
M303

Further pure mathematics

Number theory



This publication forms part of an Open University module. Details of this and other
Open University modules can be obtained from the Student Registration and Enquiry Service, The
Open University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom (tel. +44 (0)845 300 6090;
email general-enquiries@open.ac.uk).

Alternatively, you may visit the Open University website at www.open.ac.uk where you can learn
more about the wide range of modules and packs offered at all levels by The Open University.

Note to reader

Mathematical/statistical content at the Open University is usually provided to students in
printed books, with PDFs of the same online. This format ensures that mathematical notation
is presented accurately and clearly. The PDF of this extract thus shows the content exactly as
it would be seen by an Open University student. Please note that the PDF may contain
references to other parts of the module and/or to software or audio-visual components of the
module. Regrettably mathematical and statistical content in PDF files is unlikely to be
accessible using a screenreader, and some OpenLearn units may have PDF files that are not
searchable. You may need additional help to read these documents.

The Open University, Walton Hall, Milton Keynes, MK7 6AA.

First published 2014. Second edition 2016.

Copyright c© 2014, 2016 The Open University

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted
or utilised in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without
written permission from the publisher or a licence from the Copyright Licensing Agency Ltd. Details of such
licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Ltd, Saffron
House, 6–10 Kirby Street, London EC1N 8TS (website www.cla.co.uk).

Open University materials may also be made available in electronic formats for use by students of the
University. All rights, including copyright and related rights and database rights, in electronic materials and
their contents are owned by or licensed to The Open University, or otherwise used by The Open University as
permitted by applicable law.

In using electronic materials and their contents you agree that your use will be solely for the purposes of
following an Open University course of study or otherwise as licensed by The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any medium (including electronic storage or
use in a website), distribute, transmit or retransmit, broadcast, modify or show in public such electronic
materials in whole or in part without the prior written consent of The Open University or in accordance with
the Copyright, Designs and Patents Act 1988.

Edited, designed and typeset by The Open University, using the Open University TEX System.

Printed in the United Kingdom by Halstan & Co. Ltd, Amersham, Bucks.

ISBN 978 1 4730 2036 8

2.1



Contents

Contents
1 What is number theory? 5

2 Mathematical induction 7

2.1 Notation 7

2.2 Mathematical induction 8

2.3 More general induction 13

2.4 Integer division 19

2.5 Basic properties 24

2.6 The Fundamental Theorem of Arithmetic 26

31

39

Solutions and comments on 

exercises

Index



1 What is number theory?

1 What is number theory?

The elementary theory of numbers should be one of the very best
subjects for early mathematical instruction. It demands very little
previous knowledge; its subject matter is tangible and familiar; the
processes of reasoning it employs are simple, general and few; and it
is unique among the mathematical sciences in its appeal to natural
human curiosity. A month’s intelligent instruction in the theory of
numbers ought to be twice as instructive, twice as useful, and ten
times more entertaining as the same amount of ‘calculus for
engineers’.

G.H. Hardy, Bulletin of the AMS (1929)

There is an irresistible fascination in searching for numbers with specified
properties. Nearly every century, as far back as the history of mathematics
can be traced, has witnessed new and exciting discoveries concerning
properties of numbers. Many of the greatest mathematicians, despite
having their major interests elsewhere, have at some time in their careers
been drawn into problems of number theory and have contributed to the
body of knowledge. So what is the appeal of this subject both for
professional mathematicians and for thousands of amateurs?

Consider the following problems.

1. Find all the factors of 4 294 967 297.

2. A right-angled triangle has the property that all three of its sides have
length equal to a whole number of units. If one of the sides is 24, find
seven pairs of values for the other two sides.

3. Show that

1× 2× 3× 4× · · · × (n− 1) + 1

is always divisible by n if n is prime, but is never divisible by n if n is
composite.

4. Can every even integer from 4 onwards be expressed as the sum of two
primes?

5. For which integers n is 2n − 1 a prime?

All these problems will confront us at some stage in this part of the
module. Each one illustrates the most attractive feature of number theory:
the problems can be understood by beginners of the subject. Perhaps you
are not completely familiar with some of the terms (which will be
explained later) such as prime, composite and factor, but you should have
a feeling for what is involved in these problems. Indeed, you could well
take pencil and paper and start exploring some of them; there is no
substantial body of knowledge needed as a prerequisite to becoming
involved in number theory.
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Foundations

Yet while there is no difficulty posing these problems in a readily
intelligible form, the varying degrees of difficulty involved in solving them
highlights the most intriguing feature of number theory.

Because of the size of the number involved, Problem 1 is quite tricky.
However, any reader who is familiar with computers might quickly solve
this problem. As it happens, the smallest positive factor of the given
number is 641 – a fact which, in the seventeenth century, eluded one of the
all-time great mathematicians, Fermat (1601–1665), who had a particular
interest in this very problem.

Problem 2 asks for solutions in whole numbers of the famous equation of
Pythagoras relating the edge lengths of a right-angled triangle,
x2 + y2 = z2 (illustrated in Figure 1.1). This is an example of a

x

y
z

Figure 1.1 An illustration of
the Pythagorean equation

x2 + y2 = z2

Diophantine equation, named after the Greek mathematician Diophantus
of the early Christian era. We will meet other instances of Diophantine
equations in this module, which we will show how to solve. Many books
have been written about Diophantine equations. What emerges is a lack of
a general theory for solving them; each Diophantine equation appears to
be a problem in its own right, requiring its own method of solution. In the
meantime, if you are familiar with the ‘smallest’ solution in integers of the
Pythagorean equation, namely 32 + 42 = 52, then you may have spotted
two of the solutions required by Problem 2 by scaling, namely
182 + 242 = 302 and 242 + 322 = 402. But what about the other five
solutions? You might discover them by patient trial and error – but is
there a more systematic approach? We will explore this further at the
start of Book C, Chapter 12.

Problems 3, 4 and 5 are classics of number theory. Because the values
involved in Problem 3 get very large, very quickly, it is not an easy
problem to explore in depth by looking at special cases. But it turns out to
be true, and we can give (and will do so in Chapter 4) a general proof of
this result. Problem 4 is easier to explore and, on finding it very
straightforward to write each even integer up to 200 (say) as a sum of two
primes, you would probably be tempted to conclude that it also is a true
result. But, perhaps surprisingly, nobody has ever managed to prove it; to
this day it remains an unsolved problem of mathematics, despite assault by
many great mathematicians. Problem 5 has its origin at the heart of
another famous problem, which you will meet in Book C, Chapter 9. By
the year 1951, only 12 numbers n were known for which 2n − 1 is prime;
then computers were brought to bear on the problem, with the result that
by the year 2014 forty-eight such numbers were known. The largest one,
n = 57885 161, led to the number 257 885 161 − 1 being the largest known
prime at that time. And yet, despite the scarcity of solutions to
Problem 5, most mathematicians still believe that there are infinitely many
solutions to this problem – though proof of this seems, at the moment,
hopelessly beyond reach.
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2 Mathematical induction

Number theory is a subject that has developed over a long period of time
and, as the previous paragraph suggests, remains very active today. We
have already mentioned a few of the great mathematicians who
contributed to the development of the subject; there are many, many more.
In the History Reader for this topic, we give a flavour of the history of the
subject. The History Reader is not an assessed part of the module and by
no means gives a systematic account of the history of number theory. Its
inclusion will, we hope, enliven the theoretical side of the material and
should also reveal the stumbling way in which progress has been made.

The nature of number theory has changed dramatically in recent years, due
to the advent of the computer. Computations that were nigh impossible
just a few years ago can now be managed with ease. Consequently,
exploration of alleged results and searches for numbers with prescribed
properties are readily attacked with the assistance of a machine. Although
the material of this module presents many challenges for those with access
to (and enthusiasm for) a computer, we have written the module in such a
way as to avoid the heavy computational side of the subject. We will be
attacking problems in the way that they have been tackled historically,
using pencil and paper. There are, however, many problems in the module
involving ‘arithmetic’ that could be simplified with the help of a calculator,
and although it is not essential, it is advisable that you have one.

Number theory is all about problem-solving. Nobody becomes competent
at calculus by reading about it; it is essential to practise differentiation and
integration on a large number of examples. The same is true of number
theory; you cannot get to grips with the subject without solving lots of
problems yourself. To this end we have included a good stock of problems
in all the chapters, and while studying you should always have pencil and
paper at hand. The Worked Exercises in the chapters are for you to read,
but the Exercises are for you to do. Do not spend forever on an exercise
that looks like defeating you. If you get stuck, you should refer to the
solution – but do not give in too easily!

2 Mathematical induction

Although you may have encountered mathematical induction before now,
you may not be familiar with the more formal approach taken to it in this
section.

2.1 Notation

Before progressing further we introduce some standard notation to be used
throughout this module. In number theory we are primarily interested in
the positive integers, also called the natural numbers.
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Foundations

A collection of distinct objects (such as numbers) is known as a set. The
set of all integers, positive, negative or zero, is denoted by Z:

Z = {. . . ,−2,−1, 0, 1, 2, . . .},
and the set of natural numbers is denoted by N:

N = {1, 2, 3, . . .}.
We have described each of these sets by (partially) listing its elements
within ‘curly brackets’, which are known more formally as braces. We
often describe a set by giving a property that characterises its elements.
For example, the set of all integers that are multiples of 3, and which is
denoted by 3Z, can be described either by

3Z = {. . . ,−6,−3, 0, 3, 6, . . .}
or by

3Z = {3n : n ∈ Z}.
We will also have occasion to refer to the set Q of rational numbers and
the set R of real numbers. The rational numbers are the numbers a

b
,

where a ∈ Z and b ∈ N, and the real numbers can be thought of as values
representing all the points along an infinite number line.

Finally, we will make extensive use of the modulus or absolute value

function, which is defined for any element n of Z (or Q or R) by

|n| =
{

n, if n ≥ 0,
−n, if n < 0.

Exercise 2.1

(a) Which set of numbers is described by each of the following?

(i) {n ∈ Z : |n| > 20}
(ii) {n : n = 2m2, for some m ∈ N}

(b) Describe each of the following sets in the notation used in part (a).

(i) The set of all odd natural numbers.

(ii) The set of all integers lying between −100 and 100 inclusive.

2.2 Mathematical induction

One property of N that is not shared by some other number sets such as Z,
Q or R is worth recording. It may seem a rather obvious property, but its
presence is crucial to establishing less apparent properties that we are
going to need.
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2 Mathematical induction

The Well-Ordering Principle for N

Every non-empty subset of N has a least member. In other words, if
S is a non-empty subset of N then there exists b ∈ S such that b ≤ n
for all n ∈ S.

In future we will refer to this just as the Well-Ordering Principle. It says
that any collection of natural numbers we care to describe, as long as it
has some elements in it, must have a least member. Notice that the set of
positive real numbers does not have this property. For example, the set of
positive real numbers itself has no least element since, if x is any positive
real, then

0 < 1

2
x < x,

showing that 1

2
x is a positive real number smaller than x. Hence x cannot

be the smallest positive real number.

From the Well-Ordering Principle we can quickly deduce the result that is
the backbone of the method of proof by mathematical induction.

Theorem 2.1 Principle of Induction

If S is a set of natural numbers with the following two properties:

(a) 1 is a member of S

(b) if k ∈ S, then the next integer k + 1 ∈ S

then S = N.

Proof We give a proof by contradiction. We assume that the theorem is
not true and that there is a set S of natural numbers satisfying (a) and (b)
that is not the whole of N. We show that this assumption leads to a
contradiction and therefore the theorem must be true.

Let A be the set of all natural numbers that do not belong to S. By the
assumption that S is not the whole of N, we know that A is non-empty.
Hence, by the Well-Ordering Principle, A must contain a least member.
Let this least member of A be a.

By property (a) the integer 1 belongs to S, and so 1 is not in A. Therefore
a > 1. Now consider the integer a− 1, which must be positive as a > 1.
Furthermore, as a− 1 < a and a is the least member of A, it follows that
a− 1 does not belong to A. Therefore a− 1 is a member of S.

But property (b) now tells us that the integer following a− 1, namely a
itself, belongs to S. This contradicts the fact that a belongs to A. This
contradiction means that the one assumption we made, namely that A is
non-empty, must be false. So A is empty and hence S is the set of all
natural numbers.

9



Foundations

Worked Exercise 2.2

Prove that

1 + 3 + 5 + · · ·+ (2n − 1) = n2, for all natural numbers n.

Solution

With an eye on the Principle of Induction, let S be the set of natural
numbers n for which the formula holds. Our goal is to show that
S = N.

Putting n = 1 in the formula, we observe that the left-hand side has
only one term so that the formula reduces to 1 = 12, which is true. So
1 ∈ S.

It remains to prove property (b). To that end, suppose k ∈ S, where k
is some natural number. Since k ∈ S we have that

1 + 3 + 5 + · · ·+ (2k − 1) = k2.

To deduce that k + 1 ∈ S we must show that the given formula is true
for the case n = k + 1. Working on the left-hand side of the formula
for n = k + 1:

1 + 3 + 5 + · · · + (2k − 1) + (2k + 1)

= k2 + (2k + 1), from the assumption that k ∈ S,

= (k + 1)2, which is the required right-hand side.

This reasoning shows that if k ∈ S then k + 1 ∈ S, which confirms
property (b).

Hence S = N, and the formula is true for all natural numbers.

We presented Worked Exercise 2.2 by applying the Principle of Induction
to the set of natural numbers for which the proposition was true. In future
we will present such arguments less formally and will refer to them as
proof by mathematical induction. The propositions for which we
attempt such proofs are ones that are given in terms of a general natural
number n, and that we hope to be true for all n ∈ N.

Let P (n) be a proposition whose truth we wish to prove by mathematical
induction. Such a proposition can take various forms. It might be a
formula as in Worked Exercise 2.2, an inequality such as 2n > n3, which we
will discuss in Worked Exercise 2.4, or a statement such as ‘n can be
written as a sum of distinct powers of 2’, which you will meet in Worked
Exercise 2.6. To prove the truth of P (n), let S be the set of natural
numbers n for which P (n) is true. If we know that P (1) is true then 1 ∈ S.
Further, if we can show that whenever P (k) is true it follows that P (k + 1)
is true, then k ∈ S implies k + 1 ∈ S. Hence, by the Principle of Induction,
S = N, and P (n) is true for all natural numbers.
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2 Mathematical induction

We state this formally as follows.

Principle of Mathematical Induction

Let P (n) be a proposition depending on a natural number n. If:

(a) P (1) is true

(b) for any integer k ≥ 1, if P (k) is true then P (k + 1) is true

then P (n) is true for all n ∈ N.

Step (a), showing that the proposition is true for the first value, is called
the basis for the induction. Step (b) is called the induction step. The
assumption made in this step, that P (k) is true for some integer k, is
called the induction hypothesis.

Worked Exercise 2.3

Prove the following formula for the sum of the first n triangular
numbers. By ‘prove’ we mean ‘prove for

all integers n ≥ 1’. The ‘for all
integers n ≥ 1’ is taken for
granted.

1 + 3 + 6 + 10 + · · ·+ 1

2
n(n+ 1) = 1

6
n(n+ 1)(n + 2) P (n)

Solution

We use mathematical induction to prove that P (n) is true for all
integers n ≥ 1 by establishing (a) and (b) above.

First the basis for the induction. Putting n = 1 in P (n) gives

1 = 1

6
× 1(1 + 1)(1 + 2).

This is correct, showing that P (1) is true.

Now the induction step. We assume that P (k) is true for some
natural number k. That is, we have the induction hypothesis

1 + 3 + 6 + 10 + · · ·+ 1

2
k(k + 1) = 1

6
k(k + 1)(k + 2).

We need to deduce the truth of P (k + 1) from this, that is

1 + 3 + 6 + 10 + · · · + 1

2
k(k + 1) + 1

2
(k + 1)(k + 2)

= 1

6
(k + 1)(k + 2)(k + 3). The last term on the left-hand

side is the (k + 1)th triangular
number.Taking the left-hand side, we have

1 + 3 + 6 + 10 + · · · + 1

2
k(k + 1) + 1

2
(k + 1)(k + 2)

= 1

6
k(k + 1)(k + 2) + 1

2
(k + 1)(k + 2),

by the induction hypothesis,

= (k + 1)(k + 2)(1
6
k + 1

2
)

= 1

6
(k + 1)(k + 2)(k + 3), which is the RHS of P (k + 1). RHS is short for right-hand side

and LHS is short for left-hand
side of an equation.
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This establishes the truth of P (k + 1) and completes the induction
step.

Hence, by the Principle of Mathematical Induction, P (n) is true for
all natural numbers.

Mathematical induction can be likened to a line of dominoes (Figure 2.1),
arranged so that if any one falls over, it will knock over the next one along
the line (the induction step). Then, if the first domino is knocked over (the
basis for the induction), they all fall over.

The first domino is knocked over If the kth domino is knocked over,
so too is the (k + 1)th

Figure 2.1 Illustrating mathematical induction

Of course, the induction step is at the heart of any induction proof. Quite
often, as in both the preceding worked exercises, some algebraic
manipulation is involved. This may be straightforward or quite complex.
The next exercise provides you with an opportunity to practise proof by
induction.

Exercise 2.2

(a) Use mathematical induction to prove that the formula

12 + 22 + 32 + · · ·+ n2 = 1

6
n(n+ 1)(2n + 1)

is true for all natural numbers.

(b) A geometric series is the sum of a finite sequence of terms in which
the ratio of successive terms is constant, r in the following example.

Use mathematical induction to prove the formula for the geometric
series

a+ ar + ar2 + ar3 + · · ·+ arn−1 =
a(rn − 1)

r − 1
, r 6= 1.
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2 Mathematical induction

2.3 More general induction

The examples that we have seen using mathematical induction have all
concerned propositions P (n) that are true for all natural numbers. In this
case n = 1, the smallest integer for which the proposition was true,
provided the basis for the induction. In fact there is nothing special about
the number 1 here. The Principle of Induction is readily adapted to provide
proofs of results that are true for all integers greater than some integer n0.

Principle of Mathematical Induction (generalised)

Let P (n) be a proposition depending on an integer n. If:

(a) P (n0) is true

(b) for any integer k ≥ n0, if P (k) is true then P (k + 1) is true

then P (n) is true for all integers n ≥ n0.

As before, step (a) of the generalised principle is called the basis for the
induction, and step (b) is called the induction step.

In the next worked exercise we use this generalised form of induction to
prove a result that is true for all integers from 10 onwards. In this example
the induction step involves more reasoning than the simple algebraic
manipulations we have met so far.

Worked Exercise 2.4

For which natural numbers n is it true that 2n > n3?

Solution

Exploration of the relative values of 2n and n3 for small values of n
shows that 2n is larger when n = 1, but then n3 is larger for
n = 2, 3, 4, . . . , 9. For n = 10, 2n becomes the larger value once again:

210 = 1024 > 1000 = 103.

As n now increases it appears that 2n grows more quickly than n3,
which leads us to conjecture:

2n > n3 for all integers n ≥ 10.

Preparing the way for induction, we let P (n) be the statement that
2n > n3.

Having seen that P (10) is true, the basis for the induction is
established (as n0 = 10).
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It remains to show that, for any integer k ≥ 10, if P (k) is true then
P (k + 1) is true. So the induction hypothesis is

2k > k3, for some k ≥ 10,

and from this assumption we need to show that

2k+1 > (k + 1)3.

Now, 2k+1 = 2× 2k and so the induction hypothesis gives

2k+1 > 2k3.

Therefore it suffices to show that, for any k ≥ 10,

2k3 ≥ (k + 1)3,

or, rearranging,
(

1 + 1

k

)3 ≤ 2.

This is certainly true by the following argument. As k > 1, the largest

value of
(

1 + 1

k

)3
comes from the largest value of 1 + 1

k
. This in turn

comes from the smallest value of k, namely k = 10. However,
(

1 + 1

10

)3
= 1.331, which is less than 2. This completes the induction

step.

Hence, by the Generalised Principle of Mathematical Induction, the
proposition is true for all integers n ≥ 10.

Worked Exercise 2.4 has some points of interest. Investigation of the
induction step led us to the inequality

(

1 + 1

k

)3 ≤ 2.

In fact this inequality holds true for all integers k ≥ 4 and so the induction
step works for all integers k ≥ 4 (although we were concerned only with
integers k ≥ 10). Drawing on the earlier analogy with dominoes, the
situation in Worked Exercise 2.4 is as depicted in Figure 2.2. If any
domino from the fourth onwards were to fall it would knock the next over,
but the first one of these that does fall is the tenth.

P (1) true P (2) to P (9) all false P (10) true

If P (k) true then P (k + 1) true

Figure 2.2 P (n) : 2n > n3 for n ≥ 10
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2 Mathematical induction

In the examples so far, when establishing the induction step, we assumed
that the proposition under question was true for some integer k ≥ n0. On
occasion it can be helpful to make a more general assumption. The Second

Principle of Mathematical Induction employs a different induction step.

Second Principle of Mathematical Induction

Let P (n) be a proposition depending on an integer n. If:

(a) P (n0) is true

(b′) for any integer k ≥ n0, if P (n0), P (n0 + 1), . . . , P (k) are all true,
then P (k + 1) is true

then P (n) is true for all integers n ≥ n0.

The Second Principle of Mathematical Induction seems logically sound if
one thinks of the domino analogy, and can be established from the
Well-Ordering Principle. We will not do so here but proof of this can be
found in the solution to Exercise 2.4(d).

The next two worked exercises both make use of the Second Principle of
Mathematical Induction.

Worked Exercise 2.5

A sequence of integers is defined as follows:

x0 = 1; xn = x0 + x1 + · · · + xn−1, for all integers n ≥ 1.

Prove that xn = 2n−1, for all integers n ≥ 1.

Solution

Denote the proposition xn = 2n−1 by P (n).

Then x1 = x0 = 1 = 20, so P (1) is true and we have the basis for the
induction.

Heading towards the (new) induction step, suppose that P (r) is true
for all 1 ≤ r ≤ k; that is,

xr = 2r−1, for 1 ≤ r ≤ k.

15
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Then

xk+1 = x0 + x1 + · · · + xk

= 1 +
(

1 + 2 + 4 + · · ·+ 2k−1
)

, by the induction hypothesis,

= 1 +
2k − 1

2− 1
, by formula for geometric series,

Exercise 2.2(b),

= 2k.

This establishes the truth of P (k + 1) and completes the induction
step.

Hence the result follows by the Second Principle of Mathematical
Induction.

Although there are other ways of proving the result in Worked Exercise 2.5,
it is not easy to prove using mathematical induction without making use of
the Second Principle. It is the fact that each number in the sequence is
defined in terms of all the preceding numbers that makes the Second
Principle relevant. In Worked Exercise 2.6 we employ the Second Principle
of Mathematical Induction again, but this time it will be used differently.

Worked Exercise 2.6

Prove that every natural number n can be written as a sum of
distinct (integer) powers of 2. For example, 13 = 20 + 22 + 23 and
20 = 22 + 24.

You might be familiar with the fact that each natural number is
expressed uniquely in this way: we are essentially representing n in
binary. However, we omit the proof of uniqueness here.

Solution

Let P (n) be the proposition that n can be written as a sum of
distinct powers of 2.

Then, since 1 = 20, P (1) is true and we have the basis for the
induction.

To make use of the Second Principle we assume that, for some natural
number k, P (r) is true for each integer r in the range 1 ≤ r ≤ k. That
is, we assume that each r in this range can be expressed in the
required way. To complete the induction proof we show that, under
this assumption, k + 1 can be expressed as a sum of distinct powers of
2, thereby establishing the truth of P (k + 1).

16



2 Mathematical induction

We consider two cases, depending on whether k + 1 is even or odd.

Case k + 1 even

Since k + 1 is even we can write k + 1 = 2s for some natural number
s. Now s < k + 1 so, by the induction hypothesis, s can be written as
a sum of distinct powers of 2, say

s = 2a + 2b + · · ·+ 2f , a, b, . . . , f distinct.

Multiplying this sum by 2 gives

k + 1 = 2s = 2a+1 + 2b+1 + · · · + 2f+1,

a+ 1, b+ 1, . . . , f + 1 distinct,

as required.

Case k + 1 odd

Since k + 1 is odd we can write k + 1 = 2s+ 1 for some natural
number s. Now 2s < k + 1 so, by the induction hypothesis, 2s can be
written as a sum of distinct powers of 2, say

2s = 2a + 2b + · · ·+ 2f , a, b, . . . , f distinct.

Since 2s is even, and the exponents in this representation of 2s are
distinct, no exponent can be 0 (because the only power of 2 giving an
odd integer is 20 = 1).

Hence

k + 1 = 2s + 1

= 2a + 2b + · · ·+ 2f + 1, a, b, . . . , f distinct and non-zero,

= 2a + 2b + · · ·+ 2f + 20, a, b, . . . , f, 0 distinct,

as required.

This completes the induction step and the result follows by the
Second Principle of Mathematical Induction.

Exercise 2.3

In the sequence

1, 3, 4, 7, 11, 18, 29, 47, . . . ,

each term, from the third onwards, is the sum of the previous two terms.
That is, the sequence {Ln} is defined by

L1 = 1; L2 = 3; Ln = Ln−1 + Ln−2, for n ≥ 3.

Use the Second Principle of Mathematical Induction to prove that

Ln <
(

7

4

)n
, for all n ≥ 1.

17
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Mathematical induction provides a powerful method of proof, whose
applications include proving the truth of formulas for all integers from
some integer onwards. But while mathematical induction is a great help in
proving formulas, it does not help us to find such formulas. Discovering
the formulas in the first place is a different matter.

We finish this section with an exercise that sets several problems on proof
by mathematical induction.

Exercise 2.4

(a) Use the Principle of Mathematical Induction to prove that the
following formulas are true for all natural numbers n.

(i) 12 + 32 + 52 + · · ·+ (2n − 1)2 = 1

3
n(4n2 − 1)

(ii) 1 + 5 + 12 + 22 + · · · + 1

2
n(3n− 1) = 1

2
n2(n+ 1)

(b) The factorial of k ∈ N is k! = 1× 2× · · · × k.

Prove the following formula for all natural numbers n.

1× (1!) + 2× (2!) + 3× (3!) + · · ·+ n× (n!) = (n+ 1)!− 1

(c) For which natural numbers n is it true that n! > 6n2? Prove your
result using mathematical induction.

(d) Show how the Second Principle of Mathematical Induction can be
derived from the Well-Ordering Principle, as follows.

Suppose that the conditions (a) and (b′) stated in the Second
Principle of Mathematical Induction hold. Let S be the set of integers
k, k ≥ n0, for which P (k) does not hold, that is,

S = {k ∈ Z : k ≥ n0 and P (k) is false}.
Suppose that S is non-empty and use this assumption to deduce that
the set

T = {s− n0 : s ∈ S}
is a non-empty set of natural numbers. Show how the existence of a
least member of T leads to a contradiction.

18
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2.4 Integer division

From an early age we learn how to divide one natural number by another,
obtaining a quotient and a remainder. For example, we can divide 23 by 4
to obtain a quotient of 5 and a remainder of 3 or, rather more formally,
23 = 4× 5 + 3. In fact, if we stipulate that when dividing by 4 the only
permitted remainders are 0, 1, 2 and 3 then the quotient and remainder in
any division by 4 turn out to be unique. That is, the only way that we can
write 23 = 4× q + r, where q and r are integers with 0 ≤ r < 4, is q = 5
and r = 3. Such uniqueness holds for division by any natural number. The
familiar result exemplified here, known as the Division Algorithm, is of
enormous theoretical importance. In what follows we will discuss certain
consequences of it that are fundamental to our treatment of numbers.

Theorem 2.7 The Division Algorithm

For any two integers a and b, where b > 0, there exist unique integers
q and r such that

a = bq + r, where 0 ≤ r < b.

Proof Consider the set of integers

S = {a− bn ≥ 0 : n ∈ Z}. S is the set of non-negative
integers in the set
{. . . , a− 2b, a− b, a, a+ b, . . .}.The set S is non-empty because, as b is positive, a− bn will certainly be

positive for large negative values of n. Either 0 is a member of S, and
hence the least member of S, or S is a non-empty set of natural numbers
and, by the Well-Ordering Principle, again has a least member. So in
either case there exists an integer q such that a− bq = r is the least
member of S. Hence we have integers q and r such that

a = bq + r, where 0 ≤ r.

If r ≥ b then r − b ≥ 0. In addition,

r − b = a− bq − b = a− b(q + 1)

and so r − b is a member of S. However, r − b is smaller than r, which
contradicts the minimality of r, and so r < b.

It remains to prove the uniqueness of q and r. Suppose, therefore, that

a = bq + r, 0 ≤ r < b,

and

a = bq′ + r′, 0 ≤ r′ < b.

Subtracting gives

0 = b(q − q′) + (r − r′).

Now if q = q′ this equation gives r = r′ and so the expressions for a are the
same.
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On the other hand, if q 6= q′, we may assume that q > q′ and hence that
q − q′ > 0. It follows that q − q′ ≥ 1. Since b > 0 we have

r′ − r = b(q − q′)

≥ b× 1 = b.

Adding r to both sides gives

r′ ≥ b+ r ≥ b,

contradicting the definition of r′.

Therefore the values of q and r are unique.

Essentially the same argument is illustrated as follows. Imagine multiples
of b stepped off along the number line, as shown in Figure 2.3. As the
intervals marked off in this way cover the whole line, the number a lies in
some interval

bq ≤ a < b(q + 1).

This interval containing a will be unique. Notice that if a is a multiple of b
then a coincides with one of the marks between the intervals. In this case,
the interval to either side of a could be chosen to contain a. However, the
inequalities decree that we choose the interval that has a at its left-hand
end.

−3b −2b −b 0 b 2b 3b qb (q + 1)b

a

Figure 2.3 Illustrating the Division Algorithm

Subtracting bq through the above inequality shows us that there is a
unique integer q such that 0 ≤ a− bq < b. Now putting a− bq = r gives
the claimed result.

The way of representing numbers suggested by the Division Algorithm will
be important to us, so let us pause to look at some simple applications.
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2 Mathematical induction

Worked Exercise 2.8

Show that when any square is divided by 4 the remainder is either 0
or 1.

Solution

The Division Algorithm, applied to division by 4, tells us that any
integer can be written uniquely in one of the forms 4n, 4n+ 1, 4n + 2
or 4n+ 3 for some integer n. So any square number is the square of
an integer of one of these four forms. We write each square in its
unique form 4q + r and hope to find that the only possible values for
r are 0 and 1.

(4n)2 = 16n2 = 4(4n2) + 0

(4n+ 1)2 = 16n2 + 8n + 1 = 4(4n2 + 2n) + 1

(4n+ 2)2 = 16n2 + 16n+ 4 = 4(4n2 + 4n + 1) + 0

(4n+ 3)2 = 16n2 + 24n+ 9 = 4(4n2 + 6n + 2) + 1

In each case the remainder on division by 4 is either 0 or 1, as claimed.

In fact we could have made the calculations simpler by working with
remainders on division by 2. Any number is either of form 2n or of
form 2n+ 1 and the respective squares are

(2n)2 = 4n2 + 0,

(2n+ 1)2 = 4n2 + 4n + 1 = 4(n2 + n) + 1,

showing that the remainder on division by 4 is either 0 or 1.

Exercise 2.5

The Division Algorithm tells us that any integer can be written in one of
the forms 3n, 3n+ 1 or 3n+ 2. Use this fact to deduce that when any cube
is divided by 9 the remainder is one of 0, 1 or 8.

Before moving on, we would like to highlight two formulas with which you
are likely to be familiar and which can readily be verified by expanding the
brackets.

(an+ b)2 = a2n2 + 2abn+ b2

(an+ b)3 = a3n3 + 3a2bn2 + 3ab2n+ b3

Knowledge of these formulas can be useful, as was the case in the solutions
to Worked Exercise 2.8 and Exercise 2.5.
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The Division Algorithm provides us with our definition of divisibility: one
number is divisible by another when the unique remainder is 0.

Definition 2.9 Factors and multiples

An integer a is divisible by the natural number b (or, for brevity, b
divides a) if there exists some integer q such that a = bq.

When b divides a we say that b is a factor of a or that a is aIn other texts you may find the
phrase ‘b is a divisor of a’
rather than ‘b is a factor of a’.

multiple of b.

We write b | a as a shorthand for b divides a, and b ∤ a for b does not
divide a.

Be careful not to confuse the statement b | a with the fraction b
a
. For

example, 3 | 21 since 21 = 3× 7 and 6 | −24 since −24 = 6× (−4). On the
other hand, 6 ∤ 16 since 16 = 6× 2 + 4.

Notice that we consider division only by positive integers. The definition
could be adapted to permit division by negative numbers by declaring that
a is divisible by b (positive or negative) when there exists an integer q such
that a = bq. But if a = bq it must be the case that a = (−b)(−q) and so
this definition would lead to b being a factor of a if, and only if, −b is a
factor of a. There is therefore nothing essentially complicated in dividing
by negative numbers, but we will have no occasion to do so. Therefore, if
we ask for the factors of an integer, we expect answers that are positive.

Notice also that 0 is excluded as a factor, as the only number for which 0 is
a factor is 0 itself. Additionally, since 0 = n× 0, every natural number is a
factor of 0; in fact 0 is unique in having an infinite number of factors, as
will be shown in the proof of Theorem 2.10(b).

Exercise 2.6

(a) List all the factors of 18 and −24. Do these two numbers have any
factors in common?

(b) Show that if n is not a multiple of 3 then n2 − 1 is divisible by 3.

Exercise 2.6(a) highlights one property of divisibility, namely that any
integer greater than 1 has at least two factors, namely itself and 1. This is
just one of a number of simple properties that are direct consequences of
the definition. Such properties are not particularly exciting in themselves
but some of them will prove to be useful as tools for deriving further
information. A selection of the more important properties have been
grouped together in the following theorem.
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Theorem 2.10 Properties of division

Let a and b be natural numbers and c and d be any integers.

(a) If a | c then a | (c+ na) for any integer n.

(b) If c 6= 0 and a | c then a ≤ |c|.
(c) If a | b and b | a then a = b.

(d) If a | b and b | c then a | c.
(e) If a | c and a | d then a | (mc+ nd) for any integers m and n.

Proof

(a) As a | c there is an integer q such that c = aq. But then

c+ na = aq + na = a(q + n) = ax,

and as x = q + n is an integer, this confirms that a divides c+ na.

(b) As c = aq as in (a), |c| = |aq| = a|q|, and the result follows since
|q| ≥ 1, q being a non-zero integer.

Notice that this result shows that the non-zero integer c can have only
a finite number of factors, since they must all be less than or equal to
|c|.

(c) If a | b and b | a then, from (b), a ≤ b and b ≤ a. The required equality
follows.

(d) If a | b and b | c then there are integers s and t such that b = as and
c = bt. Substituting for b gives c = ast = a(st), and as st is an integer
this shows that a | c.

(e) If a | c and a | d then there are integers p and q such that c = ap and
d = aq. But then, for any integers m and n,

mc+ nd = map+ naq = a(mp+ nq) = ax,

where x = mp+ nq is an integer. So a | (mc+ nd).
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2.5 Basic properties

We begin with the key definition.

Definition 2.11 Prime numbers

An integer n, where n ≥ 2, is said to be prime if it has no positive
factor other than itself and 1. Otherwise n is said to be composite.

Notice that we have excluded consideration of 0 and the negative integers
from these definitions; we will not be concerned with the primality or
otherwise of non-positive integers. Notice also that the integer 1 is
classified neither as prime nor as composite. As the composite integers are
essentially those that can be broken down into products of at least two
non-trivial (that is, not itself and 1) positive factors, it is natural to
exclude 1 from the composite integers. On the other hand, we do not want
to list 1 amongst the primes for a variety of reasons. For example, if 1 were
to be considered as a prime,

6 = 2× 3 = 1× 2× 3 = 1× 1× 2× 3

would be three (of infinitely many) different ways of expressing 6 as a
product of primes. Excluding 1 from the list of primes enables us toBy a product we mean any

number of integers multiplied
together, including the
possibility of a single integer on
its own, such as 2.

express any integer greater than or equal to 2 as a unique product of
primes. This result, which we will prove shortly, is of great importance in
the study of number theory.

Is there an efficient way of determining whether a given integer is prime?
For example, is 211 prime or is it composite? If we can spot an integer in
the range 2 to 210 that divides 211 then we can conclude immediately
that 211 is composite. On the other hand, to show that 211 is prime there
are a lot of potential factors to be eliminated. Do we have to test division
by all the numbers in the range 2 to 210? Fortunately we do not. The
following two results show that the list of potential factors can be
drastically reduced. The first of these results appeared in Book VII of
Euclid’s Elements.

Proposition 2.12

Each integer n ≥ 2 is divisible by some prime number.If n is prime then n is a prime
factor of itself.
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Proof Preparing for a proof by mathematical induction (using the
Second Principle), let P (n) be the statement that the integer n ≥ 2 is
divisible by some prime number.

The statement P (2) is certainly true, since 2 divides 2 and 2 is prime, and
this provides the basis for the induction.

For the induction step suppose that for some integer k ≥ 2, each of
P (2), P (3), . . . , P (k) is true; that is, suppose that each of the integers
2, 3, . . . , k is divisible by some prime. Now consider the next
integer, k + 1. Either k + 1 is prime or it is composite. If it is a prime, it is
divisible by the prime k + 1 itself. If it is composite, then k + 1 = rs, where
r and s are integers with 2 ≤ r ≤ k, whereupon the induction hypothesis
tells us that there is some prime p that divides r. But then p divides r
and r divides k + 1 and so p divides k + 1. In either case we conclude
that k + 1 is divisible by some prime, confirming the truth of P (k + 1).

The result follows by mathematical induction.

The next result determines a limit to the number of divisions one has to
make in order to decide whether a given integer n ≥ 2 is prime or not.

Proposition 2.13

If the integer n ≥ 2 is composite, then it is divisible by some prime
p ≤ √

n.

Proof As n is composite we can write n = ab, where a and b are integers
with 2 ≤ a ≤ b. Now we cannot have a >

√
n, for that would imply b >

√
n

and the product ab would exceed n. So a ≤ √
n. At this point we can

invoke Proposition 2.12, which guarantees the existence of a prime p
dividing a (and therefore dividing n). As p ≤ a ≤ √

n, p suffices as the
required prime.

This proposition can be applied to the question of whether 211 is
composite. The prime numbers that are less than

√
211 are 2, 3, 5, 7, 11

and 13, and so if 211 is composite it must be divisible by one of these
primes. However, straightforward division shows that this is not the case:
211 has remainder 1 when divided by each of 2, 3, 5 and 7, remainder 2 on
division by 11 and remainder 3 on division by 13. Hence 211 is prime.

Exercise 2.7

(a) Which, if any, of the integers 111, 113, 115 and 117 is prime?

(b) To test whether or not 499 is a prime, for which numbers is it
sufficient to check divisibility?
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2.6 The Fundamental Theorem of Arithmetic

Any composite integer can be expressed, possibly in many ways, as a
product of factors. For instance, observing that 11 divides 660, we may
express the latter as 11× 60. Now the factor 60 is composite, so it may be
broken down further into, for example, 4× 15, so that 660 = 11× 4× 15.
The factors 4 and 15 are each composite, so they can be broken down
further. Indeed, by continuing to break down any composite factor in this
way, we can eventually express the original number as a product of primes.
Figure 2.4 shows three ways in which 660 can be broken down to its prime
factors.

660

11× 60 15× 44 20× 33

11× 4× 15 3× 5× 2× 22 2× 10× 3× 11

11× 2× 2× 3× 5 3× 5× 2× 2× 11 2× 2× 5× 3× 11

Figure 2.4 Expressing 660 as a product of primes

What is noticeable is that in all these ways of breaking down 660, we end
up with the same product of primes; the order in which they are written
varies, but in all cases 660 = 2× 2× 3× 5× 11. Our next goal is to show
that every integer greater than 1 is expressible as a product of primes in a
unique way (except for the order in which the primes are written) – but on
the way we will need some divisibility properties involving primes.

First we record one simple property, which will come up frequently,
concerning highest common factors. Suppose that p is prime and n is any
integer. What can we say about hcf(n, p)? As the only factors of prime p
are p itself and 1, hcf(n, p) has just the two possible values, namely p and
1. Now hcf(n, p) takes value p precisely when p divides n. Hence we have
the following property.

The value of hcf(n,p)

If p is a prime and n is any integer, then

hcf(n, p) =

{

p, if p divides n,

1, otherwise.
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If a prime p divides a product of numbers then it must divide one of those
numbers.

Theorem 2.14 Euclid’s Lemma for prime factors

If p is prime and p divides the product a1a2 · · · an then p divides ai,
for some integer i, where 1 ≤ i ≤ n.

Proof We prove the result by mathematical induction on the number of
terms in the product. With that goal in mind let P (n) be the statement of
the theorem.

We have the basis for induction since P (1) is trivially true, for it states
that if p divides a1, then p divides a1.

Heading for the induction step, suppose that P (k) is true for some integer
k ≥ 1, that is, if p divides the product of any k integers then p divides one
of them. Now consider any product of k + 1 integers that is divisible by p,
say

p | a1a2 · · · akak+1.

Either p divides ak+1 or it does not. If p divides ak+1 we are finished. If p
does not divide ak+1 then hcf(p, ak+1) = 1. Since p divides the product
(a1a2 · · · ak)ak+1 and hcf(p, ak+1) = 1 we conclude that p divides
a1a2 · · · ak. But then, by the induction hypothesis, p divides ai for some i,
where 1 ≤ i ≤ k.

Putting the two possibilities together, either p divides ak+1 or p divides ai
for some i, where 1 ≤ i ≤ k, which verifies that P (k + 1) is true. Hence, by
the Principle of Mathematical Induction, P (n) is true for all natural
numbers.

One consequence of Theorem 2.14 merits recording, as follows.

Corollary 2.15 to Euclid’s Lemma for prime factors

If p, p1, p2, . . . , pn are primes such that

p | p1p2 · · · pn,
then p = pi for some i, where 1 ≤ i ≤ n.

Proof Theorem 2.14 tells us that p divides pi for some i, where
1 ≤ i ≤ n. But the only factors of pi are 1 and pi, and as 1 is not a prime,
it follows that p = pi.
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The following worked exercise makes use of these results.

Worked Exercise 2.16

Let p be prime and a and b be integers. Show that:

(a) if p divides an, then pn divides an

(b) if hcf(a, b) = p, then hcf (an, bn) = pn.

Solution

(a) Using Theorem 2.14 with a1 = a2 = · · · = an = a, we deduce
immediately that if p divides an then p divides a. Hence a = pr,
for some integer r. Raising both sides of this equation to the
power n gives an = pnrn, which tells us that pn divides an.

(b) If hcf(a, b) = p, there exist integers r and s such that a = pr and
b = ps, with hcf(r, s) = 1. But then

hcf (an, bn) = hcf (pnrn, pnsn)

= pnhcf (rn, sn) .

It remains to show that hcf (rn, sn) = 1.

Suppose q is a prime that divides hcf (rn, sn). Then q divides rn

and q divides sn. As we saw in part (a), this implies that
q divides r and q divides s, so that q divides hcf(r, s). But
hcf(r, s) = 1, contradicting the existence of such a prime q.

Hence hcf (rn, sn) = 1, which completes the proof.

We are just about ready for our main result of this section, but first a word
about notation. Earlier we saw several ways of expressing 660 as a product
of primes, the only difference between the expressions being the order in
which the primes were written. Conventionally, when writing a number
down as a product of its prime factors, we arrange the primes in ascending
order with like primes collected together as a power. For instance, we write
660 as

660 = 22 × 3× 5× 11.

This convention removes the ambiguity of ordering and, as we are about to
see, renders a unique representation of the integer as a product of its prime
factors. We refer to this as the prime decomposition of the integer.

Exercise 2.8

Give the prime decompositions of each of the integers 168, 226 and 36 000.
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Theorem 2.17 The Fundamental Theorem of Arithmetic

Any integer n ≥ 2 can be written uniquely in the form As its name suggests, this
theorem is central to many
investigations in number theory.n = pk1

1
pk2
2
· · · pkrr ,

where pi, i = 1, . . . , r, are primes with p1 < p2 < · · · < pr and each ki,
i = 1, . . . , r, is a natural number.

Proof We prove the theorem in two parts. First, we show the existence

of such a decomposition, that is, we show that n can be expressed as such
a product of primes. Second, we show that the prime decomposition
obtained is unique.

Existence

With proof by mathematical induction in mind, let P (n) be the
proposition that n can be expressed as a product of primes. We need to
show that P (n) is true for all n ≥ 2.

Now P (2) is certainly true, since 2 is a prime, and so we have the basis for
the induction.

Suppose that, for some integer k ≥ 2, P (2), P (3), . . . , P (k) are all true.
That is, each of 2, 3, . . . , k can be written as a product of primes. Now
consider the integer k + 1. By Proposition 2.12, k + 1 is divisible by some
prime p and so we may write k + 1 = pr, for some integer r. If r = 1, k + 1
is a prime and we are done. If r > 1 then, as r < k + 1, the induction
hypothesis tells us that r is a product of primes, whereupon k + 1 = pr is
also a product of primes. It follows therefore that P (k + 1) is true.

Hence, by the Second Principle of Mathematical Induction, P (n) is true
for all integers n ≥ 2.

Uniqueness

Suppose that some integer n ≥ 2 has two representations as a product of
primes, say,

n = p1p2 · · · pr, where p1 ≤ p2 ≤ · · · ≤ pr,

= q1q2 · · · qs, where q1 ≤ q2 ≤ · · · ≤ qs.

Note that in these expressions for n we have kept the primes separate
rather than collecting them in powers.

Now p1 divides n and so p1 divides the product q1q2 · · · qs. By the
Corollary to Euclid’s Lemma for prime factors, this gives p1 = qj for some
1 ≤ j ≤ s. As q1 ≤ qj we conclude that q1 ≤ p1. But there is symmetry
between the ps and qs. So similarly we argue that since q1 divides n, we
have q1 = pi for some 1 ≤ i ≤ r, which leads to p1 ≤ q1. Combining the two
inequalities gives p1 = q1.

Since p1 divides n we have n = p1n1 for some integer n1. Hence

n1 = p2 · · · pr = q2 · · · qs,

29



Foundations

and a repetition of the argument gives p2 = q2. Then, putting n = p1p2n2,
we get

n2 = p3 · · · pr = q3 · · · qs,
giving p3 = q3.

We can continue in this way, cancelling equal primes from the left of the
two products.

If r < s then we obtain pi = qi for 1 ≤ i ≤ r and we are left with

1 = qr+1 · · · qs.
This is a contradiction, since the qi are primes. The assumption that r > s
leads to a similar contradiction. Hence r = s and the proof of the
uniqueness of the prime decomposition is complete.

Exercise 2.9

(a) Show that the integer n > 1 with prime decomposition

n = pk1
1
pk2
2
· · · pkrr is a square if, and only if, each of the exponents ki is

even.

(b) Use the identity n3 − 1 = (n− 1)
(

n2 + n+ 1
)

to prove that the only

prime of the form n3 − 1 is 7.

Exercise 2.10

(a) Find the prime decomposition of 20!

(b) Given that p and q are distinct primes such that their product pq
divides an, prove that (pq)n divides an.

(c) Prove that the only prime p for which 3p + 1 is a square is p = 5.

(d) Show that for any prime p, 8p− 1 and 8p + 1 cannot both be prime.

Hint : use the fact that p must be either equal to 3 or of one of the
forms 3k + 1 or 3k + 2.

(e) Let p ≥ 5 be prime. Show that the remainder on dividing p by 12 must
be one of 1, 5, 7 or 11. Hence prove that if p ≥ q ≥ 5 are primes then
24|

(

p2 − q2
)

.

(f) Prove (as Cataldi did in 1588) that if a is a natural number and n ≥ 2
such that an − 1 is prime then a = 2 and n is prime.

Hint : consider the factorisation
an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a+ 1).
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Solutions and comments on exercises

Solution to Exercise 2.1

(a) (i) The set {n ∈ Z : |n| > 20} consists of all the integers except those
from −20 to 20 inclusive. That is,

{. . . ,−23,−22,−21, 21, 22, 23, . . .}.
(ii) The set {n : n = 2m2, for some m ∈ N} is the set consisting of

those integers that are equal to twice the square of a positive
integer, namely

{2, 8, 18, 32, . . .}.
(b) (i) The set is {n : n = 2m− 1, for some m ∈ N}.

We could equally well write this set as {n : n = 2m+ 1, for some
m ∈ Z with m ≥ 0}.

(ii) The set is {n ∈ Z : |n| ≤ 100}.

Solution to Exercise 2.2

(a) Let P (n) be the proposition that the formula is true for the natural
number n.

Then P (1) is true since

12 = 1
6 × 1(1 + 1)(2 + 1).

Hence we have the basis for the induction.

For the induction step, assume that P (k) is true, that is,

12 + 22 + 32 + · · · + k2 = 1
6k(k + 1)(2k + 1).

Then

12 + 22 + 32 + · · · + k2 + (k + 1)2, the LHS of P (k + 1),

= 1
6
k(k + 1)(2k + 1) + (k + 1)2, by the induction hypothesis,

= 1
6(k + 1)

(

2k2 + k + 6(k + 1)
)

= 1
6(k + 1)

(

2k2 + 7k + 6
)

= 1
6
(k + 1)(k + 2)(2k + 3)

= 1
6
(k + 1)((k + 1) + 1)(2(k + 1) + 1), the RHS of P (k + 1).

This shows that P (k + 1) is true and completes the induction step.

Hence, by mathematical induction, the formula is true for all natural
numbers n.

(b) Let P (n) be the proposition that the formula is true for n.

Then P (1) is true since

a =
a(r − 1)

r − 1
.

So we have the basis for the induction.
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Now for the induction step. Assume that P (k) is true; that is,

a+ ar + ar2 + ar3 + · · · + ark−1 =
a(rk − 1)

r − 1
.

Then

a+ ar + ar2 + ar3 + · · · + ark−1 + ark

=
a(rk − 1)

r − 1
+ ark, by the induction hypothesis,

=
a(rk − 1) + ark(r − 1)

r − 1

=
a(rk+1 − 1)

r − 1
,

which is P (k + 1), completing the induction step.

Hence, by mathematical induction, the formula is true for all natural
numbers n.

Solution to Exercise 2.3

Let P (n) be the proposition that Ln <
(

7
4

)n
.

We note that P (1) and P (2) are true since

L1 = 1 < 7
4 and L2 = 3 <

(

7
4

)2
= 49

16 .

So we have the basis for the induction.

For the induction step (using the Second Principle) suppose that
P (1), P (2), . . . , P (k) are all true and consider P (k + 1) for k ≥ 2.

Lk+1 = Lk + Lk−1

<
(

7
4

)k
+
(

7
4

)k−1
, by the induction hypothesis,

=
(

7
4

)k−1 (7
4 + 1

)

=
(

7
4

)k−1 (11
4

)

<
(

7
4

)k−1 (7
4

)2
, since 11

4 < 49
16 ,

=
(

7
4

)k+1
,

which shows that P (k + 1) is true.

Hence, by the Second Principle of Mathematical Induction, the
proposition is true.

Note that, since the proof of the induction step uses the formula
Lk+1 = Lk + Lk−1, which holds only for k ≥ 2, our induction step first
deduces the truth of P (3) from that of P (1) and P (2), and then goes on to
deduce the truth of P (4), P (5), etc. It does not deduce the truth of P (2)
from P (1). Hence we have to show the truth of P (2) separately, which we
have done by including it in the basis for the induction.
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Solution to Exercise 2.4

(a) (i) Let P (n) be the proposition that the formula is true for n.

P (1) is true, since

12 = 1
3
× 1× (4× 12 − 1).

This gives the basis for the induction.

Assume that P (k) is true for some natural number k; that is,

12 + 32 + 52 + · · · + (2k − 1)2 = 1
3
k(4k2 − 1).

Then

12 + 32 + 52 + · · · + (2k − 1)2 + (2k + 1)2, the LHS of P (k + 1),

= 1
3k(4k

2 − 1) + (2k + 1)2, by the induction hypothesis,

= 1
3
k(2k − 1)(2k + 1) + (2k + 1)2

= 1
3
(2k + 1)[k(2k − 1) + 3(2k + 1)]

= 1
3(2k + 1)(2k2 + 5k + 3)

= 1
3
(2k + 1)(2k + 3)(k + 1)

= 1
3
(k + 1)(4k2 + 8k + 3)

= 1
3(k + 1)(4(k + 1)2 − 1), the RHS of P (k + 1),

which establishes the truth of P (k + 1), and completes the
induction step.

Hence, by the Principle of Mathematical Induction, the formula is
true for all natural numbers.

(ii) Let P (n) be the proposition that the formula is true for n.

Then P (1) is true since

1 = 1
2 × 12 × (1 + 1).

Assume that P (k) is true; that is,

1 + 5 + 12 + 22 + · · · + 1
2
k(3k − 1) = 1

2
k2(k + 1).

Then

1 + 5 + 12 + 22 + · · · + 1
2k(3k − 1) + 1

2(k + 1)(3k + 2)

= 1
2k

2(k + 1) + 1
2(k + 1)(3k + 2)

= 1
2
(k + 1)(k2 + 3k + 2)

= 1
2(k + 1)2(k + 2),

confirming that P (k + 1) is true and completing the induction
step.

The truth of P (n) for all n ≥ 1 follows by mathematical induction.
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(b) Let P (n) be the proposition that the formula is true for n.

P (1) is certainly true since

1× (1!) = 2!− 1,

both sides being equal to 1.

For the induction step, suppose that P (k) is true for some k ≥ 1. That
is,

1× (1!) + 2× (2!) + · · · + k × (k!) = (k + 1)!− 1.

Then

1× (1!) + 2× (2!) + · · · + k × (k!) + (k + 1)× ((k + 1)!)

= (k + 1)!− 1 + (k + 1)((k + 1)!)

= (k + 1)!(1 + k + 1)− 1

= (k + 2)!− 1,

which confirms the truth of P (k+ 1) and completes the induction step.

The truth of P (n) for all n ≥ 1 follows by mathematical induction.

(c) We observe that n! increases more rapidly than 6n2 and n! exceeds
6n2 for the first time when n = 6. So we make the conjecture that
n! > 6n2 for all n ≥ 6, and prove it by mathematical induction.

Let P (n) be the proposition that n! > 6n2. Now

6! = 720 > 6× 62 = 216,

so P (6) is true, giving us the basis for induction.

Suppose that P (k) is true for some integer k ≥ 6, that is,

k! > 6k2.

On multiplying through by k + 1, we get

(k + 1)! > 6k2(k + 1).

If we can show that k2 ≥ k + 1 it will follow that (k + 1)! > 6(k + 1)2,
completing the induction step. But this is easily seen since, for k ≥ 6,

k2 ≥ 6k > 2k = k + k > k + 1,

which completes the induction step.

So by the Generalised Principle of Mathematical Induction, P (n) is
true for all n ≥ 6.

(d) Suppose that

S = {k ∈ Z : k ≥ n0 and P (k) is false}
is non-empty. We cannot apply the Well-Ordering Principle directly to
this set, as it may not be a subset of N.

Now consider the set T defined by

T = {s− n0 : s ∈ S}.
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Certainly T is a non-empty set of integers, each of whose elements is
greater than or equal to zero. Now, by condition (a), P (n0) is true so
n0 is not an element of S. Hence zero is not an element of T, and T is
a non-empty subset of N.

By the Well-Ordering Principle, T has a least element. We may take
this least element of T to be m− n0 for some integer m in S and, by
the definition of T, it follows that m is the least element of S.

Furthermore, since n0 /∈ S we know that m > n0, which ensures that
the list P (n0), P (n0 + 1), . . . , P (m− 1) contains at least one element.
By the definition of S it follows that P (n0), P (n0 + 1), . . . , P (m− 1)
must all be true. But then condition (b′) gives that P (m) is true,
which contradicts the fact that m ∈ S.

Hence the only assumption made, namely that S is non-empty, must
be false. Hence S is empty and so the proposition P (k) is true for all
k ≥ n0.

Solution to Exercise 2.5

Cubing each of the three given forms that the number can take, and then
writing each cube in the form 9n+ r, where 0 ≤ r < 9, gives

(3n)3 = 27n3 = 9(3n3) + 0,

(3n+ 1)3 = 27n3 + 27n2 + 9n+ 1 = 9(3n3 + 3n2 + n) + 1,

(3n+ 2)3 = 27n3 + 54n2 + 36n+ 8 = 9(3n3 + 6n2 + 4n) + 8.

Hence the only possible remainders are 0, 1 and 8.

Solution to Exercise 2.6

(a) The factors of 18 are 1, 2, 3, 6, 9 and 18. The factors of −24 are 1, 2,
3, 4, 6, 8, 12 and 24. (These are the same as the factors of 24.)

The common factors of 18 and −24 are 1, 2, 3 and 6.

(b) The Division Algorithm tells us that n takes one of the three forms
3k, 3k + 1 or 3k + 2. But n is not a multiple of 3 and so the first of
these forms cannot occur.

For n = 3k + 1 we get

(3k + 1)2 − 1 = 9k2 + 6k + 1− 1 = 3(3k2 + 2k).

For n = 3k + 2 we get

(3k + 2)2 − 1 = 9k2 + 12k + 4− 1 = 3(3k2 + 4k + 1).

In each case n2 − 1 has remainder zero on dividing by 3.
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Solution to Exercise 2.7

(a) As 112 > 117 we need to test each of the given numbers for divisibility
only by 2, 3, 5 and 7.
111 is divisible by 3, and so is composite.
113 is not divisible by 2, 3, 5 or 7 and so is prime.
115 is divisible by 5 and so is composite.
117 is divisible by 3 and so is composite.

(b) Since 22 <
√
499 < 23, it suffices to check divisibility by the primes

not exceeding 22, that is, by 2, 3, 5, 7, 11, 13, 17 and 19.

Solution to Exercise 2.8

168 = 23 × 3× 7

226 = 2× 113

36000 = 25 × 32 × 53

Solution to Exercise 2.9

(a) On the one hand if each exponent is even, say ki = 2li, then

n = p2l11 p2l22 · · · p2lrr =
(

pl11 p
l2
2 · · · plrr

)2

is a square.

On the other hand if n is a square, say n = a2, then writing
a = qm1

1 qm2

2 · · · qmt

t in its prime decomposition and squaring gives

n = q2m1

1 q2m2

2 · · · q2mt

t .

As the qi are distinct primes and each mi is positive, this is the unique
prime decomposition of n, revealing that each exponent is even.

Note that a simple modification of this argument generalises the result
to any power; an integer is an nth power if, and only if, each of its
prime exponents is a multiple of n.

(b) If n3 − 1 is prime then the given identity expresses a prime as a
product of two factors. The uniqueness of prime decomposition tells
us that this cannot happen unless one of these factors is 1. Now n > 1
(since n3 − 1 is prime) and so n2 + n+ 1 > 3. The only possibility is
that n− 1 = 1, giving n = 2 and n3 − 1 = 7.
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Solution to Exercise 2.10

(a) As

20! = 1× 2× 3× 4× · · · × 19× 20

it is divisible by each of the primes from 2 to 19 inclusive, and by no
others.

Looking at the terms on the right-hand side, the primes from 11 to 19
occur just once. The prime 7 occurs twice, in the terms 7 and 14. The
prime 5 occurs in terms 5, 10, 15 and 20. The prime 3 occurs once in
each term 3, 6, 12 and 15 but twice in terms 9 and 18, making eight
occurrences in all. Finally, the prime 2 occurs once in terms 2, 6, 10,
14 and 18, twice in terms 4, 12 and 20, three times in term 8 and four
times in term 16, making a total of eighteen occurrences. Hence

20! = 218 × 38 × 54 × 72 × 11× 13× 17× 19.

(b) Since pq divides an, we know that p divides an and Euclid’s Lemma
for prime factors gives p divides a. Similarly, q divides an and so q
divides a. Now as p and q are distinct primes, hcf(p, q) = 1 and so pq
divides a; say (pq)r = a. But then, raising to the nth power,
(pq)nrn = an, which confirms that (pq)n divides an.

(c) Suppose that 3p+ 1 is a square, say 3p+ 1 = n2. Then

3p = n2 − 1 = (n− 1)(n+ 1).

Now n > 2, since p ≥ 2, and so the right-hand side of this equation is
a product of two factors each exceeding 1. The left-hand side is the
product of two primes. By uniqueness of prime decomposition we
must have either 3 = n− 1 and p = n+ 1, or alternatively 3 = n+ 1
and p = n− 1. The former case leads to n = 4 and p = 5, which is one
solution. The latter case leads to n = 2 and p = 1, which is invalid.

(d) Thinking in terms of remainders on division by 3, there are three
possibilities for the prime p: it is 3, of form 3k + 1, or of form 3k + 2.

If p = 3 then 8p+ 1 = 25 is composite.
If p = 3k + 1 then 8p+ 1 = 24k + 9 = 3(8k + 3) is composite.
If p = 3k + 2 then 8p− 1 = 24k + 15 = 3(8k + 5) is composite.

(e) The prime p must take one of the twelve forms 12k + r, where
0 ≤ r ≤ 11. However, when r is even 12k + r is divisible by 2, andWe are told that p ≥ 5 and so

p = 2 and p = 3 are not
possibilities.

similarly 12k + r is divisible by 3 when r = 3 or 9. The only remaining
possibilities are 12k + 1, 12k + 5, 12k + 7 and 12k + 11, and any prime
p ≥ 5 must take one of these forms.

Now

(12k + 1)2 = 24
(

6k2 + k
)

+ 1,

(12k + 5)2 = 24
(

6k2 + 5k + 1
)

+ 1,

(12k + 7)2 = 24
(

6k2 + 7k + 2
)

+ 1,

(12k + 11)2 = 24
(

6k2 + 11k + 5
)

+ 1.and

So whichever of the four forms p takes, p2 is of the form 24m+ 1.
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If q is another such prime, say q2 = 24n+ 1, then

p2 − q2 = (24m+ 1)− (24n+ 1) = 24(m− n)

which is divisible by 24.

(f) Consider the given factorisation

an − 1 = (a− 1)(an−1 + an−2 + an−3 + · · ·+ a+ 1).

For an − 1 to be prime, one of the two factors on the right-hand side
of this equation will have to be equal to 1. The only way this can
happen is when a− 1 = 1, so that a = 2.

Next, suppose that n is composite, say n = rs, where r > 1 and s > 1.
Then 2n − 1 =(2r)s − 1, and so replacing a by 2r and replacing n by s
in the above factorisation:

(2r)s − 1 = (2r − 1)(2r(s−1) + 2r(s−2) + 2r(s−3) + · · · + 2r + 1).

Once again this expresses 2n − 1 as a product of two factors and, this
time, since 2r > 2 neither factor is equal to 1. This contradicts the
primality of 2n − 1. The only assumption we have made is that n = rs
is composite. Hence we conclude that n must be prime.
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