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Introduction

Introduction

In this unit we move from first-order differential equations to second-order The order of a differential
equation is defined in Unit 2.
A second-order differential
equation may or may not
include a first derivative.

differential equations, that is, differential equations involving a second (but
no higher) derivative. Examples of such equations are

d2y

dx2
− 3

dy

dx
+ 2y = 4ex and 3

d2y

dx2
+ y = x sinx.

Second-order differential equations play a central role in the physical
sciences. They are found, for example, in laws describing mechanical
systems, wave motion, electric currents and quantum phenomena.

To take a simple case, consider a particle of mass m that moves in one
dimension along the x-axis. At any given time t, the particle’s position is
x(t), and its velocity and acceleration are given by the derivatives dx/dt
and d2x/dt2. There are no general laws for the position or velocity of the
particle, but there is a very important law for its acceleration: Newton’s Don’t worry if you have not met

Newton’s second law before: the
essential aims of this unit do not
rely on it.

second law tells us that

mass× acceleration = force,

which implies that

m
d2x

dt2
= F, (1)

where F is the force acting on the particle. The force need not be
constant, and may vary with the position x or the velocity dx/dt of the
particle. So, depending on the precise details, we get a second-order
differential equation for x as a function of t, and the solution of this
equation tells us how the particle can move.

The system known as a simple harmonic oscillator provides a good
example. Here, a particle of mass m is suspended at the lower end of a
spring that is attached to a fixed support (Figure 1). The particle moves

x

x = 0

m

F

Figure 1 A particle of
mass m moves along the
x-axis subject to a force F
provided by a spring and
gravity

up and down along a vertical x-axis, subject to a force F provided by the
spring and gravity. If the system is left to settle, the particle comes to rest
at a point of equilibrium, which we label x = 0. Because the particle does
not spontaneously move away from this position, we can infer that F = 0
when x = 0.

When the particle is displaced from x = 0, the force F tends to draw the
particle back towards x = 0. We consider the case where the force is
proportional to the displacement from equilibrium, and take

F = −kx, (2)

where k is a positive constant. The negative sign in this equation ensures
that the force always acts in a direction that tends to restore the particle
to its equilibrium position.

Putting equations (1) and (2) together, we get the differential equation

m
d2x

dt2
= −kx.
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Second-order differential equations

Recalling that k > 0 and m > 0, we can also express this as

d2x

dt2
= −ω2x, (3)

where ω =
√

k/m is a positive constant. Equation (3) is called the
equation of motion of a simple harmonic oscillator. It is a second-order
differential equation whose solution tells us how the particle can move.

This unit develops systematic techniques to solve equations like this. For
the moment, we will simply guess the solution and check that it works.
You know that

d

dt
(sin t) = cos t and

d

dt
(cos t) = − sin t,

so

d2

dt2
(sin t) = − sin t and

d2

dt2
(cos t) = − cos t.

In other words, taking the second derivative of a sine or cosine function
gives the same function back again, but with a minus sign. This is very
close to the behaviour needed to solve equation (3). We therefore try a
function of the form

x(t) = C sin(ωt) +D cos(ωt), (4)

where C and D are any constants, and ω is the constant in equation (3).
Differentiating this function once, and then again, we get

dx

dt
= Cω cos(ωt)−Dω sin(ωt),

d2x

dt2
= −Cω2 sin(ωt)−Dω2 cos(ωt) = −ω2x.

So the function in equation (4) does indeed satisfy equation (3). In fact, it
is the general solution of this differential equation.

Notice that our solution involves two constants, C and D, whose values are
not specified. These constants have arbitrary values, and they are called
arbitrary constants. It is typical for the general solutions of a second-order
differential equation to have two arbitrary constants. The values of these
constants depend on how the system is released, and you will see how they
are determined later in this unit. To take a definite case, suppose that
C = 2, D = 3 and ω = 4, when measured in suitable units. Then we have
the particular solution

x(t) = 2 sin(4t) + 3 cos(4t), (5)

and this is plotted in Figure 2. The wiggles in this graph correspond to the
oscillations performed by a system like the particle on the end of the
spring in Figure 1.
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Figure 2 A graph of equation (5), which is a particular solution of
equation (3)

The simple harmonic motion described by equation (4) continues forever,
but we know from everyday experience that oscillations generally die away
after a while. We can get a more realistic description by including an
additional force in our model – one that will dampen the oscillations down.
We take the additional force to be −γ dx/dt, where γ is a positive
constant, leading to the differential equation

m
d2x

dt2
= −kx− γ

dx

dt
. (6)

This is the equation of motion of a damped harmonic oscillator. Later in
this unit you will see that (in appropriate circumstances) it has solutions
that oscillate but diminish and eventually die away.

We can also add in another force, f(t), which is applied to the particle by
some external agency. We assume that this force is known directly as a
function of time (and does not depend on the position or velocity of the
particle.) Under these circumstances, Newton’s second law leads to the
differential equation

m
d2x

dt2
= −kx− γ

dx

dt
+ f(t), (7)

and this is the equation of motion of a forced damped harmonic oscillator.
If the external force is oscillatory, the response of the system may depend
very sensitively on the frequency of the external force. This phenomenon is
called resonance; it will be explored at the end of this unit.

Harmonic oscillators are everywhere

Harmonic oscillators play a central role in physics and its
applications. If a system performs small oscillations about an
equilibrium point, then it is generally a good approximation to model
it as a harmonic oscillator, including the additional terms in
equations (6) and (7) when necessary.
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Second-order differential equations

It should come as no surprise that the to-and-fro motion of a
pendulum clock can be modelled by a harmonic oscillator. On a
smaller scale, vibrating molecules and vibrating crystals are also
modelled as harmonic oscillators.

Equations similar to (7) are also used to describe the oscillations of
currents in electrical circuits that allow radios to be tuned to selected
stations. Moreover, each frequency in an electromagnetic field can be
regarded as a harmonic oscillator, and this is a key insight used in
advanced physics when electromagnetic fields are treated quantum
mechanically.

A more everyday example is provided by the suspension system of a
mountain bike (or any other vehicle). The rider is protected from the
vibrations caused by a rough track by a rugged suspension system,
and this can also be modelled by equation (7).

Study guide

This unit requires no previous knowledge beyond that needed for Unit 2,
apart from some familiarity with complex numbers. The relevant material
on complex numbers was reviewed in Unit 1.

The differential equations discussed in this unit all belong to one broad
class: they are all linear constant-coefficient second-order differential

equations. These equations play such an important role in physics and
areas of applied mathematics that they easily deserve a unit to themselves.

Section 1 introduces some basic principles and terminology. Sections 2
and 3 give methods for finding the general solutions for our class of
second-order differential equations: Section 2 covers so-called homogeneous

equations, while Section 3 covers inhomogeneous equations. Section 4 then
explains how extra information can be used to help us to select particular
solutions that are appropriate in given situations.

For the most part, the unit presents the topic of second-order differential
equations in purely mathematical terms, and its learning aims can be fully
met without reference to physical laws. However, it is illuminating to see
physical interpretations of the mathematical equations, so Subsection 2.4
and Section 5 revisit the oscillators considered in the Introduction.

Although the differential equations discussed in this unit and the last may
seem to belong to a limited range of classes, in practice they encompass
most of what a mathematical scientist needs to know about differential
equations. The results obtained in this unit will be used again in Units 6
and 12.
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1 Some preliminary remarks

1 Some preliminary remarks

As for first-order differential equations, second-order differential equations
can be written using a variety of notations for functions and derivatives.

If t is the independent variable and y is the dependent variable, we can
regard y as a function of t and write y = f(t). More usually, however, we Of course, the independent

variable is not always t, and the
dependent variable is not
always y!

write y = y(t), using the same symbol y for both the variable and the
function. (The merits of this notation were discussed in Unit 1.) The first
derivative of y with respect to t may be written as dy/dt, ẏ or y′, and the
second derivative as d2y/dt2, ÿ or y′′.

This section makes some general comments that will be important for
understanding the methods introduced in Sections 2 and 3.

1.1 Requirement for two arbitrary constants

In Unit 1 you saw that when we solve a first-order differential equation, we
get a general solution containing one arbitrary constant. The value of the
arbitrary constant is undetermined in general, but it can be found by using
additional information provided by an initial condition. Here we consider
the corresponding result for second-order equations. You saw in the
Introduction that the differential equation for a simple harmonic oscillator
(equation (3)) has a general solution (equation (4)) that contains two
arbitrary constants. This turns out to be the general rule.

You can assume that the general solution of any second-order
differential equation contains two arbitrary constants.

To further illustrate this point, consider the differential equation

d2y

dt2
= a, (8)

where t is the independent variable, and a is a given constant. This
equation describes the motion of a particle with constant acceleration a.
To take a definite case, we will measure distance in metres and time in
seconds, and suppose that a = 3 in these units. Our differential equation
then becomes

d2y

dt2
= 3. (9)

An equation like this can be solved by integrating both sides twice. The
first integration gives

dy

dt
=

∫

3 dt = 3t+ C,

where C is an arbitrary constant. A second integration then gives

y(t) =

∫

(3t+ C) dt = 3
2t

2 + Ct+D, (10)
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Second-order differential equations

where D is another arbitrary constant. Equation (10) is the general

solution of the differential equation. It gives a formula that describes the
collection of all possible solutions of the equation. As promised, this
formula contains two arbitrary constants, C and D.

If we take definite values for C and D, we get a particular solution of the
differential equation. For example, if we take C = 2 and D = 3, then the
particular solution is

y(t) = 3
2 t

2 + 2t+ 3.

In the context of straight-line motion, this solution tells us where the
particle is located at each instant t. Moreover, differentiating both sides
gives

dy

dt
= 3t+ 2,

so it also gives the velocity dy/dt of the particle at each instant t.

How do we determine the arbitrary constants? You have seen that a
second-order differential equation has two arbitrary constants, so we need
two pieces of information to determine them. A whole section of this unit
(Section 4) is devoted to ways of finding the arbitrary constants, but we
will make a brief comment now.

One way of finding the arbitrary constants is to use initial conditions.
However, it is not enough to specify the value of the function y(t) at a
fixed time t = t0. We also need extra information, and this can be provided
by giving the value of the derivative dy/dt at the same fixed time, t = t0.

Example 1

The following description of motion is based on units of metres and
seconds. At t = 0, a car has initial position y = 100 and initial velocity
u = 4. Between t = 0 and t = 10, the car travels with constant acceleration
a = 3 along a straight road.

Find the particular solution of equation (9) in this case, and use it to
predict the car’s position and velocity at t = 10.

Solution

Following the above calculation, the general solution of equation (9) is

y(t) = 3
2 t

2 + Ct+D, (Eq. 10)

where C and D are arbitrary constants. The initial conditions are
y(0) = 100 and y′(0) = 4. The first condition givesThe condition y′(0) = 4 could

also be written as ẏ(0) = 4 or as
dy

dt

∣

∣

∣

∣

t=0

= 4.
100 = 3

2 × 02 + C × 0 +D = D.

Differentiating equation (10) gives y′(t) = 3t+ C, so the second condition
gives

4 = 3× 0 + C = C.

6



1 Some preliminary remarks

We conclude that the arbitrary constants have values C = 4 and D = 100.
The required particular solution is therefore

y(t) = 3
2t

2 + 4t+ 100.

Differentiating this function gives the car’s velocity as a function of time:

y′(t) = 3t+ 4.

We obtain y(10) = 290 and y′(10) = 34. So at time 10 seconds, the car’s
position is 290 metres and its velocity is 34 metres per second.

The solution of second-order differential equations is rarely as easy as the
solution of equation (9). In fact, the approach of repeated direct
integration works only for equations of the form

d2y

dx2
= f(x),

and requires that both integrations can be carried out.

Initial conditions and Newton’s second law

You have seen that Newton’s second law leads to second-order
differential equations, and that the general solution of a second-order
differential equation contains two arbitrary constants.

The need for two arbitrary constants connects to everyday experience.
If you throw a stone upwards, and want to predict its future motion,
it is not enough to know where the stone was released. You need to
know both its initial position and its initial velocity. These two bits
of information are sufficient to determine the two arbitrary constants
in the general solution, and hence select a unique particular solution.

A single differential equation has a multitude of particular solutions,
distinguished by different arbitrary constants. In the context of
mechanics, this is a great unifying feature. We do not need different
rules to explain the various motions of falling apples, cricket balls,
asteroids or orbiting satellites. All these motions can be modelled by
the same differential equation (obtained from Newton’s second law
and the law of gravitation). If the motions are different, it is because
the initial conditions are different. In a nutshell: a differential
equation provides unity, and initial conditions provide variety.

7



Second-order differential equations

1.2 Linearity and superposition

This unit considers second-order differential equations that are linear and
have constant coefficients. You met linear constant-coefficient equations in
Unit 2 in the context of first-order differential equations. But what do the
terms ‘linear’ and ‘constant-coefficient’ mean in the context of
second-order equations? The answer lies in the following definitions.

Definitions

• A second-order differential equation for y = y(x) is linear if itCompare the definitions for
first-order equations in Unit 2.
The important feature is the
linear combination of y and its
derivatives on the left-hand side.

can be expressed in the form

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x) y = f(x),

where a(x), b(x), c(x) and f(x) are given continuous functions,
and a(x) is not equal to the zero function.

• A linear second-order differential equation is said to be
constant-coefficient if the functions a(x), b(x) and c(x) are all
constants, so that the equation is of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x), (11)

where a 6= 0.If a = 0, then the equation is
first-order. • A linear constant-coefficient second-order differential equation is

said to be homogeneous if f(x) = 0 for all x, and
inhomogeneous otherwise.The term non-homogeneous is

sometimes used instead of
inhomogeneous.

Linear constant-coefficient second-order differential equations can be
written in other ways. For example, we can divide equation (11) through
by a to obtain an equation of the form

d2y

dx2
+ β

dy

dx
+ γy = φ(x),

where β and γ are constants, and this more closely resembles the definition
of linear first-order differential equations from Unit 2.

8



1 Some preliminary remarks

Exercise 1

Consider the following second-order differential equations.

(i)
d2y

dx2
= x2 (ii) 3

d2y

dx2
+ 4

dy

dx
+ y = x2 (iii) 3

d2y

dx2
+ 4

dy

dx
+ y = 0

(iv) xy′′ + x2y = 0 (v) 2y
d2y

dx2
+ xy = 3

dy

dx
(vi) 2y

d2y

dx2
+ 4y = 3

dy

dx

(vii) 2
d2t

dθ2
+ 3

dt

dθ
+ 4t = sin θ (viii) ẍ = −4t (ix) ẍ = −4x

(a) For each equation, identify the dependent and independent variables.

(b) Which of the equations are linear?

(c) Which of the equations are linear and constant-coefficient?

(d) Which of the linear constant-coefficient equations are homogeneous?

The principle of superposition

We now introduce a key principle that will turn out to be extremely useful
throughout this unit. The principle is a fundamental property of all linear
differential equations, but we discuss it here in the context of linear
constant-coefficient second-order equations.

Suppose that we have a solution y1(x) of the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f1(x), In principle, the coefficients a, b

and c could be functions of x,
but our interest in this unit is
confined to the case where they
are constants.

and a solution y2(x) of the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f2(x).

Then the principle of superposition states that any linear combination
k1 y1(x) + k2 y2(x), where k1 and k2 are constants, is a solution of the
differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = k1 f1(x) + k2 f2(x). (12)

It is not difficult to see why this is true. If we substitute k1y1 + k2y2 into
the left-hand side of equation (12), we get

a
d2

dx2
(k1y1 + k2y2) + b

d

dx
(k1y1 + k2y2) + c(k1y1 + k2y2)

= a

(

k1
d2y1
dx2

+ k2
d2y2
dx2

)

+ b

(

k1
dy1
dx

+ k2
dy2
dx

)

+ c(k1y1 + k2y2)

= k1

(

a
d2y1
dx2

+ b
dy1
dx

+ cy1

)

+ k2

(

a
d2y2
dx2

+ b
dy2
dx

+ cy2

)

= k1 f1(x) + k2 f2(x),

as required.

9



Second-order differential equations

This important result is summarised as follows.

The principle of superposition

If y1(x) is a solution of the linear second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f1(x),

and y2(x) is a solution of the linear second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f2(x)

(with the same left-hand side), then the function

y(x) = k1 y1(x) + k2 y2(x),

where k1 and k2 are any constants, is a solution of the differential
equation

a
d2y

dx2
+ b

dy

dx
+ cy = k1 f1(x) + k2 f2(x).

The power of this principle is obvious: it enables us to find new solutions
by adding together existing ones.

An important special case arises when f1(x) = f2(x) = 0. In this case we
see that if y1(x) and y2(x) are both solutions of the homogeneous equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (13)

then any linear combination

y(x) = k1 y1(x) + k2 y2(x),

where k1 and k2 are constants, is also a solution of the same homogeneous
equation (13).

A note on terminology

Like all human languages, the language of science and mathematics
tends to evolve and fragment into dialects.

In physics, the principle of superposition is sometimes given a
meaning that is slightly more restricted than that used here. It is said
to apply when ‘any linear combination of solutions of a given equation
is also a solution of the same equation’. This restricted form of the
principle applies to any homogeneous equation like (13), but not to
inhomogeneous ones. You may meet this alternative usage in other
Open University texts, but the more general form of the principle, as
given in the box above, is what is needed in this unit.
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2 Homogeneous differential equations

2 Homogeneous differential equations

This section develops a method for finding the general solutions of
homogeneous linear constant-coefficient second-order differential equations.
Section 3 will consider the general solutions of inhomogeneous equations,
and Section 4 will discuss how particular solutions are selected in given
situations.

Before the method for homogeneous equations is described in detail, it is
helpful to look at two simple cases.

2.1 Two simple cases

In this section, we return to the equation of motion of a simple harmonic
oscillator. Before tackling this, however, we will solve the closely-related
equation

d2y

dt2
− ω2y = 0, (14)

where ω is a given positive constant. This differs from the equation for a
simple harmonic oscillator only in the sign of the coefficient of y, which is
negative in this case.

Our method of solution is very simple. We notice that a function y = eλt,
where λ is any constant, can be differentiated, and then differentiated
again, to give

dy

dt
= λeλt and

d2y

dt2
= λ2eλt.

If we substitute this function into the differential equation (14), we get

λ2eλt − ω2eλt = 0.

The exponential factors can be cancelled (because they are never equal to
zero) and we are left with a simple algebraic equation for λ:

λ2 − ω2 = 0.

This equation has two solutions: λ = ω and λ = −ω. So we have found two
distinct solutions of equation (14), namely

y = eωt and y = e−ωt.

The argument then goes as follows:

• The differential equation is homogeneous, so the principle of
superposition guarantees that any linear combination of the solutions
y = eωt and y = e−ωt is also a solution of the differential equation.
Hence the function

y(t) = Ceωt +De−ωt, (15)

where C and D are arbitrary constants, satisfies equation (14).

11



Second-order differential equations

• Then remember that the general solution of a second-order differential
equation contains two arbitrary constants. The function
y(t) = Ceωt +De−ωt satisfies the differential equation and contains
two arbitrary constants. This means that it is the general solution of
equation (14). The arbitrary constants could take any values, but if
we want our solution to be real-valued, they must be real.

Now we consider the equation of motion of a simple harmonic oscillator,
which can be written in the form (from equation (3))

d2y

dt2
+ ω2y = 0, (16)

where ω is a given positive constant.

The tactics for solving this equation are just the same. We try a solution
of the form eλt, where λ is an undetermined constant. Substituting this
into the differential equation, we obtain

λ2eλt + ω2eλt = 0.

Then, cancelling the (non-zero) exponential factors, we get the algebraic
equation

λ2 + ω2 = 0.

The solutions of this equation are the complex numbers λ = iω and
λ = −iω, and corresponding to these we have two distinct solutions of
equation (16):

y = eiωt and y = e−iωt.

Using the principle of superposition, and the fact that the general solution
of a second-order differential equation contains two arbitrary constants, we
can follow an argument like that given above to conclude that the general
solution of equation (16) is

y(t) = Aeiωt +Be−iωt, (17)

where A and B are arbitrary constants (which may be complex numbers in
this case).

There is nothing wrong with this solution, but we can put it in a more
familiar form by using Euler’s formula

eix = cos x+ i sinx.

Substituting x = ωt gives

eiωt = cos(ωt) + i sin(ωt),

while substituting x = −ωt gives

e−iωt = cos(−ωt) + i sin(−ωt) = cos(ωt)− i sin(ωt).

We therefore see that the general solution is

y(t) = Aeiωt + Be−iωt

= A[cos(ωt) + i sin(ωt)] +B[cos(ωt)− i sin(ωt)]

= (A+B) cos(ωt) + i(A−B) sin(ωt),

12



2 Homogeneous differential equations

and this can be expressed as

y(t) = C cos(ωt) +D sin(ωt), (18)

where C = A+B and D = i(A−B) are arbitrary constants. If y(t) is
real, then the constants C and D are real-valued. In this case, the
constants A and B are not real-valued, but that does not matter. The
important thing is that we have obtained the general solution of
equation (16) in the form of equation (18) and this, of course, agrees with
the solution given in the Introduction.

2.2 Solution in the general case

The method just described works far more generally. Suppose that we wish
to solve the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, For variety, we use the symbol x

for the independent variable.
(19)

where a, b and c are constants, with a 6= 0. This is the general form of a
homogeneous linear second-order equation with constant coefficients.

Then we start by substituting the trial solution

y = eλx,

where λ is an undetermined constant, into the differential equation. We
have dy/dx = λeλx and d2y/dx2 = λ2eλx, so substituting y = eλt into the
left-hand side of equation (19) gives

a
d2y

dx2
+ b

dy

dx
+ cy = aλ2eλx + bλeλx + ceλx

= (aλ2 + bλ+ c)eλx.

Hence y = eλx is a solution of equation (19) provided that λ satisfies the
quadratic equation

aλ2 + bλ+ c = 0. (20)

This equation plays such an important role in solving linear
constant-coefficient second-order differential equations that it is given a
special name.

Definition

The auxiliary equation of the homogeneous linear The auxiliary equation is
sometimes called the
characteristic equation.

constant-coefficient second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0

is the quadratic equation

aλ2 + bλ+ c = 0.

13



Second-order differential equations

There is no need to write down all the steps that led to the auxiliary
equation. You can just use the rules that emerge from the calculation
leading to equation (20): the auxiliary equation is obtained from the
differential equation by

replacing
d2y

dx2
by λ2,

dy

dx
by λ, and y by 1.

Example 2

Write down the auxiliary equation of the differential equation

3
d2y

dx2
− 2

dy

dx
+ 4y = 0.

Solution

The auxiliary equation is

3λ2 − 2λ+ 4 = 0.

Exercise 2

Write down the auxiliary equation of each of the following differential
equations.

(a)
d2y

dx2
− 5

dy

dx
+ 6y = 0 (b) y′′ − 9y = 0 (c) ẍ+ 2ẋ = 0

We know that y = eλx is a solution of equation (19) provided that λ
satisfies the corresponding auxiliary equation. But the auxiliary equation
is a quadratic equation, so it has two roots, λ1 and λ2 say. For the
moment, we assume that these are distinct: λ1 6= λ2. Corresponding to
these roots, there are two distinct solutions of differential equation (19):

y1(x) = eλ1x and y2(x) = eλ2x.

We now follow the logic of the preceding subsection. The principle of
superposition implies that any linear combination of y1(x) and y2(x)
satisfies the differential equation. It therefore follows that the function

y(x) = C y1(x) +Dy2(x), (21)

where C and D are arbitrary constants, satisfies the differential equation.
This solution contains two arbitrary constants, as expected for the general
solution of a second-order differential equation. We therefore conclude that
equation (21) is the general solution of equation (19). This important
result is summarised as a theorem.
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2 Homogeneous differential equations

Theorem 1 General solution of homogeneous equations

Given a homogeneous linear second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

with constant coefficients a 6= 0, b and c, the auxiliary equation is

aλ2 + bλ+ c = 0.

This usually has two distinct roots, λ1 and λ2, associated with two
distinct solutions y1(x) = eλ1x and y2(x) = eλ2x. Provided that the
roots are distinct, the general solution of the differential equation is

y(x) = Ceλ1x +Deλ2x, (22)

where C and D are arbitrary constants.

The roots of the auxiliary equation are

λ1 =
−b+

√
b2 − 4ac

2a
and λ2 =

−b−
√
b2 − 4ac

2a
. It does not matter which of the

roots is called λ1 and which is
called λ2.

(23)

Assuming that the coefficients a, b and c are real, there are three cases to
consider, depending on the sign of the discriminant b2 − 4ac:

• For b2 − 4ac > 0, the roots are distinct and real.

• For b2 − 4ac < 0, the roots are distinct and complex.

• For b2 − 4ac = 0, the roots are equal and real.

We consider each of these cases in turn.

Distinct real roots

Example 3

(a) Write down the auxiliary equation of the differential equation

d2y

dx2
− 3

dy

dx
+ 2y = 0,

and find its roots λ1 and λ2.

(b) Use Theorem 1 to write down the general solution of the differential
equation, and verify that your answer does satisfy the differential
equation.

15



Second-order differential equations

Solution

(a) The auxiliary equation is

λ2 − 3λ+ 2 = 0.

This equation may be solved, for example, by factorising it in the formUsing the formula

λ1, λ2 =
−b±

√
b2 − 4ac

2a
produces the same answer.

(λ− 1)(λ − 2) = 0,

to give the two roots λ1 = 1 and λ2 = 2.

(b) Since λ1 = 1 and λ2 = 2 are the roots of the auxiliary equation, the
functions y1 = ex and y2 = e2x are solutions of the differential
equation. Theorem 1 then shows that the general solution of the
differential equation is

y(x) = C y1(x) +Dy2(x)

= Cex +De2x,

where C and D are arbitrary constants.

To check that this function satisfies the differential equation, we
differentiate it and then differentiate again, to get

dy

dx
= Cex + 2De2x and

d2y

dx2
= Cex + 4De2x.

Substituting into the left-hand side of the differential equation then
gives

d2y

dx2
− 3

dy

dx
+ 2y

=
(

Cex + 4De2x
)

− 3
(

Cex + 2De2x
)

+ 2
(

Cex +De2x
)

= C(1− 3 + 2)ex +D(4− 6 + 2)e2x

= 0,

as required. Hence y = Cex +De2x is a solution of the differential
equation, for all values of C and D.

Exercise 3

Use the auxiliary equation and Theorem 1 to find the general solution of
each of the following differential equations.

(a)
d2y

dx2
+ 5

dy

dx
+ 6y = 0 (b) 2

d2y

dx2
+ 3

dy

dx
= 0 (c)

d2z

du2
− 4z = 0
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2 Homogeneous differential equations

Distinct complex conjugate roots

When the discriminant b2 − 4ac is negative, equations (23) produce two
complex roots that are complex conjugates of one another:

λ1 = α+ βi and λ2 = α− βi, Recall that the complex
conjugate of α+ βi is α− βi.

where α and β are real. The corresponding functions y1(x) = Aeλ1x and
y2(x) = Beλ2x satisfy the differential equation, and the general solution
takes the form

y(x) = Aeλ1x +Beλ2x = Ae(α+βi)x +Be(α−βi)x, (24)

where A and B are arbitrary constants (which may be complex in this
case). We usually need a real-valued solution, so it is best to express our
result without using complex numbers. This can be achieved by first
writing equation (24) as

y(x) = Ae(α+βi)x +Be(α−βi)x

= Aeαxeiβx +Beαxe−iβx

= eαx
(

Aeiβx +Be−iβx
)

.

We can simplify this by using Euler’s formula. Following the same
argument as that which led to equation (18), but with βx in place of ωt,
we conclude that

y(x) = eαx
(

C cos(βx) +D sin(βx)
)

, (25)

where C = A+B and D = i(A−B) are arbitrary constants. If the
required solution is real-valued, then C and D are real-valued, and
equation (25) is the most convenient form of the general solution.

Example 4

(a) Write down the auxiliary equation of the differential equation

d2y

dx2
− 6

dy

dx
+ 13y = 0,

and show that its roots are λ1 = 3 + 2i and λ2 = 3− 2i.

(b) Hence write down the general solution of the differential equation in
terms of sines and cosines.

Solution

(a) The auxiliary equation is

λ2 − 6λ+ 13 = 0.

The standard formula for the roots of a quadratic gives

λ =
6±

√
36− 4× 1× 13

2
=

6±
√
−16

2
= 3± 2i,

so the two complex conjugate roots are λ1 = 3 + 2i and λ2 = 3− 2i.

17
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(b) The roots are α± iβ, where α = 3 and β = 2, so using equation (25),
the general solution of the differential equation is

y(x) = e3x(C cos 2x+D sin 2x),

where C and D are arbitrary constants.

Exercise 4

Use the auxiliary equation and Theorem 1 to find the general solution of
each of the following differential equations.

(a)
d2y

dx2
+ 4

dy

dx
+ 8y = 0 (b)

d2θ

dt2
+ 9θ = 0

Equal roots

There is a special case where the method based on Theorem 1 does not
work. This is when the two roots of the auxiliary equation are equal.

To see what the problem is, suppose that we have two solutions y1(x) and
y2(x) of a homogeneous linear second-order differential equation. Then the
principle of superposition tells us that any linear combination

y(x) = C y1(x) +Dy2(x) (26)

is also a solution, and we have argued that this must be the general
solution because it contains two arbitrary constants. But suppose that the
functions y1(x) and y2(x) are constant multiples of one another, so that
y2(x) = k y1(x) for all x, where k is a constant. In this case, we can rewrite
equation (26) as

y(x) = C y1(x) +Dk y1(x) = (C + kD) y1(x),

which shows that there is really only one arbitrary constant, A = C + kD,
in this case.

If two functions are constant multiples of one another, then they are said
to be linearly dependent. In order for equation (26) to be the general
solution of the homogeneous linear second-order differential equation, the
functions y1 and y2 must not be constant multiples of one another; we say
that they must be linearly independent solutions.

If both the roots of the auxiliary equation are equal to λ, then the function
y1(x) = eλx provides one solution of the differential equation, but we still
need another linearly independent solution in order to construct the
general solution. Fortunately, there is a simple way of finding this extra
solution, illustrated by the following example.
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2 Homogeneous differential equations

Example 5

(a) Write down the auxiliary equation of the differential equation

d2y

dx2
+ 6

dy

dx
+ 9y = 0,

and find its roots.

(b) Deduce that y1 = e−3x is a solution of the differential equation.

(c) By substituting into the differential equation, show that y2 = xe−3x is
also a solution.

(d) Deduce that y = (C +Dx)e−3x is a solution of the differential
equation for any values of the constants C and D. Is this the general
solution of the differential equation?

Solution

(a) The auxiliary equation is

λ2 + 6λ+ 9 = 0.

The left-hand side is the perfect square (λ+ 3)2, so the auxiliary
equation has equal roots λ1 = λ2 = −3.

(b) Since λ1 = −3 is a root of the auxiliary equation, y1 = e−3x is a
solution of the differential equation.

(c) To show that y2 = xe−3x is a solution of the differential equation, we
differentiate it twice and substitute into the differential equation.
Differentiation gives

dy2
dx

= e−3x + x(−3e−3x) = (1− 3x)e−3x, Here we are using the product
rule for differentiation.

d2y2
dx2

= −3e−3x + (1− 3x)(−3e−3x) = (−6 + 9x)e−3x.

Substituting these into the left-hand side of the differential equation
then gives

d2y2
dx2

+ 6
dy2
dx

+ 9y2 = (−6 + 9x)e−3x + 6(1 − 3x)e−3x + 9xe−3x

= (−6 + 6)e−3x + (9− 18 + 9)xe−3x

= 0.

Hence y2 = xe−3x is a solution of the differential equation.

(d) Since y1 = e−3x and y2 = xe−3x are both solutions of the same
homogeneous differential equation, the principle of superposition tells
us that

y = Ce−3x +Dxe−3x = (C +Dx)e−3x

is also a solution of this equation for any values of C and D.

This solution contains two arbitrary constants C and D that cannot
be combined because the functions e−3x and xe−3x are linearly
independent (i.e. they are not constant multiples of one another). It is
therefore the general solution of the differential equation.
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Second-order differential equations

The method used in the above example always works when the auxiliaryIf you want to prove this, you
can substitute y = xeλx into the
left-hand side of equation (19),
and use the fact that λ satisfies
the auxiliary equation, with
λ = −b/2a for equal roots.

equation has equal roots. (The proof follows the same method as the
example, but using symbols instead of numbers.) Thus whenever the
auxiliary equation has equal roots λ1 = λ2, the general solution of the
homogeneous equation is

y(x) = (C +Dx)eλ1x, (27)

where C and D are arbitrary constants.

Exercise 5

Use the auxiliary equation method to find the general solution of the
following differential equations.

(a)
d2y

dx2
+ 2

dy

dx
+ y = 0 (b) s̈− 4ṡ+ 4s = 0

2.3 General procedure and further practice

We have now considered all the cases that can arise when solving a
homogeneous linear second-order differential equation with constant
coefficients. This subsection summarises the method of solution as a
procedure, and gives exercises for further practice.

Procedure 1 General solution of a homogeneous linear
constant-coefficient second-order differential equation

The general solution of the homogeneous linear constant-coefficient
second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (Eq. 19)

where a, b, c are real constants with a 6= 0, may be found as follows.

1. Write down the auxiliary equation

aλ2 + bλ+ c = 0, (Eq. 20)

and find its roots λ1 and λ2.
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2 Homogeneous differential equations

2. (a) If the auxiliary equation has two distinct real roots λ1

and λ2, then the general solution is

y = Ceλ1x +Deλ2x. (Eq. 22)

(b) If the auxiliary equation has a pair of complex conjugate
roots λ1 = α+ βi and λ2 = α− βi, then the general solution
is

y = eαx(C cos βx+D sin βx). (Eq. 25)

(c) If the auxiliary equation has two equal real roots λ1 = λ2,
then the general solution is

y = (C +Dx)eλ1x. (Eq. 27)

In each of these cases, C and D are arbitrary constants.

Exercise 6

Use Procedure 1 to find the general solution of each of the following
differential equations.

(a)
d2y

dx2
+ 4y = 0 (b)

d2y

dx2
− 9y = 0

(c)
d2y

dx2
+ 2

dy

dx
= 0 (d)

d2y

dx2
− 2

dy

dx
+ y = 0

(e)
d2y

dx2
+ 4

dy

dx
+ 29y = 0 (f) u′′(x)− 6u′(x) + 8u(x) = 0

Exercise 7

(a) Write down the auxiliary equation of the differential equation

3
dy

dx
− y − 2

d2y

dx2
= 0.

(b) Solve this auxiliary equation, and write down the general solution of
the differential equation.

Exercise 8

Find the general solution of each of the following differential equations.

(a)
d2y

dx2
+ 2

dy

dx
+ 2y = 0 (b)

d2y

dx2
− 16y = 0

(c)
d2y

dx2
+ 4y = 4

dy

dx
(d)

d2θ

dt2
+ 3

dθ

dt
= 0
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Exercise 9

For which values of the constant k does the differential equation

d2y

dx2
+ 4k

dy

dx
+ 4y = 0

have a general solution with oscillating behaviour, that is, a general
solution which involves sines and cosines?

2.4 Damped harmonic oscillators

Apart from equations (31) and (32), and the definitions of amplitude,
phase constant, angular frequency and period, this subsection contains
no new mathematical ideas, so if you are short of time, you may
choose to read it quickly. However, many students find it invaluable
to think about the solutions of differential equations in the context of
real oscillating systems.

We consider again the damped harmonic oscillator that was discussed in
the Introduction. This system was illustrated in Figure 1. It consists of an
object of mass m that moves along the x-axis, with position x(t) at time t.
A spring exerts a force −kx on the object, pulling it towards the
equilibrium position x = 0. The object also experiences a damping (or
frictional) force that is taken to be proportional to the object’s velocity
dx/dt. Under these circumstances, the object obeys the equation of motion
given in equation (6). This is the homogeneous linear constant-coefficient
differential equation

m
d2x

dt2
+ γ

dx

dt
+ kx = 0, (28)

where m, k and γ are positive constants. The damped harmonic oscillator
is a good model for vehicle suspension systems, but equations like (28)
appear in many other contexts where oscillations occur.

Let us begin with the special case of no damping (γ = 0). Equation (28)
then reduces to the equation of motion of a simple harmonic oscillator

d2x

dt2
+ ω2x = 0,

where ω =
√

k/m. You saw earlier that the general solution of this
equation is

x(t) = C cos(ωt) +D sin(ωt), (Eq. 18)

where C and D are arbitrary constants.
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2 Homogeneous differential equations

To interpret this solution, it is helpful to note that it can also be written as

x(t) = A sin(ωt+ φ), (29)

where A and φ are arbitrary constants. To see why this works, expand the
right-hand side of equation (29), to get Recall the trigonometric identity

sin(A+B)

= sinA cosB + cosA sinB.
x(t) = A sin(ωt) cosφ+A cos(ωt) sinφ.

Then comparing with equation (18), we see that equation (29) is valid
provided that

C = A sinφ and D = A cos φ. (30)

Squaring and adding these equations gives

C2 +D2 = A2(sin2 φ+ cos2 φ) = A2,

so

A =
√

C2 +D2. (31)

Dividing the first equation in (30) by the second, we also have

C

D
=

A sinφ

A cosφ
= tanφ,

so

φ = arctan(C/D). (32)

In equation (31) we have chosen the positive square root for A; this
involves no loss of generality because sin(ωt+ π) = − sin(ωt), so increasing
the value of φ by π is equivalent to reversing the sign of A. Values of φ
that differ by an integer multiple of 2π correspond to the same motion, so
we can restrict φ to a range such as 0 ≤ φ < 2π.

Figure 3 shows a graph of the solution.

x

t

A

T

0

−φ/ω

Figure 3 Simple harmonic motion with amplitude A, phase constant φ
and period T
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The constant A ≥ 0 is the amplitude of the oscillation, which is the
magnitude of the maximum displacement from the equilibrium position
x = 0. The constant φ is called the phase constant. This is related to
the time when the oscillator passes through the equilibrium position:
according to equation (29), x = 0 at time t = −φ/ω. The oscillation
consists of identical cycles, endlessly repeated. The time taken to complete
one of these cycles is the period of the oscillation, and is given the
symbol T . Because the sine function has period 2π, we have

ωT = 2π

and so

T =
2π

ω
= 2π

√

m

k
.

As you might expect, the period is reduced if m is reduced (a lighter
particle) or if k is increased (a stiffer spring). The quantity 1/T is called
the frequency of the oscillation, and represents the number of cycles
completed per unit time. The constant ω = 2π/T is called the angularω is sometimes called the

natural angular frequency. frequency.

Now let us return to the case where damping is present (γ > 0). In this
case, the relevant homogeneous differential equation is (28), which can be
written more simply as

d2x

dt2
+ 2Γ

dx

dt
+ ω2x = 0, (33)

where the damping parameter Γ = γ/(2m) is a measure of the damping,

and ω =
√

k/m is the angular frequency of the corresponding undamped

oscillator. The corresponding auxiliary equation is

λ2 + 2Γλ+ ω2 = 0, (34)

and this has solutions

λ = −Γ±
√

Γ2 − ω2. (35)

Depending on the value of the discriminant Γ2 − ω2, there are three
different types of solution, which correspond to three different types of
motion. These exemplify the three cases described in Subsection 2.2:
distinct complex roots, distinct real roots and equal roots.

Underdamped motion: Γ < ω

When Γ < ω, the discriminant Γ2 − ω2 is negative, and the roots of the
auxiliary equation are complex numbers:

λ = −Γ± iΩ, where Ω =
√

ω2 − Γ2. (36)
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2 Homogeneous differential equations

The general solution is therefore

x(t) = e−Γt [C cos(Ωt) +D sin(Ωt)] , (37)

where C and D are arbitrary constants. Transforming the term in square
brackets, just as in equation (29), we can also write this as

x(t) = Ae−Γt sin(Ωt+ φ). (38)

Figure 4 shows graphs of this function for different values of the arbitrary
constants A and φ. (Section 4 will explain how these arbitrary constants
can be determined from given initial conditions.)
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Figure 4 Two solutions for an underdamped harmonic oscillator with
ω = 1 and Γ = 1/8, corresponding to A = 1, φ = 0 (orange curve) and
A = 1, φ = π/2 (purple curve)

This motion is called underdamped because the damping force is weak
enough for the motion of the particle to oscillate to and fro. The angular
frequency Ω of the damped oscillator is smaller than the angular
frequency ω of the corresponding undamped oscillator (see equation (36)).
Each cycle of the damped oscillator takes a period T = 2π/Ω, which is
longer than the period 2π/ω of the corresponding simple harmonic
oscillation, although this effect is slight if Γ ≪ ω. The amplitude of the
damped oscillations is Ae−Γt, which decreases exponentially with time. In
this context, Γ may be called the decay constant. If Γ approaches zero,
the decay constant approaches zero and the angular frequency Ω
approaches ω, so in this limit the system behaves like a simple harmonic
oscillator.

Overdamped motion: Γ > ω

When Γ > ω, the discriminant Γ2 − ω2 is positive, and the roots of the
auxiliary equation are real negative numbers:

λ1 = −Γ−
√

Γ2 − ω2 and λ2 = −Γ +
√

Γ2 − ω2.
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Second-order differential equations

In this case, the general solution of the homogeneous differential equation is

x(t) = Ceλ1t +De−λ2t, (39)

where C and D are arbitrary constants. Figure 5 shows graphs of this
function for different values of the arbitrary constants C and D.

5 15
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Figure 5 Two solutions for an overdamped harmonic oscillator with
ω = 1/4 and Γ = 1/2, corresponding to C = 1, D = 0 (orange curve) and
C = 0, D = 1 (purple curve)

Because λ1 and λ2 are both negative, the solution dies away exponentially,
and there are no oscillations. This motion is called overdamped because
the damping force is strong enough to prevent oscillations. When Γ
approaches ω from above, both roots approach the value Γ, and the
solution is proportional to e−Γt.

Critically damped motion: Γ = ω

When Γ = ω, the discriminant Γ2 − ω2 is equal to zero. In this case the
general solution is

x(t) = (C +Dt)e−Γt, (40)

where C and D are arbitrary constants. Figure 6 shows graphs of this
function for different values of the arbitrary constants C and D.
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Figure 6 Two solutions for a critically damped harmonic oscillator with
ω = Γ = 1/2, corresponding to C = 1, D = 0 (orange curve) and C = 0,
D = 1 (purple curve)

The motion is described as critically damped. A vehicle suspension
system is usually set up to be close to critical damping, so that it is soft
enough to move in response to a bumpy road, without allowing oscillations.

Exercise 10

Small oscillations of the pendulum shown in Figure 7 can be described by

θ

l

m

Figure 7 A pendulum

the homogeneous differential equation

m
d2θ

dt2
+ γ

dθ

dt
+

mg

l
θ = 0,

where m is the mass of the bob, l is the length of the string, g is the
magnitude of the acceleration due to gravity, and γ is a damping constant.
With mass measured in kilograms, length in metres and time in seconds,
the values of these constants are m = 0.80, l = 2.0, g = 9.8 and γ = 0.016.

(a) Is this oscillation underdamped, overdamped or critically damped?

(b) What is the period of the oscillation?

(c) If the initial amplitude of the oscillation is θ = 0.20 (in radians), what
is the amplitude at t = 100?

Exercise 11

A critically damped harmonic oscillator is described by the differential
equation (28), with m = 1 and k = 4 (in suitable units). Determine the
value of Γ in these units, and write down an expression for the general
solution x(t).
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3 Inhomogeneous differential

equations

3.1 General method of solution

Section 2 focused on finding the general solution of homogeneous linear
constant-coefficient second-order differential equations. This section
explains how to find the general solution of inhomogeneous linear
constant-coefficient second-order differential equations – that is, equations
of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

where a, b, c are constants, with a 6= 0, and f(x) is a given continuous
function of x. The basic method for finding the general solution of such an
equation depends on the principle of superposition, and is illustrated in the
following example.

Example 6

Exercise 3(a) showed that the homogeneous equation

d2y

dx2
+ 5

dy

dx
+ 6y = 0 (41)

has the general solution yc(x) = Ce−2x +De−3x, where C and D areThe notation yc(x) and yp(x)
(see below) will be explained
shortly.

arbitrary constants.

Use this fact, together with the principle of superposition, to show that the
inhomogeneous equation

d2y

dx2
+ 5

dy

dx
+ 6y = 12 (42)

has a solution y(x) = Ce−2x +De−3x + 2 for any C and D.

Solution

We can show that the constant function yp(x) = 2 is a particular solution
of the inhomogeneous equation by substituting it into the left-hand side.
This gives

d2yp
dx2

+ 5
dyp
dx

+ 6yp = 0 + 5× 0 + 6× 2 = 12,

which is the same as the right-hand side, as required.

We know that yc(x) = Ce−2x +De−3x is a solution of equation (41) for
any C and D, and yp(x) = 2 is a solution of equation (42). The principle
of superposition then tells us that yc(x) + yp(x) is a solution of

d2y

dx2
+ 5

dy

dx
+ 6y = 12 + 0 = 12,
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which is identical to equation (42). Hence y(x) = Ce−2x +De−3x + 2 is a
solution of equation (42) for any C and D.

The solution found in the example above contains two arbitrary constants,
C and D (which appear as coefficients of two linearly independent
functions, e−2x and e−3x). We expect the general solution of any
second-order differential equation to contain two independent arbitrary
constants, so y(x) = Ce−2x +De−3x + 2 is the general solution of
equation (42). We will now generalise this idea, but first it is helpful to
introduce some terminology.

Corresponding to the inhomogeneous equation (42), we have the
homogeneous equation (41), obtained by replacing the function on the
right-hand side by zero. This is called the associated homogeneous

equation. The solutions yc and yp also have special names in this context:
yc(x), the general solution of the associated homogeneous equation (41), is
called the complementary function, and yp(x), a particular solution of the
inhomogeneous equation (42), is called a particular integral.

Definitions

Let

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (43)

be an inhomogeneous linear constant-coefficient second-order
differential equation.

• Its associated homogeneous equation is

a
d2y

dx2
+ b

dy

dx
+ cy = 0. (44)

• The general solution yc(x) of the associated homogeneous
equation is known as the complementary function for the
original inhomogeneous equation (43).

• Any particular solution yp(x) of the original inhomogeneous
equation (43) is referred to as a particular integral for that The term particular integral is

used here, rather than the term
particular solution, which we
reserve for a solution that
contains definite numbers rather
than arbitrary constants (see
Section 4).

equation.

The particular integral is not unique – many different choices can be made,
but that does not matter. Suppose that yp

1
and yp

2
are two different

particular integrals for equation (43). Then the principle of superposition
tells us that yp2 − yp1 is a solution of the equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)− f(x) = 0,

which is the associated homogeneous equation (44). But we know that the
general solution of this equation is given by the complementary
function yc, so it follows that yp

2
− yp

1
= yc, or equivalently,

yp
2
= yc + yp

1
.
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Second-order differential equations

Since any solution can be written in this form, it follows that yc + yp
1
is

the general solution of the inhomogeneous equation (43). We have
therefore proved the following important result.

Theorem 2 General solution of an inhomogeneous equation

The general solution of a linear constant-coefficient second-order
differential equation is given by

y(x) = yc(x) + yp(x),

where yc(x) is the complementary function (the general solution of
the associated homogeneous equation) and yp(x) is a particular
integral of the inhomogeneous equation.

Note that yc(x), being the general solution of the associated homogeneous
equation, will contain two arbitrary constants, whereas yp(x), being a
particular solution of equation (43), will contain none. You have already
seen how to find the complementary function yc(x) in Subsection 2.2.
There is no general recipe for finding a particular integral yp(x), but there
are methods for ‘guessing’ a suitable solution, which work in most cases.
The following example illustrates the general technique.

Example 7

Find the general solution of the differential equation

d2y

dx2
+ 9y = 9x+ 9. (45)

Solution

The associated homogeneous equation is

d2y

dx2
+ 9y = 0,

which has the general solution

yc = C cos 3x+D sin 3x,See Exercise 4(b), although
there different symbols are used
for the variables. where C and D are arbitrary constants. This is the complementary

function for equation (45).

A particular integral for equation (45) isYou will see in the next
subsection how to find such a
particular integral. yp = x+ 1.

This may be verified by differentiation and substitution: y′′p = 0, so
substituting into the left-hand side of equation (45) gives

y′′p + 9yp = 0 + 9(x+ 1) = 9x+ 9,

which is the same as the right-hand side of equation (45), as required.
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3 Inhomogeneous differential equations

The general solution of equation (45) is therefore, by Theorem 2,

y = yc + yp = C cos 3x+D sin 3x+ x+ 1,

where C and D are arbitrary constants.

The method of Example 7 may be summarised as follows.

Procedure 2 General solution of an inhomogeneous linear
constant-coefficient second-order differential equation

The general solution of the inhomogeneous linear
constant-coefficient second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x)

is found as follows.

1. First find the complementary function yc(x), i.e. the general The reason why yc is found first
will become clear in
Subsection 3.3.

solution of the associated homogeneous equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

using Procedure 1.

2. Then find a particular integral yp(x).

3. The general solution is then y(x) = yc(x) + yp(x).

It is worth noting that, by Theorem 2, any choice of particular integral in
Procedure 2 gives the same general solution. Formulas obtained for the
general solution may look different for different choices of particular
integral, but they are in fact always equivalent. For example, in Example 7
the particular integral yp = x+ 1 was chosen, and the general solution was
obtained as y = C cos 3x+D sin 3x+ x+ 1. It would have been equally
valid to have chosen yp = x+ 1 + sin 3x as the particular integral. In that
case, the general solution would have been obtained as
y = C cos 3x+D sin 3x+ x+ 1 + sin 3x. This form looks a little different,
but it may be written as y = C cos 3x+ (D + 1) sin 3x+ x+ 1; and since C
and D are arbitrary constants, this form of the general solution represents
exactly the same family of solutions.

Exercise 12

For each of the following differential equations:

• Write down its associated homogeneous equation and its
complementary function yc. The complementary functions

can be found from Exercise 6(a)
and Example 3.

• Find a particular integral of the form yp = p, where p is a constant.

• Write down the general solution of the differential equation.

(a)
d2y

dx2
+ 4y = 8 (b)

d2y

dx2
− 3

dy

dx
+ 2y = 6
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Second-order differential equations

In Exercise 12, where the right-hand sides of the equations are constants,
it is possible to find a particular integral almost ‘by inspection’; but this
method is generally inadequate. Fortunately, there exist procedures for
finding a particular integral for equations involving wide classes of
right-hand-side functions f(x). The remainder of this section considers
some of the simpler cases, where it is possible to determine the general

form of a particular integral by inspection, although some manipulation is
needed to determine the values of certain coefficients.

3.2 The method of undetermined coefficients

You have seen that the linear constant-coefficient second-order differential
equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x) (Eq. 43)

has the general solution y(x) = yc(x) + yp(x), where the complementary
function yc(x) is found by solving the associated homogeneous equation,
using Procedure 1. However, the methods for finding a particular integral
yp(x) are another matter.

We can proceed by guessing that yp(x) takes some general form, called a
trial solution, which involves one or more constants (or coefficients)
whose values are initially undetermined. Then, by substituting the trial
solution into the differential equation, we can hope to find the values of
these coefficients, and hence find a particular integral. This is called the
method of undetermined coefficients.

You saw an example of this method in Exercise 12. There the function
f(x) on the right-hand side of the differential equation is a constant, and
the trial solution is taken to be of the form yp = p, where p is an unknown
constant, whose value is determined by substituting into the differential
equation.

The choice of trial solution depends on the function f(x) on the right-hand
side of equation (43). We will look at three cases:

• polynomial functions

• functions with exponential behaviour

• sinusoidal functions.

When we have considered examples for each case, we will gather
everything together as a general procedure. Bear in mind, though, that the
method finds only a particular integral for the differential equation; to find
the general solution you also need to find the complementary function and
add this to the particular integral, according to Procedure 2.
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3 Inhomogeneous differential equations

Polynomial functions

If f(x) is a given polynomial, we have

f(x) = mnx
n +mn−1x

n−1 + · · · +m1x+m0,

where m0,m1, . . . ,mn are given constants. This class of functions includes
constant functions (n = 0), linear functions (n = 1), quadratic functions
(n = 2) and higher-order polynomials (n ≥ 3).

Let us start by considering the case where f(x) is a linear function
(a polynomial of degree 1).

Example 8

Find a particular integral for

3
d2y

dx2
− 2

dy

dx
+ y = 4x+ 2.

Solution

We try a solution of the form For simplicity, we denote the
trial solution by y, with no
subscript p.y = p1x+ p0,

where p1 and p0 are coefficients to be determined so that the differential
equation is satisfied. To try this solution, we need the first and second
derivatives of y:

dy

dx
= p1,

d2y

dx2
= 0.

Substituting these into the left-hand side of the differential equation gives

3
d2y

dx2
− 2

dy

dx
+ y = 3× 0− 2p1 + (p1x+ p0)

= p1x+ (p0 − 2p1).

For y = p1x+ p0 to be a solution of the differential equation, we require
that

p1x+ (p0 − 2p1) = 4x+ 2 for all x. (46)

To find the two unknown coefficients p1 and p0, we compare the Notice that we can get two
separate bits of information
from the same equation because
it applies for all x.

coefficients on both sides of equation (46). Comparing the terms in x gives
p1 = 4. Comparing the constant terms gives p0 − 2p1 = 2, so
p0 = 2 + 2p1 = 2 + 2× 4 = 10. Therefore we have the particular integral

yp = 4x+ 10.

Check : If yp = 4x+ 10, then dyp/dx = 4, d2yp/dx
2 = 0, and substituting

into the left-hand side of the differential equation gives

3
d2yp
dx2

− 2
dyp
dx

+ yp = 3× 0− 2× 4 + (4x+ 10) = 4x+ 2,

as required.
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Second-order differential equations

In the example above, the target function f(x) = 4x+ 2 was a linear
function, and the trial solution p1x+ p0 was also a linear function. When
this trial solution was substituted into the left-hand side of the differential
equation, it produced another linear function, p1x+ (p0 − 2p1), whose
coefficients could be compared with those of the target function.

This is really the key to the method. The idea is to choose a trial solution
that includes undetermined constants which, when substituted into the
left-hand side of the differential equation, generates a function that can be
compared directly with the target function f(x), allowing the constants to
be found.

This generally means that the trial solution should be chosen to belong to
the same class of functions as f(x) on the right-hand side of the equation.
However, we must choose a trial solution that is general enough, so that its
first and second derivatives also belong to the same class as the trial
solution itself. This is illustrated in the following exercise.

Exercise 13

Use trial solutions of the form y = p1x+ p0 to find particular integrals for
each of the following differential equations.

(a)
d2y

dx2
− 2

dy

dx
+ 2y = 2x+ 3 (b)

d2y

dx2
+ 2

dy

dx
+ y = 2x

Note that the trial solution y = p1x+ p0 was suggested in Exercise 13(b),
even though f(x) is just a multiple of x and contains no constant term. In
fact, a trial solution of the form p1x would not work in this case. The
reason is that we need to take the first and second derivatives of the trial
solution and substitute them into the differential equation. These
derivatives must belong to the class encompassed by the trial solution. In
this case, the first derivative of p1x is the constant function p1, so the trial
solution must contain a constant term.

In general, the following advice can be given:

• If f(x) = m0 is a constant function, then you should use a constantYou saw examples of this in
Exercise 12. trial solution of the form y = p0.

• If f(x) = m1x+m0 is a linear function, then you should use a linear
trial solution of the form y = p1x+ p0. Even if m0 = 0, you should not
initially assume that p0 = 0.

• More generally, if f(x) = mnx
n +mn−1x

n−1 + · · ·+m1x+m0, where
mn 6= 0, then you should use a trial solution of the form
y = pnx

n + pn−1x
n−1 + · · ·+ p1x+ p0. Even if some of the coefficients

m0,m1, . . . ,mn−1 are equal to zero, you should not initially assume
that any of the coefficients p0, p1, . . . , pn are equal to zero.
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3 Inhomogeneous differential equations

Exercise 14

Find a particular integral for

y′′ − y = t2.

Functions with exponential behaviour

Now let us suppose that the target function f(x) on the right-hand side of
the inhomogeneous equation takes the form f(x) = mekx, where m and k
are constants. In general, such functions are not the exponential function,
but we can say that they exhibit exponential behaviour. The following
example shows how to find a particular integral in such a case.

Example 9

Find a particular integral for

d2y

dx2
+ 9y = 2e3x.

Solution

We try a solution of the form

y = pe3x, Since the derivative of e3x is
3e3x, the exponent (3x)
appearing in y(x) should be the
same as that appearing in f(x),
then only the coefficient p is to
be determined.

where p is an undetermined coefficient that can be found by requiring that
the differential equation is satisfied. Differentiating y = pe3x gives

dy

dx
= 3pe3x,

d2y

dx2
= 9pe3x.

Substituting these into the left-hand side of the differential equation gives

d2y

dx2
+ 9y = 9pe3x + 9pe3x = 18pe3x.

Therefore, for y = pe3x to be a solution of the differential equation, we
require that 18pe3x = 2e3x for all x. Hence p = 1

9 , and

yp = 1
9e

3x

is a particular integral for the given differential equation.

The general rule is as follows: when f(x) = mekx, we use a trial solution of
the form y(x) = pekx, where p is an undetermined constant. The value of k
in y(x) is the same as in f(x).

Exercise 15

Find a particular integral for

2
d2y

dx2
− 2

dy

dx
+ y = 2e−x.
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Sinusoidal functions

Finally, let us suppose that the target function f(x) on the right-hand side
of the inhomogeneous equation takes the form

f(x) = m cos kx+ n sin kx,

where m, n and k are constants. Any such function is said to be
sinusoidal. In this case, the appropriate trial solution is

y(x) = p cos kx+ q sin kx,

where p and q are undetermined constants. Following earlier ideas, the trial
solution must be general enough to be in the same class as its first and
second derivatives. So even if f(x) contains only a sine or only a cosine,
the trial solution y(x) must contain both a sine and a cosine. However, the
value of the constant k in y(x) should always be the same as that in f(x).

Example 10

Find a particular integral for

d2y

dx2
+ 2

dy

dx
+ 2y = 10 sin 2x.

Solution

We try a solution of the form

y = p cos 2x+ q sin 2x,

where p and q are coefficients whose values are to be found by substituting
into the differential equation. Differentiating y gives

dy

dx
= −2p sin 2x+ 2q cos 2x,

d2y

dx2
= −4p cos 2x− 4q sin 2x.

Substituting these into the left-hand side of the differential equation gives

d2y

dx2
+ 2

dy

dx
+ 2y = (−4p cos 2x− 4q sin 2x) + 2(−2p sin 2x+ 2q cos 2x)

+ 2(p cos 2x+ q sin 2x)

= (−2p+ 4q) cos 2x+ (−4p − 2q) sin 2x.

This can be equated to the right-hand side of the differential equation, so

(−2p+ 4q) cos 2x+ (−4p − 2q) sin 2x = 10 sin 2x for all x. (47)

To find p and q, we compare the coefficients of cos and sin on both sides ofComparing coefficients works
because the cos and sin functions
are linearly independent.

equation (47). For this equation to be true for all x, we must have

−2p+ 4q = 0 and −4p− 2q = 10.

Solving these simultaneous equations, we conclude that p = −2, q = −1, so

yp(x) = −2 cos 2x− sin 2x

is a particular integral for the given differential equation.
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3 Inhomogeneous differential equations

Exercise 16

Find a particular integral for

d2y

dt2
− dy

dt
= cos 3t+ sin 3t.

The following procedure summarises the results of this subsection.

Procedure 3 Method of undetermined coefficients

To find a particular integral for the inhomogeneous linear
constant-coefficient second-order differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

use a trial solution y(x) with a form similar to that of f(x). The
following table gives appropriate trial solutions for simple cases. There are exceptional cases

where these trial solutions do
not work; see Subsection 3.3.

Target function f(x) Trial solution y(x)

mnx
n +mn−1x

n−1 + · · · pnx
n + pn−1x

n−1 + · · ·
+m1x+m0 + p1x+ p0

mekx pekx

m cos kx+ n sin kx p cos kx+ q sin kx

The full trial solutions in the right-hand column should be used even
when some of the coefficients in f(x) are missing (as in m2x

2 or
m cos kx, for example).

To determine the coefficients in y(x), differentiate it twice, substitute
into the left-hand side of the differential equation, and equate
coefficients of corresponding terms.

Exercise 17

What form of trial solution y should you use in order to find a particular In this question, you need not
find the particular integrals.integral for each of the following differential equations?

(a)
d2y

dx2
− y = e3x (b)

d2y

dx2
+ 2

dy

dx
− 4y = sin 3x

To round off this discussion of inhomogeneous differential equations, the
following exercise gives a variety of equations for further practice.
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Exercise 18

Find the general solutions of the following differential equations.

The complementary functions of the differential equations in parts (a)See Exercise 6(a) and
Exercise 3(c). and (c) are C cos 2t+D sin 2t and Ce−2x +De2x, respectively.

(a)
d2θ

dt2
+ 4θ = 2t

(b)
d2y

dx2
+ 4y = 10 sin 3x

(c)
d2y

dx2
− 4y = 15e−x

3.3 Exceptional cases

There are some exceptional cases for which Procedure 3 fails. You will not
encounter these exceptions in assignments or in the exam, but it is useful
to have some idea of what can go wrong, and how a particular integral can
be found under such circumstances.

To take a definite case, consider the differential equation

d2y

dx2
− 4y = 2e2x. (48)

The associated homogeneous equation is

d2y

dx2
− 4y = 0,

and this has general solution y = Ce−2x +De2x. The difficulty is nowSee Exercise 3(c).

apparent. Procedure 3 suggests that we use the trial solution y = pe2x, but
this happens to be a solution of the associated homogeneous equation
(with C = 0, D = p), so substituting y = pe2x into the left-hand side of
equation (48) gives zero for any value of p, and this cannot be equal to the
non-zero right-hand side.

Difficulties like this are generally overcome by multiplying whichever trial
solution is suggested in Procedure 3 by the independent variable, x. So the
trial solution to use for equation (48) would be

y = pxe2x.

Calculating the derivatives of this function, we get

dy

dx
= pe2x + 2pxe2x = p(1 + 2x)e2x,

d2y

dx2
= 2pe2x + 2p(1 + 2x)e2x = 4p(1 + x)e2x.

Substituting these into the left-hand side of the differential equation gives

d2y

dx2
− 4y = 4p(1 + x)e2x − 4pxe2x = 4pe2x.
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3 Inhomogeneous differential equations

Therefore y = pxe2x is a solution of the differential equation provided that
4pe2x = 2e2x for all x. Hence p = 1

2 , and

yp = 1
2xe

2x

is a particular integral for differential equation (48).

A similar technique works when the inhomogeneous term is a constant, as
illustrated in the following example.

Example 11

The motion of a small ball bearing dropped into viscous oil can be
modelled by the differential equation

mẍ+ rẋ−mg = 0,

where m is the mass of the ball, r is a constant related to the viscosity of
the oil, g is the magnitude of the acceleration due to gravity, and x is the
vertical distance from the point of release.

(a) Find the general solution x(t) of this differential equation.

(b) Use your answer to part (a) to show that the velocity of the ball
approaches the limiting value mg/r as t becomes very large.

Solution

(a) The inhomogeneous equation is

mẍ+ rẋ = mg,

and the auxiliary equation for the associated homogeneous equation is

mλ2 + rλ = 0.

This has solutions λ = 0 and λ = −r/m, so the complementary
function is

xc = C +De−rt/m.

The inhomogeneous term is the constant function mg, so Procedure 3
suggests a trial solution x = p0. However, this is a solution of the
associated homogeneous equation (with C = p0, D = 0). Hence we try
x = p0t instead. Differentiating and substituting gives

rp0 = mg,

so

p0 =
mg

r
.

Hence a particular integral is

xp =
mgt

r
,

and the general solution is

x(t) = C +De−rt/m +
mgt

r
,

where C and D are arbitrary constants.
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Second-order differential equations

(b) The velocity is

ẋ = −Dr

m
e−rt/m +

mg

r
.

This approaches the limiting value mg/r as t → ∞.

This answer can also be obtained directly from the differential
equation. If the velocity tends towards a constant value, the
acceleration ẍ approaches zero, and the differential equation itself tells
us that ẋ tends to mg/r.

3.4 Combined cases

Another situation that crops up occasionally is when the inhomogeneous
term is a linear combination of polynomial, sinusoidal and exponential
functions. You know what to do when the inhomogeneous term is x+ 1,
and you also know what to do if it is e2x, but what if the inhomogeneous
term is 2e2x + 18(x+ 1)? The secret is to use the principle of
superposition to split the problem into smaller tasks. Again, we include
this topic for interest and completeness: assignments and the exam will
not contain questions on such combined cases.

Example 12

Find a particular integral for

d2y

dx2
+ 9y = 2e3x + 18x+ 18. (49)

Solution

In Example 9 (Subsection 3.2), you saw that yp = 1
9e

3x is a particular
integral for

d2y

dx2
+ 9y = 2e3x.

In Example 7 (Subsection 3.1), you saw that yp = x+ 1 is a particular
integral for

d2y

dx2
+ 9y = 9x+ 9.

Therefore, by the principle of superposition, a particular integral for
equation (49) is

yp = 1
9e

3x + 2(x+ 1) = 1
9e

3x + 2x+ 2.
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This approach can be used more generally. To find a particular integral for

a
d2y

dx2
+ b

dy

dx
+ cy = k1 f1(x) + k2 f2(x), (50)

where k1 and k2 are constants, we can split the task up – finding the
particular integral g1(x) that applies when just f1(x) is on the right-hand
side, and the particular integral g2(x) that applies when just f2(x) is on
the right-hand side. The principle of superposition then tells us that
k1 g1(x) + k2 g2(x) is a particular integral for equation (50).

Exercise 19

Find a particular integral for the differential equation

2
d2x

dt2
+ 3

dx

dt
+ 2x = 12 cos 2t+ 10.

(Neither of the terms on the right-hand side satisfies the associated
homogeneous equation, so this is not an exceptional case.)

Exercise 20

Find the general solutions of the following differential equations (starting
from scratch with no complementary functions given).

(a) u′′(t) + 4u′(t) + 5u(t) = 5 (b) 3
d2y

dx2
− 2

dy

dx
− y = e2x

4 Initial conditions and boundary

conditions

In Sections 2 and 3 you saw how to find the general solution of a
homogeneous or inhomogeneous linear constant-coefficient second-order
differential equation. In practice, however, we usually need to select a
particular solution that satisfies certain additional conditions. This section
explains how this is done.

In Unit 2 you saw that the general solution of a first-order differential
equation contains one arbitrary constant, and that a single additional
condition (called an initial condition) is enough to fix the value of this
constant and hence determine the particular solution. In the case of a
second-order differential equation, the general solution contains two
arbitrary constants, and two additional conditions are required.

There are two types of additional conditions for second-order differential
equations: initial conditions and boundary conditions. Problems involving
such conditions are called initial-value problems and boundary-value

problems, respectively, and are discussed in Subsections 4.1 and 4.2.
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4.1 Initial-value problems

For a first-order differential equation, an initial condition is one that
specifies the value of the dependent variable (y = a, say) at a given value
of the independent variable (t = t0); this is often written in the form
y(t0) = a.

For a second-order differential equation, the initial conditions specify the
value of the dependent variable (y = a) and the value of its derivative
(dy/dy = b), for the same given value of the independent variable (t = t0),
and they are often written in the form y(t0) = a, y′(t0) = b.

Very often, t0 represents the initial time when a system is released and we
are interested in the subsequent motion. But this is not essential; we could
equally well be interested in the prior motion that leads up to given values
of x and dx/dt at some final time t0. Indeed, initial values may have
nothing to do with time at all if the independent variable represents some
other quantity such as position. The only essential point is that values of
the dependent variable and its derivative must both be given at the same

value of the independent variable.

Initial conditions arise naturally in many mechanical problems, where the
initial values of the position x and velocity dx/dt are often specified. For
example, we may know that a ball is thrown vertically upwards, at t = 0,
from an initial position with an initial velocity.

The pendulum in Figure 8 gives another example. When the string of the
θ0

Figure 8 Possible initial
conditions for a pendulum

pendulum makes its greatest angle θ0 with the vertical, the pendulum
changes its direction of swing and comes momentarily to rest. So if the
pendulum changes direction at t = t0, we have the initial conditions θ = θ0
and dθ/dt = 0 when t = t0.

Definitions

• Initial conditions associated with a second-order differential
equation with dependent variable y and independent variable x
specify that y and dy/dx take values a and b, respectively, when
x takes the value x0. These conditions can be written as

y = a and
dy

dx
= b when x = x0

or as

y(x0) = a, y′(x0) = b.

The numbers x0, a and b are often referred to as initial values.

• The combination of a second-order differential equation and
initial conditions is called an initial-value problem.

The following example shows how initial conditions can be used to find the
two arbitrary constants in the general solution, and hence determine a
particular solution of a second-order differential equation.
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Example 13

The general solution of the differential equation

d2y

dx2
− 3

dy

dx
+ 2y = 0

is

y = Cex +De2x, (51)

where C and D are arbitrary constants (see Example 3). Find the
particular solution that satisfies the initial conditions y = 0 and dy/dx = 1
when x = 0.

Solution

One of the initial conditions involves dy/dx, so we take the derivative of
the general solution (51), getting

dy

dx
= Cex + 2De2x. (52)

The initial conditions state that y(0) = 0, y′(0) = 1. Substituting x = 0,
y = 0 into equation (51) gives

0 = Ce0 +De0 = C +D,

while substituting x = 0, dy/dx = 1 into equation (52) gives

1 = Ce0 + 2De0 = C + 2D. Note that when you are checking
a particular solution, you should
check that it satisfies the initial
or boundary conditions as well
as the differential equation.

Solving these equations gives C = −1, D = 1, so the required particular
solution is

y = −ex + e2x.

All the initial-value problems that you will meet in this module have
unique solutions, so if you can find a solution that satisfies the initial
conditions, then this is the solution.

Exercise 21

Solve the following initial-value problems.

(a) The general solution of u′′(t) + 9u(t) = 0 is u = C cos 3t+D sin 3t,
where C and D are arbitrary constants (see Exercise 4(b)). Find the
particular solution that satisfies the initial conditions u

(

π
2

)

= 0,

u′
(

π
2

)

= 1.

(b) The general solution of u′′(t) + 4u′(t) + 5u(t) = 5 is
u = e−2t(C cos t+D sin t) + 1, where C and D are arbitrary constants
(see Exercise 20(a)). Find the particular solution that satisfies the
initial conditions u(0) = 3, u′(0) = 1.
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4.2 Boundary-value problems

In initial-value problems, the two conditions used to select a particular
solution both refer to the same value of the independent variable. But this
need not be the case. If the independent variable is x, then we could have
one condition for x = x1 and another for x = x2, say. Such conditions are
called boundary conditions. Later in the module (Unit 12) you will meet
equations called partial differential equations which explain a vast range of
phenomena; in many cases, these equations lead to second-order
differential equations supplemented by boundary conditions.

Boundary conditions arise, for example, in considering the shape of a chain
of length L that is suspended between two points, with heights h1 and h2
(see Figure 9). If y(x) is the height of the chain at a horizontal distance x

x

y(x)

x1 x2

h1
h2

Figure 9 Finding the shape
of a hanging chain with fixed
ends

from an origin, then the equation for y(x) has to satisfy two boundary
conditions: y(x1) = h1 and y(x2) = h2. This pair of boundary conditions
gives the value of y at two different points. In other contexts, each
boundary condition could specify the value of either y or dy/dx (or even a
relationship between them).

The conditions are called ‘boundary’ conditions because (as in the chain
example) they often refer to conditions at the endpoints x1 and x2 of an
interval in which we want to explore the solutions of a differential
equation. (This is not essential, however.)

Definitions

Consider a second-order differential equation with dependent
variable y and independent variable x.

• Boundary conditions associated with such an equation specify
the values of y (or dy/dx, or some combination of y and dy/dx)
at two different values of x. For example, they could specify that
y(x1) = y1 and y(x2) = y2. The numbers x1, x2, y1 and y2 are
often referred to as boundary values.

• The combination of a second-order differential equation and
boundary conditions is called a boundary-value problem.

The following example shows how boundary conditions can be used to find
values for the two arbitrary constants that appear in the general solution of
a second-order differential equation, and hence find a particular solution.

Example 14

The differential equation

d2y

dx2
+ 9y = 0

has general solution

y = C cos 3x+D sin 3x, (53)
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where C and D are arbitrary constants (see Exercise 4(b)). Find the
particular solution that satisfies the boundary conditions y = 0 when x = 0
and dy/dx = 1 when x = π

3 .

Solution

One of the boundary conditions involves dy/dx, so we need the derivative
of the general solution (53):

dy

dx
= −3C sin 3x+ 3D cos 3x. (54)

The boundary conditions state that y(0) = 0, y′
(

π
3

)

= 1. Substituting
x = 0, y = 0 into equation (53) gives

0 = C cos 0 +D sin 0 = C,

so C = 0. Substituting x = π
3 , y

′ = 1 and C = 0 into equation (54) gives

1 = 3D cos π = −3D.

Therefore C = 0 and D = −1
3 , so the required particular solution is

y = −1
3 sin(3x).

Unlike initial-value problems, some boundary-value problems may have no

solutions even when the differential equation is linear and
constant-coefficient, and has a continuous function on the right-hand side.
The following example illustrates this point.

Example 15

The differential equation

d2y

dx2
+ 4y = 0

has general solution y = C cos 2x+D sin 2x, where C and D are arbitrary
constants (see Exercise 6(a)). Try to find a solution to the boundary-value
problem based on this differential equation and the boundary conditions
y(0) = 0, y

(

π
2

)

= 1.

Solution

Substituting each of the boundary conditions into the general solution in
turn gives

0 = C cos 0 +D sin 0 = C,

1 = C cos π+D sinπ = −C.

There is no solution for which C = 0 and C = −1, so there is no solution of
the differential equation that satisfies the given boundary conditions.
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An outcome of ‘no solution’ need not be unreasonable. If a physical system
obeys a differential equation, and there is no solution consistent with a
given set of boundary conditions, then those boundary conditions must be
unrealistic. For example, the chain in Figure 9 cannot hang from points
that are further apart than its fixed length.

It is also possible for boundary-value problems to have solutions that are
not unique, as the following important example illustrates.

Example 16

At a given moment in time, the displacement y of an oscillating guitar
string at a distance x from one of its ends satisfies the differential equation

d2y

dx2
+ k2y = 0

for a fixed constant k, which is proportional to the frequency of the
oscillation (i.e. the pitch of sound produced). The string is held fixed at its
ends, x = 0 and x = L, so that y(x) satisfies the boundary conditions
y(0) = 0 and y(L) = 0. Find the possible solutions to this boundary-value
problem, and show that solutions can be found only if k = πn/L, where n
is an integer.

Solution

The general solution of the differential equation is

y(x) = A sin(kx) +B cos(kx),

where A and B are arbitrary constants.

The boundary condition y(0) = 0 implies that B = 0, so y(x) = A sin(kx).
In order to satisfy the boundary condition y(L) = 0, we must have
A sin(kL) = 0. This equation has the trivial solution A = 0, which
corresponds to y(x) = 0. For A 6= 0, it gives the condition sin(kL) = 0,
which implies that kL = nπ, where n is an integer. Hence k = nπ/L and
we conclude that the displacement of the guitar string must be of the form

y(x) = A sin
(nπx

L

)

. (55)

When considering the possible sinusoidal shapes adopted by an oscillating
guitar string, we can restrict n to the positive integers n = 1, 2, 3, . . .. This
is because A sin(−nπx/L) = −A sin(nπx/L), so changing the sign of n is
equivalent to changing the sign of A. The value n = 0 can also be omitted,
because it is equivalent to taking A = 0.
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4 Initial conditions and boundary conditions

Motions with different values of n are said to be different modes of

oscillation of the string. The first three modes of oscillation are shown
schematically in Figure 10; in each case, the largest excursions of the string
from the equilibrium y = 0 position are indicated.

x

y(x)

L0

n = 1

x

y(x)

L0

n = 2

x

y(x)

L0

n = 3

Figure 10 The first three modes of oscillation of a guitar string. These
modes produce sounds of different pitches.

The fact that there are many different solutions satisfying the boundary
conditions should not alarm you. This just means that the boundary
conditions restrict the possible solutions, but extra information (in the
form of initial conditions telling us how the guitar string is released) is
needed to determine the precise motion that arises in a given situation.

Partial differential equations

The boundary conditions allow us to identify the possible modes, but
further information is needed to predict the actual motion of the
string. You will see how this works in Unit 12, when we discuss a
more general type of differential equation, called a partial differential

equation. The process of solving a partial differential equation often
leads to a boundary-value problem for a second-order differential
equation, and this is the main reason why boundary-value problems
are important in physics and engineering.

An example arises in quantum mechanics, which can give rise to a
differential equation very like that for a vibrating string. In this
context, the fact that the constant k takes discrete values corresponds
to the fact that the system has discrete energy levels, a phenomenon
called the quantisation of energy.
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Exercise 22

This question refers to the differential equation

u′′(x) + 4u(x) = 0,

which has the general solution u = C cos 2x+D sin 2x, where C and D are
arbitrary constants (see Exercise 6(a)).

Each part gives a set of additional conditions. State whether these are
initial conditions or boundary conditions, and find the solution (or
solutions) that satisfy both the differential equation and the additional
conditions.

(a) u(0) = 1, u′(0) = 0 (b) u(0) = 0, u
(

π
2

)

= 0

(c) u
(

π
2

)

= 0, u′
(

π
2

)

= 0 (d) u(−π) = 1, u
(

π
4

)

= 2

5 Resonance

The material in this section is non-assessable and will not be tested in
continuous assessment or in the exam. However, we strongly advise
students of physical science to study it, as these ideas will be used in
higher-level modules.

In Subsection 2.4, we used the physical example of a damped harmonic
oscillator to gain insights into the solutions of homogeneous linear
constant-coefficient second-order differential equations. This final section
does something similar for inhomogeneous equations.

Suppose that an object of mass m moves to and fro along the x-axis
around an equilibrium position x = 0. The object has position x(t) at
time t. It experiences a force −kx due to a spring, and a damping force
−γ dx/dt that opposes the motion of the object, where the constants m, k
and γ are all positive. Up to this point, the system is just the damped
harmonic oscillator considered earlier.

Now suppose that an additional time-dependent force f(t) is applied to the
object. This force is due to some external agency, and does not depend on
the object’s position or velocity. Then Newton’s second law tells us that

−kx− γ
dx

dt
+ f(t) = m

d2x

dt2
,

which is equivalent to the inhomogeneous linear constant-coefficient
second-order differential equation

m
d2x

dt2
+ γ

dx

dt
+ kx = f(t). (56)
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5 Resonance

This system is known as a forced damped harmonic oscillator, and
the external force is called the driving force.

A very important case occurs when the externally-applied driving force is a
sinusoidal function of time. We therefore take

f(t) = F0 sinωt,

where F0 and ω are positive constants. Under these circumstances,
equation (56) can be written in the form

d2x

dt2
+ 2Γ

dx

dt
+ ω2

0x = a0 sinωt, (57)

where Γ = γ/2m, ω0 =
√

k/m and a0 = F0/m are all positive constants.
Here, ω0 is the angular frequency of the simple harmonic oscillator (in the
absence of damping or external forces). We include the subscript zero to
distinguish ω0 from the angular frequency ω of the driving force.

According to Procedure 2, the general solution of equation (57) is the sum
of a complementary function xc(t) and a particular integral xp(t). The
complementary function is the general solution of the associated
homogeneous equation

d2x

dt2
+ 2Γ

dx

dt
+ ω2

0x = 0,

and you saw in Subsection 2.4 that this general solution contains an
exponentially decaying factor e−Γt. Because of this factor, the This decay is a direct

consequence of the damping
force.

complementary function represents a short-lived or transient contribution
to the motion, which eventually dies away. Once this transient contribution
has become negligible, the system settles down to a steady-state motion,
given by the particular integral, which we focus on here.

The required particular integral can be found using the methods of
Subsection 3.2. We can substitute a trial solution

x(t) = p cos(ωt) + q sin(ωt)

into differential equation (57), and find p and q by matching the
coefficients of cos(ωt) and of sin(ωt) on both sides of the equation. The
method is identical to that used in Example 10.

The algebra gets a little messy, so we now introduce an alternative
approach, which is more efficient in this case. The key ingredient is Euler’s
formula, which tells us that

a0e
iωt = a0 cos(ωt) + ia0 sin(ωt),

the imaginary part of which is equal to the right-hand side of
equation (57). We therefore consider a differential equation that is closely
related to equation (57), namely

d2z

dt2
+ 2Γ

dz

dt
+ ω2

0z = a0e
iωt. (58)

Because the right-hand side of this equation is complex, the function z(t)
in this equation must also be complex.
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Substituting z(t) = u(t) + i v(t) into equation (58), and equating real parts
and imaginary parts on both sides, we get

d2u

dt2
+ 2Γ

du

dt
+ ω2

0u = a0 cos(ωt),

d2v

dt2
+ 2Γ

dv

dt
+ ω2

0v = a0 sin(ωt).

It follows that v(t), which is the imaginary part of z(t), satisfies the main
equation of interest, equation (57). Our tactic will therefore be to solve
equation (58) for z(t) and then take its imaginary part; this is an effective
shortcut because equation (58) is easier to solve than equation (57).

Substituting the trial solution z = peiωt into equation (58), we get
[

(iω)2 + 2Γ(iω) + ω2
0

]

peiωt = a0e
iωt,

from which we obtain the particular integral

z(t) = a0
eiωt

ω2
0 − ω2 + 2iΓω

.

Multiplying top and bottom by ω2
0 − ω2 − 2iΓω and using Euler’s formula,

this can be written as

z(t) = a0

[

cos(ωt) + i sin(ωt)
] [

(ω2
0 − ω2)− 2iΓω

]

(ω2
0 − ω2)2 + 4Γ2ω2

. (59)

The solution that we need is the imaginary part of this expression.
Multiplying out the brackets and picking out the coefficient of i, we
conclude that equation (57) has the particular integral

x(t) = a0
(ω2

0 − ω2) sin(ωt)− 2Γω cos(ωt)

(ω2
0 − ω2)2 + 4Γ2ω2

,

which is of the expected form

x(t) = p cos(ωt) + q sin(ωt),

where

p =
−2Γω

(ω2
0 − ω2)2 + 4Γ2ω2

and q =
(ω2

0 − ω2)a0

(ω2
0 − ω2)2 + 4Γ2ω2

.

The interpretation of this expression is clarified by writing it in the form

x(t) = A sin(ωt+ φ), (60)

where A is the amplitude and φ is the phase constant. These can be found
by using the argument that led to equations (31) and (32) in

Subsection 2.4. We have A =
√

p2 + q2 and tanφ = p/q, so

A =
a0

√

(ω2
0 − ω2)2 + 4Γ2ω2

(61)

and

tanφ = − 2Γω

ω2
0 − ω2

. (62)
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Equation (60) gives the response of the system to the driving force once
the transient motion associated with the complementary function has died
away. Not surprisingly, the system performs a sinusoidal oscillation with
the same angular frequency ω as the driving force. However, the
amplitude A and phase constant φ behave in interesting ways. We focus on
cases where the oscillator is underdamped (Γ < ω0). The resonance behaviour

illustrated in Figure 11 appears
only if the oscillator is
underdamped. A forced
overdamped oscillator still
performs sinusoidal oscillations,
but its amplitude always
decreases as ω increases.

Figure 11(a) shows the amplitude A as a function of the driving angular
frequency ω for four different values of the damping parameter Γ. In each
case, the amplitude is greatest when ω is equal to the natural angular
frequency ω0 of the corresponding undriven undamped oscillator. This
effect appears as a peak in the graph, which becomes higher and narrower
as the damping parameter Γ is reduced. This phenomenon is called
resonance, and the angular frequency ω = ω0 at which the response is
greatest is called the resonant angular frequency.

A

ω

ωω0

ω0

Γ = 0.50 Γ = 0.25

Γ = 0.10

Γ = 0.05
φ

−π
2

−π

(a) (b)

Figure 11 The response of a forced underdamped harmonic oscillator
with ω0 = 1 as a function of the driving angular frequency ω:
(a) the amplitude A for Γ = 0.50, Γ = 0.25, Γ = 0.10 and Γ = 0.05;
(b) the corresponding phase constant φ

The phase constant φ is plotted in Figure 11(b). In general, the oscillation In plotting the graph in
Figure 11(b), it was assumed
that φ is a continuous function
of ω. The arctan function was
therefore allowed to extend
beyond the range from −π/2 to
π/2.

of the responding system lags behind the driving force, so φ is negative.
The phase constant does not depend on the amplitude of the driving force,
but it does depend on its angular frequency. At low angular frequencies,
the lag is small. At the resonant angular frequency, the lag is a quarter of
a cycle, and this grows to half a cycle at frequencies that are much larger
than ω0.

Exercise 23

Suppose that the displacement x(t) of a forced damped harmonic oscillator
obeys the inhomogeneous equation

d2x

dt2
+ 2Γ

dx

dt
+ ω2

0x = a0 cos(ωt),

where Γ, ω0 and a0 are positive constants. Use the method based on
equation (58) to find a particular integral for this equation, and hence
obtain an expression for the amplitude as a function of ω.
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Exercise 24

Use equation (61) to obtain simple formulas for the amplitude of
oscillation of a forced underdamped oscillator in the following cases.

Express all your answers as simple fractions (involving a0, ω0, Γ and ω as
necessary). You will need to make suitable approximations in the first two
cases.

(a) ω ≪ ω0 (b) ω ≫ ω0 (c) ω = ω0
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Examples of resonance effects

Resonance occurs when an oscillation is sustained by an external
influence, and the amplitude of the oscillation peaks strongly at a
particular angular frequency of the external influence.

A familiar example occurs when you push a swing. Swings are
designed to have little friction, so Γ is small and there is a
pronounced resonance effect. You can get a motion of large amplitude
if you push at the same angular frequency as the natural angular
frequency of the swing.

Simple radio receivers use the phenomenon of resonance to select
which radio station to receive. Every radio station works at a
different ‘carrier’ frequency. A circuit inside the receiver obeys the
same equation as the damped harmonic oscillator, with electrical
current playing the role of displacement x(t). Tuning the radio
receiver changes the natural frequency of this circuit, bringing it into
resonance with the frequencies of various radio stations. In a radio
receiver, Γ is very small, so the receiver responds to only a very
narrow band of frequencies, allowing a single station to be selected.

In the case of a magnetic resonance imaging (MRI) machine, the
oscillating quantity is provided by magnetic properties of atomic
nuclei, and the resonant frequency depends on the strength of an
applied magnetic field. Images are obtained by placing the patient in
a strong non-uniform magnetic field, so that different parts of the
body are characterised by different resonant frequencies.

Finally, when a light wave (or other electromagnetic wave) is shone on
a material, it causes the electrons in the material to oscillate to and
fro. In a classical model, the electrons behave like forced damped
harmonic oscillators, with the driving force supplied by the light
wave. Energy is transferred from the light wave to the oscillating
electrons, so some of the light is absorbed. We can therefore use the
equations of forced damped harmonic motion to model the absorption
of light in materials.

The absorption of light by single atoms is best described by quantum
mechanics. Rather remarkably, however, resonance peaks in
absorption are still predicted. In an image of the spectrum of
sunlight, amongst the dark lines, there are lines due to absorption of
light by helium in the solar atmosphere. These lines are found where
the frequency of vibration of the sunlight is in resonance with
frequencies of helium atoms. This approach demonstrated the
existence of helium many years before it was isolated on the Earth.
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Solutions to exercises

Solution to Exercise 1

(a) In equations (i)–(vi), the (dependent, independent) variable pairs are
all (y, x). In equations (vii), (viii) and (ix) they are (t, θ), (x, t) and
(x, t), respectively.

(b) Equations (i), (ii), (iii), (iv), (vii), (viii) and (ix) are linear.
(Equations (v) and (vi) are non-linear.)

(c) All of the linear equations are constant-coefficient except for (iv). So
the linear constant-coefficient equations are (i), (ii), (iii), (vii), (viii)
and (ix).

(d) Of the linear constant-coefficient equations, only (iii) and (ix) are
homogeneous.

Solution to Exercise 2

(a) λ2 − 5λ+ 6 = 0

(b) λ2 − 9 = 0

(c) λ2 + 2λ = 0

Solution to Exercise 3

(a) The auxiliary equation is λ2 + 5λ+ 6 = 0. This can be factorised as
(λ+ 2)(λ+ 3) = 0, giving the roots λ1 = −2 and λ2 = −3. The
general solution is therefore

y = Ce−2x +De−3x,

where C and D are arbitrary constants.

(b) The auxiliary equation is 2λ2 + 3λ = 0. This can be factorised as
λ(2λ+ 3) = 0, so its roots are λ1 = 0 and λ2 = −3

2
. The general

solution is therefore

y = Ce0 +De−3x/2 = C +De−3x/2, Recall that e0 = exp(0) = 1.

where C and D are arbitrary constants.

(c) The auxiliary equation is λ2 − 4 = 0, i.e. λ2 = 4, so its roots are
λ1 = −2 and λ2 = 2. The general solution is therefore

z = Ce−2u +De2u,

where C and D are arbitrary constants. (This differential equation is
a special case of equation (14) discussed in Subsection 2.1.)
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Solution to Exercise 4

(a) The auxiliary equation is λ2 + 4λ+ 8 = 0, which has solutions

λ =
−4±

√
16− 32

2
= −2± 2i.

The general solution is therefore

y = e−2x(C cos 2x+D sin 2x).

(b) The auxiliary equation is λ2 + 9 = 0, which has solutions

λ = ±3i.

These are of the form α± βi, where α = 0 and β = 3.

The general solution is therefore

θ = e0(C cos 3t+D sin 3t) = C cos 3t+D sin 3t.

Of course, this is one of the simple cases discussed at the beginning of
this section: it corresponds to simple harmonic motion.

Solution to Exercise 5

(a) The auxiliary equation is λ2 + 2λ+ 1 = 0, which can be factorised as
(λ+ 1)2 = 0, giving equal roots λ1 = λ2 = −1. The general solution is
therefore

y = (C +Dx)e−x,

where C and D are arbitrary constants.

(b) The auxiliary equation is λ2 − 4λ+ 4 = 0, which can be factorised as
(λ− 2)2 = 0, giving equal roots λ1 = λ2 = 2. The general solution is
therefore

s = (C +Dt)e2t,

where C and D are arbitrary constants.

Solution to Exercise 6

(a) The auxiliary equation is λ2 + 4 = 0, which has solutions λ = ±2i.
The general solution is therefore

y = C cos 2x+D sin 2x.In all cases, C and D are
arbitrary constants.

(You could also have written down this general solution directly from
equation (18).)

(b) The auxiliary equation is λ2 − 9 = 0, which has solutions λ = ±3. The
general solution is therefore

y = Ce3x +De−3x.

(You could also have written down this general solution directly from
equation (15).)

(c) The auxiliary equation is λ2 + 2λ = 0, which has solutions λ1 = 0 and
λ2 = −2. The general solution is therefore

y = C +De−2x.
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(d) The auxiliary equation is λ2 − 2λ+ 1 = 0, which has solutions
λ1 = λ2 = 1. The general solution is therefore

y = (C +Dx)ex.

(e) The auxiliary equation is λ2 + 4λ+ 29 = 0, which has solutions

λ =
−4±

√
16− 116

2
= −2± 5i.

The general solution is therefore

y = e−2x(C cos 5x+D sin 5x).

(f) The auxiliary equation is λ2 − 6λ+ 8 = 0, which factorises as
(λ− 4)(λ− 2) = 0 and has solutions λ1 = 4 and λ2 = 2. The general
solution is therefore

u = Ce4x +De2x.

Solution to Exercise 7

(a) The auxiliary equation is

3λ− 1− 2λ2 = 0,

or equivalently,

2λ2 − 3λ+ 1 = 0,

which factorises as

(2λ− 1)(λ− 1) = 0.

(b) The two solutions of the auxiliary equation are λ1 = 1
2
and λ2 = 1, so

the general solution of the differential equation is

y = Cex/2 +Dex,

where C and D are arbitrary constants.

Solution to Exercise 8

(a) The auxiliary equation is

λ2 + 2λ+ 2 = 0.

This has solutions λ1 = −1 + i and λ2 = −1− i, so the general
solution is

y = e−x(C cosx+D sinx).

(b) The auxiliary equation is

λ2 − 16 = 0.

This has solutions λ1 = 4 and λ2 = −4, so the general solution is

y = Ce4x +De−4x.

(c) The auxiliary equation is

λ2 − 4λ+ 4 = 0.
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This has solutions λ1 = λ2 = 2, so the general solution is

y = (C +Dx)e2x.

(d) The auxiliary equation is

λ2 + 3λ = 0.

This has solutions λ1 = 0 and λ2 = −3, so the general solution is

θ = C +De−3t.

Solution to Exercise 9

The auxiliary equation λ2 + 4kλ+ 4 = 0 can be solved using the formula
method to give λ = −2k ± 2

√
k2 − 1. So there are complex conjugate

solutions, leading to a general solution involving sines and cosines, when
k2 < 1, i.e. when −1 < k < 1.

Solution to Exercise 10

(a) The differential equation can be written in the form

d2θ

dt2
+ 2Γ

dθ

dt
+ ω2θ = 0,

where

Γ =
γ

2m
=

0.016

2× 0.80
= 0.01,

and the angular frequency of the corresponding undamped oscillator is

ω =

√

mg

ml
=

√

9.8

2.0
= 2.21.

We therefore have Γ < ω, and the oscillation is underdamped.

(b) The angular frequency of the damped pendulum is

Ω =
√

ω2 − Γ2 =
√

2.212 − 0.012 = 2.21.

This is typical: the angular frequency is not very sensitive to damping
when Γ ≪ ω.

We therefore have

T =
2π

Ω
= 2.84,

so the period of oscillation is 2.8 seconds.

(c) The amplitude is given by Ae−Γt, where A is a constant. If the
amplitude is 0.2 radians at time zero, the amplitude at time t = 100 is

Ae−Γt = 0.20e−0.01×100 = 0.2e−1 = 0.074 (in radians).

Solution to Exercise 11

The condition for critical damping is Γ = ω =
√

k/m, so in this case

Γ =
√
4 = 2. The general solution is therefore

x(t) = (C +Dt)e−2t.
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Solution to Exercise 12

(a) The associated homogeneous equation is

d2y

dx2
+ 4y = 0.

The complementary function (see Exercise 6(a)) is

yc = C cos 2x+D sin 2x.

Trying a solution of the form yp = p, where p is a constant, in the
original equation d2y/dx2 + 4y = 8 gives 0 + 4p = 8, so p = 2. Thus a
particular integral is

yp = 2.

By Procedure 2, the general solution is

y = C cos 2x+D sin 2x+ 2.

(b) The associated homogeneous equation is

d2y

dx2
− 3

dy

dx
+ 2y = 0.

The complementary function (see Example 3) is

yc = Cex +De2x.

Trying a solution of the form yp = p in the original equation
d2y/dx2 − 3dy/dx+ 2y = 6 gives 0− 0 + 2p = 6, so p = 3. Thus a
particular integral is

yp = 3.

By Procedure 2, the general solution is

y = Cex +De2x + 3.

Solution to Exercise 13

(a) Substituting y = p1x+ p0 and its derivatives into the differential
equation gives

0− 2p1 + 2(p1x+ p0) = 2p1x+ (2p0 − 2p1) = 2x+ 3.

Equating the coefficients of x gives p1 = 1, and equating the constant
terms gives p0 = 5

2
. Therefore a particular integral is

yp = x+ 5
2
.

(b) Substituting y = p1x+ p0 and its derivatives into the differential
equation gives

0 + 2p1 + (p1x+ p0) = p1x+ (2p1 + p0) = 2x.

Equating the coefficients of x gives p1 = 2, and equating the constant
terms gives p0 = −4, so a particular integral is

yp = 2x− 4.
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Solution to Exercise 14

We try y = p2t
2 + p1t+ p0, which has derivatives y′ = 2p2t+ p1 and

y′′ = 2p2. Substituting these into the differential equation gives

2p2 − (p2t
2 + p1t+ p0) = −p2t

2 − p1t+ (2p2 − p0)

= t2.

Hence, separately equating coefficients of t2, t and 1, we get p2 = −1,
p1 = 0, p0 = −2, so a particular integral is

yp = −t2 − 2.

Solution to Exercise 15

We try a solution of the form y = pe−x, which has derivatives
dy/dx = −pe−x and d2y/dx2 = pe−x. Substituting these into the
differential equation gives

2pe−x + 2pe−x + pe−x = 5pe−x = 2e−x.

Hence p = 2
5
, and a particular integral is

yp = 2
5
e−x.

Solution to Exercise 16

We try y = p cos 3t+ q sin 3t, which has derivatives

dy

dt
= −3p sin 3t+ 3q cos 3t,

d2y

dt2
= −9p cos 3t− 9q sin 3t.

Substituting into the differential equation gives

(−9p cos 3t− 9q sin 3t)− (−3p sin 3t+ 3q cos 3t)

= −(9p+ 3q) cos 3t+ (3p− 9q) sin 3t

= cos 3t+ sin 3t.

Hence we have a pair of simultaneous equations

−9p− 3q = 1,

3p− 9q = 1.

Adding three times the second equation to the first shows that
q = − 4

30
= − 2

15
, hence p = − 1

15
. A particular integral is thus

yp = − 1
15

cos 3t− 2
15

sin 3t.

Solution to Exercise 17

(a) Try y = pe3x.

(b) Try y = p cos 3x+ q sin 3x.
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Solution to Exercise 18

(a) The complementary function is

θc = C cos 2t+D sin 2t.

To find a particular integral, try θ = p1t+ p0. Substituting this and
its derivatives into the differential equation gives

4(p1t+ p0) = 2t.

Hence p1 =
1
2
, p0 = 0, and a particular integral is

θp = 1
2
t.

Therefore the general solution is

θ = C cos 2t+D sin 2t+ 1
2
t,

where C and D are arbitrary constants.

(b) The complementary function is

yc = C cos 2x+D sin 2x.

The right-hand-side function is 10 sin 3x, so we try
y = p cos 3x+ q sin 3x. The derivatives are

dy

dx
= −3p sin 3x+ 3q cos 3x,

d2y

dx2
= −9p cos 3x− 9q sin 3x.

Substituting into the differential equation gives

(−9p cos 3x− 9q sin 3x) + 4(p cos 3x+ q sin 3x)

= −5p cos 3x− 5q sin 3x = 10 sin 3x,

so p = 0 and q = −2, and a particular integral is

yp = −2 sin 3x.

Therefore the general solution is

y = C cos 2x+D sin 2x− 2 sin 3x,

where C and D are arbitrary constants.

(c) The complementary function is

yc = Ce−2x +De2x.

The right-hand-side function is 15e−x, so we try y = pe−x. The
derivatives are

dy

dx
= −pe−x,

d2y

dx2
= pe−x.

Substituting for d2y/dx2 and y into the differential equation gives

pe−x − 4pe−x = −3pe−x = 15e−x,

so p = −5, and a particular integral is

yp = −5e−x.
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Therefore the general solution is

y = Ce−2x +De2x − 5e−x,

where C and D are arbitrary constants.

Solution to Exercise 19

We split the task of finding a particular integral into two parts, by first
finding particular integrals for

2
d2x

dt2
+ 3

dx

dt
+ 2x = 12 cos 2t (63)

and

2
d2x

dt2
+ 3

dx

dt
+ 2x = 10. (64)

In equation (63), the term 12 cos 2t on the right-hand side suggests the
trial solution x = p cos 2t+ q sin 2t. This has derivatives

dx

dt
= −2p sin 2t+ 2q cos 2t,

d2x

dt2
= −4p cos 2t− 4q sin 2t.

Substituting into the left-hand side of the differential equation gives

2(−4p cos 2t− 4q sin 2t) + 3(−2p sin 2t+ 2q cos 2t) + 2(p cos 2t+ q sin 2t)

= 6(q − p) cos 2t− 6(p+ q) sin 2t.

Equating this to 12 cos 2t from the right-hand side of equation (63) gives
p+ q = 0, q − p = 2. Hence p = −1, q = 1, and a particular integral is

xp = − cos 2t+ sin 2t.

Now consider equation (64). In this case we try a constant function
x = p0. Substituting into the differential equation gives 2p0 = 10, so
p0 = 5, and a particular integral is

xp = 5.

Therefore, using the principle of superposition, a particular integral for the
original differential equation is

xp = − cos 2t+ sin 2t+ 5.

Solution to Exercise 20

(a) The associated homogeneous equation has auxiliary equation

λ2 + 4λ+ 5 = 0,

which has solutions

λ =
−4±

√
16− 20

2
= −2± i.

So the complementary function is

uc = e−2t(C cos t+D sin t).
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To find a particular integral, try u = p0. Substituting gives 5p0 = 5.
Hence p0 = 1, and a particular integral is

up = 1.

Therefore the general solution is

u = e−2t(C cos t+D sin t) + 1,

where C and D are arbitrary constants.

(b) The associated homogeneous equation has auxiliary equation

3λ2 − 2λ− 1 = (3λ+ 1)(λ− 1) = 0,

which has solutions λ1 = 1 and λ2 = −1
3
. So the complementary

function is

yc = Cex +De−x/3.

The right-hand side function is e2x, so to find a particular integral, we
try y = pe2x. The derivatives are

dy

dx
= 2pe2x,

d2y

dx2
= 4pe2x.

Substituting gives

3(4pe2x)− 2(2pe2x)− pe2x = 7pe2x = e2x.

Hence p = 1
7
, and a particular integral is

yp = 1
7
e2x.

Therefore the general solution is

y = Cex +De−x/3 + 1
7
e2x,

where C and D are arbitrary constants.

Solution to Exercise 21

(a) The derivative of the general solution u = C cos 3t+D sin 3t is

u′ = −3C sin 3t+ 3D cos 3t.

Substituting the initial condition t = π
2
, u = 0 into the general solution Remember that cos

(

3π
2

)

= 0

and sin
(

3π
2

)

= −1.gives D = 0. Substituting the initial condition t = π
2
, u′ = 1 into the

derivative gives C = 1
3
. Hence the required particular solution is

u = 1
3
cos 3t.

(b) The derivative of the general solution u = e−2t(C cos t+D sin t) + 1 is

u′ = −2e−2t(C cos t+D sin t) + e−2t(−C sin t+D cos t)

= e−2t[(D − 2C) cos t− (2D + C) sin t].

Substituting the initial condition u = 3, t = 0 into the general solution
gives C = 2. Substituting the initial condition u′ = 1, t = 0 into the
derivative gives D − 2C = 1, so D = 5. So the required particular
solution is

u = e−2t(2 cos t+ 5 sin t) + 1.
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Solution to Exercise 22

(a) The derivative of the general solution u = C cos 2x+D sin 2x is

u′ = −2C sin 2x+ 2D cos 2x.

This part specifies an initial-value problem.

The initial condition u(0) = 1 gives C = 1. The initial condition
u′(0) = 0 gives D = 0. The required solution is therefore

u = cos 2x.

(b) This is a boundary-value problem.

The boundary condition u(0) = 0 gives C = 0. The boundary
condition u

(

π
2

)

= 0 gives C = 0 also. D therefore remains arbitrary, so
there is an infinite number of solutions, of the form

u = D sin 2x.

(c) This is an initial-value problem.

The initial condition u
(

π
2

)

= 0 gives C = 0. The initial condition

u′
(

π
2

)

= 0 gives D = 0. The required solution is therefore the zero
function

u = 0.

(d) This is a boundary-value problem.

The boundary condition u(−π) = 1 gives C = 1. The boundary
condition u

(

π
4

)

= 2 gives D = 2. The required solution is therefore

u = cos 2x+ 2 sin 2x.

Solution to Exercise 23

The differential equation given in this question is the real part of
equation (58), so its solution is the real part of equation (59). Hence a
suitable particular integral in this case is

x(t) = a0
(ω2

0 − ω2) cos(ωt) + 2Γω sin(ωt)

(ω2
0 − ω2)2 + 4Γ2ω2

.

Using equation (31), the amplitude is the square root of the sum of the
squares of the coefficients of sin(ωt) and cos(ωt), and so is given by

A =

[

a20
(ω2

0 − ω2)2 + 4Γ2ω2

(

(ω2
0 − ω2)2 + 4Γ2ω2

)2

]1/2

=
a0

√

(ω2
0 − ω2)2 + 4Γ2ω2

.

This is the same as equation (61), which is not surprising. Changing the
right-hand side of the equation from a0 sin(ωt) to a0 cos(ωt) corresponds to
changing the phase constant of the external force (which depends on the
origin chosen for time). It is to be expected that this does not affect the
amplitude of the steady-state forced damped oscillations.
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Solution to Exercise 24

(a) Considering the expression

A =
a0

√

(ω2
0 − ω2)2 + 4Γ2ω2

when ω ≪ ω0, we can neglect ω2 in comparison with ω2
0. We can also

neglect 4Γ2ω2 in comparison with ω4
0 (because Γ < ω0 for an

underdamped oscillator). We therefore have the approximation

A ≃ a0
ω2
0

for ω ≪ ω0.

In this case, the amplitude is a constant that is independent of the
angular frequency of the external force or the damping parameter of
the oscillator.

(b) When ω ≫ ω0, we can neglect ω2
0 in comparison with ω2. In the

underdamped case, Γ < ω0 and we can also neglect 4Γ2ω2 in
comparison with ω4. We therefore have the approximation

A ≃ a0
ω2

for ω ≫ ω0.

In this case, the amplitude decreases steadily as the angular frequency
of the external force increases. The sluggish system is unable to keep
up with the fast oscillations of the external force.

(c) Substituting ω = ω0 into the general formula for the amplitude gives

A =
a0

2Γω0

.

This is the amplitude at the peak of resonance. It increases without
limit as the damping parameter Γ is decreased.
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