will be used later in the block.

In Section 4 we introduce the inverse of a matrix. This plays a role in
matrix arithmetic similar to that of the reciprocal of a number in ordinary
arithmetic. We show that many matrices do not have inverses, and give a
method for finding an inverse when it does exist. We also link the idea of
the invertibility of a matrix with the number of solutions of some systems
of linear equations.
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Section 1 Simultaneous linear equations

In Section 5 we use systems of linear equations to introduce the
determinant of a square matrix. The determinant assigns to each square
matrix a number which characterises certain properties of the matrix. In
particular, we prove that a matrix is invertible if and only if its
determinant is non-zero; this provides a method for determining whether
or not a given matrix is invertible.

Study guide
Sections 1 to 5 should be studied in the natural order.

Section 1 is straightforward and should not take you long.

Section 2 is the audio section. Using row-reduction to solve systems of
linear equations is an important method to master.

Much of Section 3 may be revision for you. If you have not multiplied
matrices before, then you will need to spend some time practising this as it
may seem strange at first. Matrix multiplication plays an important part
in the remainder of the block.

Sections 4 and 5 both contain important material. There is a lot of theory
in these sections, and you need not master it completely. You should,
however, make sure that you can find the inverse and evaluate the
determinant of a 2× 2 or 3× 3 matrix, and you should at least read the
statements of the theorems.

1 Simultaneous linear equations

After working through this section, you should be able to:

(a) understand the connection between the solutions of systems of
simultaneous linear equations in two and three unknowns and the
intersection of lines and planes in R

2 and R
3;

(b) describe the three types of elementary operation;

(c) use the method of Gauss–Jordan elimination to find the solutions
of systems of simultaneous linear equations;

(d) explain the terms solution set, consistent, inconsistent and
homogeneous system of simultaneous linear equations.

1.1 Systems in two and three unknowns

Systems in two unknowns

One equation

Recall that an equation of the form Unit LA1, Subsection 1.1.

ax+ by = c Here, a, b and c are real
numbers, and a and b are not
both zero.represents a line in R

2. There are infinitely many solutions to this
equation—one corresponding to each point on the line.
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Unit LA2 Linear equations and matrices

Two equations

The solutions to the system of two simultaneous linear equations
{

ax + by = c,
dx + ey = f,

Here, a, b, . . . , f are real
numbers.

in the two unknowns x and y correspond to the points of intersection of
these two lines in R

2.

Two arbitrary lines in R
2 may intersect at a unique point, be parallel or Unit LA1, Subsection 1.1.

coincide. This means that solving a system of two simultaneous linear
equations in two unknowns yields exactly one of the following three
situations.

• There is a unique solution, when the two lines that the equations
represent intersect at a unique point.

For example, the system
{

x − y = −1,
2x + y = 4,

has the unique solution x = 1, y = 2, corresponding to the unique
point of intersection (1, 2) of the two lines in R

2.

• There is no solution, when the two lines that the equations represent
are parallel.

For example, the system
{

x − y = −1,
x − y = 1,

represents two parallel lines in R
2, which do not intersect, and so has

no solutions.

• There are infinitely many solutions, when the two lines that the
equations represent coincide.

For example, the system
{

−6x + 3y = −6,
2x − y = 2,

has infinitely many solutions, as the two equations represent the same
line in R

2. In a sense, the two lines intersect at each of their points;
that is, each pair of values for x and y satisfying 2x− y = 2 is a
solution to this system.

Systems in three unknowns

One equation

Recall that an equation of the form Unit LA1, Subsection 1.2.

ax+ by + cz = d Here, a, b, c and d are real
numbers, and a, b and c are not
all zero.represents a plane in R

3. There are infinitely many solutions to this
equation—one corresponding to each point in the plane.
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Section 1 Simultaneous linear equations

Two equations

The solutions to the system of two simultaneous linear equations
{

ax + by + cz = d,
ex + fy + gz = h,

Here, a, b, . . . , h are real
numbers.

in the three unknowns x, y and z correspond to the points of intersection
of these two planes in R

3.

Two arbitrary planes in R
3 may intersect, be parallel or coincide. In Unit LA1, Subsection 1.2.

general, when two distinct planes in R
3 intersect, the set of common points

is a line that lies in both planes. This means that solving a system of two
simultaneous linear equations in three unknowns yields exactly one of the
following two situations.

• There is no solution, when the two planes that the equations represent
are parallel.

For example, the system
{

x + y + z = 1,
x + y + z = 2,

represents two parallel planes in R
3 and so has no solutions.

• There are infinitely many solutions, when the two planes that the
equations represent coincide, or when they intersect in a line.

For example, the system
{

x + y + z = 1,
2x + 2y + 2z = 2,

has infinitely many solutions, as the two equations represent the same
plane in R

3. Each set of values for x, y and z satisfying x+ y + z = 1
is a solution to this system, such as x = 1, y = 0, z = 0 and x = −2,
y = 4, z = −1.

Similarly, the system
{

x + y + z = 1,
x + y = 1,

has infinitely many solutions: the planes in R
3 represented by the two

equations intersect in a line. The z-coordinate of each point on this
line is zero, so the line lies in the (x, y)-plane. Each set of values for x,
y and z satisfying x+ y = 1 and z = 0 is a solution to this system,
such as x = 1, y = 0, z = 0 and x = 5, y = −4, z = 0.

Three equations

In a similar way, the solutions to the system of three simultaneous linear
equations







ax + by + cz = d,
ex + fy + gz = h,
ix + jy + kz = l,

Here, a, b, . . . , l are real numbers.

in the three unknowns x, y and z correspond to the points of intersection
of these three planes in R

3.

Three arbitrary planes in R
3 may meet each other in a number of different

ways. We illustrate these possibilities below.
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Unit LA2 Linear equations and matrices

A system of three simultaneous linear equations in three unknowns yields
exactly one of the following three situations.

• There is a unique solution, when the three planes that the equations
represent intersect at a unique point.

For example, the system






x + y + z = 1,
x + y = 1,
x − z = 0,

has the unique solution x = 0, y = 1, z = 0, corresponding to the
unique point of intersection (0, 1, 0) of the three planes in R

3.

• There is no solution, when two of the planes that the equations
represent are parallel, or when the three planes form a triangular prism.

For example, the system






x + y + z = 1,
x + y + z = 2,
x + y − z = 0,

represents three planes in R
3, the first two of which are parallel, and so

has no solutions.

Similarly, the system






x + y = 1,
x + z = 1,
− y + z = 1,

has no solutions: the planes in R
3 represented by the three equations

intersect in pairs, forming a triangular prism, and so there are no
points common to all three planes.

• There are infinitely many solutions, when the three planes that the
equations represent intersect either in a plane or in a line.

For example, the system






x + y + z = 1,
−x − y − z = −1,
2x + 2y + 2z = 2,

has infinitely many solutions, as the three equations all represent the
same plane in R

3. Each set of values for x, y and z satisfying
x+ y + z = 1 is a solution to this system, such as x = 1, y = 0, z = 0
and x = −1, y = 3, z = −1.

Similarly, the system






x + y + z = 1,
x + y = 1,
x + y − z = 1,

has infinitely many solutions: the planes in R
3 represented by the three

equations intersect in a line. The z-coordinate of each point on this
line is zero, so the line lies in the (x, y)-plane. Each set of values for x,
y and z satisfying x+ y = 1 and z = 0 is a solution to this system,
such as x = 1, y = 0, z = 0 and x = −5, y = 6, z = 0.
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Section 1 Simultaneous linear equations

1.2 Systems in n unknowns
The equations for a line in R

2 and a plane in R
3 are linear equations in

two and three unknowns, respectively. Similarly, an equation of the form
Here, a, . . . , e are real numbers,
and a, b, c and d are not all zero.ax+ by + cz + dw = e

is a linear equation in the four unknowns x, y, z and w. In general, we can
define a linear equation in any number of unknowns.

Definitions An equation of the form

a1x1 + a2x2 + · · ·+ anxn = b, A linear equation has no terms
that are products of unknowns,
such as x2

1 or x1x4.where a1, a2, . . . , an, b are real numbers, and a1, . . . , an are not all
zero, is a linear equation in the n unknowns x1, x2, . . . , xn. The
numbers ai are the coefficients, and b is the constant term.

Exercise 1.1 Which of the following are linear equations in the
unknowns x1, . . . , x5?

(a) x1 + 3x2 − x3 − 5x4 − 2x5 = 0 (b) x1 − x2 + 2x3x4 + 3x5 = 4

(c) 5x2 − x5 = 2 (d) a1x1 + a2x
2
2 + · · · + a5x

5
5 = b

We write a general system of m simultaneous linear equations in Frequently, we refer simply to
systems of linear equations, as
the full description is rather a
mouthful!

n unknowns as


















a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm.

The numbers bi are the constant terms, the variables xi are the unknowns
and the numbers aij are the coefficients. We use the double subscript ij to
show that aij is the coefficient of the jth unknown in the ith equation.
The number m of equations need not be the same as the number n of
unknowns.

A solution of a system of linear equations is a list of values for the
unknowns that simultaneously satisfy each of the equations. In solving a
system, we look for all the solutions—you have already seen that some
systems have infinitely many solutions.

Definitions The values x1 = c1, x2 = c2, . . . , xn = cn are a solution

of a system of m simultaneous linear equations in n unknowns,
x1, . . . , xn, if these values simultaneously satisfy all m equations of the
system. The solution set of the system is the set of all the solutions.

For example, you saw earlier that the solution set of the system






x + y + z = 1,
x + y = 1,
x − z = 0,

(1.1)

is the set {(0, 1, 0)}, which has just one member.
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Unit LA2 Linear equations and matrices

You also saw that the solution set of the system






x + y + z = 1,
x + y + z = 2,
x + y − z = 0,

(1.2)

is the empty set.

Definitions A system of simultaneous linear equations is consistent
when it has at least one solution, and inconsistent when it has no
solutions.

The system (1.1) is consistent, and the system (1.2) is inconsistent.

When a system of linear equations has infinitely many solutions, we can
write down a general solution from which all solutions can be found. We
illustrate this with an example that you have already met.

You saw earlier that the solutions of the system






x + y + z = 1,
x + y = 1,
x + y − z = 1,

are the sets of values for x, y and z satisfying x+ y = 1 and z = 0. The
unknowns x and y are related by the equation x+ y = 1, which we can
rewrite as y = 1− x. Thus for each real parameter k assigned to the
unknown x, we have a corresponding value 1− k for the unknown y. We
write this general solution as

x = k, y = 1− k, z = 0, where k ∈ R.

To highlight the connection between the solutions of the system and the
intersection of the planes in R

3, we can write the solution set as a set of
points in R

3: The order of the unknowns must
be clear—the triples (1, 0, 0) and
(0, 1, 0) correspond to different
solutions.

{(k, 1 − k, 0) : k ∈ R}.

Homogeneous systems

In the following systems of linear equations, the constant terms are all zero:
{

2x + 3y = 0,
x − y = 0;

(1.3)







x − y − z = 0,
2x + y − z = 0,
−x + y + z = 0.

(1.4)

Such systems are called homogeneous.

Definitions A homogeneous system of linear equations is a system
of simultaneous linear equations in which each constant term is zero.

A system containing at least one non-zero constant term is a
non-homogeneous system.

If we substitute x = 0, y = 0 into system (1.3), and x = 0, y = 0, z = 0
into system (1.4), then all the equations are satisfied. These solutions are
called trivial.
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Section 1 Simultaneous linear equations

Definitions The trivial solution to a system of simultaneous linear
equations is the solution with each unknown equal to zero.

A solution with at least one non-zero unknown is a non-trivial

solution.

A homogeneous system always has at least the trivial solution, and is Non-homogeneous systems have
only non-trivial solutions.therefore always consistent.

Exercise 1.2 Write down a general homogeneous system of m linear
equations in n unknowns, and show that the solution set contains the
trivial solution.

Returning to system (1.4), we see that there are other solutions. For System (1.3) has no non-trivial
solutions.example, x = 2, y = −1, z = 3 is a solution. In fact, this system has an

infinite solution set, which we can write as

{(2k,−k, 3k) : k ∈ R}.

Number of solutions

We have already seen that when m ≤ n ≤ 3, a system of m equations in
n unknowns has a solution set which

• contains exactly one solution,

• or is empty,

• or contains infinitely many solutions.

In fact, the solution set of a system of m linear equations in n unknowns This assertion will be proved in
Unit LA4.has one of these forms, for any m and n.

We saw earlier that two non-parallel planes in R
3 cannot intersect in a

unique point. A consistent system of two linear equations in three
unknowns therefore has an infinite solution set. In general, a consistent
system of m equations in n unknowns, with m < n, has insufficient
constraints on the unknowns to determine them uniquely; that is, it has an
infinite solution set.

1.3 Solving systems
We now introduce a systematic method for solving systems of simultaneous You will meet this method again

in Section 2, where you will use
matrices to represent systems of
linear equations. A strategy is
given there.

linear equations. This method is called Gauss–Jordan elimination. It
entails successively transforming a system into simpler systems, in such a
way that the solution set remains unchanged. The process ends when the
solutions can be determined easily.

The idea is to reduce the number of unknowns in each equation. In
general, we use the first equation to eliminate the first unknown from all
the other equations, then use the second equation to eliminate another
unknown (usually the second) from all the other equations, and so on.

To avoid confusion when applying this method, we label the current
equations r1, r2, and so on. We can then write down how we are The same notation, r1, r2, and

so on, will be used in Section 2
where we transform rows of
matrices, hence the choice of the
letter r.

transforming the preceding system to obtain the current (simpler) system.
We use the symbol ↔ (‘interchanges with’) to indicate that two equations
are to be interchanged; for example, r1 ↔ r2 means that the first and
second equations are interchanged. We use the symbol → (‘goes to’) to
show how an equation is to be transformed. For example, r2 → r2 + r1
means that the second equation of the system is transformed by adding the
first equation to it.
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Unit LA2 Linear equations and matrices

We start by illustrating this method with a system of two linear equations
in two unknowns. Although this method is not the simplest way of solving
this particular system, it proves very useful in solving more complicated
systems.

Example 1.1 Solve the following system of two linear equations in two
unknowns:

{

2x + 4y = 10,
4x + y = 6.

Solution We aim to simplify the system by eliminating the unknown y In other words, we aim to reduce
the system to the form
{

x = ∗,
y = ∗,

where the asterisks denote
numbers to be determined.

from the first equation and the unknown x from the second. The
operations we perform do not alter the solution set of the system.

We label the two equations of the system:

r1
r2

{

2x + 4y = 10,
4x + y = 6.

We begin by simplifying the first equation; we divide it through by 2, so
that the coefficient of x is equal to 1: At each step, we relabel

(implicitly) the equations of the
current system. These two
equations therefore become the
new r1 and r2.

r1 →
1

2
r1

{

x + 2y = 5,
4x + y = 6.

We then transform this system into a system with no x-term in the second
equation. To do this, we subtract 4 times the first equation from the
second:

r2 → r2 − 4r1

{

x + 2y = 5,
− 7y = −14.

We now simplify the second equation of this new system by dividing
through by −7. This yields a system which already looks less complicated
than the original system, but has the same solution set:

r2 → −1

7
r2

{

x + 2y = 5,
y = 2.

We next use this new second equation to eliminate the y-term from the
first equation. We subtract twice the second equation from the first, which
yields the system

r1 → r1 − 2r2
{

x = 1,
y = 2.

We conclude that there is a unique solution—namely, x = 1, y = 2.

In calculations of this sort, errors are easily made. It is therefore advisable
to check the solution by substituting it back into the equations of the
original system. For this example, substituting x = 1 and y = 2, we find
that

{

(2× 1) + (4× 2) = 10, X

(4× 1) + (1× 2) = 6. X

The steps we performed in this example involve either multiplying (or
dividing) an equation by a non-zero number, or changing one equation by
adding (or subtracting) a multiple of another. Neither of these operations
alters the solution set of the system. Changing the order in which we write
down the equations also does not alter the solution set of the system.
These are the three operations, called elementary operations, that we
perform to simplify a system of linear equations when using the method of
Gauss–Jordan elimination.
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Section 1 Simultaneous linear equations

Elementary operations The following operations do not change the
solution set of a system of linear equations.

1. Interchange two equations.

2. Multiply an equation by a non-zero number.
Operation 2 includes division by
a non-zero number.

3. Change one equation by adding to it a multiple of another. Operation 3 includes subtracting
a multiple of one equation from
another.

Exercise 1.3 Solve the following system of two linear equations in
two unknowns:

{

x + y = 4,
2x − y = 5,

by performing elementary operations to simplify the system as in
Example 1.1.

We now solve a system of three linear equations in three unknowns. We
use elementary operations to try to reduce the system to the form







x = ∗,
y = ∗,

z = ∗.
Here, the asterisks denote
numbers to be determined.

Example 1.2 Solve the following system of three linear equations in
three unknowns:







x + y + 2z = 3,
2x + 2y + 3z = 5,
x − y = 5.

Solution We label the three equations of the system:

r1
r2
r3







x + y + 2z = 3,
2x + 2y + 3z = 5,
x − y = 5.

We begin the simplification by using the first equation to eliminate the
x-term from the second and third equations:

r2 → r2 − 2r1
r3 → r3 − r1







x + y + 2z = 3,
− z = −1,

− 2y − 2z = 2.

We now have no y-term in the second equation, and so cannot use this
equation to eliminate the y-term from the first and third equations. We
also cannot use the first equation to eliminate the y-term from the third
equation, as this would reintroduce an x-term. We therefore interchange
the second and third equations, to obtain a non-zero y-term in the new
second equation:

r2 ↔ r3







x + y + 2z = 3,
− 2y − 2z = 2,

− z = −1.

We simplify this new second equation by dividing through by −2:

r2 → −1

2
r2







x + y + 2z = 3,
y + z = −1,
− z = −1.

13



Unit LA2 Linear equations and matrices

We can now use the second equation to eliminate the y-term from the first
equation:

r1 → r1 − r2






x + z = 4,
y + z = −1,
− z = −1.

We simplify the third equation by multiplying through by −1:

r3 → −r3







x + z = 4,
y + z = −1,

z = 1.

Finally, we use the third equation to eliminate the z-term from the first
and second equations:

r1 → r1 − r3
r2 → r2 − r3







x = 3,
y = −2,

z = 1.

We conclude that there is a unique solution—namely, x = 3, y = −2, You should check this solution
by substituting it into the
original equations.

z = 1.

Exercise 1.4 Solve the following system of three linear equations in
three unknowns:







x + y − z = 8,
2x − y + z = 1,
−x + 3y + 2z = −8.

Each example solved in this subsection has a unique solution. We now
show how to apply the method to a system that does not have a unique
solution.

It is not usually possible to reduce a system with an infinite solution set to
one where each equation contains just one unknown. This is illustrated by
the following example.

Example 1.3 Solve the following system of three linear equations in
three unknowns:







x + 2y = 0,
y − z = 2,

x + y + z = −2.

Solution We label the three equations, and apply elementary operations
to simplify the system. To save space, we write the explanations to the
right of the equations.

r1
r2
r3







x + 2y = 0
y − z = 2

x + y + z = −2
We label the equations.

r3 → r3 − r1







x + 2y = 0
y − z = 2

− y + z = −2

We eliminate the x-term from r3
using r1.

r1 → r1 − 2r2

r3 → r3 + r2







x + 2z = −4
y − z = 2

0x + 0y + 0z = 0

We eliminate the y-terms from
r1 and r3 using r2.
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Section 1 Simultaneous linear equations

We have written the current r3 equation as 0x+ 0y + 0z = 0 to highlight
the fact that all the coefficients are zero, although in future examples we
shall simply write 0 = 0. This equation gives no constraints on x, y and z. ‘No constraints’ means that any

values for x, y and z satisfy the
equation.If we were to try to use equation r2 to eliminate the z-term from r1, we

would reintroduce a y-term. Similarly, using equation r1 to eliminate the
z-term from the equation r2 would reintroduce an x-term.

The system has an infinite solution set, as there are insufficient constraints
on the unknowns to determine them uniquely. We have two equations, one
relating the unknowns x and z, and the other relating y and z. As each x = −4− 2z and y = 2 + z.

equation involves a z-term, we can choose any value we wish for z, and
write the general solution as

x = −4− 2k, y = 2 + k, z = k, k ∈ R.

Whenever the simplification results in an equation 0 = 0, we have, in
effect, reduced the number of equations. We simplify the remaining
equations as far as possible, in order to determine the solution set.

Exercise 1.5 Solve the following system of three linear equations in
three unknowns:







x + 3y − z = 4,
−x + 2y − 4z = 6,
x + 2y = 2.

We now try to solve an inconsistent system.

Example 1.4 Solve the following system of three linear equations in
three unknowns:







x + 2y + 4z = 6,
y + z = 1,

x + 3y + 5z = 10.

Solution We apply elementary operations to simplify the system.

r1
r2
r3







x + 2y + 4z = 6
y + z = 1

x + 3y + 5z = 10
We label the equations.

r3 → r3 − r1







x + 2y + 4z = 6
y + z = 1
y + z = 4

We eliminate the x-term from r3
using r1.

r1 → r1 − 2r2

r3 → r3 − r2







x + 2z = 4
y + z = 1

0 = 3

We eliminate the y-terms from
r1 and r3 using r2.

Concentrating on the current r3 equation (0 = 3), we see that there are no Compare this equation with the
final equation r3 in the solution
to Example 1.3.

values of x, y and z that satisfy it. The solution set of this system of linear
equations is the empty set.

Whenever the simplification results in an equation 0 = ∗, where the
asterisk ∗ denotes a non-zero number, we have an inconsistent system, as
this equation has no solutions. There is no point in simplifying the
remaining equations further. In fact, in Example 1.4, inconsistency of the
system could have been inferred at the penultimate stage, as the equations
y + z = 1 and y + z = 4 form an inconsistent system.
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Unit LA2 Linear equations and matrices

Exercise 1.6 Solve the following system of three linear equations in
three unknowns:







x + y + z = 6,
−x + y − 3z = −2,
2x + y + 3z = 6.

1.4 Applications
Systems of simultaneous linear equations frequently arise when we use
mathematics to solve problems; that is, when we formulate a mathematical
model to help solve a problem.

In general, to model any straightforward problem we follow the same basic
procedure.

1. Identify the unknowns.

2. Analyse each statement of the problem, and rewrite it as an equation
relating the unknowns.

3. Solve these equations.

4. Write the solution in words to answer the problem, checking that it
‘makes sense’.

These four steps are illustrated in the following example.

Example 1.5 The sum of the ages of my sister and my brother is
40 years. My brother is 12 years older than my sister. How old is my
sister?

Solution First we decide what the unknowns are. Here we are asked to This is step 1.

find the age of my sister, so this is obviously one unknown. The statement
relates my sister’s age to my brother’s age. We do not know my brother’s
age, so this is a second unknown. These are the only two unknowns in this
problem. Let us denote my sister’s age by s and my brother’s age by b (in
years).

The first statement of the problem now translates to the equation This is step 2.

s+ b = 40,

and the second statement to

b = s+ 12.

We write these two equations in the usual form:
{

s + b = 40,
−s + b = 12.

This system could be solved more simply but, as a further illustration of This is step 3.

the method, we apply elementary operations to simplify it.

r1
r2

{

s + b = 40
−s + b = 12

We label the equations.

r2 → r2 + r1

{

s + b = 40
2b = 52

We eliminate the s-term from r2
using r1.

r2 →
1

2
r2

{

s + b = 40
b = 26

We simplify r2 by dividing
through by 2.

16
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r1 → r1 − r2
{

s = 14
b = 26

Finally, we eliminate the b-term
from r1 using r2.

The system has a unique solution—namely, s = 14, b = 26.

The answer to the problem is that my sister is 14 years old. This makes This is step 4.

sense, as it is positive and not an unreasonable age. (An age of 612 years
would be unreasonable!) We also note that 14 and 26 do add to 40, and
that 26 is 12 more than 14.

Further exercises
Exercise 1.7 Find the solution set of each of the following systems of
simultaneous linear equations.

(a)







x + 4y = −7
2x − y = 4
−x + 2y = −5

(b)

{

4x − 6y = −2
−6x + 9y = −3

(c)







p + q + r = 5
p + 2q + 3r = 11

3p + q + 4r = 13

Exercise 1.8 Find the points of intersection of the planes x+ y − z = 0,
y − 2z = 0 and 3x− y + 5z = 0 in R

3.

Exercise 1.9 Solve the following system of simultaneous linear equations
in four unknowns.















a − b − 2c + d = 3
b + c + d = 3

a − b − c + 2d = 7
b + c + 2d = 7

2 Row­reduction

After working through this section, you should be able to:

(a) write down the augmented matrix of a system of linear equations,
and recover a system of linear equations from its augmented
matrix;

(b) describe the three types of elementary row operation;

(c) recognise whether or not a given matrix is in row-reduced form;

(d) row-reduce a matrix;

(e) solve a system of linear equations by row-reducing its augmented
matrix.

In this section we give a systematic method for solving a system of linear
equations by Gauss–Jordan elimination. This method makes it easy to
solve even quite large systems of linear equations. It involves a technique
(row-reduction) that will be useful in another context later in this unit.

17
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2.1 Augmented matrices
We begin by introducing an abbreviated notation for a system of linear
equations.

You may have met the notion of a matrix at some point in your study of
mathematics. A matrix is simply a rectangular array of objects, usually
numbers, enclosed in brackets. Here are some examples:





2 −7
−1 1

2

0 12



,

(

3.17 2.23 7.05 0.00
4.88 1.71 1.72 5.55

)

,





3 7 12
−2 17 8
11 7 −5



.
In M208 we use round brackets
for matrices; some texts use
square ones.

The objects in a matrix are called its entries. The entries along a
horizontal line form a row, and those down a vertical line form a column.

For example, the first row of the first matrix above is 2 −7, and the second

column of the same matrix is

−7
1

2

12

.

We can abbreviate a system of linear equations by writing its coefficients
and constants in the form of a matrix. For example, the system

{

4x + y = −7,
x − 3y = 0,

can be abbreviated as It is helpful to draw a vertical
line separating the coefficients of
the unknowns on the left-hand
sides of the equations from the
constants on the right-hand
sides.

(

4 1 −7
1 −3 0

)

.

In general, the system


















a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm,

of m linear equations in n unknowns x1, x2, . . . , xn is abbreviated as the
matrix











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm











.

This matrix is called the augmented matrix of the system. The word
augmented reflects the fact that this is made up of a matrix formed by the
coefficients of the unknowns on the left-hand sides of the equations,
augmented by a matrix formed by the constants on the right-hand sides.
Later, we shall sometimes consider these two matrices separately.

In the augmented matrix, each row corresponds to an equation, and each
column (except the last) corresponds to an unknown, in the sense that it
contains all the coefficients of that unknown from the various equations.
The last column corresponds to the right-hand sides of the equations.

Example 2.1 Write down the augmented matrix of the following system Before writing down the
augmented matrix of a system of
linear equations, we must ensure
that the unknowns appear in the
same order in each equation,
with gaps left for ‘missing’
unknowns (that is, unknowns
whose coefficient is 0).

of linear equations:






x + 0y + 10z = 5,
3x + y − 4z = −1,
4x − 2y + 6z = 1.

18
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Solution The augmented matrix of the system is




1 0 10 5
3 1 −4 −1
4 −2 6 1



 .

Example 2.2 Write down the system of linear equations corresponding
to the following augmented matrix, given that the unknowns are, in order,
x1, x2:





1 −2 5
0 1 9
4 3 0



 .

Solution The corresponding system is






x1 − 2x2 = 5,
x2 = 9,

4x1 + 3x2 = 0.

Exercise 2.1

(a) Write down the augmented matrix of the following system of
linear equations:







4x1 − 2x2 = −7,
x2 + 3x3 = 0,

− 3x2 + x3 = 3.

(b) Write down the system of linear equations corresponding to the
following augmented matrix, given that the unknowns are, in
order, x, y, z, w:





2 3 0 7 1
0 1 −7 0 −1
1 0 3 −1 2



 .

2.2 Elementary row operations
When we used Gauss–Jordan elimination to solve a system of linear
equations in Section 1, we worked directly with the system itself; but it is
often easier to apply the same method to its abbreviated form, the
augmented matrix. The three elementary operations on the equations of
the system correspond exactly to three equivalent operations on the rows
of its augmented matrix.

Recall that the three elementary operations are as follows. Subsection 1.3

1. Interchange two equations.

2. Multiply an equation by a non-zero number.

3. Change one equation by adding to it a multiple of another.

These correspond to the following operations on the rows of the augmented
matrix.

1. Interchange two rows.

2. Multiply a row by a non-zero number.

3. Change one row by adding to it a multiple of another.

We call these elementary row operations of types 1, 2 and 3,
respectively.
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The next example shows a system of linear equations solved by
Gauss–Jordan elimination. On the left, in Solution (a), we perform
elementary operations on the system itself, as we did in Section 1. On the
right, in Solution (b), we perform the corresponding elementary row
operations on the augmented matrix of the system. You can see that in
Solution (b), we have less to write down at each stage.

In this example, and elsewhere, we use the same notation for elementary
row operations as we use for elementary operations (ri ↔ rj , and so on).

Example 2.3 Solve the following system of linear equations: This system is the one that we
solved in Example 1.2;
Solution (a) is simply repeated
from there (in abbreviated
form).







x + y + 2z = 3,
2x + 2y + 3z = 5,
x − y = 5.

Solution (a)

We perform a sequence of elementary
operations on the system in order to
transform it into a system with the same
solution set but whose solution set is easy to
write down.

r1
r2
r3







x + y + 2z = 3
2x + 2y + 3z = 5
x − y = 5

r2 → r2 − 2r1
r3 → r3 − r1







x + y + 2z = 3
− z = −1

− 2y − 2z = 2

r2 ↔ r3







x + y + 2z = 3
− 2y − 2z = 2

− z = −1

r2 → −1

2
r2







x + y + 2z = 3
y + z = −1
− z = −1

r1 → r1 − r2






x + z = 4
y + z = −1
− z = −1

r3 → −r3







x + z = 4
y + z = −1

z = 1

r1 → r1 − r3
r2 → r2 − r3







x = 3
y = −2

z = 1

The solution is x = 3, y = −2, z = 1.

Solution (b)

We perform a sequence of elementary row
operations on the augmented matrix of the
system in order to transform it into the
augmented matrix of a system with the same
solution set but whose solution set is easy to
write down.

r1
r2
r3





1 1 2 3
2 2 3 5
1 −1 0 5





r2 → r2 − 2r1
r3 → r3 − r1





1 1 2 3
0 0 −1 −1
0 −2 −2 2





r2 ↔ r3





1 1 2 3
0 −2 −2 2
0 0 −1 −1





r2 → −1

2
r2





1 1 2 3
0 1 1 −1
0 0 −1 −1





r1 → r1 − r2




1 0 1 4
0 1 1 −1
0 0 −1 −1





r3 → −r3





1 0 1 4
0 1 1 −1
0 0 1 1





r1 → r1 − r3
r2 → r2 − r3





1 0 0 3
0 1 0 −2
0 0 1 1





The corresponding system is






x = 3,
y = −2,

z = 1.

The solution is x = 3, y = −2, z = 1.
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Section 2 Row­reduction

It is important to appreciate the following point about elementary row
operations.

When a sequence of elementary row operations is performed on a matrix,
each row operation in the sequence produces a new matrix, and the
following row operation is then performed on that new matrix. For
example, the working for the first two row operations in Solution (b) above
should, strictly, be set out as follows.

r1
r2
r3





1 1 2 3
2 2 3 5
1 −1 0 5





r2 → r2 − 2r1





1 1 2 3
0 0 −1 −1
1 −1 0 5





r3 → r3 − r1





1 1 2 3
0 0 −1 −1
0 −2 −2 2





However, we often perform two or more row operations in one step, to save
time. Whenever we do this, we must ensure that when a row is changed by
one of these row operations, the new version of that row is used when
performing later row operations.

The easiest way to avoid difficulties is to perform two or more row
operations in one step only if none of these row operations changes a row

that is then used by another of these row operations. The above row
operations r2 → r2 − 2r1 and r3 → r3 − r1 meet this criterion: the first
changes only row 2, and the second does not involve row 2. In this course
we perform two or more row operations in one step only if they meet this
criterion.

Row­sum check

We end this subsection by describing a simple checking method that can
be useful for picking up arithmetical errors when we perform a sequence of
elementary row operations on a matrix by hand.

To apply this method, we proceed as follows. To the right of each row of
the initial matrix, we write down the sum of the entries in that row.

r1
r2
r3





1 1 2 3
2 2 3 5
1 −1 0 5





7
12
5

From then on, when performing elementary row operations, we treat this
‘check column’ of numbers as if it were an extra column of the matrix, and
perform the row operations on it. So the first step of the calculation in
Solution (b) above would look as follows.

r2 → r2 − 2r1
r3 → r3 − r1





1 1 2 3
0 0 −1 −1
0 −2 −2 2





7
−2
−2

At each step in the calculation, each entry in this extra column should still We have included the check
column in an example in the
audio frames.

be the sum of the entries in the corresponding row. If this is not the case,
an error has been made.
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Unit LA2 Linear equations and matrices

2.3 Solving linear equations systematically
We now describe a systematic method for solving a system of linear
equations by Gauss–Jordan elimination. The method involves performing
elementary row operations on the augmented matrix of the system.

Listen to the audio as you work through the frames.
Audio
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Further exercises
Exercise 2.6 Which of the following are row-reduced matrices?

(a)





0 0 1 5
1 0 0 7
0 1 0 7



 (b)





1 14 0 23
0 0 1 44
0 0 0 0





(c)













1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0













(d)













0 1 0 −3 12
0 0 1 0 7
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0













(e)

(

0 1 1

7
0 −6 24 −3

7

0 0 0 1 3 −2

7

1

7

)

(f)

(

0 0 0 0
0 0 0 0

)

Exercise 2.7 Solve the systems of linear equations corresponding to the
following row-reduced augmented matrices. (Assume that the unknowns
are x1, x2, . . ..)

(a)





1 0 0 7
0 1 0 −6
0 0 1 5





(b)







1 1

7
0 1

0 0 1 3

0 0 0 0







(c)





1 0 4 0 0
0 1 −3 0 0
0 0 0 1 0





(d)





1 3 0 −2 0 0
0 0 1 2 1 0
0 0 0 0 0 1





(e)









1 0 −5 0 4
0 1 −7 3 12
0 0 0 0 0
0 0 0 0 0









Exercise 2.8 Solve each of the following systems of linear equations by
reducing its augmented matrix to row-reduced form.

(a)















3x − 11y − 3z = 3
2x − 6y − 2z = 1
5x − 17y − 6z = 2
4x − 8y = 7

(b)















a − 4c − 2d = −1
a + 2b − 2c + 4d = 6

2a + 4b − 3c + 9d = 9
2a + b − 5c + d = −4

(c)















2x1 + 2x2 − 5x3 + 6x4 + 10x5 = −2
2x1 + 2x2 − 6x3 + 6x4 + 8x5 = 0
2x1 − x3 + 2x4 + 7x5 = 7
x1 + 2x2 − 5x3 + 5x4 + 4x5 = −3
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Section 3 Matrix algebra

3 Matrix algebra

After working through this section, you should be able to:

(a) perform the matrix operations of addition, multiplication and
transposition;

(b) recognise the following types of matrix: square, zero, diagonal,
lower-triangular, upper-triangular, identity, symmetric;

(c) express a system of simultaneous linear equations in matrix form.

Earlier, we saw how an augmented matrix concisely represents a system of Subsection 2.1

simultaneous linear equations.

A matrix of size m× n has m rows and n columns. An n× n matrix is
called a square matrix. The entry in the ith row and jth column of a
matrix A is called the (i, j)-entry, often denoted by aij. In general, we
write A or (aij) to denote a matrix:

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











= (aij).

Exercise 3.1 Write down the size of each of the following matrices.
Which matrices are square? What is the (2, 3)-entry in each matrix?

(a)

(

3 −4 2 6
−1 0 5 1

)

(b)





1 3 7
−1 10 0
2 4 1



 (c)

(

2 1
−3 7

)

Two m× n matrices A = (aij) and B = (bij) are equal if aij = bij for all
values of i and j.

Definition Two matrices A and B of the same size are equal if all
their corresponding entries agree. We write A = B.

Thus

(

1 2 3
4 5 6

)

is not equal to

(

1 2 1
4 5 6

)

as the (1, 3)-entries differ,

and

(

1 1 1
1 1 1

)

is not equal to





1 1
1 1
1 1



 as the matrices are different

sizes. A matrix of size 1× 1 comprises just a single entry; we often omit
the brackets and identify such matrices with ordinary numbers—scalars;
for example, we identify the matrix (5) with the number 5.

We call a matrix with just one column a column matrix, and a matrix with
just one row a row matrix. For example,





1
2
3



 is a column matrix and
(

1 2 3 4
)

is a row matrix.
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3.1 Matrix addition
Let a = (a1, a2) and b = (b1, b2) be two vectors in R

2. Their sum is defined Unit LA1, Subsection 2.2.

to be the vector

a+ b = (a1 + b1, a2 + b2).

For example,

(1, 2) + (−2, 3) = (1 + (−2), 2 + 3) = (−1, 5).

We add matrices in precisely the same way; that is, by adding
corresponding entries. For example,

(

1 0
1 2

)

+

(

2 −1
0 1

)

=

(

1 + 2 0 + (−1)
1 + 0 2 + 1

)

=

(

3 −1
1 3

)

and
(

2 1 5
3 0 1

)

+

(

−2 4 2
1 3 2

)

=

(

0 5 7
4 3 3

)

.

It is clear that only matrices of the same size can be added together. For
example, the following is meaningless:

(

1 2 3
4 5 6

)

+





1 2
3 4
5 6



 .

We now write down a general formula for the addition of two matrices.

Definition The sum of two m× n matrices A = (aij) and B = (bij)
is the m× n matrix A+B = (aij + bij) given by

A+B =











a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

...
am1 + bm1 am2 + bm2 · · · amn + bmn











.

Exercise 3.2 Evaluate the following matrix sums, where possible.

(a)

(

1 −3
−2 54

)

+

(

2 0
4 1

)

(b)

(

2 0
4 1

)

+

(

1 −3
−2 54

)

(c)





1 2
1 0
4 1



+





1 2 2
1 3 1

−2 4 5



 (d)





0 6 −2
1 8 2
0 3 4



+





1 2 9
1 0 4
3 −4 1





In Exercise 3.2, parts (a) and (b) give the same answer. The commutative
law, a+ b = b+ a, holds for the addition of scalars, as does the associative
law, a+ (b+ c) = (a+ b) + c, for all a, b, c ∈ R. Since matrix addition is
defined in terms of addition of scalars, matrix addition is both
commutative and associative.

Theorem 3.1 For all matrices A, B and C of the same size,

A+B = B+A (commutative law),

A+ (B+C) = (A+B) +C (associative law).
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Proof Let A = (aij) and B = (bij). To prove the commutative law, we
add the corresponding entries of these two matrices.

The (i, j)-entry of the matrix A+B is aij + bij , and that of B+A is
bij + aij .

Since aij and bij are scalars, aij + bij = bij + aij . Thus

A+B = (aij + bij) = (bij + aij) = B+A.

We ask you to prove the associative law in Exercise 3.3.

Exercise 3.3 Prove the associative law: for all matrices A, B and C

of the same size,

A+ (B+C) = (A+B) +C.

Zero matrix

We have seen that matrices can be added in a way analogous to addition of
scalars. There is a type of matrix that corresponds to the number 0,
namely, the zero matrix, which, as its name suggests, is a matrix of 0s. It
is denoted by 0m,n, or by 0 when it is clear from the context which size of
matrix is intended.

Definition The m× n zero matrix 0m,n is the m× n matrix in
which all entries are 0.

The following are all examples of zero matrices:

(

0
0

)

,
(

0 0 0
)

,





0 0 0 0
0 0 0 0
0 0 0 0



 and









0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0









.

The following exercise shows that the zero matrix acts in the same way as
the number 0 under the operation of addition. The zero matrix is the
identity element for the operation of matrix addition.

Exercise 3.4 Show that A+ 0 = A for any matrix A = (aij).

Definition The negative of an m× n matrix A = (aij) is the m× n
matrix

−A = (−aij).

For example, if

A =

(

1 −2 3
−4 5 −6

)

,

then

−A =

(

−1 2 −3
4 −5 6

)

.
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The negative of a matrix acts in the same way as the negative of a number
under the operation of addition.

Theorem 3.2 Let A be a matrix. Then

A+ (−A) = (−A) +A = 0.

Proof Let A = (aij), so −A = (−aij). We add corresponding entries:
the (i, j)-entry of the matrix A+ (−A) is aij + (−aij) = 0. Thus the
matrix A+ (−A) is the zero matrix 0.

Matrix addition is commutative, so (−A) +A = A+ (−A). Thus
(−A) +A is also the zero matrix 0.

The m× n matrix −A is the additive inverse of the m× n matrix A.
Since the four group axioms The group axioms were defined

in Unit GTA1.
G1 closure, G2 identity, G3 inverses, G4 associativity

are satisfied, the set of m× n matrices under the operation of matrix
addition forms a group.

Using the negative of a matrix, we can subtract matrices:

A−B = A+ (−B).

Exercise 3.5 Evaluate the following matrix differences, where
possible.

(a)

(

3 0
2 7

)

−





10 3
1 5
15 12



 (b)

(

5 8 12
7 2 −1

)

−

(

3 10 2
4 9 21

)

3.2 Multiplication of a matrix by a scalar
Multiplication of a vector by a scalar generalises in the obvious way to Unit LA1, Subsection 2.2.

matrices. To multiply the vector a = (a1, a2) by the scalar k, we multiply
each entry in turn by k; this gives

ka = (ka1, ka2).

Similarly, to multiply a matrix by a scalar k, we multiply each entry by k.
For example,

3

(

1 2 3
4 5 6

)

=

(

3 6 9
12 15 18

)

, −1

2

(

−4 2
0 −6

)

=

(

2 −1
0 3

)

.

Definition The scalar multiple of an m× n matrix A = (aij) by a
scalar k is the m× n matrix

kA =











ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n
...

...
...

kam1 kam2 · · · kamn











= (kaij).

Notice that (−1)A = −A and 0A = 0.
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Exercise 3.6 Let

A =





5 −3
2 3

−1 0



 and B =





2 1
−2 −7
3 5



 .

Evaluate the following.

(a) 4A (b) 4B (c) 4A+ 4B (d) 4(A+B)

You should have obtained the same answer for parts (c) and (d) of
Exercise 3.6. In fact, we have the following general result.

Theorem 3.3 For all matrices A and B of the same size, and all You are asked to prove
Theorem 3.3 in Exercise 3.16.scalars k, the distributive law holds; that is,

k(A+B) = kA+ kB.

3.3 Matrix multiplication
You have seen that the addition of matrices generalises the addition of Subsection 3.1

scalars and of vectors. In Unit LA1, Subsection 3.1, we introduced a
method of ‘multiplying’ vectors—the dot product. Let a = (a1, a2, a3) and
b = (b1, b2, b3) be two vectors in R

3. Then

a . b = a1b1 + a2b2 + a3b3.

Matrix multiplication is a generalisation of this idea.

To form the product of two matrices A and B, we combine the rows of A
with the columns of B. The (i, j)-entry of the product AB is obtained by
multiplying the entries in the ith row of A with the corresponding entries
in the jth column of B, and summing the products obtained.

For example, let

A =

(

1 2 3
4 5 6

)

and B =





1 2 3
4 5 6
7 8 9



 .

To obtain the (1, 2)-entry of the product AB, we combine the first row of One way to remember how to
multiply matrices A and B is to
picture running along the rows
of A and then diving down the
columns of B.

A with the second column of B: we multiply together the first entry of the
first row of A and the first entry of the second column of B, then multiply
together the second entries of each, and then the third entries, finally
adding these three numbers. The (1, 2)-entry of AB is thus

(1× 2) + (2× 5) + (3× 8) = 2 + 10 + 24 = 36.

To obtain the (2, 3)-entry of the product AB, we combine the second row
of A with the third column of B. The (2, 3)-entry of AB is

(4× 3) + (5× 6) + (6× 9) = 12 + 30 + 54 = 96.

We can compare the way in which we combined the first row of A and the
second column of B with the dot product of two vectors:

(1, 2, 3) . (2, 5, 8) = (1× 2) + (2× 5) + (3× 8) = 36.

We therefore say that we take the dot product of the first row of A with
the second column of B to obtain the (1, 2)-entry of the product AB.
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Likewise, we take the dot product of the second row of A with the third
column of B to obtain the (2, 3)-entry of the product AB:

(4, 5, 6) . (3, 6, 9) = (4× 3) + (5× 6) + (6 × 9) = 96.

Exercise 3.7 Find the (2, 1)-entry of the product AB, for the
matrices A and B given above.

To form the matrix product AB, we combine each row of A with each
column of B. We therefore obtain 2× 3 entries in the product AB, so this
matrix has 2 rows and 3 columns. We have found three of the six entries,
as highlighted below.

You should check the other
entries.=

1 2 3

4 5 6

1 2 3

4 5 6

7 8 9

30

66

36

81

42

96

Notice that we can form the product AB since the matrix A has the same
number of entries in a row as the matrix B has in a column; that is, the
number of columns of A is equal to the number of rows of B.

The product AB is not defined when the number of columns of the
matrix A is not equal to the number of rows of the matrix B.

Definition The product of an m× n matrix A with an n× p Notice that the product AB has
the same number of rows as the
matrix A, and the same number
of columns as the matrix B.

matrix B is the m× p matrix AB whose (i, j)-entry is the dot
product of the ith row of A with the jth column of B.

Schematically,

Example 3.1 Evaluate (where possible) the matrix products AB, where:

(a) A =

(

2 1
−3 0

)

and B =

(

3 −2 0
1 1 4

)

;

(b) A =

(

2 1
−3 0

)

and B =
(

3 −2
)

.

Solution

(a) The matrix A has 2 columns and the matrix B has 2 rows, so the
product AB can be formed. Since A has 2 rows and B has 3 columns,
AB has 2 rows and 3 columns.

To find the (1, 1)-entry of the product AB, we take the dot product of When evaluating a product of
matrices, it is advisable to find
the entries systematically, either
column by column, or row by
row. Here, we find the entries
column by column.

the first row of A with the first column of B:

(2× 3) + (1× 1) = 7.

Next, to find the (2, 1)-entry of AB, we take the dot product of the
second row of A with the first column of B:

(−3× 3) + (0× 1) = −9.
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Together, these give the first column of the product AB:

To find the (1, 2)-entry of the product AB, we take the dot product of
the first row of A with the second column of B:

(2×−2) + (1× 1) = −3.

Next, to find the (2, 2)-entry of AB, we take the dot product of the
second row of A with the second column of B:

(−3×−2) + (0× 1) = 6.

We now have the second column of the product AB:

To find the (1, 3)-entry of the product AB, we take the dot product of
the first row of A with the third column of B:

(2× 0) + (1× 4) = 4.

Next, to find the (2, 3)-entry of AB, we take the dot product of the
second row of A with the third column of B:

(−3× 0) + (0× 4) = 0.

We now have the third column of the product AB:

Thus
(

2 1
−3 0

)(

3 −2 0
1 1 4

)

=

(

7 −3 4
−9 6 0

)

.

(b) The matrix A has 2 columns and the matrix B has 1 row, so the
product AB is not defined.

Exercise 3.8 Evaluate the following matrix products, where possible.

(a)





2 −1
0 3
1 2





(

3
2

)

(b)
(

2 1
)

(

1 6
0 2

)

(c)





2
−4
1





(

3 2
4 −1

)

(d)

(

1
2

)

(

3 0 −4
)

(e)

(

3 1 2
0 5 1

)





−2 0 1
1 3 0
4 1 −1





Earlier, we showed that the operation of matrix addition is both Subsection 3.1

commutative and associative.
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Exercise 3.9 Let

A =

(

1 1
3 2

)

and B =

(

1 4
2 1

)

.

Calculate the products AB and BA. Comment on your findings.

You should have obtained different answers for AB and BA in
Exercise 3.9; thus matrix multiplication is not commutative. This means
that it is important to describe the matrix product carefully. We say that
AB is the matrix A multiplied on the right by the matrix B, or the
matrix B multiplied on the left by the matrix A.

Matrix multiplication is associative; that is, the products (AB)C and The associativity of matrix
multiplication is proved in
general in Unit LA4.

A(BC) are equal (when they can be formed).

You have seen that the distributive law holds for multiplication of a matrix
by a scalar. This law also holds for multiplication of a matrix by a matrix;
that is, A(B+C) = AB+AC, whenever these products can be formed.

Diagonal and triangular matrices

The entries of a square matrix from the top left-hand corner to the bottom
right-hand corner are the diagonal entries; the diagonal entries form the The main diagonal is sometimes

called the leading or principal
diagonal .

main diagonal of the matrix. For a square matrix A = (aij) of size n× n,
the diagonal entries are

a11, a22, . . . , ann.

Definition A diagonal matrix is a square matrix each of whose
non-diagonal entries is zero.

For example, the following are diagonal matrices:

(

1 0
0 −2

)

and





3 0 0
0 −7 0
0 0 0



 .

To see how diagonal matrices multiply, try the following exercise.

Exercise 3.10 Let

A =

(

1 0
0 7

)

, B =

(

−3 0
0 4

)

and C =

(

2 0
0 12

)

.

Evaluate the following products.

(a) AB (b) BA (c) ABC

Notice that the product of two diagonal matrices is another diagonal
matrix. Multiplying diagonal matrices is straightforward—the ith diagonal
entry of the product is the product of the ith diagonal entries of the
matrices being multiplied. Multiplication of diagonal matrices is therefore
commutative.

A square matrix with each entry below the main diagonal equal to zero is
called an upper-triangular matrix . Similarly, a matrix with each entry
above the main diagonal equal to zero is called a lower-triangular matrix .
A square row-reduced matrix is an upper-triangular matrix. A square
matrix that is both upper-triangular and lower-triangular is necessarily a
diagonal matrix.
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Exercise 3.11 State which of the following matrices are diagonal,
upper-triangular or lower-triangular.

(a)





1 1 1
0 2 2
0 0 3



 (b)

(

9 0
0 0

)

(c)





0 0 1
0 1 2
1 2 3



 (d)

(

1 0
1 0

)

Identity matrix

We have found that there are matrices corresponding to the number 0, the
zero matrices 0m,n. There is also a matrix corresponding to the number 1,
namely, the identity matrix, denoted by In. The subscript n indicates that The identity matrix is written

simply as I when the size is clear
from the context.

the matrix is an n× n matrix.

Definition The identity matrix In is the n× n matrix












1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1













.

Each of the entries is 0 except those on the main diagonal, which are
all 1.

For example, the identity matrices I2, I3 and I4 are

(

1 0
0 1

)

,





1 0 0
0 1 0
0 0 1



,









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

If we multiply a 3× 2 matrix on the left by I3 and then on the right by I2,
we obtain





1 0 0
0 1 0
0 0 1









a b
c d
e f



 =





a b
c d
e f



 Here, a, b, c, d, e and f are any
real numbers.

and




a b
c d
e f





(

1 0
0 1

)

=





a b
c d
e f



 .

In both cases, the matrix is unchanged.

Theorem 3.4 Let A be an m× n matrix. Then You are asked to prove
Theorem 3.4 in Exercise 3.17.

ImA = AIn = A.
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3.4 Transposition of matrices
There is a simple operation that we can perform on matrices. This
operation, called transposition or taking the transpose, entails Transposition of a square matrix

can be thought of as reflecting
the matrix in the main diagonal.

interchanging the rows with the columns of the matrix. Thus the transpose
of the matrix A, denoted by AT , has the rows of A as its columns, taken
in the same order. For example,





1 2 3
4 5 6
7 8 9





T

=





1 4 7
2 5 8
3 6 9



 and





2 7
−6 1
0 4





T

=

(

2 −6 0
7 1 4

)

.

Definition The transpose of an m× n matrix A is the n×m
matrix AT whose (i, j)-entry is the (j, i)-entry of A.

Exercise 3.12 Write down the transpose of each of the following
matrices.

(a)





1 4
0 2

−6 10



 (b)





2 1 2
0 3 −5
4 7 0





(c)
(

10 4 6
)

(d)

(

1 0
0 2

)

The identity matrix I is not changed by taking the transpose; that is,
IT = I.

The rows of the matrix A form the columns of the matrix AT , and the
columns of AT form the rows of (AT )T . Therefore the rows of A form the
rows of (AT )T ; that is, these two matrices are equal:

(AT )T = A.

Exercise 3.13 Let

A =





1 2
3 4
5 6



, B =





7 8
9 10
11 12



 and C =

(

1 0
1 1

)

.

(a) Find AT , BT and (A+B)T , and verify that

(A+B)T = AT +BT .

(b) Find CT and (AC)T , and discover an equation relating (AC)T ,

AT and CT .

The relationships satisfied by the matrices in Exercise 3.13 hold in general.
We collect together these results for the transposition of matrices in the
following theorem.

Theorem 3.5 Let A and B be m× n matrices. Then the following We omit the proofs: (a) and (b)
are straightforward to prove.results hold:

(a) (AT )T = A;

(b) (A+B)T = AT +BT .

Let A be an m× n matrix and B an n× p matrix. Then

(c) (AB)T = BTAT .
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Symmetric matrices

Some square matrices remain unchanged when transposed. These matrices
are called symmetric matrices, since they are symmetrical about the main
diagonal.

Definition A square matrix A is symmetric if

AT = A.

The entries off the main diagonal of a diagonal matrix are all zero, so all
diagonal matrices are symmetric, as are the following:





3 1 1
1 3 1
1 1 3



,

(

1 1
1 1

)

,









1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10









,

(

−5 2
2 3

)

.

3.5 Matrix form of a system of linear
equations
In this subsection we show how a system of linear equations can be
expressed in matrix form as a product of matrices. This helps to explain
why we multiply matrices in such an ‘odd way’.

Consider the system of simultaneous linear equations






x1 + 2x2 + 4x3 = 6,
x2 + x3 = 1,

x1 + 3x2 + 5x3 = 10.

We can write this system as a matrix equation:




x1 + 2x2 + 4x3
x2 + x3

x1 + 3x2 + 5x3



 =





6
1
10



 .

Now the 3× 1 matrix on the left can be expressed as the product of two
matrices, namely, the 3× 3 matrix of the coefficients and the 3× 1 matrix
of the unknowns:





x1 + 2x2 + 4x3
x2 + x3

x1 + 3x2 + 5x3



 =





1 2 4
0 1 1
1 3 5









x1
x2
x3



 .

Thus we have the matrix equation




1 2 4
0 1 1
1 3 5









x1
x2
x3



 =





6
1
10



 .

Similarly, we can express any system of simultaneous linear equations


















a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm,

as a matrix product.
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Let the matrix of coefficients be A, the coefficient matrix of the system,
that is,

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











.

Let the matrix of unknowns be x, and let the matrix of constant terms
be b, so

x =











x1
x2
...
xn











and b =











b1
b2
...
bm











.

The system can then be expressed in matrix form as

Ax = b,

or in full as










a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn





















x1
x2
...
xn











=











b1
b2
...
bm











.

Further exercises

Exercise 3.14 Let A =

(

1 6
3 −4

)

and B =

(

2 −3
0 7

)

. Evaluate the

following.

(a) A+B (b) A−B (c) B−A (d) AB (e) BA

(f) A2 (g) AT (h) BT (i) ATBT

Exercise 3.15 Suppose that we are given matrices of the following sizes:

A : 2× 1, B : 4× 3, C : 3× 2, D : 1× 4,

E : 3× 3, F : 3× 4, G : 2× 4.

Which of the following expressions are defined? Give the size of the
resulting matrix for those that are defined.

(a) FB+E (b) GFT −ADB (c) BF− (FB)T

(d) C(AD+G) (e) (CA)TD (f) ETBTGTCT

Exercise 3.16 Prove the distributive law, that for all matrices A and B of This is Theorem 3.3.

the same size, and all scalars k,

k(A+B) = kA+ kB.

Exercise 3.17 Let A = (aij) be an m× n matrix. Prove that ImA = A This is Theorem 3.4.

and AIn = A.

Hint: Notice that the entries in the ith row of Im are all 0 except the entry
in the ith position, which is 1.
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4 Matrix inverses

After working through this section, you should be able to:

(a) understand what is meant by an invertible matrix;

(b) understand that the set of n× n invertible matrices forms a group
under matrix multiplication;

(c) determine whether or not a given matrix is invertible and, if it is,
find its inverse;

(d) state the relationship between the invertibility of a square matrix
and the number of solutions of a system of linear equations with
that square matrix as its coefficient matrix;

(e) understand the connections between elementary row operations
and elementary matrices.

4.1 Matrix inverses
In Section 3 we saw that many of the properties of ordinary arithmetic
have analogues in matrix algebra. We now consider the extent to which a
further important property of ordinary arithmetic is mirrored in matrix
algebra. You are familiar with the fact that, for each non-zero real
number a, there exists a number b, called the reciprocal or multiplicative For example, the reciprocal of 4

is 1

4
.inverse of a, such that

ab = 1 and ba = 1.

Each non-zero real number a has exactly one reciprocal, and we denote it
by a−1 or 1/a.

The role played by the number 1 in ordinary arithmetic is played in matrix
algebra by the identity matrix I; therefore we make the following definition.

Definition Let A be a square matrix, and suppose that there exists
a matrix B of the same size such that

AB = I and BA = I. You need both these equations
for B to be the inverse of A.
One alone is not enough.Then B is an inverse of A.

Notice that we restrict the definition to square matrices. It can be proved
that if A is not a square matrix, then AB and BA cannot both be identity
matrices—so the definition cannot be extended to non-square matrices.

For example,
(

3 −1
−5 2

)

is an inverse of

(

2 1
5 3

)

since
(

2 1
5 3

)(

3 −1
−5 2

)

=

(

1 0
0 1

)

and
(

3 −1
−5 2

)(

2 1
5 3

)

=

(

1 0
0 1

)

.
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Similarly,




−1 −5 −2
0 2 1

−2 1 1



 is an inverse of





1 3 −1
−2 −5 1
4 11 −2





since




1 3 −1
−2 −5 1
4 11 −2









−1 −5 −2
0 2 1

−2 1 1



 =





1 0 0
0 1 0
0 0 1





and




−1 −5 −2
0 2 1

−2 1 1









1 3 −1
−2 −5 1
4 11 −2



 =





1 0 0
0 1 0
0 0 1



 .

Just as a real number has at most one reciprocal, a square matrix has at
most one inverse, as we now prove.

Theorem 4.1 A square matrix has at most one inverse.

Proof Let A be a square matrix, and suppose that B and C are both
inverses of A. Then AB = I and CA = I.

Multiplying the equation AB = I on the left by C, we have

C(AB) = CI = C,

while multiplying the equation CA = I on the right by B gives This shows us why we need both
AB = I and BA = I in the
definition on page 41.(CA)B = IB = B.

Since matrix multiplication is associative, it follows that B = C.

Now, every non-zero real number has a reciprocal, so it is natural to ask
whether or not every non-zero square matrix has an inverse. The next Certainly a square zero matrix

has no inverse (just as the real
number 0 has no reciprocal).
This is easy to see: if 0 is a
square zero matrix, then any
product of 0 and another matrix
is a zero matrix, so there is no
matrix B such that 0B = I.

exercise demonstrates that the answer to this question is no—it gives an
example of a non-zero square matrix with no inverse.

Exercise 4.1 Let A =

(

1 −1
−1 1

)

.

Prove that there is no matrix B =

(

a b
c d

)

such that AB = I.

In fact, there are many non-zero square matrices with no inverse. The next
theorem gives an infinite class of such matrices.

Theorem 4.2 A square matrix with a zero row has no inverse.

Proof Let A be a square matrix one of whose rows, say row i, is a zero
row. Then if B is any matrix of the same size as A, the (i, i)-entry of AB

is 0, since it is equal to the dot product of row i of A (a zero row) with
column i of B. But the (i, i)-entry of I is 1, which shows that there is no
matrix B such that AB = I. Hence A has no inverse.
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Definition A square matrix that has an inverse is invertible.

We denote the unique inverse of an invertible matrix A by A−1. Thus, for
any invertible matrix A,

AA−1 = I and A−1A = I.

Notice from these equations that if A is an invertible matrix, then A−1 is
also invertible, with inverse A; that is,

(A−1)−1 = A.

In other words, A and A−1 are inverses of each other. This is similar to inverses in R,
where (a−1)−1 = a.

The next example and the following exercises give some other useful facts
about matrix inverses.

Example 4.1 Let A be an invertible matrix. Prove that AT is invertible, We introduced AT , the
transpose of A, in
Subsection 3.4.

and that (AT )−1 = (A−1)T .

Solution To prove that AT is invertible, with inverse (A−1)T , we have
to show that

AT (A−1)T = I and (A−1)TAT = I.

But
Recall from Subsection 3.4 that

(AB)T = BTAT .
AT (A−1)T = (A−1A)T = IT = I,

and, similarly,

(A−1)TAT = (AA−1)T = IT = I.

The required result follows.

Exercise 4.2 Prove that I is invertible, and that I−1 = I.

Exercise 4.3 Let A and B be invertible matrices of the same size.
Prove that AB is invertible, and that (AB)−1 = B−1A−1.

Notice the reversal of the order of the matrices in the identity

(AB)−1 = B−1A−1.

The result of Exercise 4.3 extends to products of any number of matrices.

Theorem 4.3 Let A1,A2, . . . ,Ak be invertible matrices of the same This can be proved using the
result of Exercise 4.3 and
mathematical induction.

size. Then the product A1A2 · · ·Ak is invertible, with

(A1A2 · · ·Ak)
−1 = A−1

k A−1

k−1
· · ·A−1

1
.

Using the results of the above exercises, we can show that the set of all
invertible matrices of a particular size forms a group under matrix The group axioms were defined

in Unit GTA1.multiplication.

Theorem 4.4 The set of all invertible n× n matrices forms a group The set of all n× n matrices
does not form a group under
matrix multiplication: it fails to
satisfy the axiom G3 inverses,
since, for example, the n× n
zero matrix has no inverse.

under matrix multiplication.
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Proof We must check that the four group axioms hold.

Exercise 4.3 tells us that the group axiom G1 closure holds for this set.

Exercise 4.2 shows that I is a member of the set, so the set contains an
identity element. In other words, the axiom G2 identity holds.

Each matrix in the set has an inverse, and this inverse is itself invertible Remember, (A−1)−1 = A.

and therefore also in the set; so the axiom G3 inverses holds.

Finally, we know from Section 3 that matrix multiplication is associative,
so the axiom G4 associativity holds.

4.2 Invertibility Theorem
The following two questions may already have occurred to you as you
worked through the previous subsection. First, how can we determine
whether or not a given square matrix is invertible? Second, if we know
that a matrix is invertible, how can we find its inverse? The next theorem
answers both questions.

Theorem 4.5 Invertibility Theorem

(a) A square matrix is invertible if and only if its row-reduced form
We prove the Invertibility
Theorem in Subsection 4.5.

is I.

(b) Any sequence of elementary row operations that transforms a
matrix A to I also transforms I to A−1.

To illustrate this theorem, consider the matrix A =

(

1 3
2 9

)

. Suppose

that we wish to determine whether or not A is invertible and, if it is, to
find A−1.

Below, on the left, we row-reduce A in the usual way. On the right, we
perform the same sequence of elementary row operations on the 2× 2
identity matrix.

r1
r2

(

1 3
2 9

)

r1
r2

(

1 0
0 1

)

r2 → r2 − 2r1

(

1 3
0 3

)

r2 → r2 − 2r1

(

1 0
−2 1

)

r2 →
1

3
r2

(

1 3
0 1

)

r2 →
1

3
r2

(

1 0
−2

3

1

3

)

r1 → r1 − 3r2
(

1 0
0 1

)

r1 → r1 − 3r2
(

3 −1
−2

3

1

3

)

The row-reduced form of A is I, so we conclude from the first part of the
Invertibility Theorem that A is an invertible matrix.

By the second part of the Invertibility Theorem, the final matrix on the
right above must be A−1; that is,

You should check that this
matrix is indeed the inverse
of A.

A−1 =

(

3 −1
−2

3

1

3

)

.

When we apply the Invertibility Theorem to find the inverse of a
matrix A, we have to perform the same sequence of elementary row
operations on both A and I. We can do this conveniently in the following
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way. We begin by writing A and I alongside each other, separated by a
vertical line, giving a larger matrix which we may denote by (A | I). We
then row-reduce (A | I) in the usual way. When we do this, the above
calculation looks like this:

r1
r2

(

1 3 1 0
2 9 0 1

)

r2 → r2 − 2r1

(

1 3 1 0
0 3 −2 1

)

r2 →
1

3
r2

(

1 3 1 0
0 1 −2

3

1

3

)

r1 → r1 − 3r2
(

1 0 3 −1
0 1 −2

3

1

3

)

.

Thus the Invertibility Theorem gives us the following strategy.

Strategy 4.1 To determine whether or not a given square matrix A You may find it helpful to
remember the following scheme:

(A | I)

↓

(I | A−1).

is invertible, and find its inverse if it is.

Write down (A | I), and row-reduce it until the left half is in
row-reduced form.

• If the left half is the identity matrix, then the right half is A−1.

• Otherwise, A is not invertible.

Remark Strategy 4.1 is most useful for matrices of size 3× 3 and larger.
In Section 5 we give a quick method for determining whether or not a
2× 2 matrix is invertible, and for writing down its inverse if it is.

Example 4.2 Determine whether or not each of the following matrices is
invertible, and find the inverse if it exists.

(a)





1 1 2
−1 0 −4
3 2 10



 (b)





1 3 5
3 1 7
2 4 8





Solution We use Strategy 4.1.

(a) We form the matrix (A | I), and row-reduce it in the usual way.

r1
r2
r3





1 1 2 1 0 0
−1 0 −4 0 1 0
3 2 10 0 0 1





r2 → r2 + r1
r3 → r3 − 3r1





1 1 2 1 0 0
0 1 −2 1 1 0
0 −1 4 −3 0 1





r1 → r1 − r2

r3 → r3 + r2





1 0 4 0 −1 0
0 1 −2 1 1 0
0 0 2 −2 1 1





r3 →
1

2
r3





1 0 4 0 −1 0
0 1 −2 1 1 0
0 0 1 −1 1

2

1

2





r1 → r1 − 4r3
r2 → r2 + 2r3





1 0 0 4 −3 −2
0 1 0 −1 2 1
0 0 1 −1 1

2

1

2





45



Unit LA2 Linear equations and matrices

The left half has been reduced to I, so the given matrix is invertible;
its inverse is given by the right half, that is,





4 −3 −2
−1 2 1
−1 1

2

1

2



 .

(b) We row-reduce (A | I).

r1
r2
r3





1 3 5 1 0 0
3 1 7 0 1 0
2 4 8 0 0 1





r2 → r2 − 3r1
r3 → r3 − 2r1





1 3 5 1 0 0
0 −8 −8 −3 1 0
0 −2 −2 −2 0 1





r2 → −1

8
r2







1 3 5 1 0 0

0 1 1 3

8
−1

8
0

0 −2 −2 −2 0 1







r1 → r1 − 3r2

r3 → r3 + 2r2







1 0 2 −1

8

3

8
0

0 1 1 3

8
−1

8
0

0 0 0 −5

4
−1

4
1







The left half is now in row-reduced form, but is not the identity
matrix. Therefore the given matrix is not invertible.

Remark If it becomes clear while you are row-reducing (A | I) that the
left half will not reduce to the identity matrix (for example, if a zero row
appears in the left half), then you can stop the row-reduction immediately,
and conclude that A is not invertible. There is no point in continuing until
the left half is in row-reduced form.

Exercise 4.4 Use Strategy 4.1 to determine whether or not each of
the following matrices is invertible, and find the inverse if it exists.

(a)

(

2 4
4 1

)

(b)





1 1 −4
2 1 −6

−3 −1 9



 (c)





2 4 6
1 2 4
5 10 5





4.3 Invertibility and systems of linear
equations
We can use matrix inverses to give us another method for solving certain
systems of linear equations.

Consider the system We solved this system by
Gauss–Jordan elimination in
Example 1.1.

{

2x + 4y = 10,
4x + y = 6.

This system may be expressed in matrix form as
(

2 4
4 1

)(

x
y

)

=

(

10
6

)

.

The coefficient matrix

(

2 4
4 1

)

is invertible, with inverse

(

− 1

14

2

7

2

7
−1

7

)

. See Exercise 4.4(a).
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Multiplying both sides of the matrix form of the system on the left by the
inverse of the coefficient matrix, we obtain

(

− 1

14

2

7

2

7
−1

7

)

(

2 4
4 1

)(

x
y

)

=

(

− 1

14

2

7

2

7
−1

7

)

(

10
6

)

,

that is,
(

1 0
0 1

)(

x
y

)

=

(

1
2

)

,

or
(

x
y

)

=

(

1
2

)

.

So the system has the unique solution

(

x
y

)

=

(

1
2

)

; that is, x = 1, y = 2.

In general, suppose that Ax = b is the matrix form of a system of linear
equations, and that the coefficient matrix A is invertible. Then we can
multiply both sides of the equation Ax = b on the left by A−1 to yield
A−1Ax = A−1b; that is, x = A−1b. It seems, then, that the system has
the unique solution x = A−1b.

However, we have to be careful before making this claim. Whenever we
manipulate an equation in order to solve it, we have to be sure that the
manipulation yields a second equation equivalent to the first (otherwise the
two equations might have different solution sets).

In this case, we have to be sure that

Ax = b if and only if x = A−1b.

We showed above that if Ax = b, then multiplying both sides on the left
by A−1 yields x = A−1b; in other words, we proved that Ax = b implies
x = A−1b. It remains to prove that x = A−1b implies Ax = b, and
fortunately this is just as easy: if x = A−1b, then multiplying both sides
of this equation on the left by A yields Ax = AA−1b; that is, Ax = b.

So multiplying both sides of Ax = b on the left by A−1 does yield an
equivalent equation. We have proved the following theorem.

Theorem 4.6 Let A be an invertible matrix. Then the system of
linear equations Ax = b has the unique solution x = A−1b.

Exercise 4.5 Use Theorem 4.6 to solve the following system of linear
equations:







x + y + 2z = 1,
−x − 4z = 2,
3x + 2y + 10z = −1.

Hint: The inverse of the matrix





1 1 2
−1 0 −4
3 2 10



 is





4 −3 −2
−1 2 1
−1 1

2

1

2



. We calculated this inverse in
Example 4.2(a).
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Remark In general, it is worth using the method of Theorem 4.6 only if To use the method of
Theorem 4.6 to solve Ax = b,
where A is an n× n invertible
matrix, we first invert A. This
involves row-reducing the matrix
(A | I). We then calculate the
matrix product A−1b. The
method of Section 2 involves
only row-reducing the matrix
(A | b).

we have already calculated the inverse of the coefficient matrix. If we do
not know the inverse of the coefficient matrix, then the Gauss–Jordan
elimination method of Section 2 is usually quicker.

Theorem 4.6 shows, in particular, that if the coefficient matrix A of a
system of linear equations Ax = b is invertible, then the system has a
unique solution. The converse of this result is also true—we prove this in
the next theorem.

This theorem gives some important relationships between the invertibility
of a matrix and the number of solutions of systems of linear equations with
that matrix as coefficient matrix. The theorem states that the three
conditions are equivalent : any one of the conditions implies any other one.

Theorem 4.7 Let A be an n× n matrix. Then the following
statements are equivalent.

(a) A is invertible.

(b) The system Ax = b has a unique solution for each n× 1
matrix b.

(c) The system Ax = 0 has only the trivial solution.

Proof We show that (a)⇒ (b), (b)⇒ (c) and (c)⇒ (a), which shows that
the conditions are equivalent.

(a) ⇒ (b)
Suppose that A is an invertible n× n matrix. Then, by Theorem 4.6, for
any n× 1 matrix b, the system Ax = b has the unique solution x = A−1b.

(b) ⇒ (c)
Suppose that the system Ax = b has a unique solution for each n× 1
matrix b. Then, in particular, the homogeneous system Ax = 0 has a
unique solution. But every homogeneous system has the trivial solution;
thus this unique solution must be the trivial one.

(c) ⇒ (a)
Suppose that the system Ax = 0 has only the trivial solution. Then
row-reducing the augmented matrix









a11 a12 · · · a1n 0
a21 a22 · · · a2n 0
...

...
...

...
am1 am2 · · · amn 0









of the system must yield








1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0









,

since this is the row-reduced matrix that corresponds to each unknown
being 0. If we now ignore the last column of each of the matrices
appearing in this row-reduction, we are left with a reduction of A to I.
Hence, by the Invertibility Theorem, A is invertible.
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4.4 Elementary matrices
In this subsection we introduce and study a class of square matrices
associated with elementary row operations.

We shall use these matrices and their properties in Subsection 4.5, to help
us prove the Invertibility Theorem. We shall also find them useful later.

Consider the following matrices:




0 1 0
1 0 0
0 0 1



 ,





1 0 0
0 5 0
0 0 1



 ,





1 0 0
0 1 0
0 2 1



 .

They are obtained by performing, on the 3× 3 identity matrix, the
elementary row operations r1 ↔ r2, r2 → 5r2 and r3 → r3 + 2r2,
respectively.

Definition A matrix obtained by performing an elementary row
operation on an identity matrix is an elementary matrix.

The elementary row operation that is performed to obtain an elementary
matrix from an identity matrix is called the elementary row operation
associated with that elementary matrix.

We now demonstrate the most important property of elementary matrices.
Below, we show the effect of multiplying the matrix

A =





1 2 3 4
5 6 7 8
9 10 11 12





on the left by each of the above elementary matrices. Notice that in each
case, the resulting matrix is precisely the matrix that is obtained when the
row operation associated with the elementary matrix is performed on A.





0 1 0
1 0 0
0 0 1









1 2 3 4
5 6 7 8
9 10 11 12



=





5 6 7 8
1 2 3 4
9 10 11 12





elementary matrix A matrix obtained when
associated with r1 ↔ r2

r1 ↔ r2 is performed on A





1 0 0
0 5 0
0 0 1









1 2 3 4
5 6 7 8
9 10 11 12



=





1 2 3 4
25 30 35 40
9 10 11 12





elementary matrix A matrix obtained when
associated with r2 → 5r2

r2 → 5r2 is performed on A





1 0 0
0 1 0
0 2 1









1 2 3 4
5 6 7 8
9 10 11 12



=





1 2 3 4
5 6 7 8
19 22 25 28





elementary matrix A matrix obtained when
associated with r3 → r3 + 2r2
r3 → r3 + 2r2 is performed on A

There is nothing special about the above elementary matrices, or about
the above matrix A. In the next exercise, you will find that other
elementary matrices behave similarly.
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Exercise 4.6 Let A =

(

1 2 3
3 2 1

)

and B =









1 2
3 4
5 6
7 8









.

(a) Write down the 2× 2 elementary matrix associated with the This elementary matrix is the
one obtained when r1 → 5r1 is
performed on the 2× 2 identity
matrix.

elementary row operation r1 → 5r1.

Multiply A on the left by this elementary matrix, and check that
the resulting matrix is the same as the matrix obtained when
r1 → 5r1 is performed on A.

(b) Write down the 4× 4 elementary matrix associated with the
elementary row operation r2 → r2 + 3r4.

Multiply B on the left by this elementary matrix, and check that
the resulting matrix is the same as the matrix obtained when
r2 → r2 + 3r4 is performed on B.

In general, we have the following theorem.

Theorem 4.8 Let E be an elementary matrix, and let A be any We omit the proof.

matrix with the same number of rows as E. Then the product EA is A must have the same number
of rows as E for the product EA
to be defined.

the same as the matrix obtained when the elementary row operation
associated with E is performed on A.

Theorem 4.8 tells us that if we perform an elementary row operation on a
matrix A with m rows, then the resulting matrix is EA, where E is the
m×m elementary matrix associated with the row operation.

What happens if we perform a sequence of k elementary row operations on
a matrix A with m rows? Let E1,E2, . . . ,Ek be the m×m elementary
matrices associated with the row operations in the sequence, in the same
order. The first row operation is performed on A, producing the matrix
E1A; the second row operation is then performed on this matrix,
producing the matrix E2(E1A) = E2E1A; and so on. After the whole
sequence of k row operations has been performed, the resulting matrix is
EkEk−1 · · ·E2E1A. The order of the elementary

matrices in the matrix product
is the reverse of the order in
which their associated row
operations are performed.

This fact will be useful later, and we record it as a corollary to
Theorem 4.8.

Corollary to Theorem 4.8 Let E1,E2, . . . ,Ek be the m×m
elementary matrices associated with a sequence of k elementary row
operations carried out on a matrix A with m rows, in the same order.
Then, after the sequence of row operations has been performed, the
resulting matrix is

EkEk−1 · · ·E2E1A.

For example, earlier we performed the sequence of row operations

r2 → r2 − 2r1, r2 →
1

3
r2, r1 → r1 − 3r2,

on the matrix

(

1 3
2 9

)

, producing the matrix

(

1 0
0 1

)

.
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By the above corollary,

You should check this by
evaluating the product on the
right-hand side.

(

1 0
0 1

)

=

(

1 −3
0 1

)(

1 0
0 1

3

)(

1 0
−2 1

)(

1 3
2 9

)

.

We now explore some other useful connections between elementary row
operations and elementary matrices. We begin by introducing a further
property of elementary row operations.

In the following example, the second elementary row operation undoes the
effect of the first.

r1
r2

(

1 2 3
4 5 6

)

r2 → r2 + 3r1

(

1 2 3
7 11 15

)

r2 → r2 − 3r1

(

1 2 3
4 5 6

)

In fact, given any elementary row operation, it is easy to write down an
inverse elementary row operation that undoes the effect of the first, as
summarised in the following table.

Elementary row operation Inverse elementary row operation

ri ↔ rj ri ↔ rj
ri → c ri (c 6= 0) ri → (1/c) ri
ri → ri + c rj ri → ri − c rj

Exercise 4.7 Write down the inverse of each of the following
elementary row operations. Check your answer in each case by
carrying out the sequence of two row operations on the matrix
(

1 2 3
4 5 6

)

.

(a) r1 → r1 − 2r2 (b) r1 ↔ r2 (c) r2 → −3r2

Note from the table that if two elementary row operations are such that
the second is the inverse of the first, then the first is the inverse of the
second—so it makes sense to say that they are inverses of each other, or
that they form an inverse pair. For example, the inverse of r2 → r2 + 3r1
is r2 → r2 − 3r1, and the inverse of r2 → r2 − 3r1 is r2 → r2 − (−3)r1, that
is, r2 → r2 + 3r1. So r2 → r2 + 3r1 and r2 → r2 − 3r1 are inverses of each
other.

Now consider the following pair of 2× 2 elementary matrices associated
with the inverse pair of elementary row operations r2 → r2 + 3r1 and
r2 → r2 − 3r1:

(

1 0
3 1

)

,

(

1 0
−3 1

)

.

These two matrices are themselves inverses of each other, as we can easily
check:

(

1 0
3 1

)(

1 0
−3 1

)

=

(

1 0
0 1

)

and
(

1 0
−3 1

)(

1 0
3 1

)

=

(

1 0
0 1

)

.
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This connection between inverse pairs of elementary row operations and
inverse pairs of elementary matrices holds in general.

Theorem 4.9 Let E1 and E2 be elementary matrices of the same size
whose associated elementary row operations are inverses of each
other. Then E1 and E2 are inverses of each other.

Proof In this proof we refer to the row operations associated with E1

and E2 as row operation 1 and row operation 2, respectively.

By the corollary to Theorem 4.8, E2E1I is the matrix produced when row
operations 1 and 2 are performed, in that order, on I. Similarly, E1E2I is
the matrix produced when row operations 2 and 1 are performed, in that
order, on I. But each of these two row operations undoes the effect of the
other, so E2E1I = I and E1E2I = I; that is, E2E1 = I and E1E2 = I.
Thus E1 and E2 are inverses of each other.

Theorem 4.9 has the following corollary.

Corollary to Theorem 4.9 Every elementary matrix is invertible,
and its inverse is also an elementary matrix.

Proof Let E be an elementary matrix. Then E has an associated
elementary row operation. This associated elementary row operation has
an inverse operation, and the elementary matrix of the same size as E
associated with this inverse operation is the inverse of E, by
Theorem 4.9.

Exercise 4.8 Use the method suggested by the proof of the above

corollary to find the inverse of the elementary matrix





2 0 0
0 1 0
0 0 1



.

4.5 Proof of the Invertibility Theorem
We are now ready to prove the Invertibility Theorem, using elementary
matrices and their properties. We first remind you of the theorem.

Theorem 4.5 Invertibility Theorem

(a) A square matrix is invertible if and only if its row-reduced form
is I.

(b) Any sequence of elementary row operations that transforms a
matrix A to I also transforms I to A−1.
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Proof Let A be an n× n matrix, and let the row-reduced form of A
be U. Let E1,E2, . . . ,Ek be the n× n elementary matrices associated with
a sequence of k elementary row operations that transforms A to U, in the
same order. Then, by the corollary to Theorem 4.8,

U = BA,

where B = EkEk−1 · · ·E2E1. Now B is invertible—since every elementary
matrix is invertible (by the corollary to Theorem 4.9), and a product of
invertible matrices is invertible (by Theorem 4.3).

(a) First we show that if A is invertible, then U = I. This is the ‘only if’ part of the
proof.

Suppose that A is invertible. Then U is a product of invertible
matrices (B and A); hence U is invertible.

Therefore U does not have a zero row (since, by Theorem 4.2, a square
matrix with a zero row is not invertible), so it has a leading 1 in each
of its n rows. Each of these n leading 1s lies in a different column; so,
since U has only n columns, each column must contain a leading 1.
Thus the leading 1 in the top row must lie in the left-most position,
and the leading 1 in each subsequent row must lie just one position to
the right of the leading 1 in the row immediately above. All the entries
above and below these leading 1s are 0s. Hence U = I.

Next, we show that if U = I, then A is invertible. This is the ‘if’ part of the proof.

Suppose that U = I. Then

I = BA. (4.1)

Multiplying both sides of equation (4.1) on the left by B−1 yields

B−1I = B−1BA,

that is,

B−1 = A.

Multiplying both sides of this equation on the right by B yields

B−1B = AB,

that is,

I = AB. (4.2)

Equations (4.1) and (4.2) together tell us that A is invertible, and that
A−1 = B.

(b) It follows from the proof of part (a) that if U = I, then A is invertible
and A−1 = B; that is, A−1 = EkEk−1 · · ·E2E1.

This equation can be written as

A−1 = EkEk−1 · · ·E2E1I,

which tells us that A−1 is the matrix produced by performing on I the
sequence of row operations associated with E1,E2, . . . ,Ek.

Further exercises
Exercise 4.9 Let A be an invertible matrix. Prove that if k is a non-zero
number, then kA is invertible, with (kA)−1 = (1/k)A−1.
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Exercise 4.10 Use Strategy 4.1 to determine whether or not each of the
following matrices is invertible, and find the inverse if it exists.

(a)

(

2 3
3 5

)

(b)

(

−2 4
3 −6

)

(c)





1 2 4
−2 −1 1
1 1 1





(d)





1 4 1
1 6 3
2 3 0



 (e)









1 0 0 3
0 1 2 0
0 −1 −1 0

−1 0 0 −2









Exercise 4.11 Use your answers to Exercise 4.10(a) and (d) to solve the
following systems of linear equations.

(a)

{

2x + 3y = 3
3x + 5y = 4

(b)







x1 + 4x2 + x3 = 4
x1 + 6x2 + 3x3 = 6

2x1 + 3x2 = 9

Exercise 4.12

(a) Show that a square matrix is invertible if and only if it can be
expressed as a product of elementary matrices.

Hint: Use ideas from the proof of the Invertibility Theorem.

(b) Express the matrix in Exercise 4.10(a) as a product of elementary
matrices.

5 Determinants

After working through this section, you should be able to:

(a) understand the term determinant of a square matrix;

(b) evaluate the determinant of a 2× 2 or 3× 3 matrix;

(c) expand along the top row to calculate the determinant of a matrix;

(d) determine whether or not a given 2× 2 matrix is invertible, and if
it is, find its inverse;

(e) use determinants to check whether or not a matrix is invertible.

5.1 Systems of linear equations and
determinants
Determinants arise naturally in the study of systems of simultaneous linear
equations. If a unique solution exists for a system of n linear equations in
n unknowns, then this solution can be found by evaluating determinants, a
method known as Cramer’s Rule.

Determinant of a 2×2 matrix

We start by looking at a system of two equations in two unknowns:
The coefficients of the system
are real numbers.

{

a1x + b1y = c1
a2x + b2y = c2

or

(

a1 b1
a2 b2

)(

x
y

)

=

(

c1
c2

)

.
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Using Gauss–Jordan elimination, we find the solution to be
You can check this solution by
substitution.x =

c1b2 − b1c2
a1b2 − b1a2

, y =
a1c2 − c1a2
a1b2 − b1a2

, (5.1)

provided that a1b2 − b1a2 is not zero. We call the expression a1b2 − b1a2
the determinant of the coefficient matrix. Each term in this expression
contains the letters a and b, and the subscripts 1 and 2, in some order.

The definition we give for the determinant of a 2× 2 matrix is in a form
that is easy to remember. You might find it helpful to

remember the following scheme:

Definition The determinant of a 2× 2 matrix

A =

(

a b
c d

)

is

detA =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc.

We use vertical bars ‘| . . . |’ around the matrix entries, in place of the Some texts use the notation |A|
for detA.round brackets, to denote the determinant.

For example, let A =

(

1 2
3 4

)

; then

detA =

∣

∣

∣

∣

1 2
3 4

∣

∣

∣

∣

= (1× 4)− (2× 3) = −2.

Exercise 5.1 Evaluate the determinant of each of the following
matrices.

(a)

(

5 1
4 2

)

(b)

(

10 −4
−5 2

)

(c)

(

7 3
17 2

)

Notice that the numerators of the solutions for x and y in (5.1) can also be We could write the solutions as

x =

∣

∣

∣

∣

c1 b1
c2 b2

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

, y =

∣

∣

∣

∣

a1 c1
a2 c2

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1
a2 b2

∣

∣

∣

∣

.

written as determinants:

c1b2 − b1c2 =

∣

∣

∣

∣

c1 b1
c2 b2

∣

∣

∣

∣

and a1c2 − c1a2 =

∣

∣

∣

∣

a1 c1
a2 c2

∣

∣

∣

∣

.

A 2× 2 matrix is invertible if and only if its determinant is non-zero. For

We shall prove this statement in
Subsection 5.4.

an invertible 2× 2 matrix, there is a quick way to find the inverse using
the determinant.

Strategy 5.1 To find the inverse of a 2× 2 matrix

A =

(

a b
c d

)

with detA = ad− bc 6= 0.

1. Interchange the diagonal entries.

2. Multiply the non-diagonal entries by −1.

3. Divide by the determinant,

giving

A−1 =
1

ad− bc

(

d −b
−c a

)

.
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Exercise 5.2 Determine whether or not each of the following matrices
is invertible, and find the inverse if it exists.

(a)

(

4 2
5 6

)

(b)

(

1 1
−1 1

)

(c)

(

1 −1
−1 1

)

Remark There is also a geometric interpretation of the determinant. For
example, the parallelogram with vertices (0, 0), (2, 1), (1, 3) and (3, 4) has
area 5. Now, since one of the vertices is at the origin, the position vectors
(2, 1) and (1, 3) determine the parallelogram, and

∣

∣

∣

∣

2 1
1 3

∣

∣

∣

∣

= (2× 3)− (1× 1) = 5.

In general, let (a, b) and (c, d) be two position vectors. Then the
determinant

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

gives the area of the parallelogram with adjacent sides given by these
position vectors.

Determinant of a 3×3 matrix

We now consider the following system of three linear equations in three
unknowns:







a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

or





a1 b1 c1
a2 b2 c2
a3 b3 c3









x
y
z



 =





d1
d2
d3



 .

Again we can find the solution, if one exists, using Gauss–Jordan
elimination. The expressions for x, y and z all have the same denominator: You are not expected to find

these expressions; they serve
only to motivate the definition
of the determinant.

a1b2c3 − a1c2b3 − b1a2c3 + b1c2a3 + c1a2b3 − c1b2a3.

This is the determinant of the 3× 3 coefficient matrix. Notice that each
term in the expression contains the letters a, b and c, and the subscripts 1,
2 and 3, in some order.

The definition we give for the determinant of a 3× 3 matrix is expressed in
terms of three 2× 2 determinants. This is the easiest way to remember the
definition.

Definition The determinant of a 3× 3 matrix

A =





a1 b1 c1
a2 b2 c2
a3 b3 c3





is

detA = a1

∣

∣

∣

∣

b2 c2
b3 c3

∣

∣

∣

∣

− b1

∣

∣

∣

∣

a2 c2
a3 c3

∣

∣

∣

∣

+ c1

∣

∣

∣

∣

a2 b2
a3 b3

∣

∣

∣

∣

. Notice the minus sign before the
second term on the right-hand
side.

Example 5.1 Evaluate the determinant of each of the following 3× 3
matrices.

(a)





1 2 1
3 1 −1

−2 1 1



 (b)





4 0 1
0 −1 2
2 1 3




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Solution
∣

∣

∣

∣

∣

∣

1 2 1
3 1 −1

−2 1 1

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

1 −1
1 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

3 −1
−2 1

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

3 1
−2 1

∣

∣

∣

∣

(a)

= 1 ((1× 1)− (−1× 1)) − 2 ((3× 1) − (−1×−2))

+ 1 ((3× 1)− (1×−2))

= 5
∣

∣

∣

∣

∣

∣

4 0 1
0 −1 2
2 1 3

∣

∣

∣

∣

∣

∣

= 4

∣

∣

∣

∣

−1 2
1 3

∣

∣

∣

∣

− 0

∣

∣

∣

∣

0 2
2 3

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

0 −1
2 1

∣

∣

∣

∣

(b)

= 4 ((−1× 3)− (2× 1))− 0 + 1 ((0× 1)− (−1× 2))

= −18

Exercise 5.3 Evaluate the determinant of each of the following 3× 3
matrices.

(a)





3 2 1
4 0 −1
0 −1 1



 (b)





2 10 0
3 −1 2
5 9 2





Determinants of larger matrices (4× 4, and so on) will be defined similarly.
Note that determinants are defined only for square matrices.

5.2 Evaluating determinants
We have seen that although the determinant of a 2× 2 matrix is simple to
evaluate, the determinant of a 3× 3 matrix is quite complicated.
Determinants of larger matrices become increasingly more complicated as You will mainly be finding

determinants of matrices of size
2× 2 and 3× 3.

the size of the matrix increases. In this subsection we develop a strategy
for evaluating determinants by expressing them eventually in terms of
determinants of 2× 2 matrices, as with the definition of the determinant of
a 3× 3 matrix above.

Cofactors

We can express the determinant of a 3× 3 matrix A = (aij) conveniently as

detA = a11A11 + a12A12 + a13A13.

The elements A11, A12 and A13 in this expression are called the cofactors

of the elements a11, a12 and a13, respectively. We can see from the
definition of the determinant that these cofactors are themselves
determinants with a + or − sign attached. A1j is + or − the determinant
of a submatrix of A formed by covering up the top row and one column A submatrix is a matrix formed

from another matrix with some
of the rows and/or columns
removed.

of A—namely, the row and column containing the element a1j . Thus

Notice the factor (−1) in A12.
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and

In fact, there is a cofactor associated with each entry of any square matrix.

Definition Let A = (aij) be an n× n matrix. The cofactor Aij

associated with the entry aij is

Aij = (−1)i+j detAij, Remember the minus sign
attached to alternate terms.

where Aij is the (n− 1)× (n− 1) submatrix of A resulting when the
ith row and jth column (the row and column containing the
entry aij ) are covered up.

For example, the cofactor A23 of the 4× 4 matrix A = (aij) is

A23 = (−1)

∣

∣

∣

∣

∣

∣

a11 a12 a14
a31 a32 a34
a41 a42 a44

∣

∣

∣

∣

∣

∣

.

Exercise 5.4 Write down expressions for the cofactors A13 and A45 of Do not attempt to evaluate
these expressions!the matrix

A =













1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4













.

Determinant of an n×n matrix

You have seen that we can use cofactors to evaluate the determinant of a
3× 3 matrix. Determinants of larger matrices can be evaluated in a similar
way.

Definition The determinant of an n× n matrix A = (aij) is

detA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a11A11 + a12A12 + · · · + a1nA1n.

The determinant of a matrix is a complicated string of terms. The
definition above collects the terms into manageable expressions using the There are alternative expansions

for the determinant of a square
matrix that collect the terms in
different ways—however, the
resulting value for the
determinant is always the same.

cofactors of the entries of the top row; when we write the determinant in
this way, we say that we are expanding along the top row.
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We are now in a position to evaluate the determinant of any square matrix
using the following strategy.

Strategy 5.2 To evaluate the determinant of an n× n matrix.

1. Expand along the top row to express the n× n determinant in
terms of n determinants of size (n− 1)× (n− 1).

2. Expand along the top row of each of the resulting determinants.

3. Repeatedly apply step 2 until the only determinants in the
expression are of size 2× 2.

4. Evaluate the final expression.

We illustrate Strategy 5.2 with an example.

Example 5.2 Evaluate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

2 0 3 5
0 4 −1 0
1 0 0 1
0 2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

.

Solution We apply Strategy 5.2.
∣

∣

∣

∣

∣

∣

∣

∣

2 0 3 5
0 4 −1 0
1 0 0 1
0 2 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

4 −1 0
0 0 1
2 1 1

∣

∣

∣

∣

∣

∣

− 0 + 3

∣

∣

∣

∣

∣

∣

0 4 0
1 0 1
0 2 1

∣

∣

∣

∣

∣

∣

− 5

∣

∣

∣

∣

∣

∣

0 4 −1
1 0 0
0 2 1

∣

∣

∣

∣

∣

∣

= 2

(

4

∣

∣

∣

∣

0 1
1 1

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

0 1
2 1

∣

∣

∣

∣

+ 0

)

+ 3

(

0− 4

∣

∣

∣

∣

1 1
0 1

∣

∣

∣

∣

+ 0

)

− 5

(

0− 4

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

1 0
0 2

∣

∣

∣

∣

)

= 2(−4− 2) + 3(−4)− 5(−4− 2)

= − 12− 12 + 30

= 6.

Exercise 5.5 Evaluate the determinant
∣

∣

∣

∣

∣

∣

∣

∣

0 2 1 −1
−3 0 0 −1
1 0 1 0
0 4 2 0

∣

∣

∣

∣

∣

∣

∣

∣

.
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5.3 Properties of determinants
Suppose that A and B are two square matrices of the same size. Are there
any relationships between detA, detB, det(A+B) and det(AB)?

Exercise 5.6 Let A =

(

−3 1
2 −4

)

and B =

(

1 1
−2 5

)

.

Evaluate detA, detB, det(A+B), det(AB) and (detA)(detB).
Comment on your results.

You should have found in the solution to Exercise 5.6 that there does not
appear to be a simple relationship for the addition of determinants; that is,
we cannot easily express det(A+B) in terms of detA and detB.
However, the identity

det(AB) = (detA)(detB)

holds for all square matrices A and B of the same size. The simplicity of
this result is somewhat surprising, given the complexity of the definitions
of matrix multiplication and the determinant.

We collect together some results for determinants in the following theorem.

Theorem 5.1 Let A and B be two square matrices of the same size. We omit the proof.

Then the following hold:

(a) det(AB) = (detA)(detB);

(b) det I = 1;

(c) detAT = detA.

Elementary operations and determinants

Earlier, we saw that multiplication on the left by an elementary matrix has Theorem 4.8

the same effect as applying the associated elementary row operation. Here,
we use elementary matrices to prove some useful results about
determinants.

Exercise 5.7 Evaluate the following determinants, where k is any real
number.

(a)

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 0 1

∣

∣

∣

∣

∣

∣

(b)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

(c)

∣

∣

∣

∣

1 0
k 1

∣

∣

∣

∣

The results of Exercise 5.7 are special cases of the following theorem.

Theorem 5.2 Let E be an elementary matrix, and let k be a We omit the proof.

non-zero real number.

(a) If E results from interchanging two rows of I, then detE = −1.

(b) If E results from multiplying a row of I by k, then detE = k.

(c) If E results from adding k times one row of I to another row,
then detE = 1.
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Zeros in a matrix greatly simplify the calculation of the determinant. If an
entire row of the matrix is zero, then all the terms vanish and the
determinant is zero. Other matrices with zero determinant are also easy to
recognise.

Theorem 5.3 Let A be a square matrix. Then detA = 0 if any of
the following hold:

(a) A has an entire row (or column) of zeros;

(b) A has two equal rows (or columns);

(c) A has two proportional rows (or columns). Two rows (or columns) of a
matrix are proportional when
one is a multiple of the other.

Proof We prove the statements for rows. The results for columns follow,
as Theorem 5.1(c) states that taking the transpose does not alter the
determinant of a matrix.

(a) Each term in the expansion of the determinant of A contains one
entry from each row and each column of A. If an entire row of A is
zero, then each term of the expansion contains at least one zero. The
determinant of A is therefore equal to zero.

(b) If the ith and jth rows of the matrix A are equal, then A remains the
same if these rows are interchanged. Let E be the elementary matrix
obtained by interchanging the ith and jth rows of I. Then EA = A.
Using Theorems 5.1 and 5.2, we have

detA = det(EA) = (detE)(detA) = −1× detA.

This implies that detA = 0, as required.

(c) Suppose that the ith row of A is equal to k times the jth row. Let E
be the elementary matrix obtained from I by multiplying the ith row
by 1/k. Then the ith and jth rows of the matrix EA are equal. The
determinant of this matrix EA is zero, by (b) above. Using
Theorem 5.1, we have

(detE)(detA) = det(EA) = 0.

Now detE = 1/k, by Theorem 5.2. This implies that detA = 0, as
required.

Exercise 5.8 Evaluate the determinant of the matrix

A =





1 −2 4
0 13 11

−2 4 −8



 .

The evaluation of the determinant can be significantly simplified if a row of
the matrix contains some zeros, as the following example illustrates.

Example 5.3 Evaluate the determinant of the matrix

A =





1 4 2
0 7 0
3 1 5



 .
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Solution First notice that the second row of A has only one non-zero
entry. We interchange the top two rows of A, and apply Theorems 5.1
and 5.2, giving

detA =

∣

∣

∣

∣

∣

∣

1 4 2
0 7 0
3 1 5

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

0 7 0
1 4 2
3 1 5

∣

∣

∣

∣

∣

∣

.

We use Strategy 5.2 to evaluate this determinant: The calculation has been
simplified by interchanging rows,
as there is only one non-zero
term in this expansion.

detA = (−1)

(

0− 7

∣

∣

∣

∣

1 2
3 5

∣

∣

∣

∣

+ 0

)

= 7((1 × 5)− (2× 3))

= −7.

Exercise 5.9 Evaluate the determinant of the matrix

A =









10 3 −4 2
0 2 0 1
0 6 0 0

−1 2 1 0









.

5.4 Determinants and inverses of matrices

Earlier, we stated that the inverse of a 2× 2 matrix A exists if and only if
detA 6= 0. This extends to all square matrices.

Theorem 5.4 A square matrix A is invertible if and only if
detA 6= 0.

Proof Let A be an n× n matrix.

We begin by assuming that A is invertible.

Since AA−1 = In, it follows from Theorem 5.1 that

(detA)(detA−1) = det(AA−1) = det In = 1.

Therefore neither detA nor detA−1 is 0.

We now assume that detA 6= 0. Let E1, . . . ,Ek be elementary matrices
such that Ek · · ·E2E1A = U is a matrix in row-reduced form. Using
Theorems 5.1 and 5.2 and the assumption that detA 6= 0, we have

detU = (detEk) · · · (detE2)(detE1)(detA) 6= 0.

Now this implies that U has no zero row, and therefore has a leading 1 in
each of its n rows. Hence U = In, and so, by the Invertibility Theorem,
the matrix A is invertible, with

A−1 = Ek · · ·E2E1.

We saw in the proof of Theorem 5.4 above that if A is invertible, then
(detA)(detA−1) = 1. This implies that

detA−1 =
1

detA
.
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Section 5 Determinants

Until now, if we wanted to show that an n× n matrix A is invertible, we
had to produce an n× n matrix B such that

AB = I and BA = I.

The next theorem shows that if one of these conditions holds, then the
other holds automatically. Thus, if we want to show that an n× n matrix
A is invertible, it is enough to produce an n× n matrix B satisfying either

condition.

Theorem 5.5 Let A and B be square matrices of the same size.
Then AB = I if and only if BA = I.

Proof We first assume that AB = I. Then by Theorem 5.1,

(detA)(detB) = det(AB) = det I = 1.

This implies that

detA 6= 0 and detB 6= 0,

so, by Theorem 5.4, A and B are both invertible.

Now,

A−1 = A−1I,

and we can write I as AB, so

A−1 = A−1(AB) = (A−1A)B = IB = B,

and therefore

BA = A−1A = I,

as required.

The same argument, with the roles of A and B interchanged, proves the
converse.

We summarise the results on the invertibility of a matrix A as follows.

Theorem 5.6 Summary Theorem

Let A be an n× n matrix. Then the following statements are This collects together
Theorems 4.5, 4.7 and 5.4.equivalent.

(a) A is invertible.

(b) detA 6= 0.

(c) The row-reduced form of A is In.

(d) The system Ax = b has precisely one solution for each n× 1
matrix b.

(e) The system Ax = 0 has only the trivial solution.

To conclude this section, we collect together some of the most important
properties of matrices that we have met in this unit.
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Summary of properties of matrices

Let A and B be two square matrices of the same size. Then

det(AB) = (detA)(detB),

(AB)T = BTAT ,

detAT = detA.

If A and B are invertible, then

(AB)−1 = B−1A−1,

detA−1 =
1

detA
.

Further exercises

Exercise 5.10 Let A =

(

2 0
4 1

)

and B =

(

1 −1
−2 5

)

. Evaluate the

following.

(a) detA (b) detB (c) det(A+B)

(d) det(AB) (e) det(BA) (f) det(A2)

(g) detAT (h) det(AB)T (i) detA−1

Exercise 5.11 Determine whether or not each of the following matrices is
invertible, and find the inverse where it exists.

(a)

(

2 1
1 2

)

(b)

(

2 −2
−1 1

)

(c)

(

10 21
−4 −7

)

Exercise 5.12 Evaluate the determinant of each of the following matrices.

(a)









5 −31 10 12
−1 4 −2 4
2 10 4 16
3 17 6 21









(b)













7 10 −1 0 2
1 5 0 2 0
0 2 0 0 0
3 −6 3 7 1
3 4 3 0 1













Exercise 5.13 Determine whether or not each of the following matrices is
invertible.

(a)





2 1 4
1 −1 3

−2 1 5



 (b)





1 2 1
2 1 2
2 2 2



 (c)









1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1









Exercise 5.14 Prove that an n× n matrix A is invertible if and only if
AAT is invertible.
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Solutions to the exercises

1.1 (a) This is a linear equation.

(b) This is not a linear equation. The third term
involves the product of x3 and x4.

(c) This is a linear equation.

(d) This is not a linear equation. For example, the
second term, a2x

2
2, involves a product of unknowns.

1.2 A general homogeneous system of m linear
equations in n unknowns is














a11x1 + · · · + a1nxn = 0,
a21x1 + · · · + a2nxn = 0,
...

...
...

am1x1 + · · · + amnxn = 0.

We substitute the values x1 = 0, x2 = 0, . . . , xn = 0
into the equations of the system:














a110 + · · · + a1n0 = 0,
a210 + · · · + a2n0 = 0,
...

...
...

am10 + · · · + amn0 = 0.

All the equations are satisfied, whatever the values of
the coefficients aij . The solution set therefore
contains the trivial solution

x1 = 0, x2 = 0, . . . , xn = 0.

1.3 We label the equations of the system,

r1
r2

{

x + y = 4,
2x − y = 5,

and apply elementary operations to simplify the
system.

First we eliminate the unknown x from the second
equation:

r2 → r2 − 2r1

{

x + y = 4,
− 3y = −3.

We then simplify this equation,

r2 → −1

3
r2

{

x + y = 4,
y = 1,

before using it to eliminate the unknown y from the
first equation of the system:

r1 → r1 − r2
{

x = 3,
y = 1.

We conclude that there is a unique solution—namely,

x = 3, y = 1.

1.4 We label the equations of the system,

r1
r2
r3







x + y − z = 8,
2x − y + z = 1,
−x + 3y + 2z = −8,

and apply elementary operations to simplify the
system.

First we use the r1 equation to eliminate the
unknown x from the other equations:

r2 → r2 − 2r1
r3 → r3 + r1







x + y − z = 8,
− 3y + 3z = −15,

4y + z = 0.

We now simplify r2,

r2 → −1

3
r2







x + y − z = 8,
y − z = 5,

4y + z = 0,

and use it to eliminate the y-terms from r1 and r3:

r1 → r1 − r2

r3 → r3 − 4r2







x = 3,
y − z = 5,

5z = −20.

We now simplify r3,

r3 → 1

5
r3







x = 3,
y − z = 5,

z = −4,

and use it to eliminate the z-term from r2:

r2 → r2 + r3







x = 3,
y = 1,

z = −4.

We conclude that there is a unique solution—namely,

x = 3, y = 1, z = −4.

1.5 We label the equations of the system, and apply
elementary operations to simplify the system.

r1
r2
r3







x + 3y − z = 4
−x + 2y − 4z = 6
x + 2y = 2

r2 → r2 + r1
r3 → r3 − r1







x + 3y − z = 4
5y − 5z = 10

− y + z = −2

r2 → 1

5
r2







x + 3y − z = 4
y − z = 2

− y + z = −2

r1 → r1 − 3r2

r3 → r3 + r2







x + 2z = −2
y − z = 2

0 = 0

The r3 equation (0 = 0) gives no constraints on x, y
and z. We cannot simplify the system further, and
conclude that there are infinitely many solutions. As
both remaining equations involve a z-term, we set z
equal to the real parameter k, and write the general
solution as

x = −2− 2k, y = 2 + k, z = k, k ∈ R.
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1.6 We label the equations of the system, and apply
elementary operations to simplify the system.

r1
r2
r3







x + y + z = 6
−x + y − 3z = −2
2x + y + 3z = 6

r2 → r2 + r1
r3 → r3 − 2r1







x + y + z = 6
2y − 2z = 4

− y + z = −6

r2 → 1

2
r2







x + y + z = 6
y − z = 2

− y + z = −6

r1 → r1 − r2

r3 → r3 + r2







x + 2z = 4
y − z = 2

0 = −4

The r3 equation is 0 = −4, so we conclude that the
solution set is empty—the system is inconsistent.

(We have chosen to use elementary operations to
solve the systems of equations in the further exercises
on Section 1. If you have been using the further
exercises for revision, you may have preferred to use
the methods of Section 2. Of course, you should
obtain the same answers by either method.)

1.7 (a) We label the equations, and apply
elementary operations to simplify the system.

r1
r2
r3







x + 4y = −7
2x − y = 4
−x + 2y = −5

r2 → r2 − 2r1
r3 → r3 + r1







x + 4y = −7
− 9y = 18

6y = −12

r2 → −1

9
r2







x + 4y = −7
y = −2

6y = −12

r1 → r1 − 4r2

r3 → r3 − 6r2







x = 1
y = −2
0 = 0

We conclude that there is a unique solution—namely,
x = 1, y = −2.

(b) We label the equations, and apply elementary
operations to simplify the system.

r1
r2

{

4x − 6y = −2
−6x + 9y = −3

r1 → 1

4
r1

{

x − 3

2
y = −1

2

−6x + 9y = −3

r2 → r2 +6r1

{

x − 3

2
y = −1

2

0 = −6

The r2 equation is 0 = −6, so we conclude that the
solution set is empty—the system is inconsistent.

(c) We label the equations, and apply elementary
operations to simplify the system.

r1
r2
r3







p + q + r = 5
p + 2q + 3r = 11

3p + q + 4r = 13

r2 → r2 − r1
r3 → r3 − 3r1







p + q + r = 5
q + 2r = 6

− 2q + r = −2

r1 → r1 − r2

r3 → r3 +2r2







p − r = −1
q + 2r = 6

5r = 10

r3 → 1

5
r3







p − r = −1
q + 2r = 6

r = 2

r1 → r1 + r3
r2 → r2 − 2r3







p = 1
q = 2

r = 2

We conclude that there is a unique solution—namely,
p = 1, q = 2, r = 2.

1.8 The points of intersection of the three planes
correspond to the solutions of the following
homogeneous system of linear equations in the three
unknowns x, y and z:






x + y − z = 0,
y − 2z = 0,

3x − y + 5z = 0.

We label the equations, and apply elementary
operations to simplify the system.

r1
r2
r3







x + y − z = 0
y − 2z = 0

3x − y + 5z = 0

r3 → r3 − 3r1







x + y − z = 0
y − 2z = 0

− 4y + 8z = 0

r1 → r1 − r2

r3 → r3 +4r2







x + z = 0
y − 2z = 0

0 = 0

The r3 equation (0 = 0) gives no constraints on x, y
and z. We cannot simplify the system further, and
conclude that there are infinitely many solutions.

As both equations involve a z-term, we set z equal to
the real parameter k, giving

x = −k, y = 2k, z = k, k ∈ R.

The three planes intersect in a line.
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1.9 We label the equations, and apply elementary
operations to simplify the system.

r1
r2
r3
r4















a − b − 2c + d = 3
b + c + d = 3

a − b − c + 2d = 7
b + c + 2d = 7

r3 → r3 − r1















a − b − 2c + d = 3
b + c + d = 3

c + d = 4
b + c + 2d = 7

r1 → r1 + r2

r4 → r4 − r2















a − c + 2d = 6
b + c + d = 3

c + d = 4
d = 4

r1 → r1 + r3
r2 → r2 − r3















a + 3d = 10
b = −1

c + d = 4
d = 4

r1 → r1 − 3r4

r3 → r3 − r4















a = −2
b = −1

c = 0
d = 4

We conclude that there is a unique solution—namely,
a = −2, b = −1, c = 0, d = 4.

2.1 (a) The augmented matrix of the system is




4 −2 0 −7
0 1 3 0
0 −3 1 3



 .

(b) The corresponding system is






2x + 3y + 7w = 1,
y − 7z = −1,

x + 3z − w = 2.

2.2 (a) Not row-reduced; it has neither property 1
nor property 2.

(b) Not row-reduced; it does not have property 3.

(c) Row-reduced.

(d) Row-reduced.

(e) Not row-reduced; it does not have property 4.

2.3 (a) The augmented matrix corresponds to the
system
{

x1 = 1

3
,

x2 = 2

3
.

The solution is x1 = 1

3
, x2 =

2

3
.

(b) The augmented matrix corresponds to the
system






x1 + 6x3 = 0,
x2 + 7x3 = 0,

0 = 1.

The third equation cannot be satisfied, so there are
no solutions.

(c) The augmented matrix corresponds to the
system






x1 + 3x2 + 2x4 = −7,
x3 − 3x4 = 8,

x5 = 11,

that is,






x1 = −7 − 3x2 − 2x4,
x3 = 8 + 3x4,
x5 = 11.

Setting x2 = k and x4 = l (k, l ∈ R), we obtain the
general solution

x1 = −7− 3k − 2l,

x2 = k,

x3 = 8 + 3l,

x4 = l,

x5 = 11.

(d) The augmented matrix corresponds to the
system






x1 + x4 = 0,
x2 + 4x4 = 3,

x3 = 0,

that is,






x1 = − x4,
x2 = 3 − 4x4,
x3 = 0.

Setting x4 = k (k ∈ R), we obtain the general
solution

x1 = −k,

x2 = 3− 4k,

x3 = 0,

x4 = k.

2.4 (a) We follow Strategy 2.1 in Frame 10.

If you followed Strategy 2.1, then your sequence of
row operations should be the same as ours.

r1
r2
r3
r4









1 5 1 4 5 −1
1 5 3 12 11 3
3 15 −1 −4 3 −6

−2 −10 1 2 −7 6









r2 → r2 − r1
r3 → r3 − 3r1
r4 → r4 +2r1









1 5 1 4 5 −1
0 0 2 8 6 4
0 0 −4 −16 −12 −3
0 0 3 10 3 4









r2 → 1

2
r2









1 5 1 4 5 −1
0 0 1 4 3 2
0 0 −4 −16 −12 −3
0 0 3 10 3 4









r1 → r1 − r2

r3 → r3 +4r2
r4 → r4 − 3r2









1 5 0 0 2 −3
0 0 1 4 3 2
0 0 0 0 0 5
0 0 0 −2 −6 −2








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r3 ↔ r4









1 5 0 0 2 −3
0 0 1 4 3 2
0 0 0 −2 −6 −2
0 0 0 0 0 5









r3 → −1

2
r3









1 5 0 0 2 −3
0 0 1 4 3 2
0 0 0 1 3 1
0 0 0 0 0 5









r2 → r2 − 4r3









1 5 0 0 2 −3
0 0 1 0 −9 −2
0 0 0 1 3 1
0 0 0 0 0 5









r4 → 1

5
r4









1 5 0 0 2 −3
0 0 1 0 −9 −2
0 0 0 1 3 1
0 0 0 0 0 1









r1 → r1 +3r4
r2 → r2 +2r4
r3 → r3 − r4









1 5 0 0 2 0
0 0 1 0 −9 0
0 0 0 1 3 0
0 0 0 0 0 1









This is the row-reduced form of the matrix.

(b) We follow Strategy 2.1 in Frame 10.

The sequence of row operations that we have used to
reduce this matrix to row-reduced form might be
different from the sequence that you used in following
Strategy 2.1, since in the first step shown below
(which corresponds to step 2 of the strategy) we
chose to interchange row 1 with row 5, while you
might have chosen to interchange row 1 with another
row. However, your final row-reduced matrix should
be the same as ours, since, by Theorem 2.1 in
Frame 16, the row-reduced form of a matrix is
unique.

r1
r2
r3
r4
r5













0 −8 8 −14
−1 0 −4 −6
−1 8 −12 8
2 8 0 24
1 4 0 14













r1 ↔ r5












1 4 0 14
−1 0 −4 −6
−1 8 −12 8
2 8 0 24
0 −8 8 −14













r2 → r2 + r1
r3 → r3 + r1
r4 → r4 − 2r1













1 4 0 14
0 4 −4 8
0 12 −12 22
0 0 0 −4
0 −8 8 −14













r2 → 1

4
r2













1 4 0 14
0 1 −1 2
0 12 −12 22
0 0 0 −4
0 −8 8 −14













r1 → r1 − 4r2

r3 → r3 − 12r2

r5 → r5 + 8r2













1 0 4 6
0 1 −1 2
0 0 0 −2
0 0 0 −4
0 0 0 2













r3 → −1

2
r3













1 0 4 6
0 1 −1 2
0 0 0 1
0 0 0 −4
0 0 0 2













r1 → r1 − 6r3
r2 → r2 − 2r3

r4 → r4 + 4r3
r5 → r5 − 2r3













1 0 4 0
0 1 −1 0
0 0 0 1
0 0 0 0
0 0 0 0













This is the row-reduced form of the matrix.

2.5 In each of the following, the sequence of row
operations that you used to reduce the matrix may
differ from the sequence that we use, but you should
obtain the same final answer.

(a) We follow Strategy 2.2 in Frame 17, and
row-reduce the augmented matrix.

r1
r2
r3





3 5 −12 4
1 1 0 2
2 3 −4 5





r1 ↔ r2




1 1 0 2
3 5 −12 4
2 3 −4 5





(We have chosen to perform the row operation
r1 ↔ r2 instead of r1 → 1

3
r1, to avoid creating

awkward fractions.)

r2 → r2 − 3r1
r3 → r3 − 2r1





1 1 0 2
0 2 −12 −2
0 1 −4 1





r2 → 1

2
r2





1 1 0 2
0 1 −6 −1
0 1 −4 1





r1 → r1 − r2

r3 → r3 − r2





1 0 6 3
0 1 −6 −1
0 0 2 2





r3 → 1

2
r3





1 0 6 3
0 1 −6 −1
0 0 1 1





r1 → r1 − 6r3
r2 → r2 +6r3





1 0 0 −3
0 1 0 5
0 0 1 1





This matrix is in row-reduced form.
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The corresponding system is






x = −3,
y = 5,

z = 1.

Thus the solution is x = −3, y = 5, z = 1.

(b) We follow Strategy 2.2 in Frame 17, and
row-reduce the augmented matrix.

r1
r2
r3





1 −4 −4 3 6 2
2 −5 −6 6 9 3
2 4 0 9 2 0





r2 → r2 − 2r1
r3 → r3 − 2r1





1 −4 −4 3 6 2

0 3 2 0 −3 −1

0 12 8 3 −10 −4





r2 → 1

3
r2





1 −4 −4 3 6 2

0 1 2

3
0 −1 −1

3

0 12 8 3 −10 −4





(Note that here we cannot find a row operation that
could be performed instead of r2 → 1

3
r2 to create a

leading 1 while avoiding fractions. Fractions are
unavoidable.)

r1 → r1 + 4r2

r3 → r3 − 12r2







1 0 −4

3
3 2 2

3

0 1 2

3
0 −1 −1

3

0 0 0 3 2 0







r3 → 1

3
r3







1 0 −4

3
3 2 2

3

0 1 2

3
0 −1 −1

3

0 0 0 1 2

3
0







r1 → r1 − 3r3






1 0 −4

3
0 0 2

3

0 1 2

3
0 −1 −1

3

0 0 0 1 2

3
0







This matrix is in row-reduced form.
The corresponding system is










x1 − 4

3
x3 = 2

3
,

x2 + 2

3
x3 − x5 = −1

3
,

x4 + 2

3
x5 = 0,

that is,










x1 = 2

3
+ 4

3
x3,

x2 = −1

3
− 2

3
x3 + x5,

x4 = − 2

3
x5.

Setting x3 = k and x5 = l (k, l ∈ R), we obtain the
general solution

x1 = 2

3
+ 4

3
k,

x2 = −1

3
− 2

3
k + l,

x3 = k,

x4 = −2

3
l,

x5 = l.

2.6 (a) Not row-reduced; it does not have
property 3.

(b) Row-reduced.

(c) Row-reduced.

(d) Not row-reduced; it does not have property 4.

(e) Row-reduced.

(f) Row-reduced.

2.7 (a) The augmented matrix corresponds to the
system






x1 = 7,
x2 = −6,

x3 = 5.

The solution is x1 = 7, x2 = −6, x3 = 5.

(b) The augmented matrix corresponds to the
system
{

x1 + 1

7
x2 = 1,

x3 = 3,

that is,
{

x1 = 1 − 1

7
x2,

x3 = 3.

Setting x2 = k (k ∈ R), we obtain the general
solution

x1 = 1− 1

7
k,

x2 = k,

x3 = 3.

(c) The augmented matrix corresponds to the
system






x1 + 4x3 = 0,
x2 − 3x3 = 0,

x4 = 0,

that is,






x1 = −4x3,
x2 = 3x3,
x4 = 0.

Setting x3 = k (k ∈ R), we obtain the general
solution

x1 = −4k,

x2 = 3k,

x3 = k,

x4 = 0.

(d) The augmented matrix corresponds to the
system






x1 + 3x2 − 2x4 = 0,
x3 + 2x4 + x5 = 0,

0 = 1.

The third equation cannot be satisfied, so there are
no solutions.
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(e) The augmented matrix corresponds to the
system
{

x1 − 5x3 = 4,
x2 − 7x3 + 3x4 = 12,

that is,
{

x1 = 4 + 5x3,
x2 = 12 + 7x3 − 3x4.

Setting x3 = k and x4 = l (k, l ∈ R), we obtain the
general solution

x1 = 4 + 5k,

x2 = 12 + 7k − 3l,

x3 = k,

x4 = l.

2.8 We follow Strategy 2.2 in Frame 17.

(a) We row-reduce the augmented matrix.

r1
r2
r3
r4









3 −11 −3 3
2 −6 −2 1
5 −17 −6 2
4 −8 0 7









r1 → r1 − r2








1 −5 −1 2
2 −6 −2 1
5 −17 −6 2
4 −8 0 7









r2 → r2 − 2r1
r3 → r3 − 5r1
r4 → r4 − 4r1









1 −5 −1 2
0 4 0 −3
0 8 −1 −8
0 12 4 −1









r2 → 1

4
r2











1 −5 −1 2

0 1 0 −3

4

0 8 −1 −8

0 12 4 −1











r1 → r1 + 5r2

r3 → r3 − 8r2

r4 → r4 − 12r2











1 0 −1 −7

4

0 1 0 −3

4

0 0 −1 −2

0 0 4 8











r3 → −r3











1 0 −1 −7

4

0 1 0 −3

4

0 0 1 2

0 0 4 8











r1 → r1 + r3

r4 → r4 − 4r3











1 0 0 1

4

0 1 0 −3

4

0 0 1 2

0 0 0 0











This matrix is in row-reduced form.

The corresponding system is










x = 1

4
,

y = −3

4
,

z = 2.

Thus the solution is x = 1

4
, y = −3

4
, z = 2.

(b) We row-reduce the augmented matrix.

r1
r2
r3
r4









1 0 −4 −2 −1
1 2 −2 4 6
2 4 −3 9 9
2 1 −5 1 −4









r2 → r2 − r1
r3 → r3 − 2r1
r4 → r4 − 2r1









1 0 −4 −2 −1
0 2 2 6 7
0 4 5 13 11
0 1 3 5 −2









r2 → r2 − r4









1 0 −4 −2 −1
0 1 −1 1 9
0 4 5 13 11
0 1 3 5 −2









r3 → r3 − 4r2
r4 → r4 − r2









1 0 −4 −2 −1
0 1 −1 1 9
0 0 9 9 −25
0 0 4 4 −11









r3 → r3 − 2r4









1 0 −4 −2 −1
0 1 −1 1 9
0 0 1 1 −3
0 0 4 4 −11









r1 → r1 +4r3
r2 → r2 + r3

r4 → r4 − 4r3









1 0 0 2 −13
0 1 0 2 6
0 0 1 1 −3
0 0 0 0 1









This matrix is in row-reduced form.
The corresponding system is














a + 2d = −13,
b + 2d = 6,

c + d = −3,
0 = 1.

The fourth equation cannot be satisfied, so there are
no solutions.

The last matrix in the above row-reduction
corresponds to a system containing the equation
0 = 1. We could have concluded that the given
system has no solutions at this point.
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(c) We row-reduce the augmented matrix.

r1
r2
r3
r4









2 2 −5 6 10 −2
2 2 −6 6 8 0
2 0 −1 2 7 7
1 2 −5 5 4 −3









r1 ↔ r4








1 2 −5 5 4 −3
2 2 −6 6 8 0
2 0 −1 2 7 7
2 2 −5 6 10 −2









r2 → r2 − 2r1
r3 → r3 − 2r1
r4 → r4 − 2r1









1 2 −5 5 4 −3
0 −2 4 −4 0 6
0 −4 9 −8 −1 13
0 −2 5 −4 2 4









r2 → −1

2
r2









1 2 −5 5 4 −3
0 1 −2 2 0 −3
0 −4 9 −8 −1 13
0 −2 5 −4 2 4









r1 → r1 − 2r2

r3 → r3 +4r2
r4 → r4 +2r2









1 0 −1 1 4 3
0 1 −2 2 0 −3
0 0 1 0 −1 1
0 0 1 0 2 −2









r1 → r1 + r3
r2 → r2 +2r3

r4 → r4 − r3









1 0 0 1 3 4
0 1 0 2 −2 −1
0 0 1 0 −1 1
0 0 0 0 3 −3









r4 → 1

3
r4









1 0 0 1 3 4
0 1 0 2 −2 −1
0 0 1 0 −1 1
0 0 0 0 1 −1









r1 → r1 − 3r4
r2 → r2 +2r4
r3 → r3 + r4









1 0 0 1 0 7
0 1 0 2 0 −3
0 0 1 0 0 0
0 0 0 0 1 −1









This matrix is in row-reduced form.
The corresponding system is














x1 + x4 = 7,
x2 + 2x4 = −3,

x3 = 0,
x5 = −1,

that is,














x1 = 7 − x4,
x2 = −3 − 2x4,
x3 = 0,
x5 = −1.

Setting x4 = k (k ∈ R), we obtain the general
solution

x1 = 7− k,

x2 = −3− 2k,

x3 = 0,

x4 = k,

x5 = −1.

3.1 (a) This is a 2× 4 matrix, so it is not square.
The (2, 3)-entry is 5.

(b) This is a 3× 3 matrix, so it is square.
The (2, 3)-entry is 0.

(c) This is a 2× 2 matrix, so it is square.
There is no (2, 3)-entry.

3.2 We add corresponding entries.

(a)
(

1 −3
−2 54

)

+

(

2 0
4 1

)

=

(

3 −3
2 55

)

(b)
(

2 0
4 1

)

+

(

1 −3
−2 54

)

=

(

3 −3
2 55

)

(c) This sum cannot be evaluated, since the
matrices are of different sizes.

(d)





0 6 −2
1 8 2
0 3 4



+





1 2 9
1 0 4
3 −4 1





=





1 8 7
2 8 6
3 −1 5





3.3 We add corresponding entries of the three
matrices A = (aij), B = (bij) and C = (cij). The
(i, j)-entry of the matrix A+ (B+C) is
aij + (bij + cij), and that of (A+B) +C is
(aij + bij) + cij. Now, aij , bij and cij are scalars, and
scalar addition is associative, so
aij + (bij + cij) = (aij + bij) + cij. Therefore

A+ (B+C) = (A+B) +C.

3.4 We add corresponding entries of the two
matrices. The (i, j)-entry of the matrix A+ 0 is
aij + 0 = aij. Therefore

A+ 0 = A.

3.5 (a) This difference cannot be evaluated, since
the matrices are of different sizes.

(b)
(

5 8 12
7 2 −1

)

−

(

3 10 2
4 9 21

)

=

(

2 −2 10
3 −7 −22

)

3.6 (a) 4A = 4





5 −3
2 3

−1 0



 =





20 −12
8 12

−4 0





(b) 4B = 4





2 1
−2 −7
3 5



 =





8 4
−8 −28
12 20





4A+ 4B =





20 −12
8 12

−4 0



+





8 4
−8 −28
12 20



(c)

=





28 −8
0 −16
8 20




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A+B =





5 −3
2 3

−1 0



+





2 1
−2 −7
3 5



(d)

=





7 −2
0 −4
2 5



 ,

thus

4(A+B) =





28 −8
0 −16
8 20



 .

3.7 To obtain the (2, 1)-entry of the product AB,
we take the dot product of the second row of A with
the first column of B. The (2, 1)-entry of AB is

(4, 5, 6) . (1, 4, 7) = (4× 1) + (5× 4) + (6× 7)

= 4 + 20 + 42

= 66.

3.8 (a) The product of a 3× 2 matrix with a 2× 1
matrix is a 3× 1 matrix:




2 −1
0 3
1 2





(

3
2

)

=





4
6
7



 .

(b) The product of a 1× 2 matrix with a 2× 2
matrix is a 1× 2 matrix:
(

2 1
)

(

1 6
0 2

)

=
(

2 14
)

.

(c) This product cannot be formed, since the first
matrix has 1 column and the second has 2 rows.

(d) The product of a 2× 1 matrix with a 1× 3
matrix is a 2× 3 matrix:
(

1
2

)

(

3 0 −4
)

=

(

3 0 −4
6 0 −8

)

.

(e) The product of a 2× 3 matrix with a 3× 3
matrix is a 2× 3 matrix:
(

3 1 2
0 5 1

)





−2 0 1
1 3 0
4 1 −1





=

(

3 5 1
9 16 −1

)

.

3.9 The product of a 2× 2 matrix with a 2× 2
matrix is a 2× 2 matrix. The products AB and BA

are therefore both 2× 2 matrices:

AB =

(

1 1
3 2

)(

1 4
2 1

)

=

(

3 5
7 14

)

,

BA =

(

1 4
2 1

)(

1 1
3 2

)

=

(

13 9
5 4

)

.

The products AB and BA are not the same.

Matrix multiplication is therefore not commutative.

3.10 The product of a 2× 2 matrix with a 2× 2
matrix is a 2× 2 matrix.

(a) AB =

(

1 0
0 7

)(

−3 0
0 4

)

=

(

−3 0
0 28

)

(b) BA =

(

−3 0
0 4

)(

1 0
0 7

)

=

(

−3 0
0 28

)

Note that AB and BA are equal in this case.

(c) Matrix multiplication is associative, so

ABC = (AB)C = A(BC)

=

((

1 0
0 7

)(

−3 0
0 4

))(

2 0
0 12

)

=

(

−3 0
0 28

)(

2 0
0 12

)

=

(

−6 0
0 336

)

.

3.11 (a) The matrix





1 1 1
0 2 2
0 0 3



 is

upper-triangular.

(b) The matrix

(

9 0
0 0

)

is diagonal,

upper-triangular and lower-triangular.

(c) The matrix





0 0 1
0 1 2
1 2 3



 is not diagonal,

upper-triangular or lower-triangular.

(d) The matrix

(

1 0
1 0

)

is lower-triangular.

3.12 (a) The transpose of a 3× 2 matrix is a 2× 3
matrix:




1 4
0 2

−6 10





T

=

(

1 0 −6
4 2 10

)

.

(b) The transpose of a 3× 3 matrix is a 3× 3
matrix:




2 1 2
0 3 −5
4 7 0





T

=





2 0 4
1 3 7
2 −5 0



 .

(c) The transpose of a 1× 3 matrix is a 3× 1
matrix:

(

10 4 6
)T

=





10
4
6



 .

(d) The transpose of a 2× 2 matrix is a 2× 2
matrix:
(

1 0
0 2

)T

=

(

1 0
0 2

)

.

In fact, AT = A for all diagonal matrices.

3.13 (a) Here,

AT =

(

1 3 5
2 4 6

)

,

BT =

(

7 9 11
8 10 12

)
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and

A+B =





8 10
12 14
16 18



 .

So

(A+B)T =

(

8 12 16
10 14 18

)

and

AT +BT =

(

1 3 5
2 4 6

)

+

(

7 9 11
8 10 12

)

=

(

8 12 16
10 14 18

)

= (A+B)T .

(b) Here,

CT =

(

1 1
0 1

)

and

AC =





1 2
3 4
5 6





(

1 0
1 1

)

=





3 2
7 4

11 6



 .

So

(AC)T =

(

3 7 11
2 4 6

)

.

The product ATCT cannot be formed, since AT is a
2× 3 matrix and CT is a 2× 2 matrix.
The product CTAT does, however, exist:

CTAT =

(

1 1
0 1

)(

1 3 5
2 4 6

)

=

(

3 7 11
2 4 6

)

= (AC)T .

3.14 (a) A+B =

(

3 3
3 3

)

(b) A−B =

(

−1 9
3 −11

)

(c) B−A = −(A−B) =

(

1 −9
−3 11

)

(d) AB =

(

2 39
6 −37

)

(e) BA =

(

−7 24
21 −28

)

(f) A2 =

(

19 −18
−9 34

)

(g) AT =

(

1 3
6 −4

)

(h) BT =

(

2 0
−3 7

)

(i) ATBT = (BA)T =

(

−7 21
24 −28

)

3.15 (a) FB : 3× 3, E : 3× 3.

The matrix FB+E exists and is 3× 3.

(b) FT : 4× 3, GFT : 2× 3, AD : 2× 4,
ADB : 2× 3.

The matrix GFT −ADB exists and is 2× 3.

(c) BF : 4× 4, FB : 3× 3, (FB)T : 3× 3.

The matrix BF− (FB)T does not exist, since BF

and (FB)T are different sizes.

(d) AD : 2× 4, AD+G : 2× 4, C : 3× 2.

The matrix C(AD+G) exists and is 3× 4.

(e) CA : 3× 1, (CA)T : 1× 3, D : 1× 4.

The matrix (CA)TD does not exist, since (CA)T is
size 1× 3 and D is size 1× 4.

(f) ETBTGTCT = (CGBE)T .

CG : 3× 4, CGB : 3× 3, CGBE : 3× 3,
(CGBE)T : 3× 3.

The matrix ETBTGTCT exists and is 3× 3.

3.16 Let A = (aij) and B = (bij) be matrices of the
same size. Then the (i, j)-entry of k(A+B) is
k(aij + bij).

Now, kA = (kaij) and kB = (kbij), so the (i, j)-entry
of kA+ kB is kaij + kbij = k(aij + bij).

The (i, j)-entries of k(A+B) and kA+ kB are
equal. Thus

k(A+B) = kA+ kB.

3.17 The (i, j)-entry of the product ImA is obtained
by taking the dot product of the ith row of Im with
the jth column of A. Now, the ith row of Im has a 1
in the ith position and 0s elsewhere. Therefore the
dot product will give the ith entry of the jth column
of A, that is, the (i, j)-entry of A. Thus ImA = A.

The (i, j)-entry of the product AIn is obtained by
taking the dot product of the ith row of A with the
jth column of In. Now, the jth column of In has a 1
in the jth position and 0s elsewhere. Therefore the
dot product will give the jth entry of the ith row
of A, that is, the (i, j)-entry of A. Thus AIn = A.

4.1 Suppose, for a contradiction, that there exists a

matrix B =

(

a b
c d

)

such that AB = I, that is,

(

1 −1
−1 1

)(

a b
c d

)

=

(

1 0
0 1

)

.

Multiplying out the matrices on the left-hand side:
(

a− c b− d
−a+ c −b+ d

)

=

(

1 0
0 1

)

.

Looking at the entries in the first column, we must
have a− c = 1 and −a+ c = 0, that is, a− c = 1 and
a− c = 0. This contradiction shows that there exists
no such matrix B. (A similar conclusion arises from
looking at the entries in the second column.)
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4.2 The equation II = I shows that I is invertible,
with inverse I.

4.3 To prove that AB is invertible, with inverse
B−1A−1, we have to show that

(AB)(B−1A−1) = I and (B−1A−1)(AB) = I.

But, by associativity,

(AB)(B−1A−1) = A(BB−1)A−1

= AIA−1

= AA−1 = I,

and, similarly,

(B−1A−1)(AB) = B−1(A−1A)B

= B−1IB

= B−1B = I.

The required result follows.

4.4 (a) We row-reduce (A | I).

r1
r2

(

2 4 1 0
4 1 0 1

)

r1 → 1

2
r1

(

1 2 1

2
0

4 1 0 1

)

r2 → r2 − 4r1

(

1 2 1

2
0

0 −7 −2 1

)

r2 → −1

7
r2

(

1 2 1

2
0

0 1 2

7
−1

7

)

r1 → r1 − 2r2
(

1 0 − 1

14

2

7

0 1 2

7
−1

7

)

The left half has been reduced to I, so the given
matrix is invertible; its inverse is
(

− 1

14

2

7

2

7
−1

7

)

.

(b) We row-reduce (A | I).

r1
r2
r3





1 1 −4 1 0 0
2 1 −6 0 1 0

−3 −1 9 0 0 1





r2 → r2 − 2r1
r3 → r3 +3r1





1 1 −4 1 0 0
0 −1 2 −2 1 0
0 2 −3 3 0 1





r2 → −r2





1 1 −4 1 0 0
0 1 −2 2 −1 0
0 2 −3 3 0 1





r1 → r1 − r2

r3 → r3 − 2r2





1 0 −2 −1 1 0
0 1 −2 2 −1 0
0 0 1 −1 2 1





r1 → r1 +2r3
r2 → r2 +2r3





1 0 0 −3 5 2
0 1 0 0 3 2
0 0 1 −1 2 1





The left half has been reduced to I, so the given
matrix is invertible; its inverse is




−3 5 2
0 3 2

−1 2 1



 .

(c) We row-reduce (A | I).

r1

r2

r3





2 4 6 1 0 0

1 2 4 0 1 0

5 10 5 0 0 1





r1 → 1

2
r1





1 2 3 1

2
0 0

1 2 4 0 1 0

5 10 5 0 0 1





r2 → r2 − r1

r3 → r3 − 5r1







1 2 3 1

2
0 0

0 0 1 −1

2
1 0

0 0 −10 −5

2
0 1







The usual strategy for row-reduction has created a
leading 1 in the second row that does not lie on the
leading diagonal of the left half. Hence the left half
cannot reduce to I, and therefore the given matrix is
not invertible.

4.5 The matrix form of the system is




1 1 2
−1 0 −4
3 2 10









x
y
z



 =





1
2

−1



 .

Multiplying this equation on the left by the inverse of
the coefficient matrix gives the solution




x
y
z



 =





4 −3 −2
−1 2 1
−1 1

2

1

2









1
2

−1



 =





0
2

−1

2



 ;

that is, x = 0, y = 2, z = −1

2
.

4.6

(a)

(

5 0
0 1

) (

1 2 3
3 2 1

)

=

(

5 10 15
3 2 1

)

elementary A matrix
matrix obtained when

associated with r1 → 5r1
r1 → 5r1 is performed on A

(b)









1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1

















1 2
3 4
5 6
7 8









=









1 2
24 28
5 6
7 8









elementary B matrix
matrix obtained when

associated with r2 → r2 + 3r4
r2 → r2 + 3r4 is performed on B
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4.7 (a) The inverse elementary row operation of
r1 → r1 − 2r2 is r1 → r1 + 2r2.

The working below shows the sequence of two row
operations performed on the given matrix.

r1
r2

(

1 2 3
4 5 6

)

r1 → r1 − 2r2
(

−7 −8 −9
4 5 6

)

r1 → r1 +2r2
(

1 2 3
4 5 6

)

(b) The inverse elementary row operation of
r1 ↔ r2 is r1 ↔ r2.

The working below shows the sequence of two row
operations performed on the given matrix.

r1
r2

(

1 2 3
4 5 6

)

r1 ↔ r2
(

4 5 6
1 2 3

)

r1 ↔ r2
(

1 2 3
4 5 6

)

(c) The inverse elementary row operation of
r2 → −3r2 is r2 → −1

3
r2.

The working below shows the sequence of two row
operations performed on the given matrix.

r1
r2

(

1 2 3
4 5 6

)

r2 → −3r2

(

1 2 3
−12 −15 −18

)

r2 → −1

3
r2

(

1 2 3
4 5 6

)

4.8 The given matrix has associated elementary row
operation r1 → 2r1, which has inverse r1 → 1

2
r1. The

inverse of the given matrix is the elementary matrix
associated with this inverse row operation, which is






1

2
0 0

0 1 0

0 0 1






.

4.9 To prove that kA is invertible, with inverse
(1/k)A−1, we have to show that

(kA)

(

1

k
A−1

)

= I and

(

1

k
A−1

)

(kA) = I.

But

(kA)

(

1

k
A−1

)

=

(

k ×
1

k

)

(AA−1) = 1I = I,

and
(

1

k
A−1

)

(kA) =

(

1

k
× k

)

(A−1A) = 1I = I,

as required.

4.10 (a) We row-reduce (A | I).

r1
r2

(

2 3 1 0
3 5 0 1

)

r1 → 1

2
r1

(

1 3

2

1

2
0

3 5 0 1

)

r2 → r2 − 3r1

(

1 3

2

1

2
0

0 1

2
−3

2
1

)

r2 → 2r2

r1 → r1 −
3

2
r2

(

1 0 5 −3
0 1 −3 2

)

The left half has been reduced to I, so the given
matrix is invertible; its inverse is
(

5 −3
−3 2

)

.

(b) We row-reduce (A | I).

r1
r2

(

−2 4 1 0
3 −6 0 1

)

r1 → −1

2
r1

(

1 −2 −1

2
0

3 −6 0 1

)

r2 → r2 − 3r1

(

1 −2 −1

2
0

0 0 3

2
1

)

The left half is now in row-reduced form, but it is not
the identity matrix. Therefore the given matrix is
not invertible.

(c) We row-reduce (A | I).

r1
r2
r3





1 2 4 1 0 0

−2 −1 1 0 1 0

1 1 1 0 0 1





r2 → r2 +2r1
r3 → r3 − r1





1 2 4 1 0 0

0 3 9 2 1 0

0 −1 −3 −1 0 1





r2 → 1

3
r2





1 2 4 1 0 0

0 1 3 2

3

1

3
0

0 −1 −3 −1 0 1





r1 → r1 − 2r2

r3 → r3 + r2







1 0 −2 −1

3
−2

3
0

0 1 3 2

3

1

3
0

0 0 0 −1

3

1

3
1






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The left half is now in row-reduced form, but it is not
the identity matrix. Therefore the given matrix is
not invertible.

(d) We row-reduce (A | I).

r1
r2
r3





1 4 1 1 0 0

1 6 3 0 1 0

2 3 0 0 0 1





r2 → r2 − r1

r3 → r3 − 2r1





1 4 1 1 0 0

0 2 2 −1 1 0

0 −5 −2 −2 0 1





r2 → 1

2
r2





1 4 1 1 0 0

0 1 1 −1

2

1

2
0

0 −5 −2 −2 0 1





r1 → r1 − 4r2

r3 → r3 +5r2







1 0 −3 3 −2 0

0 1 1 −1

2

1

2
0

0 0 3 −9

2

5

2
1







r3 → 1

3
r3







1 0 −3 3 −2 0

0 1 1 −1

2

1

2
0

0 0 1 −3

2

5

6

1

3







r1 → r1 +3r3

r2 → r2 − r3







1 0 0 −3

2

1

2
1

0 1 0 1 −1

3
−1

3

0 0 1 −3

2

5

6

1

3







The left half has been reduced to I, so the given
matrix is invertible; its inverse is






−3

2

1

2
1

1 −1

3
−1

3

−3

2

5

6

1

3






.

(e) We row-reduce (A | I).

r1
r2
r3
r4









1 0 0 3 1 0 0 0
0 1 2 0 0 1 0 0
0 −1 −1 0 0 0 1 0

−1 0 0 −2 0 0 0 1









r4 → r4 + r1









1 0 0 3 1 0 0 0
0 1 2 0 0 1 0 0
0 −1 −1 0 0 0 1 0
0 0 0 1 1 0 0 1









r3 → r3 + r2









1 0 0 3 1 0 0 0
0 1 2 0 0 1 0 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1









r2 → r2 − 2r3









1 0 0 3 1 0 0 0
0 1 0 0 0 −1 −2 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1









r1 → r1 − 3r4








1 0 0 0 −2 0 0 −3
0 1 0 0 0 −1 −2 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1









The left half has been reduced to I, so the given
matrix is invertible; its inverse is








−2 0 0 −3
0 −1 −2 0
0 1 1 0
1 0 0 1









.

4.11 (a) The matrix form of the system is
(

2 3
3 5

)(

x
y

)

=

(

3
4

)

.

Multiplying this equation on the left by the inverse of
the coefficient matrix (from Exercise 4.10(a)) gives
the solution
(

x
y

)

=

(

5 −3
−3 2

)(

3
4

)

=

(

3
−1

)

;

that is, x = 3, y = −1.

(b) The matrix form of the system is




1 4 1
1 6 3
2 3 0









x1

x2

x3



 =





4
6
9



 .

Multiplying this equation on the left by the inverse of
the coefficient matrix (from Exercise 4.10(d)) gives
the solution




x1

x2

x3



 =







−3

2

1

2
1

1 −1

3
−1

3

−3

2

5

6

1

3











4
6
9



 =





6
−1
2



;

that is, x1 = 6, x2 = −1, x3 = 2.

4.12 (a) Let A be an n× n matrix.

Every elementary matrix is invertible (by the
corollary to Theorem 4.9), and the product of
invertible matrices is invertible (by Theorem 4.3). So
if A can be expressed as a product of elementary
matrices, then A is invertible.

For the converse, suppose that A is invertible. Then,
by the Invertibility Theorem, the row-reduced form
of A is I. Let E1,E2, . . . ,Ek be the n× n elementary
matrices associated with a sequence of elementary
row operations that transforms A to I, in the same
order. Then, by the corollary to Theorem 4.8,

I = BA,

where B = EkEk−1 · · ·E2E1. Now B is a product of
invertible matrices, and is therefore itself an
invertible matrix. Multiplying both sides of the
above equation on the left by B−1 yields

B−1I = B−1BA,

that is,

B−1 = A.

So

(EkEk−1 · · ·E2E1)
−1 = A,

which, by Theorem 4.3, is equivalent to

E−1

1 E−1

2 · · ·E−1

k = A.
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By the corollary to Theorem 4.9, the inverse of every
elementary matrix is an elementary matrix, and so
this expresses A as a product of elementary matrices.

(b) Let A be the matrix in Exercise 4.10(a). It is
transformed to I by the sequence of elementary row
operations r1 → 1

2
r1, r2 → r2 − 3r1, r2 → 2r2,

r1 → r1 −
3

2
r2 (see the solution to Exercise 4.10(a)).

Therefore, by the argument in part (a) above,

A =

(

1

2
0

0 1

)
−1(

1 0
−3 1

)

−1(

1 0
0 2

)

−1(

1 −3

2

0 1

)
−1

=

(

2 0
0 1

)(

1 0
3 1

)(

1 0
0 1

2

)(

1 3

2

0 1

)

.

(The inverses of the elementary matrices are easily
found using the argument in the proof of the
corollary to Theorem 4.9.)

Using a different sequence of row operations to
row-reduce A would lead to a different way of
expressing A as a product of elementary matrices—so
your solution may differ from the one above.

5.1 (a)

∣

∣

∣

∣

5 1
4 2

∣

∣

∣

∣

= (5× 2)− (1× 4) = 6

(b)

∣

∣

∣

∣

10 −4
−5 2

∣

∣

∣

∣

= (10× 2)− (−4×−5) = 0

(c)

∣

∣

∣

∣

7 3
17 2

∣

∣

∣

∣

= (7× 2)− (3× 17) = −37

5.2 (a) First we evaluate the determinant of the
matrix:
∣

∣

∣

∣

4 2
5 6

∣

∣

∣

∣

= (4× 6)− (2× 5) = 14.

This determinant is non-zero, so the matrix is
invertible. We use the formula to find the inverse:
(

4 2
5 6

)

−1

= 1

14

(

6 −2
−5 4

)

=

(

3

7
−1

7

− 5

14

2

7

)

.

(b) First we evaluate the determinant of the matrix:
∣

∣

∣

∣

1 1
−1 1

∣

∣

∣

∣

= (1× 1)− (1×−1) = 2.

This determinant is non-zero, so the matrix is
invertible. We use the formula to find the inverse:
(

1 1
−1 1

)

−1

= 1

2

(

1 −1
1 1

)

=

(

1

2
−1

2

1

2

1

2

)

.

(c) First we evaluate the determinant of the matrix:
∣

∣

∣

∣

1 −1
−1 1

∣

∣

∣

∣

= (1× 1)− (−1×−1) = 0.

This determinant is 0, so the matrix is not invertible.

5.3 (a)

∣

∣

∣

∣

∣

∣

3 2 1
4 0 −1
0 −1 1

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

0 −1
−1 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

4 −1
0 1

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

4 0
0 −1

∣

∣

∣

∣

= 3((0× 1)− (−1×−1))− 2((4× 1)− (−1× 0))

+ ((4×−1)− (0× 0))

= −15
∣

∣

∣

∣

∣

∣

2 10 0
3 −1 2
5 9 2

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

−1 2
9 2

∣

∣

∣

∣

− 10

∣

∣

∣

∣

3 2
5 2

∣

∣

∣

∣

+ 0(b)

= 2((−1× 2)− (2× 9))

− 10(3× 2)− (2× 5))

= 0

5.4 The cofactor A13 is (−1)1+3 = (−1)4 = 1 times
the determinant of the matrix obtained by covering
up the top row and third column of A:

A13 =

∣

∣

∣

∣

∣

∣

∣

∣

2 3 5 1
3 4 1 2
4 5 2 3
5 1 3 4

∣

∣

∣

∣

∣

∣

∣

∣

.

The cofactor A45 is (−1)4+5 = (−1)9 = −1 times the
determinant of the matrix obtained by covering up
the fourth row and fifth column of A:

A45 = (−1)

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 4
2 3 4 5
3 4 5 1
5 1 2 3

∣

∣

∣

∣

∣

∣

∣

∣

.

5.5 We apply Strategy 5.2:
∣

∣

∣

∣

∣

∣

∣

∣

0 2 1 −1
−3 0 0 −1
1 0 1 0
0 4 2 0

∣

∣

∣

∣

∣

∣

∣

∣

= 0− 2

∣

∣

∣

∣

∣

∣

−3 0 −1
1 1 0
0 2 0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

−3 0 −1
1 0 0
0 4 0

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

−3 0 0
1 0 1
0 4 2

∣

∣

∣

∣

∣

∣

= −2

(

−3

∣

∣

∣

∣

1 0
2 0

∣

∣

∣

∣

− 0 + (−1)

∣

∣

∣

∣

1 1
0 2

∣

∣

∣

∣

)

+

(

−3

∣

∣

∣

∣

0 0
4 0

∣

∣

∣

∣

− 0 + (−1)

∣

∣

∣

∣

1 0
0 4

∣

∣

∣

∣

)

+

(

−3

∣

∣

∣

∣

0 1
4 2

∣

∣

∣

∣

− 0 + 0

)

= (−2)(−2) + (−1)4 + (−3)(−4)

= 12.
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5.6 Here,

detA =

∣

∣

∣

∣

−3 1
2 −4

∣

∣

∣

∣

= (−3×−4)− (1× 2) = 10,

detB =

∣

∣

∣

∣

1 1
−2 5

∣

∣

∣

∣

= (1× 5)− (1×−2) = 7

and

A+B =

(

−2 2
0 1

)

,

so

det(A+B) = (−2× 1)− (2× 0) = −2.

We have detA+ detB = 10 + 7 = 17, so det(A+B)
is not equal to detA+ detB.

AB =

(

−5 2
10 −18

)

,

so

det(AB) = (−5×−18)− (2× 10) = 70.

We have (detA)(detB) = 10× 7 = 70, so

det(AB) = (detA)(detB).

5.7 (a) We apply Strategy 5.2:
∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 0 1

∣

∣

∣

∣

∣

∣

= 0−

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

+ 0

= −1.

(b) We apply Strategy 5.2:
∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
0 k 0
0 0 1

∣

∣

∣

∣

∣

∣

− 0 + 0− 0

=

∣

∣

∣

∣

k 0
0 1

∣

∣

∣

∣

− 0 + 0

= (k × 1)− (0× 0)

= k.

(c) We evaluate the determinant:
∣

∣

∣

∣

1 0
k 1

∣

∣

∣

∣

= (1× 1)− (0× k)

= 1.

5.8 First notice that

−2
(

1 −2 4
)

=
(

−2 4 −8
)

,

that is, the first and third rows of A are
proportional. Therefore, by Theorem 5.3,

detA = 0.

5.9 First notice that the third row of A has only
one non-zero entry. We interchange the first and
third rows, and apply Theorems 5.1 and 5.2, giving

detA =

∣

∣

∣

∣

∣

∣

∣

∣

10 3 −4 2
0 2 0 1
0 6 0 0

−1 2 1 0

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

0 6 0 0
0 2 0 1

10 3 −4 2
−1 2 1 0

∣

∣

∣

∣

∣

∣

∣

∣

.

We use Strategy 5.2 to evaluate this determinant:

detA = (−1)



0− 6

∣

∣

∣

∣

∣

∣

0 0 1
10 −4 2
−1 1 0

∣

∣

∣

∣

∣

∣

+ 0− 0





= 6

(

0− 0 +

∣

∣

∣

∣

10 −4
−1 1

∣

∣

∣

∣

)

= 6 ((10× 1)− (−4×−1))

= 36.

5.10 (a) detA =

∣

∣

∣

∣

2 0
4 1

∣

∣

∣

∣

= 2

(b) detB =

∣

∣

∣

∣

1 −1
−2 5

∣

∣

∣

∣

= 3

(c) det(A+B) =

∣

∣

∣

∣

3 −1
2 6

∣

∣

∣

∣

= 20

(d) det(AB) = (detA)(detB) = 6

(e) det(BA) = (detB)(detA) = 6

(f) det(A2) = (detA)2 = 4

(g) detAT = detA = 2

(h) det(AB)T = det(AB) = 6

(i) Since detA 6= 0,

detA−1 = 1/(detA) = 1

2
.

5.11 (a) We first evaluate the determinant of the
matrix:
∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

= 3.

This determinant is non-zero, so the matrix is
invertible. The inverse is
(

2 1
1 2

)

−1

= 1

3

(

2 −1
−1 2

)

=

(

2

3
−1

3

−1

3

2

3

)

.

(b) We first evaluate the determinant of the matrix:
∣

∣

∣

∣

2 −2
−1 1

∣

∣

∣

∣

= 0.

This determinant is zero, so the matrix is not
invertible.

(c) We first evaluate the determinant of the matrix:
∣

∣

∣

∣

10 21
−4 −7

∣

∣

∣

∣

= 14.

This determinant is non-zero, so the matrix is
invertible. The inverse is
(

10 21
−4 −7

)

−1

= 1

14

(

−7 −21
4 10

)

=

(

−1

2
−3

2

2

7

5

7

)

.
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5.12 (a) Here, the first and third columns are
proportional, since

2









5
−1
2
3









=









10
−2
4
6









.

The determinant is therefore zero, by Theorem 5.3.

(b) First notice that the third row has only one
non-zero entry. We interchange the first and third
rows, and apply Theorems 5.1 and 5.2, giving
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

7 10 −1 0 2
1 5 0 2 0
0 2 0 0 0
3 −6 3 7 1
3 4 3 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 2 0 0 0
1 5 0 2 0
7 10 −1 0 2
3 −6 3 7 1
3 4 3 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(−2)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 2 0
7 −1 0 2
3 3 7 1
3 3 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 2





∣

∣

∣

∣

∣

∣

−1 0 2
3 7 1
3 0 1

∣

∣

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∣

∣

7 −1 2
3 3 1
3 3 1

∣

∣

∣

∣

∣

∣





= 2

(

−1

∣

∣

∣

∣

7 1
0 1

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

3 7
3 0

∣

∣

∣

∣

+ 0

)

= 2(−7− 42)

= −98.

Notice that the second 3× 3 determinant vanishes,
by Theorem 5.3, since the second and third rows are
equal.

5.13 In each part, we evaluate the determinant to
determine whether or not the matrix is invertible.

(a)

∣

∣

∣

∣

∣

∣

2 1 4
1 −1 3

−2 1 5

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

−1 3
1 5

∣

∣

∣

∣

−

∣

∣

∣

∣

1 3
−2 5

∣

∣

∣

∣

+ 4

∣

∣

∣

∣

1 −1
−2 1

∣

∣

∣

∣

= −16− 11− 4

= −31.

The determinant of this matrix is non-zero, so the
matrix is invertible.

(b) By Theorem 5.3, the determinant is zero, since
the first and third columns are equal. The matrix is
therefore not invertible.

(c)

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
2 1 0
3 2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 0
2 1

∣

∣

∣

∣

= 1.

The determinant is non-zero, so the matrix is
invertible.

5.14 We first assume that AAT is invertible. By
Theorem 5.4, det(AAT ) is non-zero, and by
Theorem 5.1,

det(AAT ) = (detA)(detAT ).

So detA and detAT are also non-zero, and therefore
A and AT are both invertible.

We now assume, for the converse, that A is
invertible. Then detA and detAT are non-zero, by
Theorems 5.1 and 5.4, so

(detA)(detAT ) = det(AAT ) 6= 0.

So AAT is invertible, as required.
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adding matrices, 30
additive inverse of a matrix, 32
associativity, 30, 36
augmented matrix, 18

coefficient, 9
column matrix, 29
commutative law, 30
consistent system, 10
constant term, 9

diagonal matrix, 36
distributive law, 33
dot product, 34

elementary operations (G–J elimination), 12, 19
equal matrices, 29

Gauss–Jordan elimination
elementary operations, 12, 19
linear equations, 11–13, 19–21
matrices, 19–27
row-reduction strategy, 25

homogeneous system, 10

identity matrix, 37
inconsistent system, 10
inverse matrix, 41–44
invertibility, 43
strategy, 45
system of linear equations, 46

Invertibility Theorem, 44

line in R
2, equation, 5

linear equations
n unknowns, 9–11
three unknowns, 6–8
two unknowns, 5–6

lower-triangular matrix, 36

main diagonal, 36
matrix

algebra, 29–40
definition, 18

matrix form of simultaneous linear equations, 39–40
multiplying matrices, 33–36

negative of a matrix, 31
non-homogeneous system, 10
non-trivial solution, 11

plane in R
3, equation, 6

product of matrices, 34

row matrix, 29
row-reduced form (matrix), 23
row-reduction strategy (G–J elimination), 25
row-sum check, 21

scalar, 29
scalar multiplication, 32
simultaneous linear equations
elementary operations, 13
matrix form, 39–40
n unknowns, 9–11
properties, 5–17
solution set, 9
strategy for solving, 27
three unknowns, 6–8
two unknowns, 5–6

size (matrix), 29
solution set of system of linear equations, 9, 11
square matrix, 29, 39, 41–44
subtracting matrices, 32
symmetric matrix, 39

transpose matrix, 38
transposition of matrices (theorem), 38
triangular matrix, 36
trivial solution, 11

upper-triangular matrix, 36

zero matrix, 31
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