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        Introduction

        Motion is vital to life, and to science. In many ways it was the investigation of motion, initiated by Galileo Galilei in
          the late sixteenth century, and brought to a head by Isaac Newton in the seventeenth, that inaugurated the modern era of physics.
          Progress since that time has been so great that describing motion is now regarded as a fundamental part of science rather
          than one of its frontiers. Nonetheless, the description of motion played a central role in Einstein's formulation of the special
          theory of relativity in 1905, and it continues to provide an excellent starting point for the quantitative investigation of
          nature.
        

        This OpenLearn course provides a sample of level 2 study in Science

      

    

  
    
      
        Learning outcomes

        After studying this course, you should be able to:

        
          	explain the meaning of all the newly defined (emboldened) terms introduced in this course

        

        
          	draw, analyse and interpret position-time, displacement-time, velocity-time and acceleration-time graphs. Where appropriate,
            you should also be able to relate those graphs one to another and to the functions or equations that describe them, particularly
            in the case of straight-line graphs
          

        

        
          	find the derivatives of simple polynomial functions, express physical rates of change as derivatives, and relate derivatives
            to the gradients of appropriate graphs
          

        

        
          	solve simple problems involving uniform motion and uniformly accelerated motion by using appropriate equations. You should
            also be able to rearrange simple equations, to change the subject of an equation, and to eliminate variables between sets
            of equations
          

        

        
          	describe the nature and purpose of drop-towers and drop-shafts, with particular reference to their role in simulating the
            near weightless conditions of space.
          

        

      

    

  
    
      
        1 The description of motion

        The concepts that have been developed to allow the description of motion - concepts such as speed, velocity and acceleration - are now so much a part of everyday language that we rarely think about them. Just consider the number of times each day
          you have to describe some aspect of motion or understand an instruction about motion; obey a speed limit or work out a journey
          time. We may take the description of motion for granted, but the concepts involved are so fundamental and so much depends
          upon them that they really deserve careful consideration. This was clearly understood by Einstein, but it was also well known
          long before his time.
        

        To the ancient Greek philosopher Zeno, motion seemed such a self-contradictory feature of the world that he and his followers
          became convinced that the apparent existence of motion only served to indicate the fundamental unreliability of our senses.
          For Zeno the description of motion was not only a fundamental problem, it was, perhaps, the fundamental problem.
        

        
          [image: ]

           Figure 1: The paradox of Achilles and the tortoise. Achilles moves faster than the tortoise, but each time he reaches the previous
            position of the tortoise the tortoise has moved on. The gap gets smaller and smaller but, according to Zeno, never completely
            vanishes. Does this really mean that Achilles can never quite catch up with the tortoise? Such a conclusion would clearly
            conflict with our everyday experience of how things move
          

        

        Zeno's arguments against the reality of motion are still remembered because of three paradoxes he based upon them. The best
          known of these paradoxes concerns a race between the ancient hero Achilles and a tortoise (Figure 1). Naturally, Achilles
          can run much faster than a tortoise, so the outcome of the race seems obvious. Even if the tortoise is given a head start,
          Achilles will quickly overtake it and go on to win the race. However, Zeno argued, this cannot really be the case. According
          to Zeno, whatever head start is given to the tortoise, Achilles will take some time to reach the starting position of the
          tortoise and during that time the tortoise, no matter how slowly it moves, will have reached some new position, still ahead
          of Achilles. Now, starting from the tortoise's original position, Achilles will take a much shorter time to reach the new
          position of the tortoise, but by the time he does so the tortoise will again have moved on a little, so the reptile will still
          be ahead of the athlete. In Zeno's view this process can go on forever with the tortoise always moving on, at least a little,
          in the time that Achilles takes to reach its previous position. Achilles, according to Zeno, will never quite manage to close
          the gap. Since this conclusion disagrees with everyday experience, Zeno concluded that everyday experience was misleading.
          Unlike most modern scientists, Zeno preferred to trust his reason rather than his experience of the world.
        

        Modern science is able to resolve Zeno's paradox. Motion is not in conflict with reason, but the resolution relies on mathematical
          concepts that were not known to the ancient Greeks, nor even to Galileo. This course deals with motion along a line and with
          the ways in which such motion can be represented. It will show you how graphs can be used to depict motion and how equations can provide even more powerful summaries of such graphical information. Crucially, it will also introduce you to some of
          the basic ideas of differential calculus, the branch of mathematics that concerns small changes and their influence.
        

        Click to view part 1 of Newton's Revolution

        
          
            Video content is not available in this format.

          

          Video 1

          View transcript - Video 1

        

        Click to view part 2 of Newton's Revolution

        
          
            Video content is not available in this format.

          

          Video 2

          View transcript - Video 2

        

        Click to view part 3 of Newton's Revolution

        
          
            Video content is not available in this format.

          

          Video 3

          View transcript - Video 3

        

        
          1.1 From drop-towers to Oblivion - some applications of linear motion
          

          We have all experienced that momentary feeling of lightness when an elevator begins its downward motion. It is almost as if
            our weight had suddenly been reduced or, conceivably, that the pull of the Earth's gravity had decreased for a moment. But
            imagine what it would be like if the lift cable had suddenly snapped and the lift, with you in it, had plummeted downward.
            Apart from stark terror, what else do you think you would experience during your fall? What would the physical experience of such a disaster be like?
          

          Well, it would be just like jumping from a high tower. If your descent was unimpeded by the resistance of the air, almost
            all sense of weight would vanish while you were falling. You would feel weightless, just as though you were an astronaut in
            outer space.
          

          Not surprisingly, scientists who want to know how equipment will behave under the conditions found in spacecraft are keen
            to simulate the same conditions here on Earth. One way in which they can do this is by dropping their equipment from the top
            of a tower, or down a vertical shaft. There are a number of research centres around the world where drop facilities of this
            kind are available. These are specialised facilities where steps are taken to avoid or overcome the effects of air resistance:
            simply dropping an object in the Earth's atmosphere is not a satisfactory way of simulating the environment of outer space.
          

          Figure 2 shows the 140 m drop-tower in Bremen, Germany. The tower is airtight, so all the air can be pumped out. Equipment
            under test is placed inside a specially constructed drop-vehicle and monitored by closed-circuit TV as it falls from the top
            to the bottom of the tower. About five seconds of free fall can be achieved in this way. During those few seconds, within
            the falling drop-vehicle, the effects of gravity are reduced to a tiny fraction of their usual value, a condition known as
            'microgravity'.
          

          
            [image: ]

             Figure 2: The 140 m drop-tower in Bremen, Germany
            

          

          In the USA, at the Lewis Research Center in Ohio, NASA operates a 143 m drop-shaft, as part of its Zero Gravity Research Facility.
            Microgravity investigations conducted at the research facility have concerned the spread of fire, the flow of liquids, and
            the feasibility of space-based industrial processes that would be impossible under normal terrestrial conditions. Figure 3
            shows the facility's bullet-shaped drop-vehicle being given a soft landing at the end of a drop, to avoid destroying the expensive
            equipment that it contains.
          

          At the time of writing, the world's longest drop-shaft is in Japan. The Japan Microgravity Center (JAMIC) has a 700 m drop
            housed in a disused mine shaft. It would be impossible to evacuate the air from such a big shaft, so in this case the rocket-shaped
            test capsule is propelled down the shaft by gas-jets with a thrust that is designed to compensate for air resistance. Inside
            this capsule, there is a second capsule and the space between the capsules is a vacuum. The experiments are carried out in
            the inner capsule which, to a very good approximation, is in free fall. The two capsules decelerate during the final 200 m
            of the fall.
          

          By the time you finish this course you should be able to work out the duration of the fall in the JAMIC facility, and the
            highest speed attained by the capsule. You should also be able to work out the length of shaft that would be required to produce
            any given duration of microgravity.
          

          
            [image: ]

             Figure 3: The linear motion of a falling test vehicle is stopped safely at the NASA Lewis Zero Gravity Research Facility in Ohio, USA
            

          

          If all this sounds a bit esoteric you might prefer to consider a different kind of drop-facility. Figure 4 shows Oblivion, a ride at the Alton Towers Adventure Park, UK. Oblivion is described as 'the world's first vertical-drop roller-coaster'. It will not simulate the space environment, but it will
            produce a few seconds of terror from a simple application of linear motion.
          

          
            [image: ]

             Figure 4: Oblivion, the vertical-drop roller-coaster at the Alton Towers Adventure Park, UK
            

          

        

      

    

  
    
      
        2 Positions along a line

        
          2.1 Simplification and modelling

          Everyday experience teaches us that unconfined objects are free to move in three independent directions. I can move my hand
            up or down, left or right, backwards or forwards. By combining movements in these three directions I can, at least in principle,
            move my hand to any point in space. The fact that there are just three independent directions, and that these suffice to reach
            any point, shows that the space in which my hand moves is three-dimensional.
          

          The motion of a large object, such as an aeroplane, moving in three-dimensional space is very difficult to describe exactly.
            The aeroplane may flex, rotate and vibrate as it moves, and there may be complicated changes taking place within it. To avoid
            such complexities at the start of our investigation of motion we shall initially restrict our attention to objects that move
            in just one dimension along a line.
          

          
            
              We shall treat the object concerned as a particle, that is, a point-like concentration of matter that has no size, no shape and no internal structure.
              

            

          

          Treating a real object, such as an aeroplane, as though it is a particle is clearly a simplification. Real objects certainly
            do have size, shape and internal structure, but such details can often be neglected in specific contexts. Making simplifications
            of this kind is an important part of the skill of scientific modelling in physics. A good model uses the well-defined concepts of physics to represent the essential features of a problem while omitting the irrelevant
            details. The trick is not to oversimplify. The model should be as simple as it can be, but no simpler. Just what this entails
            will depend on the problem being analysed. For example, the use of the year as a unit of time is a result of the orbital motion
            of the Earth around the Sun. This orbital motion is described quite easily while treating the Earth as a particle. The Earth's
            diameter is about 10 000 times smaller than the distance between the Earth and the Sun, so a particle model is a very good
            approximation in this case. However, a particle model of the Earth cannot account for the distinction between day and night
            since that depends on the rotation of the Earth.
          

          In this course we shall only consider problems that can be adequately modelled by particles moving in one dimension, that
            is, along a straight line.
          

          Describing the motion of a particle moving along a line may sound like a fairly simple undertaking, but, as you will see,
            it will present plenty of challenges and will allow us to gain significant insights into the operation of systems such as
            zero gravity drop-towers and vertical-drop roller-coasters.
          

          
            
              Question 1

            

            
              
                List some more examples of real motions that might, in your opinion, be reasonably well modelled by particles moving along
                  a line.
                

              

              View answer - Question 1

            

          

          The branch of physics that is concerned with the description of motion is known as kinematics. Kinematics is not concerned with forces, nor with the causes of motion; those topics are central to the study of dynamics. Typical questions that we might ask about the kinematics of a particle are:
          

          
            	
              Where is the particle?

            

            	
              How fast is it moving, and in what direction?

            

            	
              How rapidly is it speeding up or slowing down?

            

          

          How such questions are to be answered is the main concern of the rest of this course.

        

        
          2.2 Describing positions along a line

          To take a definite case, consider a car moving along a straight horizontal road. The car can be modelled as a particle by
            supposing the particle to be located at, say, the midpoint of the car. It is clearly convenient to measure the progress of
            the car with respect to the road, and for this purpose you might use the set of uniformly spaced red-topped posts along the
            right-hand side of the road (see Figure 5). The posts provide a way of assigning a unique position coordinate to the car (regarded as a particle) at any instant. The instantaneous position coordinate of the car is simply the number
            of the nearest post at that moment.
          

          
            [image: ]

             Figure 5: A long straight road and a set of uniformly spaced posts along it
            

          

          When used in this way the posts provide the basis of a one-dimensional coordinate system - a systematic means of assigning position coordinates along a line. Taken together, the posts constitute an axis of the system; a straight line along which distances can be measured. One point on the axis must be chosen as the origin and assigned the value 0. Points on one side of the origin can then be labelled by their distance from the origin (10 m or
            20 m say), while points on the other side are labelled by minus their distance from the origin (−10 m or −20 m for example). Conventionally, we might represent any of these values by the
            algebraic symbol x, in which case it would be called the x-coordinate of the corresponding point on the axis, and the axis itself would be called the x-axis.
          

          Figure 6 shows an example, corresponding to a particular choice of origin, and with x increasing smoothly from left to right, as indicated by the arrow. Note that the numbers x increase from left to right everywhere on the x-axis, not only on the positive segment. Thus for example −﻿10 is larger than −﻿20, and so if you subtract −﻿20 from −﻿10
            you get −﻿10 − (﻿−﻿20﻿) = 10, a positive number. At the time illustrated the car is at x = 30 m, and a pedestrian (also modelled as a particle) is at x = −20 m. Notice that it is essential to include the units in the specification of x. It makes no sense to refer to the position of the car as being '30', with no mention of the units, i.e. metres. In one dimension,
            the specification of a physical position x consists of a positive or negative number multiplied by an appropriate unit, in this case the metre.
          

          
            [image: ]

             Figure 6: A choice of x-axis. Setting up the axis involves choosing an origin and a direction of increasing x (from left to right). Distances are measured in metres (m)
            

          

          It is worth emphasising that setting up an x-axis involves some degree of choice. The origin and the direction of increasing x are both chosen in an arbitrary way, usually so as to simplify the problem. The choice of units of measurement is also arbitrary,
            though usually guided by convention. Even the decision to call the axis an x-axis is arbitrary; x is conventional, but not compulsory. It does not really matter what choices are made, but it is essential to stick to the same choices throughout the description of a given motion.
          

          The conventions about units deserve special attention, so they have been set apart from the main text in Box 1.

          
            
              Box 1 Introducing SI units

            

            
              The standard way for scientists to measure lengths, distances and positions is in metric units (metres, millimetres, kilometres,
                etc., as opposed to miles, feet or inches). This is part of an internationally agreed system of units known as SI (which stands for the Système Internationale). This course uses SI units throughout.
              

              The standard SI abbreviation for the metre is m. Since 1983 the speed of light travelling in a vacuum has been defined to be exactly
              

              2.99792458 × 108 metres per second.
              

              This is an internationally agreed definition, not the result of a measurement, so the metre may be similarly defined as the distance that light travels through a vacuum
                in (1 / 299 792 458) second. Typical lengths of interest to physicists range from the diameter of the atomic nucleus, which
                is about 10−15 m, to the diameter of the visible Universe, which is about 1027 m.
              

              In view of the wide range of lengths that are of interest, it would be inconvenient to use only the metre for their measurement.
                To avoid this there are standard SI multiples and SI submultiples that may also be used. You will already be familiar with some of these; the prefix kilo means 103 as in kilometre and the prefix milli stands for 10−3 as in millimetre. Table 1 gives the standard SI multiples; you are not expected to remember all of them but it is certainly
                worth learning the more common ones.
              

              Another example of an SI unit is the second which is the unit of time. The standard abbreviation for the second is s. (Notice that, like m, this symbol is always lower case. The distinction does matter.) The time values of interest to experimental physicists range from the 10−24 s duration of certain events in subatomic physics, to the present age of the Universe, which is about 1018 s, though speculations about the birth and death of the Universe have involved times ranging from 10−45 s to 10140 s, or more.
              

              
                 Table 1: Standard SI multiples and submultiples
                

                
                  
                    
                      	Multiple
                      	Prefix
                      	Symbol for prefix
                      	Submultiple
                      	Prefix
                      	Symbol for prefix
                    

                    
                      	1012
                      	tera
                      	T
                      	10−3
                      	milli
                      	m
                    

                    
                      	109
                      	giga
                      	G
                      	10−6
                      	micro
                      	μ
                    

                    
                      	106
                      	mega
                      	M
                      	10−9
                      	nano
                      	n
                    

                    
                      	103
                      	kilo
                      	k
                      	10−12
                      	pico
                      	p
                    

                    
                      	100
                      	
                      	
                      	10−15
                      	femto
                      	f
                    

                  
                

                

              

            

          

          Having chosen a convenient x-axis and selected units of length and time, we are well placed to describe the position of a particle as it moves along a
            straight line. All we need to do is to equip ourselves with a clock, choose an origin of time (that is, an instant at which
            the time t = 0 s) and note the position of the particle at a series of closely spaced intervals. Table 2 shows typical results for the
            kind of car in Figure 6. The use of an oblique slash (/) or solidus in the column headings in Table 2 is another convention. It reminds us that the quantity to the left of the solidus is being
            measured in the units listed on the right of the solidus.
          

          
             Table 2: The position coordinate x of the car in Figure 6 at various times t

            
              
                
                  	t/s
                  
                  	x/m
                  
                

                
                  	0
                  	0
                

                
                  	5
                  	1.7
                

                
                  	10
                  	6.8
                

                
                  	15
                  	15
                

                
                  	20
                  	26
                

                
                  	25
                  	39
                

                
                  	30
                  	53
                

                
                  	35
                  	68
                

                
                  	40
                  	84
                

                
                  	45
                  	99
                

                
                  	50
                  	115
                

                
                  	55
                  	131
                

                
                  	60
                  	146
                

              
            

            

          

          In fact, if you remember that a physical quantity such as x represents the product of a number and a unit of measurement, as in 20 m, for example, you can see that x/m may be thought of as indicating 'the value of x divided by 1 metre', which would just be the number 20 if x was 20 m. It therefore makes good sense to see that the entries in the x/m column of Table 2 are indeed just numbers. In effect, x/m indicates that the units have been divided out. Take care always to remember that symbols such as x, that are used to represent physical quantities, conventionally include the relevant units while quantities such as x/m are purely numerical.
          

        

        
          2.3 Position-time graphs

          Tables do not give a very striking impression of how one thing varies with respect to another. A visual form of presentation,
            such as a graph, is usually much more effective. This is evident from Figure 7, which shows the graph obtained by plotting
            the data in Table 2 and then drawing a smooth curve through the resulting points.
          

          
            [image: ]

             Figure 7: A position-time graph based on the results in Table 2
            

          

          The smooth curve drawn in Figure 7 is called the position-time graph of the car's motion. It can be used to read off the position of the car at any instant of time, or to find when the car passes
            a certain point. In graphs such as this, it is conventional to plot the time t along the horizontal axis. The vertical axis is used for the position x. This is just a standard way of displaying information about quantities that depend on time; it does not imply that the x-axis of Figure 6 is vertical!
          

          
            
              Question 2

            

            
              
                (a) Use Figure 7 to estimate the position of the car at t = 32 s.
                

                (b) Estimate the time at which the car reaches the position shown in Figure 6.

              

              View answer - Question 2

            

          

          A position-time graph provides a very straightforward way of describing motion along a line. It is easy to construct from
            a table of measurements, and easy to use to determine details of the motion. However, you should realise that the appearance
            of the graph depends on the precise choice made for the x-axis. Figure 8 shows a new coordinate system in which the origin is 20 m to the right of the origin in Figure 6. As a result,
            the position coordinate of the car, measured in this new system, at any of the times listed in Table 2, will be 20 m less than the value given in the table, and the corresponding position-time graph will look like Figure 9. The car now starts
            at x = −﻿20 m, and the steadily increasing x-coordinate only becomes positive after t = 8 s. Different choices of origin simply shift the position-time graph upwards or downwards, without changing its shape.
          

          
            [image: ]

             Figure 8: An alternative choice of x-axis with the origin moved 20 m to the right
            

          

          
            [image: ]

             Figure 9: The position-time graph when the position of the car is measured relative to the x-axis of Figure 8
            

          

          
            
              Question 3

            

            
              
                What change in the description of the motion would shift the position-time graph to the right or the left, without changing
                  its shape?
                

              

              View answer - Question 3

            

          

        

        
          2.4 Displacement-time graphs

          
            [image: ]

             Figure 10: A police car in pursuit of a getaway car
            

          

          A particle's position, x, is always measured from the origin of the coordinate system. However, in describing real motions it is often important to
            know where something is located relative to a point other than the origin. Figure 10 shows a case in point; in a high-speed
            pursuit neither the police nor the robbers are likely to be very interested in their location relative to the origin, but
            both will be interested in the location of their own vehicle relative to the other. The physical quantity used to describe
            the location of one point relative to another is called displacement. In the case of Figure 10, the displacement of the getaway car from the police car is 400 m and the displacement of the police
            car from the getaway car is −400 m. In each case the displacement of a body is determined by subtracting the position coordinate
            of the reference body from the position coordinate of the body of interest. Thus the displacement (measured along the x-axis) of a particle with position x from a chosen reference point with position xref is given by
          

          
            [image: ]

          

          Notice that displacements, like positions, may be positive or negative depending on the direction of the displacement. Thus
            sx is always positive when x is to the right of xref and is negative when x is to the left of xref. Also note that since displacements are measured along a definite axis it makes sense to represent them by a symbol, sx, that includes a reference to that axis. This symbol may be read as 's subscript x' or, more simply, as '﻿s sub x﻿'.
          

          A special case of Equation 1 is when the reference point xref is the origin. Then xref = 0 and sx  = x. Thus the displacement of a point from the origin is the position coordinate of the point. Once we know the displacement
            sx  of one object from another, it is easy to work out the distance s between those two objects. The distance is just the numerical value of the displacement, including the unit of measurement
            but ignoring any overall negative sign. So, when the displacement of the police car from the getaway car is sx = −400 m, the distance between them is s = 400 m. We describe this simple relationship between distance and displacement by saying that the distance between two objects
            is given by the magnitude of the displacement of one from the other, and we indicate it mathematically by writing
          

          
            [image: ]

          

          The two vertical bars | | constitute a modulus sign and indicate that you should work out the value of whatever they enclose and then take its magnitude (i.e. ignore any overall
            minus sign).
          

          
            
              Question 4

            

            
              
                In Figure 8, what is the displacement sx  of the car from the pedestrian, and what is the distance s between them?
                

              

              View answer - Question 4

            

          

          In many circumstances it is more valuable to plot a displacement-time graph rather than a position-time graph. In order to do this you either have to know the relevant displacements at various times,
            or you need to know enough about the positions of both the bodies involved to work out the displacements. Table 3 contains
            some plausible data about the positions of the two cars in Figure 10; use it to answer the following question.
          

          
             Table 3: The position coordinates of the police car xpol and getaway car xget at various times t

            
              
                
                  	t/s
                  
                  	xpol/m
                  
                  	xget/m
                  
                

                
                  	0
                  	−200
                  	200
                

                
                  	5
                  	−115
                  	237
                

                
                  	10
                  	−45
                  	265
                

                
                  	15
                  	10
                  	293
                

                
                  	20
                  	62
                  	317
                

                
                  	25
                  	108
                  	337
                

                
                  	30
                  	149
                  	351
                

                
                  	35
                  	184
                  	364
                

                
                  	40
                  	213
                  	377
                

                
                  	45
                  	239
                  	388
                

                
                  	50
                  	263
                  	394
                

                
                  	55
                  	283
                  	399
                

                
                  	60
                  	300
                  	400
                

              
            

            

          

          
            
              Question 5

            

            
              
                Plot a graph to show how the displacement of the getaway car from the police car depends on time.

              

              View answer - Question 5

            

          

        

        
          2.5 A note on graph drawing

          There will be many occasions throughout your study of physics when you will need to draw graphs. This subsection gives some
            important guidelines for this activity.
          

          
            	
              Decide which is the independent variable and which the dependent variable. Plot the independent variable along the horizontal axis and the dependent variable along the vertical axis. This is purely a convention
                but is why, for instance, we usually plot the time along the horizontal axis of a position-time graph. It is the position
                that varies with time rather than the time that varies with position. Time is the independent variable since we can choose
                to make a measurement at any time. Position is the dependent variable.
              

            

            	
              Give the graph a title, e.g. distance versus time.
              

            

            	
              Arrange the axes so that the vertical axis increases in an upward direction and values along the horizontal axis increase to the
                right. This is simply a convention.
              

            

            	
              Label both axes to show which quantities are being plotted and include the units. By convention only pure numbers are plotted.
                The physical quantity must be divided by its units before being plotted. This means that each axis should be labelled as quantity/units.
                This is why in all the graphs we have drawn so far the axes have been labelled by time/s and position/m (or displacement/m).
              

            

            	
              Fill as much of the graph paper as reasonably possible. You will obtain greater accuracy if the graph is as big as possible. However,
                take care to use the graph paper sensibly. Graph paper usually has centimetre and millimetre squares, so it is straightforward
                to use 2 or 5 or 10 divisions on the paper to one physical unit. What you should avoid are multiples such as 3, 6, 7 ….
              

            

            	
              Scale the axes appropriately, especially if the numbers involved are either very large or very small. For example, if the values
                of time t range from 0 s to 1.0 × 10﻿−5 s, then, rather than plotting t/s and inserting values such as 1.0 × 10−6, 2.0 × 10−6, etc. along the axis, it is usually more convenient to change the units to microseconds and plot t/μs; the values along the axis will then simply be 1, 2, 3, etc. It is also acceptable to label the axis t/10−6 s rather than t/μs if you prefer.
              

            

            	
              Plot the points clearly. If you use very small dots they may be confused with other marks on the paper. However, using very big
                dots is not a good idea since it is hard to tell the position of the centre. Some authors put the dots within small circles.
                In this course we simply use dots since it is easy to show them clearly in professionally drawn graphs.
              

            

            	
              Draw a straight line or smooth curve through the points plotted. The graphs that you draw will generally represent the smooth
                variation of one quantity with respect to another so a smooth curve is usually appropriate.
              

            

          

          
            
              Question 6

            

            
              
                How many of the above guidelines did you violate in answering Question 5?

              

              View answer - Question 6

            

          

        

      

    

  
    
      
        3 Uniform motion along a line

        
          3.1 Describing uniform motion

          Uniform motion along a line is the very special kind of motion that occurs when an object moves with unvarying speed in a fixed direction.
            During a fixed period of time, such as one second, an object in uniform motion will always cover the same distance, no matter
            when the period begins. This is the kind of motion associated with traffic-free motoring along straight roads, with uninterrupted
            train journeys along straight tracks, and with unhindered straight and level flying (provided the distances involved are sufficiently
            small that the curvature of the Earth can be ignored).
          

          Table 4 shows some typical values of position and time for a pedestrian and a car that are both in a state of uniform motion.
            The corresponding position-time graphs are shown in Figure 12a and b.
          

          
             Table 4: Positions for the pedestrian, xped, and the car, xcar, at times t 
            

            
              
                
                  	t/s
                  
                  	xped/m
                  
                  	xcar/m
                  
                

                
                  	0
                  	−20
                  	30
                

                
                  	10
                  	−10
                  	60
                

                
                  	20
                  	0
                  	90
                

                
                  	30
                  	10
                  	120
                

                
                  	40
                  	20
                  	150
                

                
                  	50
                  	30
                  	180
                

                
                  	60
                  	40
                  	210
                

              
            

            

          

          
            [image: ]

             Figure 12: Position-time graphs for the positions of (a) a pedestrian and (b) a car, based on Table 4
            

          

          As you can see, both are straight-line graphs, as is characteristic of uniform motion. The graphs indicate that in each case the quantities being plotted are related by
            an equation of the general form
          

          
            [image: ]

          

          where A and B are constants. The two parts of Figure 12 simply correspond to different values of the constants A and B. In fact, as you will see later, by choosing appropriate values for A and B, Equation 3 can be used to represent any straight line that can be drawn on the position-time graph, except one that runs
            parallel to the vertical axis. In view of this you will not be surprised to learn that any equation of the general form x = At + B may be referred to as the equation of a straight line, irrespective of the particular constants and variables that it involves.
          

          Understanding the link between equations (such as Equation 3) and graphs (such as those in Figure 12) is of vital importance
            throughout physics. Broadly speaking, any equation that relates two variables can be represented as a graph, and any graph
            showing how one quantity varies with another can be represented by an equation. (There are exceptions to this broad statement,
            but they tend to be rather unphysical, and won't be considered here.) The skill of looking at a simple equation and visualising
            it as a graph is one that is well worth developing. Many physicists find that visualisation helps to bring equations to life
            and makes it possible to look 'into' equations rather than merely looking 'at' them. The equation of a straight line that
            describes uniform motion is a good place to start developing this skill.
          

          In the next two subsections you will learn how the constants A and B in the equation of a straight line determine the slope and positioning of the corresponding line, and what those features
            represent physically in the case of a position-time graph.
          

          
             Table 5: Displacement of the car from the pedestrian at time t, according to Table 4
            

            
              
                
                  	t/s
                  
                  	(xcar − xped)/m
                  
                

                
                  	0
                  	50
                

                
                  	10
                  	70
                

                
                  	20
                  	90
                

                
                  	30
                  	110
                

                
                  	40
                  	130
                

                
                  	50
                  	150
                

                
                  	60
                  	170
                

              
            

            

          

          
            
              Question 7

            

            
              
                Use Table 5 to plot a graph showing how the displacement of the car from the pedestrian varies with time. Describe your graph
                  in words and write down the general form of the equation that describes your graph.
                

              

              View answer - Question 7

            

          

        

        
          3.2 Constant velocity and the gradient of the position-time graph

          Two things you will almost certainly want to know about any particle undergoing uniform motion are 'how fast is it travelling?'
            and 'in which direction is it moving?' The physical quantity that provides both these items of information is the particle's
            velocity. This is defined as the rate of change of the particle's position with respect to time, and has a constant value for each
            case of uniform motion along a line.
          

          
            
              velocity = rate of change of position with respect to time.

            

          

          In the case of the car whose position-time graph is shown in Figure 12b, if we choose two different times, say, t﻿1 = 40 s and t﻿2 = 50 s, then in the time interval between t﻿1 and t﻿2, the car moves from x﻿1 = 150 m to x﻿2 = 180 m. It follows that the rate of change of position of the car is given by the ratio
          

          
            [image: ]

          

          We therefore say that the velocity of the car is 3.0 metres per second along the x-axis, which we write using the abbreviation m s−1.
          

          More generally, if any particle moves uniformly along the x-axis, so that its position-time graph is a straight line, then the constant velocity v x (' v sub x') of that particle is given by
          

          
            [image: ]

          

          where x﻿1 is the particle's position at time t1, and x﻿2 is its position at time t﻿2. Note that the velocity may be positive or negative, depending on whether the particle's position coordinate is increasing
            or decreasing with time. Also note that for uniform motion the velocity is independent of the particular values of t﻿1 and t﻿2 that are chosen.
          

          
            
              Question 8

            

            
              
                Determine the velocity of the car by making measurements on the graph in Figure 12b in the interval from 50 s to 60 s.

              

              View answer - Question 8

            

          

          In everyday speech the terms velocity and speed are used interchangeably. However, in physics, the term speed is reserved for the magnitude of the velocity, i.e. its value neglecting any overall minus sign. So, if a particle has velocity v﻿﻿﻿x﻿ = −﻿5 m s﻿−1, then its speed is v﻿ = 5 m s﻿−﻿1, where
          

          
            [image: ]

          

          Speed is a positive quantity telling us how rapidly the particle is moving but revealing nothing about its direction of motion.
          

          The subscript x in v﻿﻿﻿x may seem a bit cumbersome, but it is an essential part of the notation. The subscript reminds us that we are dealing with
            motion along the x-axis. In later work, we will need to use two or sometimes three axes, so by including the subscript at this stage, we will
            be able to use the same notation throughout. Be careful to include the subscript x in your written work and make sure that it is small enough and low enough to be read as a subscript - don't risk having v﻿﻿﻿x﻿ misinterpreted as vx, i.e. v times x.
          

          Another piece of shorthand that you will find useful concerns the upper case Greek letter delta, Δ. If a quantity such as
            x changes its value from x1 to x2, then the change in the value of x is conventionally written as Δx, and read as 'delta ex'. Thus
          

          
            Δx = x2 − x1.
            

          

          So, Δx and Δt mean the changes in x and t; they do not mean Δ times x or Δ times t. You should always think of the Δ and the symbol that follows it as a single entity; the Δ symbol by itself has no quantitative
            meaning. Using this notation, the expression for v﻿﻿x  above can be written as
          

          
            [image: ]

          

          In graphical terms, the velocity Δ﻿x﻿/﻿Δ﻿t of a uniformly moving particle is indicated by the slope of its position-time graph. The steepness of the line represents the speed of the particle, while the orientation of the
            line - bottom left to top right, or top left to bottom right - indicates the direction of motion. If the graph of x against t is a straight line, then the ratio of the change in x to the corresponding change in t (that is Δ﻿x﻿/﻿Δ﻿t﻿) is called the gradient of the graph. A line that slopes from bottom left to top right indicates that a positive change in t corresponds to a positive change in x, consequently such a line has positive gradient. Similarly, a line sloping from top left to bottom right indicates that a
            positive change in t corresponds to a negative change in x and consequently to a negative gradient. This gives us another way of describing velocity:
          

          
            
              the velocity of a particle = the gradient of its position-time graph

            

          

          
            
              Question 9

            

            
              
                Figure 14 shows the position-time graphs for four different objects (A, B, C and D) each moving uniformly with a different
                  constant velocity. The position and time scales are the same in each case.
                

                (a) List the objects in order of increasing speed.

                (b) Which of the objects have positive velocity?

                (c) List the objects in order of increasing velocity.

                
                  [image: ]

                   Figure 14: Straight line position-time graphs for Self-assessment question 9
                  

                

              

              View answer - Question 9

            

          

          The gradient of a graph is one of the most important concepts of this course. It is important that you should be able to evaluate
            gradients, and that you should be able to distinguish graphs with positive gradients from those with negative gradients. It
            is also important that you should be able to interpret gradients physically as rates of change. In this discussion of position-time
            graphs the gradient represents velocity, but in other contexts, where quantities other than x and t are plotted, the gradient may have a very different interpretation. Figure 15, for example, shows how the average temperature
            T of the atmosphere depends on the height h above sea-level. The gradient of this graph, Δ﻿T﻿/﻿Δh, describes the rate at which temperature changes with height.
          

          
            [image: ]

             Figure 15: A graph of average atmospheric temperature T against height h above sea-level
            

          

          
            
              Question 10

            

            
              
                Estimate the gradient of the graph in Figure 15. (The use of the word 'estimate' implies that you do not need to take great
                  care over the values you read from the graph, but you should take care over matters such as signs and units of measurement.)
                

              

              View answer - Question 10

            

          

        

        
          3.3 Initial position and the intercept of the position-time graph

          The uniform motion of a particle is such a simple form of motion that apart from enquiring about the particle's velocity,
            the only other kinematic question you can ask is 'where was the particle at some particular time?' The most common way of
            answering this question is to specify the initial position of the particle, that is, its position at time t = 0 s.
          

          Although it is common to refer to the position at t = 0 as the 'initial position' it is also possible, and sometimes more convenient, to associate the initial position with
            some other time.
          

          The initial position of a uniformly moving particle is easily determined from its position-time graph. It's just the value
            of x when t = 0, i.e. the value of x at which the straight line crosses the vertical axis through the origin. In Figure 12a, for example, it is x = −20 m. This value is generally referred to as the intercept.
          

          One point to bear in mind though; it is sometimes advantageous to draw position-time graphs that do not include the origin
            (for instance, you might be asked to draw a graph for the period from t = 100 s to t = 110 s). When dealing with such graphs do not make the mistake of thinking that the value at which the line crosses the
            vertical axis is the intercept. You can only read the intercept directly from the graph if the vertical axis passes through
            the zero value on the horizontal axis.
          

          A little thought should convince you that the gradient and the intercept of a straight line entirely determine that line.
            In the same way, the velocity and the initial position of a uniformly moving particle entirely determine the motion of that
            particle. In the next subsection you will learn how these graphical and physical statements can be represented algebraically,
            in terms of equations.
          

        

        
          3.4 The equations of uniform motion

          It has already been said that the straight-line graph of any uniform motion can be represented by an equation of the general
            form
          

          

          
            [image: ]

          

          where A and B are constants. Different cases of uniform motion simply correspond to different values for the constants A and B. Let us now investigate this equation to see how it conveys information about gradients and intercepts, or equivalently,
            uniform velocities and initial positions.
          

          To start with, note that according to Equation 3, the position of the particle when t = 0 is just x = B. Thus B represents the initial position of the particle, the intercept of its position-time graph.
          

          In a similar way, note that according to Equation 3, at time t = t﻿1 the position of the particle, let's call it x﻿1, is given by x﻿1 = At1 + B; and at some later time t = t﻿2 the position of the particle is x﻿2 = At﻿2 + B. Now, as we have already seen, the velocity of a uniformly moving particle is defined by
          

          
            [image: ]

          

          so, substituting the expressions for x﻿1 and x﻿2 that we have just obtained from Equation 3 we find that in this particular case
          

          
            [image: ]

          

          Thus, the constant A in Equation 3 represents the particle's velocity, i.e. the gradient of its position-time graph.
          

          We can now read the equation of a straight line, interpreting it graphically or physically. It is

          
            [image: ]

          

          The physical significance of the constants A and B can be emphasised by using the symbols v﻿x﻿ and x0 in their place. Doing this, we obtain the standard form of the uniform motion equations

          
            
              

              
                [image: ]

              

            

          

          So, the uniform motion of the car we have been considering, which has velocity vx = 3.0 m s−1 and initial position x0 = 30 m, can be described by the equation
          

          
            [image: ]

          

          This contains just as much information as the graph in Figure 12b.

          
            
              Question 11

            

            
              
                Write down the equation that describes the uniform motion of the pedestrian who was the subject of Figure 12a.

              

              View answer - Question 11

            

          

          A pictorial interpretation of Equation 6a is given in Figure 16.

          
            [image: ]

             Figure 16: A pictorial interpretation of the equation of uniform motion
            

          

          Equations have the great advantage that they can be rearranged to make them fit the problem at hand. For instance, if you
            were flying at constant velocity from Paris to Rome, you might well be more interested in your displacement from Paris rather
            than your position in some arbitrary coordinate system. In mathematical terms, you might be more interested in sx = x − x﻿0 rather than x itself. Equation 6a can be rearranged to suit this interest by subtracting x 0 from each side:
          

          
            [image: ]

          

          and this may be rewritten in the compact form

          
            
              
                [image: ]

              

            

          

          Remembering that vx is a constant when the motion is uniform, Equation 7 is equivalent to Equation 6a. It relates the displacement from the initial
            position directly to the time of flight and thus facilitates working out the distance travelled,
          

          [image: ]

          The crucial point to remember when manipulating an equation is that both sides of an equation represent the same value. So, if you add or subtract a term on one side of an equation, you must add or subtract an identical term on the other side.
            The same principle applies to multiplication and division, and to other operations such as taking magnitudes, squaring or
            taking square roots. (In the latter case you must remember that a positive quantity generally has two square roots; 2 is a
            square root of 4, but so is −2.) There are two rules to bear in mind when rearranging equations:
          

          
            	
              When one side of an equation consists of several terms added together, each of those terms must be treated in the same way.
                (It's no good multiplying the first term on one side of an equation by some quantity if you forget to do the same to all the
                other terms on that side.)
              

            

            	
              When dividing both sides of an equation by some quantity you must ensure that the quantity is not zero. (For instance, it is only legitimate to divide both sides of Equation 7 by x − x0 if x ≠ x0, i.e. if x is not equal to x﻿0.)
              

            

          

          The following question is quite straightforward, and there are many ways of answering it, but each will require you to manipulate
            the uniform motion equations to some extent. As you work out your answer think carefully about each of the procedures you
            are performing and write it out in words.
          

          
            
              Question 12

            

            
              
                When the time on a certain stop-watch is 100 s, a vehicle is positioned at x = −2 m with respect to a certain one-dimensional coordinate system. If the velocity of the vehicle is −12 m s−1, find its position when the stop-watch shows 250 s.
                

              

              View answer - Question 12

            

          

        

        
          3.5 Velocity-time and speed-time graphs

          Just as we may plot the position-time graph or the displacement-time graph of a particular motion, so we may plot a velocity-time graph for that motion. By convention, velocity is plotted on the vertical axis (since velocity is the dependent variable) and time
            (the independent variable) is plotted on the horizontal axis. In the special case of uniform motion, the velocity-time graph
            takes a particularly simple form - it is just a horizontal line, i.e. the gradient is zero. Examples are given in Figure 17;
            notice that the velocity can be positive or negative, depending on the direction of motion.
          

          
            [image: ]

             Figure 17: Velocity-time graphs for uniform motion
            

          

          Rather than plotting the velocity it is sometimes useful to plot the magnitude of the velocity, in other words, the speed.
            The resulting plots are speed-time graphs and examples are shown in Figure 18. Notice how all of the speeds are positive; in particular, the velocity of −1.5 m s−1 in Figure 17 corresponds to a speed of 1.5 m s−1 in Figure 18.
          

          Clearly, a speed-time graph provides less information than a velocity-time graph, but it may be sufficient. The next time
            you buy a Ferrari, you may well enquire about its top speed, but you are unlikely to ask 'in which direction?'
          

          
            [image: ]

             Figure 18: Speed-time graphs for uniform motion, corresponding to the velocity-time graphs shown in Figure 17 
            

          

        

        
          3.6 The signed area under a constant velocity-time graph

          There is a simple feature of uniform velocity-time graphs that will be particularly useful to know about when we come to consider
            non-uniform motion in the next section. It concerns the relationship between the velocity-time graph and the change in position
            over a given time interval. Consider the following problem. A vehicle travels at a velocity vx = 12 m s−1 for 4 s. By how much does its position change over that interval?
          

          The answer, from Equation 7, is 48 m. However, for our present purposes it is more instructive to work from the definition
            of uniform velocity (Equation 5), which may be rearranged by multiplying both sides of the equation by (t2 − t1) to give
          

          
            x2 − x1 = vx (t2 − t1).
            

          

          This tells us that the change in position during a given time interval is equal to the velocity multiplied by the time interval.
            So, a vehicle which travels at a constant velocity v﻿x  = 12 m s﻿−1 over a time interval Δt = 4 s will change its position coordinate by Δx = 48 m.
          

          
            [image: ]

             Figure 19: The area under a velocity-time graph
            

          

          Now look at the velocity-time graph for this vehicle, which is given in Figure 19. The colour-shaded region corresponding
            to the 4 s interval between t = 2 s and t = 6 s is an example of an area under the graph: that is an area bounded by the plotted line, the horizontal axis and two vertical lines. The important point to note about
            this region is its area - not its physical area in terms of m2 of paper, but rather its area in terms of the units used on the axes of the graph. The area of a rectangle is the product
            of the lengths of two adjacent sides. So in Figure 19 the area under the graph is
          

          
            vx × Δt = (12 m s−1) × (4 s) = 48 m.
            

          

          Clearly, the area under the velocity-time graph, between the specified times, is exactly equal to the change in position coordinate
            between those times. In case you are worried that this relationship will break down if the velocity is negative, as in Figure
            20, it should be added that areas that hang below the horizontal axis are conventionally regarded as negative areas. In this
            sense the area under a graph is a signed quantity that may be positive or negative; indeed, it is often referred to as the
            signed area under a graph.
          

          Recognising the equality between the signed area under a uniform velocity-time graph and a change in position coordinate is
            not particularly helpful in itself, but it does pave the way for further developments, as does the next question.
          

          
            [image: ]

             Figure 20: The area under a velocity-time graph is a signed quantity that may be negative
            

          

          
            
              Question 13

            

            
              
                An athlete walks with a constant velocity v﻿x1 = 1 m s﻿−﻿1 for 20 s, and then abruptly starts running with a constant velocity v﻿﻿x﻿2 = 10 m s−﻿1, a velocity that is maintained for a further 20 s. What is the area under the corresponding velocity-time graph, and what
                  physical interpretation could you give to that area?
                

              

              View answer - Question 13

            

          

          Here we are using a double subscript on the symbol v. The subscript x denotes the x-direction as usual, and the 1 and 2 refer to the different stages of the motion.
          

        

        
          3.7 A note on straight-line graphs and their gradients

          We end this section by reviewing some of the important features of straight-line graphs, though we do so in terms of two general
            variables z and y, rather than x and t, in order to emphasise their generality. If the graph of z against y is a straight line of the kind shown in Figure 22, then z and y are related by an equation of the form
          

          
            [image: ]

          

          where m and c are constants. Here c represents the intercept of the graph and is equal to the value of z at which the plotted line crosses the z-axis (provided the z-axis passes through y = 0). The constant m represents the gradient of the graph and is obtained by dividing the change in z by the corresponding change in y, taking full account of the sign of each change.
          

          
            [image: ]

          

          
            [image: ]

             Figure 22: A straight-line graph of z against y

          

          You may find it useful to remember that the gradient of a graph is given by its 'rise' over its 'run'.

          There are several points to notice about this definition.

          
            	
              It applies only to straight-line graphs.

            

            	
              The units of the gradient are the units of z divided by the units of y.
              

            

            	
              The gradient of a straight-line graph is a constant (a number, multiplied by an appropriate unit). The same constant is obtained,
                no matter which two points (see P1 and P2 in Figure 22) are used to determine it.
              

            

            	
              The gradient of a straight-line graph can be positive, negative or zero. Equation 10 assigns a positive gradient to a graph
                sloping from bottom left to top right, as in Figure 22 for example, and a negative gradient to a graph sloping from top left
                to bottom right, as in Figure 15. A horizontal line has zero gradient.
              

            

          

          Although the appearance of a graph can be changed by plotting the points on different scales (compare Figures 23a and b for
            example) the gradient, defined by Equation 10, is independent of the shape or size of the graph paper or display screen.
          

          
            [image: ]

             Figure 23: Two graphs constructed from the same data but plotted with different scales. The gradients are the same, 4 ×103 kg m−3

          

        

      

    

  
    
      
        4 Non-uniform motion along a line

        
          4.1 Instantaneous velocity

          Uniform motion is simple to describe, but is rarely achieved in practice. Most objects do not move at a precisely constant
            velocity. If you drop an apple it will fall downwards, but it will pick up speed as it does so (Figure 24), and if you drive
            along a straight road you are likely to encounter some traffic that will force you to vary your speed from time to time. For
            the most part, real motions are non-uniform motions.
          

          
            [image: ]

             Figure 24: A falling apple provides an example of non-uniform motion. A sequence of pictures taken at equal intervals of time reveals
              the increasing speed of the apple as it falls
            

          

          Figure 25 shows the position-time graph of an object that has an increasing velocity over the period t = 0 to t = 20 s; a car accelerating from rest. As you can see, the position-time graph is curved. There is relatively little change
            in position during the first few seconds of the motion but as the velocity increases the car is able to change its position
            by increasingly large amounts over a given interval of time. This is shown by the increasing steepness of the graph. In everyday
            language we would say that the graph has an increasing gradient, but you saw in the last section that the term gradient has
            a precise technical meaning in the context of straight-line graphs. Is it legitimate to extend this terminology to cover curved
            graphs, and if so, how exactly should it be done?
          

          
            [image: ]

             Figure 25: The position-time graph for a car accelerating from rest
            

          

          Extending the concept of gradient to the case of curved graphs is actually quite straightforward. The crucial point to recognise
            is that if you look closely enough at a small part of a smooth curve, then it generally becomes indistinguishable from a straight
            line. (In a similar way, the surface of the Earth is clearly curved when viewed from space, but each region is approximately
            flat when seen close-up.) So, if we choose a point on a curve we can usually draw a straight line passing through that point
            which has the same slope as the curve at the point of contact. This straight line is said to be the tangent to the curve at the point in question. Now, we already know how to determine the gradient of a straight line, so we can define
            the gradient at any point on a curve to be the gradient of the tangent to the curve at that point, provided the curve is sufficiently
            smooth that a tangent exists.
          

          Figure 26 repeats the position-time graph of the accelerating car, but this time tangents have been added at t = 5 s and t = 10 s. The gradient of any such tangent represents a velocity and is referred to as the instantaneous velocity of the car at the relevant time. At least, that's what it should be called; in practice the word 'instantaneous' is often
            omitted, so references to 'velocity' should generally be taken to mean 'instantaneous velocity'. Allowing ourselves this informality,
            we can say:
          

          
            
              velocity at time t = gradient of position-time graph at time t.
              

            

          

          Although we have had to extend the meaning of gradient, we can still regard it as a measure of the rate of change of one variable
            with respect to another, so we can also say:
          

          
            
              velocity at time t = rate of change of position with respect to time at time t.
              

            

          

          
            [image: ]

             Figure 26: The instantaneous velocity at t = 5 s and at t = 10 s is determined by the gradient of the tangent to the position-time graph at each of those times
            

          

          
            
              Question 14

            

            
              
                Estimate the (instantaneous) velocity of the car at t = 5 s and at t = 10 s (from Figure 26), and write down your answers taking care to distinguish one velocity from the other.
                

              

              View answer - Question 14

            

          

          How did you distinguish the velocity at t = 5 s from the velocity at t = 10 s? The conventional method is to use a common symbol for velocity, v﻿x, but to follow it by the relevant value of time enclosed in parentheses, as in v﻿x﻿(﻿5 s﻿) and v﻿﻿x﻿(﻿10 s﻿). This notation can also be used to indicate the velocity at any time t, by writing v﻿﻿x(t), even if the value of t is unspecified.
          

          
            
              It is important to remember that v﻿x﻿(﻿t﻿) represents the (instantaneous) velocity at time t. It does not mean v﻿﻿x  multiplied by t.
              

            

          

          You will not be surprised to learn that the positive quantity |﻿v﻿x﻿(﻿t﻿)﻿| representing the magnitude of the instantaneous velocity at time t is called the instantaneous speed at time t. If we denote this by v﻿(﻿t﻿), we can write
          

          [image: ]

          Speed and velocity are measured in the same units, m s−1. Some typical values of physically interesting speeds are listed in Figure 27.
          

          
            [image: ]

             Figure 27: Some physically interesting speeds
            

          

        

        
          4.2 Instantaneous acceleration

          The procedure of Question 15 for determining the instantaneous velocity of the car can be carried out for a whole set of different
            times and the resulting values of v﻿﻿x  can be plotted against t to form a graph. This has been done in Figure 28, which shows how the velocity varies with time. At time t = 0 s, the car has zero velocity because it starts from rest. At later times, the velocity is positive because the car moves
            in the direction of increasing x. The velocity increases rapidly at first, as the car picks up speed. Subsequently, the velocity increases more slowly, and
            eventually the car settles down to a steady velocity of just over 3 m s−1. We have already come across graphs of this general type in Section 3; they are known as velocity-time graphs. The crucial
            new feature here is that the velocity now depends on time.
          

          
            [image: ]

             Figure 28: A velocity-time graph for the moving car
            

          

          The time dependence of velocity can have dramatic consequences. If you are on board a train, moving at a constant velocity,
            you might not even be aware of your motion and you will have no difficulty in, say, drinking a cup of coffee. However, drinking
            coffee can become distinctly hazardous if the driver suddenly changes the velocity of the train by putting on the brakes.
            In such situations the important physical quantity is the rate of change of velocity with respect to time, as measured by the gradient of the velocity-time graph. This is the quantity that we usually call acceleration, though once
            again it should more properly be called instantaneous acceleration. Thus
          

          
            
              acceleration at time t = rate of change of velocity with respect to time at time t.
              

            

          

          or, if you prefer

          
            
              acceleration at time t = gradient of velocity-time graph at time t.
              

            

          

          Acceleration is a key idea in physics. It was Newton's recognition of the crucial role that acceleration played in determining
            the link between motion and force that formed the centrepiece of the Newtonian revolution. The detailed study of that revolution
            would take us too far from our present theme. For the moment let's concentrate on some basic questions about acceleration
            itself. In particular, in what units should acceleration be measured, and what are typical values of acceleration in various
            physical contexts? The first of these you can answer for yourself.
          

          
            
              Question 15

            

            
              
                What are suitable SI units for the measurement of acceleration?

              

              View answer - Question 15

            

          

          As for typical values of acceleration, some physically interesting values are shown in Figure 29.

          
            [image: ]

            Figure 29: Some physically interesting values of acceleration
            

          

          When dealing with non-uniform motion along the x-axis, the symbol a﻿x﻿(﻿t﻿) is normally used to denote instantaneous acceleration. As usual, a﻿x﻿(﻿t﻿) will be positive if the velocity is increasing with time, though, as you will see below, this statement needs careful interpretation.
            In contrast to the relationship between velocity and speed, there is no special name for the magnitude of an acceleration,
            though we shall use the symbol a﻿(﻿t﻿) for this quantity, so we may write
          

          
            [image: ]

          

          In physics, the concept of acceleration is precise and quantitative. It is important to realise that this precise definition
            differs, in some respects, from everyday usage. In ordinary speech, 'accelerating' is a synonym for 'speeding up'. This is
            not true in physics. In physics, a particle accelerates if it changes its velocity in any way. A particle travelling along a straight line may accelerate by speeding up or by slowing down. It is tempting to suppose that a positive acceleration corresponds to speeding up and a negative acceleration
            corresponds to slowing down, but this is not always true either, as the following exercise shows.
          

          
            [image: ]

             Figure 30: The velocity-time graph used in Question 16
            

          

          
            
              Question 16

            

            
              
                The velocity-time graph of Figure 30 is divided into four regions, marked A-D.

                (a) In which regions does the particle move in the direction of increasing x? In which regions is it moving in the direction of decreasing x?
                

                (b) In which regions does the particle speed up? In which regions does it slow down?

                (c) In which regions does the particle have positive acceleration? In which regions does the particle have negative acceleration?

              

              View answer - Question 16

            

          

          So, for a particle with negative velocity, an increase in velocity (a positive acceleration) may result in a decrease in speed.
            You may think that it is a nuisance for physics to use words in such a non-standard way. However, the definitions of velocity
            and acceleration given in this course are essential if we are to develop a study of kinematics that is both simple and comprehensive.
            It does mean, however, that you must be careful in using words like velocity, speed and acceleration. In everyday speech,
            the word deceleration is used to mean 'slowing down', but this term is seldom encountered in physics since it is already covered
            by the scientific definition of acceleration.
          

        

        
          4.3 A note on functions and derivatives

          This subsection introduces two crucially important mathematical ideas, functions and derivatives, both of which are used throughout physics.
          

          
            Functions and the function notation

            In Figure 25, the position x of the car depends on the time t. The graph associates a particular value of x with each value of t over the plotted range. In other circumstances we might know an equation that associates a value of x with each value of t, as in the case of the equation x = At + B that we discussed in Section 3. You can invent countless other ways in which x depends on t: for instance x = At2 + B or x = At + Bt﻿2. In all such cases we describe the dependence of x on t by saying that x is a function of t. This terminology is widely used and is certainly not restricted to x and t. In the example of non-uniform motion we have just been discussing, the instantaneous velocity v﻿x  is a function of time and so is the instantaneous acceleration a﻿x .
            

            Generally, if the value of a quantity f is determined by the value of another quantity y, then we say that f is a function of y and we use the special notation f(y) to emphasise this relationship. Although we have only just defined what we mean by a function we have already been using
              this notation, as in v﻿x﻿(﻿t﻿) and a﻿x﻿(﻿t﻿), for some time.
            

            This function notation has two great merits:

            
              	
                Writing f﻿(﻿y﻿), provides a clear visual reminder that f depends on y in a well-defined way. If we happen to know the equation that relates f to y, say f = y﻿2, then we can show this explicitly by writing f﻿(﻿y﻿) = y﻿2.
                

              

              	
                If we want to indicate the value of f that corresponds to a particular value of y, it is easy to do so. For example, the value of f﻿(﻿y﻿) at y = 2 can be written f﻿(﻿2﻿). We call f﻿(﻿2﻿) the function value at y = 2. Of course, in order to be able to write f﻿(﻿2﻿) as a number we would have to know the explicit form of f﻿(﻿y﻿). For example, if f﻿(﻿y﻿) = y﻿2, then we can say f﻿(﻿2﻿) = 2﻿2 = 2 × 2 = 4.
                

              

            

            The only serious disadvantage of the function notation is that you may confuse f(y) with f × y. Be careful! If f is a function, then f﻿(﻿y﻿) means f is a function of y; it does not mean f × y.
            

            Some functions arise repeatedly and are given special names so that they can be easily identified. You will be familiar with
              some of these names, even if you are not yet fully familiar with the functions they describe. For instance, if you look at
              a scientific calculator (see Figure 31 for example) you will sometimes find that there are keys labelled sin, cos, log and
              ex; each of these is the name of an important function that you will meet later. The corresponding calculator keys are actually
              called 'function keys'. Electronic calculators are constructed in such a way that when you key in a number and press a function
              key, the calculator works out the corresponding function value and displays it. If the value you keyed in is not within the
              acceptable range of input values for the function you selected (usually called the domain of the function), then the calculator will probably display an error message such as 'err'.
            

            
              [image: ]

              Figure 31: A calculator has in-built routines for evaluating basic functions such as x﻿2, sin﻿(﻿x﻿), cos﻿(﻿x﻿), log﻿(﻿x﻿), etc. These are activated by pressing the function keys
              

            

            One particularly simple class of functions consists of functions of the form

            [image: ]

            where A is a constant and n is a positive whole number, such as 0, 1, 2, 3, …. Functions of this kind include squares f﻿(﻿y﻿) = y﻿2, and cubes f﻿(﻿y﻿) = y﻿3, which correspond to A = 1 with n = 2 and n = 3, respectively. The function that arises when n = 0 is especially noteworthy since, by convention, y0 = 1, so f﻿(﻿y﻿) = A in this case, a constant. Thus, even a simple constant is just a special kind of function. In the case of a constant function
              each value of y is associated with the same value of f﻿(﻿y﻿), as in the case of the velocity-time graph of a uniformly moving object.
            

            Next in complexity are sums of squares, cubes, etc. These functions are called polynomial functions and include the following special cases (where A, B, C and D are constants):
            

            
              
                
                  
                    	linear functions of the form
                    
                    	f﻿(﻿y﻿) = Ay + B
                  

                  
                    	quadratic functions of the form
                    
                    	f﻿(﻿y﻿) = Ay﻿2 + By + C
                  

                  
                    	cubic functions of the form
                    
                    	f﻿(﻿y﻿) = Ay﻿3 + By﻿2 + Cy + D.
                    
                  

                
              

              

            

            In the case of uniform motion (described in Section 3), the position-time graph is a straight line described by an equation
              of the form x = At + B. It should now be clear that another way of describing this relationship is to say that the position is a linear function of the time, x﻿(﻿t﻿) = At + B. In a similar way, the non-uniform motion of a test vehicle in the NASA drop-shaft described at the beginning of this course
              can be described by a quadratic function x(t) = At﻿2 + Bt + C, and many other forms of one-dimensional motion can be described, at least approximately, by suitably chosen polynomial functions.
            

          

          
            Derived functions and derivative notation

            Given the function x(t) that describes some particular motion, you could plot the corresponding position-time graph, measure its gradient at a variety
              of times to find the instantaneous velocity at those times and then plot the velocity-time graph. If you had some time left,
              you might go on to measure the gradient of the velocity-time graph at various times, and then plot the acceleration-time graph
              for the motion. This would effectively complete the description of the motion, but it would be enormously time consuming and,
              given the difficulty of reading graphs, not particularly accurate.
            

            Fortunately this graphical procedure can usually be entirely avoided. Starting again from the function x(t), there exists a mathematical procedure, called differentiation, that makes it possible to determine the velocity vx(t) directly, by algebra alone. We shall not try to describe the principles that underpin differentiation, but we will introduce
              the notation of the subject and list some of the basic results. To make this introduction as general as possible we shall
              initially consider a general function f(y) rather than the position function x(t).
            

            The central idea is this:

            Remember, the gradient of a graph at a given point is defined by the gradient of its tangent at that point.

            
              
                Given a function f(y) it is often possible to determine a related function of y, called the derived function, with the property that, at each value of y, the derived function is equal to the gradient of the graph of f against y at that same value of y.
                

              

            

            The derived function is usually referred to as the derivative of f with respect to y (often abbreviated to derivative) and may be represented by the symbol [image: ] or, more formally [image: ]. The [image: ] notation is reminiscent of the [image: ] notation that was used when discussing the gradient of a straight line and thus provides a clear reminder of the link between
              the derived function and the gradient of the f against y graph. However, it is important to remember that [image: ] is a single symbol representing the derived function, it is not the ratio of two quantities df and dy.
            

            Although there are systematic ways of finding derived functions from first principles, you will not be required to use them
              in this course. Indeed, physicists are rarely required to do this because tables of derivatives already exist for all the
              well-known functions, and derivatives of more complicated functions can usually be expressed as combinations of those basic
              derivatives. Table 6 lists a few of the basic derivatives along with the simplest of the rules for combining them - it also
              gives some explicit examples of functions and their derivatives. Computer packages are now available that implement the rules
              of differentiation, these are often used to determine the derivatives of more complicated functions (Figure 32).
            

            
              [image: ]

               Figure 32: A function and its derivative, as displayed by an algebraic computing package
              

            

            
               Table 6: Some simple derivatives. The functions f, g and h depend on the variable y. The quantities A and n are constants, which may be positive, negative or zero. Note that n is not necessarily an integer
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            The idea of a derivative may be new to you and, if so, may seem rather strange. However, if you know the explicit form of
              a function, then there are several crucial advantages in using derivatives to determine gradients, rather than making measurements
              on a graph. In particular, looking up the derivative of a function in a table should be completely accurate, whereas measuring
              the gradient of the tangent to a graph is always approximate. For example, if f﻿(y﻿) = y﻿2 then the derivative of f﻿(﻿y﻿) is d﻿f﻿/﻿d﻿y = 2y and evaluating the derivative at y = 3 to find the gradient at that particular value of y gives 6. This is an exact result that could not have been obtained with such precision from measurements on a graph. Moreover, if we want to know the
              gradient at many different values of y, all we need to do is to substitute each of those values into the general expression for the derivative, df/dy = 2y. This is much simpler than drawing many different tangents and measuring their individual gradients.
            

          

        

        
          4.4 Velocity and acceleration as derivatives

          Recalling that the instantaneous velocity of a particle at time t is given by the gradient of its position-time graph at that time, we can now use the terminology of functions and derivatives
            to say that the velocity of the particle is given by the derivative of its position function. In terms of symbols:
          

          
            
              
                [image: ]

              

            

          

          Similarly, we can say that the instantaneous acceleration of a particle is given by the derivative of the velocity function:

          
            
              
                [image: ]

              

            

          

          What's more we can use derivatives to simplify problems, as Example 1 shows.

          
            
              Example 1

            

            
              
                The position x of a particle at time t is given by the function x﻿(﻿t﻿) = kt﻿2 where k = −5 m s −2. Find (a) the velocity as a function of time; (b) the velocity at time t = 3 s.
                

              

              View answer - Example 1

            

          

          
            
              Question 17

            

            
              
                If the velocity v﻿x﻿(﻿t﻿) of a particle is given by v﻿x﻿(﻿t﻿) = kt﻿2, where k = 4 m s﻿−3, find a general expression for the acceleration ax(t). What is the value of a﻿x﻿(﻿3 s﻿)?
                

              

              View answer - Question 17

            

          

          Although it would be quite wrong to think of dx/dt as a ratio of the quantities dx and dt, it is useful to regard dx/dt as consisting of an entity d/dt that acts on the function x(t). The entity d/dt is a mathematical instruction to differentiate the function that follows, x﻿(﻿t﻿) in this case. It is an example of what a mathematician would call an operator. Adopting this view, we can say that if, for example, x﻿(﻿t﻿) = kt﻿2 + ct, then
          

          
            [image: ]

          

          Using the rule for differentiating the sum of two functions, from Table 6, we may write this as

          
            [image: ]

          

          Using the third result in Table 6 we may work out both the derivatives on the right-hand side to obtain
          

          
            [image: ]

          

          Regarding d/dt as an operator also suggests another way of writing the acceleration. We already know that
          

          
            [image: ]

          

          so it seems sensible to write

          [image: ]

          This emphasises that the acceleration of a particle is the rate of change of the rate of change of the position, or if you
            prefer, the derivative of the derivative of the position function. Either of these formulations is a bit of a mouthful, so
            it is more conventional to refer to the acceleration as the second derivative of x(t) and to represent it symbolically by
          

          
            
              
                [image: ]

              

            

          

          Once again, it would be quite wrong to think of this as some kind of ratio of d﻿2﻿x and d﻿t﻿2; it simply indicates that a particle's position function, x﻿(﻿t﻿), must be differentiated twice in order to find the particle's acceleration.
          

          Note: If you are not already familiar with derivatives you should pay particular attention to the positioning of the superscripts
            in the second derivative symbol. Newcomers to differentiation often make the mistake of writing dx﻿2﻿/﻿d﻿t﻿2 when they mean d﻿2﻿x﻿/﻿d﻿t﻿2. Remembering that it is the operator d/dt that is to be squared rather than the function x﻿(﻿t﻿) may help you to avoid this error.
          

          
            
              Example 2

            

            
              
                Suppose, as in Example 1, the position of a particle is given by x﻿(﻿t﻿) = kt﻿2 where k is a constant. Find a﻿x﻿(﻿t﻿).
                

              

              View answer - Example 2

            

          

          
            
              Question 18

            

            
              
                Suppose that the vertical position x of a test vehicle falling down a drop-shaft is given by the quadratic function
                

                
                  x(t) = k0 + k1t + k2t2

                

                where k0, k1 and k2 are constants. Work out an expression for the vehicle's acceleration a﻿x﻿(﻿t﻿) in terms of k﻿0, k﻿1 and k﻿2, taking care to indicate each step in your working.
                

              

              View answer - Question 18

            

          

        

        
          4.5 The signed area under a general velocity-time graph

          We have already seen (in Section 3.6) that in the context of uniform motion, the signed area under a particle's velocity-time graph, between two given times,
            represents the change in the particle's position during that time interval, with a positive area corresponding to displacement
            in the positive direction. In the case of uniform motion, the velocity-time graph was a horizontal line and the area under
            the graph was rectangular.
          

          
            [image: ]

             Figure 33: The area under the velocity-time graph between t﻿1 and t﻿2 for an accelerating particle
            

          

          Now, in the context of non-uniform motion, it seems natural to ask if the same interpretation can be given to the area under
            a general velocity-time graph, such as that between t1 and t2 in Figure 33. The answer to this is a definite yes, though a rigorous proof is beyond the scope of this course, so what follows
            is simply a plausibility argument.
          

          In Figure 33, the colour-shaded area under the graph does not take the shape of a rectangle. However, it may be approximately
            represented by a sum of rectangular areas, as indicated in Figure 34. To produce Figure 34 we have broken the time between
            t1 and t2 into a number of small intervals, each of identical duration Δt and within each small interval, the velocity has been approximated by a constant, which can be taken to be the average velocity
            during that interval. As a result, the area of each rectangular strip in Figure 34 represents the approximate change of position
            over a short time Δt and the sum of those areas represents the approximate change of position over the interval t1 to t2. Now, if we were to repeat this process while using a smaller value for Δt, as in Figure 35, then we would have more strips between t1 and t2; their total area, representing the approximate change in position between t1 and t2, would be an even closer approximation to the true area shown in Figure 33. Given these results, it seems reasonable to suppose
            that if we allowed Δt to become smaller and smaller, while the number of rectangular strips between t1 and t2 became correspondingly larger and larger, then we would eventually find that the area under the graph in Figure 33 was exactly equal to the change in position between t1 and t2.
          

          
            [image: ]

             Figure 34: The area under the velocity-time graph of Figure 33, broken up into thin rectangular strips
            

          

          
            [image: ]

             Figure 35: The area under the velocity-time graph of Figure 33, broken up into even more rectangular strips by reducing the value of
              Δt

          

          This conclusion is in fact correct and can be proved in a rigorous way by considering what mathematicians call a limit, in this case 'the limit as Δt tends to zero'. We shall not pursue that here, but we should note that it wasn't until the early nineteenth century that
            the mathematics of limits was properly formulated, although it was in use long before then. It is also worth pointing out
            that it was the development of the idea of a limit that finally laid Zeno's paradox to rest. Just as the increasing number
            of diminishing strips can have a finite total area, so the increasing number of smaller steps that Achilles must take to reach
            the tortoise can have a finite sum and be completed in a finite time. Rigorous mathematical reasoning agrees with our everyday
            experience in telling us that motion can exist and that athletes outrun tortoises!
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             Figure 36: The velocity-time graph for Self-assessment question 19
            

          

          
            
              Question 19

            

            
              
                Figure 36 shows the velocity-time graph for a particle with constant acceleration.

                (a) What is the displacement of the particle from its initial position after 6 s?

                (b) What is the distance travelled by the particle between t = 2 s and t = 6 s﻿? (You may find it useful to know that the formula for the area of a triangle is: area = half the base × height, and
                  that for the area of a trapezium is: area = base × (half the sum of the lengths of the parallel sides).)
                

              

              View answer - Question 19

            

          

        

      

    

  
    
      
        5 Uniformly accelerated motion along a line

        
          5.1 Describing uniformly accelerated motion

          An important special case of non-uniform motion along a line is that which arises when an object is subjected to constant
            acceleration. This kind of motion is called uniformly accelerated motion. An object falling under gravity near to the surface of the Earth, such as the apple of Figure 24, provides an approximate realisation of such motion. (Air resistance, which increases with speed, prevents the acceleration
            from being truly constant in such cases.) A more precise realisation of uniformly accelerated motion is provided by an object
            falling under gravity close to the surface of an airless body such as the Moon (see Figure 38) or by a falling object in an
            evacuated (i.e. airless) drop-tower or drop-shaft of the kind discussed in Section 1 of this course.
          

          
            [image: ]

             Figure 38: The acceleration-time graph for an object with constant (positive) acceleration
            

          

          The acceleration-time graph for a uniformly accelerated body is simple; it's just a horizontal line of the kind shown in Figure 38. The value of this constant acceleration (which may be positive or negative) represents the gradient of the velocity-time graph at any moment. It follows that the velocity-time graph must have the same gradient at all points
            and must therefore be a straight line of the kind shown in Figure 39. Note that the sign of the acceleration determines whether the velocity-time graph slopes up or down, and the value of the
            acceleration determines the precise value of the gradient. However, the acceleration does not determine the initial value
            of v﻿x  so we have arbitrarily chosen a point on the v﻿x -axis to represent this value and labelled it u﻿x . From Figure 38, we deduce that if
          

          [image: ]

          then

          [image: ]

          where a﻿x represents the constant value of a﻿x(t).
          

          
            [image: ]

             Figure 39: A velocity-time graph that is consistent with the acceleration-time graph of Figure 38. Note that the intercept has been
              chosen arbitrarily; only the gradient is determined by the acceleration
            

          

          It's rather more difficult to deduce the position-time graph that corresponds to uniformly accelerated motion, but the steady
            change of velocity with time certainly implies that the gradient of the position-time graph must also change steadily with time. In fact, given a velocity-time graph like that in Figure
            39, the corresponding position-time graph will be of the general form shown in Figure 40.
          

          
            [image: ]

             Figure 40: A position-time graph that is consistent with the acceleration-time graph of Figure 38 and the velocity-time graph of Figure
              39. Note that the intercept has been chosen arbitrarily; only the gradient is determined by velocity
            

          

          Once again, the intercept with the vertical axis (representing the initial position at t = 0) is not determined by anything we have said so far; it has therefore been chosen arbitrarily and labelled x0. The curve however is not arbitrary since the displacement from x0 at any particular time t = T is determined by the area under the velocity-time graph between t = 0 and t = T. That area will be the sum of two parts, a rectangle of height u﻿x and base length T, and a triangle of height a﻿x﻿T and base length T. Since the area of a triangle is half the product of its height and its base length, it follows that the displacement from
            x﻿0 at time T will be
          

          
            [image: ]

          

          and the position of the uniformly accelerating particle, at any time t, will be x﻿(﻿t﻿) = x﻿0 + s﻿x﻿(﻿t﻿), that is
          

          
            [image: ]

          

          Equations 19, 20 and 21 provide an essentially complete description of uniformly accelerated motion in one dimension and have
            many applications. They are not the most common form of the equations of uniform acceleration. We will discuss those in the
            next subsection, but before doing so let's use the method of differentiation to confirm the consistency of the equations we
            have deduced.
          

          Starting from Equation 21, the right-hand side of which is a quadratic function of t, we expect to find that
          

          
            [image: ]

          

          Using the rules and results of Table 6 to carry out the differentiation (which is just like that in Question 18) we find that
          

          
            [image: ]

          

          in complete agreement with Equation 20. Similarly, differentiating the linear function that appears on the right-hand side
            of Equation 20, we expect to find
          

          
            [image: ]

          

          Again, performing the differentiation, using Table 6, confirms our expectations:
          

          
            [image: ]

          

          We see that in this case, ax (t) is just the constant acceleration ax  from which we started.
          

          This short exercise in checking consistency gives just a hint of the immense power of differentiation to simplify a wide range
            of tasks and investigations.
          

          Returning now to the description of uniformly accelerated motion, let's gather together our results so far:

          [image: ]
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          [image: ]

          These are the equations we shall use, rearrange and extend in the next subsection.

        

        
          5.2 The equations of uniformly accelerated motion

          Equations 22, 23 and 24 provide a complete description of uniformly accelerated motion. By combining them appropriately, it
            is possible to solve a wide class of problems concerning the kinematics of uniformly accelerated motion. Nonetheless, those
            particular equations are not always the best starting point for the most common problems. For example, it is often the case
            that we want to know the displacement from the initial position after some specified period of constant acceleration, rather
            than the final position x. In such circumstances it is useful to subtract x﻿0 from both sides of Equation 22 and use the definition s﻿x﻿ = x − x﻿0 to write the resulting equation as
          

          [image: ]

          More significantly, it is often the case that we need to find the final velocity v﻿x  when all we are given is the (constant) acceleration ax , the initial velocity ux  and the displacement sx . The problem can be solved using Equations 23 and 25, but doing so involves finding the duration of the motion t, which is not required as part of the answer. It would be more convenient to use an equation that related v﻿x  to a﻿x , u﻿x  and s﻿x  directly, thus avoiding the need to work out t altogether. Fortunately, it is possible to find such an equation by using a standard mathematical procedure called elimination.
          

          [image: ]

          The first step in the process is to identify a set of equations that contain the variables we want to relate, along with at
            least one variable we can eliminate. In this case we want to eliminate t from Equations 23 and 25. The second step usually involves rearranging one of the equations so that the unwanted variable
            is isolated on the left-hand side, thus becoming the subject of that equation. In this case, we can subtract u﻿x  from both sides of Equation 23, divide both sides by a﻿x  and then interchange the two sides to give
          

          [image: ]

          Having obtained this relation from one of the equations, the third step is to use it to eliminate the unwanted variable from
            all the other equations. In our case this means replacing t by (﻿v﻿﻿﻿x − u﻿x﻿)﻿/﻿a﻿x  throughout Equation 25, so we obtain
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          so after a little algebra, we obtain

          
            [image: ]

          

          which can be rearranged to give the result

          [image: ]

          Equations 23, 25 and 27 are the most frequently used equations of uniformly accelerated motion and are usually referred to
            collectively as the constant acceleration equations (or the uniform acceleration equations).
          

          
            
              Constant (or uniform) acceleration equations

              
                [image: ]

              

              

              

            

          

          It follows from these equations that

          
            
              

              
                [image: ]

              

            

          

          Remember, these are not universal equations that describe every form of motion. They apply only to situations in which the acceleration a﻿x  is constant.
          

          
            
              Question 20

            

            
              
                Starting from the constant acceleration equations, use the elimination procedure to derive Equation 28d.

              

              View answer - Question 20

            

          

          
            
              Question 21

            

            
              
                Give a graphical interpretation of Equation 28d in terms of the area under a velocity-time graph for the case of uniformly
                  accelerated motion.
                

              

              View answer - Question 21

            

          

          
            
              Question 22 

            

            
              
                An object has a final velocity of 30.0 m s﻿−﻿1, after accelerating uniformly at 2.00 m s﻿−﻿2 over a displacement of 20.0 m. (a) What was the initial speed of the object? (b) For how long was the object accelerated?
                

              

              View answer - Question 22 

            

          

          
            
              Question 23

            

            
              
                A train accelerates uniformly along a straight track at 2.00 m s﻿−﻿2 from an initial velocity of 4.00 m s﻿−﻿1 to a final velocity of 16.00 m s﻿−﻿1. What is the train's displacement from its initial position at the end of this interval?
                

              

              View answer - Question 23

            

          

        

        
          5.3 The acceleration due to gravity

          In the absence of air resistance, an object falling freely under the influence of the Earth's gravity, close to the surface
            of the Earth, experiences an acceleration of about 9.81 m s﻿−﻿2 in the downward direction. The precise value of the magnitude is indicated by the symbol g and varies slightly from place to place due to variations in surface altitude, the effect of the Earth's rotation and variations
            in the internal composition of the Earth. Some typical values for the magnitude of the acceleration due to gravity, g, at various points on the Earth's surface, are given in Table 7.
          

          Incidentally, one of the reasons that the value of g is well known across much of the Earth's surface is that extensive surveys have been carried out in which g has been accurately measured by timing the swing of very carefully constructed pendulums.
          

          
             Table 7: The magnitude of the acceleration due to gravity at various points on the Earth's surface
            

            
              
                
                  	Location
                  	g/m s−2
                

                
                  	North Pole
                  	9.83
                

                
                  	London
                  	9.81
                

                
                  	New York
                  	9.80
                

                
                  	Equator
                  	9.78
                

                
                  	Sydney
                  	9.80
                

              
            

            

          

        

        
          5.4 Drop-towers revisited

          In Section 1 we described how research into near weightless conditions can be carried out on Earth by using a drop-tower or
            a drop-shaft (Figure 41). We are now in a position to examine drop-shafts in more detail (Example 3).
          

          
            [image: ]

             Figure 41: The test vehicle at the Bremen drop-tower
            

          

          
            
              Example 3

            

            
              
                Consider a vertical shaft of total length 700 m, with free fall taking place for the first 500 m and constant deceleration
                  for the final 200 m. Work out:
                

                
                  	
                    The time to fall the first 500 m. (This would be the time during which near weightless experiments could be done.)

                  

                  	
                    The velocity at the end of the first 500 m.

                  

                  	
                    The acceleration needed to reduce the velocity to zero at the bottom of the shaft.

                  

                

              

              View answer - Example 3

            

          

          
            
              Question 24

            

            
              
                Consider the following proposal to roughly double the period of weightlessness in the 140 m Bremen drop-tower. The basic idea
                  is that the drop-vehicle should be launched from the bottom of the tower with just the right velocity to enable it to reach
                  the top of the tower with zero velocity. If the vehicle is uniformly accelerated over the first 10 m to give it the necessary
                  upward velocity it can then rise freely for the remaining 130 m, pass through its highest point, and fall freely for another
                  130 m before being brought to rest over the final 10 m of its descent. Using a coordinate system in which the upward direction
                  is positive, answer the following questions.
                

                (a) What must be the launch velocity of the vehicle if it is to freely rise 130 m?

                (b) What constant total acceleration must be applied over the first 10 m if the vehicle is to attain the required launch velocity?
                  How long will this last?
                

                (c) How long will the vehicle actually spend in free motion?

                (d) What will be the acceleration of the vehicle when at its highest point?

                (e) What will be the displacement of the vehicle from its starting point when it returns to that point at the end of the trip,
                  and through what distance will it have travelled during the round trip?
                

                (f) Sketch a rough acceleration-time graph for the entire motion, and briefly comment on the feasibility of the whole proposal.

              

              View answer - Question 24

            

          

        

      

    

  
    
      
        6 Closing items

        
          6.1 course summary

          1. A coordinate system provides a systematic means of specifying the position of a particle. A system in one dimension involves
            choosing an origin and a positive direction in which values of the position coordinate increase. Values of the position coordinate
            are positive or negative numbers multiplied by an appropriate unit of length, usually the SI unit of length, the metre (m).
          

          2. The movement of a particle along a line can be described graphically by plotting values of the particle's position x, against the corresponding times t, to produce a position-time graph. Alternatively, by choosing an appropriate reference position x﻿ref and defining the displacement from that point by s﻿x = x − x ref, the motion may be described by means of a displacement-time graph.
          

          3. Uniform motion along a line is characterised by a straight-line position-time graph that may be described by the equation

          
            [image: ]

          

          where vx and x0 are constants. Physically, vx represents the particle's velocity, the rate of change of its position with respect to time, and is determined by the gradient
            of the position-time graph
          

          
            [image: ]

          

          x﻿0 represents the particle's initial position, its position at t = 0, and is determined by the intercept of the position-time graph, the value of x at which the plotted line crosses the x-axis, provided that axis has been drawn through t = 0.
          

          4. Non-uniform motion along a line is characterised by a position-time graph that is not a straight line. In such circumstances
            the rate of change of position with respect to time may vary from moment to moment and defines the instantaneous velocity.
            Its value at any particular time is determined by the gradient of the tangent to the position-time graph at that time.
          

          5. More generally, if the position of a particle varies with time in the way described by a function x﻿(﻿t﻿), then the way in which the (instantaneous) velocity varies with time will be described by the associated derived function
            or derivative
          

          
            [image: ]

          

          6. The instantaneous acceleration is the rate of change of the instantaneous velocity with respect to time. Its value at any
            time is determined by the gradient of the tangent to the velocity-time graph at that time. More generally, the way in which
            the (instantaneous) acceleration varies with time will be described by the derivative of the function that describes the instantaneous
            velocity, or, equivalently, the second derivative of the function that describes the position:
          

          
            [image: ]

          

          7. Results and rules relating to differentiation and the determination of derivatives are contained in Table 6. The derivative of a constant is zero, the derivative of f﻿(﻿y﻿) = ﻿Ay﻿n﻿ is d﻿f﻿/﻿d﻿y = nAyn   −1.
          

          8. The signed area under a velocity-time graph, between specified values of time, represents the change in position of the
            particle during that interval.
          

          9. Uniformly accelerated motion is a special case of non-uniform motion characterised by a constant value of the acceleration,
            ax  = constant. In such circumstances the velocity is a linear function of time (v﻿x﻿(﻿t﻿) = u﻿x + a﻿x﻿t), and the position is a quadratic function of time (﻿[image: ]).
          

          10. The most widely used equations describing uniformly accelerated motion are

          
            [image: ]

          

          
            [image: ]

          

          11. Position x, displacement sx , velocity v  x , and acceleration, ax , are all signed quantities that may be positive or negative, depending on the associated direction. The magnitude of each
            of these quantities is a positive quantity that is devoid of directional information. The magnitude of the displacement of
            one point from another, s = |﻿s﻿x﻿|, represents the distance between those two points, while the magnitude of a particle's velocity, v = |﻿v﻿x﻿|, represents the speed of the particle. The magnitude of the acceleration due to gravity is represented by the symbol g, and has the approximate value 9.81 m s﻿−﻿2 across much of the Earth's surface.
          

        

        
          6.2 End-of-course questions

          
            
              Question 25

            

            
              
                Table 8 shows the atmospheric pressure P in pascals (Pa) at various heights h above the Earth's surface. Plot a graph to give a visual representation of the data in the table. Be careful to label your
                  axes correctly. Explain why you have chosen to plot particular variables on the horizontal and vertical axes. Use your graph
                  to find the rate of change of atmospheric pressure with height at h = 10 km.
                

                
                   Table 8: Data for question 25
                  

                  
                    
                      
                        	h/km
                        
                        	P/Pa
                        
                      

                      
                        	0
                        	101 325
                      

                      
                        	5
                        	48 586
                      

                      
                        	10
                        	23 297
                      

                      
                        	15
                        	11 171
                      

                      
                        	20
                        	5357
                      

                      
                        	25
                        	2569
                      

                      
                        	30
                        	1232
                      

                    
                  

                  

                

              

              View answer - Question 25

            

          

          
            
              Question 26

            

            
              
                (a) Define the terms position and displacement, and carefully distinguish between them.
                

                (b) The position x of a particle at time t is given in Table 9. Plot a position-time graph for the data in Table 9.
                

                (c) Using your graph, measure the velocity of the particle at t = 5 s.
                

                (d) A second particle undergoes uniform motion and has the same position and velocity as the first particle at time t = 5 s. What is the displacement of the second particle from the first at time t = 10 s?
                

                
                   Table 9: Data for question 26
                  

                  
                    
                      
                        	t/s
                        
                        	x/km
                        
                      

                      
                        	0
                        	0
                      

                      
                        	1
                        	0.443
                      

                      
                        	2
                        	0.984
                      

                      
                        	3
                        	1.64
                      

                      
                        	4
                        	2.45
                      

                      
                        	5
                        	3.44
                      

                      
                        	6
                        	4.64
                      

                      
                        	7
                        	6.11
                      

                      
                        	8
                        	7.91
                      

                      
                        	9
                        	10.1
                      

                      
                        	10
                        	12.8
                      

                    
                  

                  

                

              

              View answer - Question 26

            

          

          
            
              Question 27

            

            
              
                (a) Define the terms velocity and acceleration.
                

                (b) The velocity vx of a particle moving along the x-axis at various times t is given in Table 10.
                

                (i) Assuming the particle has a constant acceleration between the given positions, draw a velocity-time graph representing
                  the data in Table 10.
                

                (ii) Use your graph to calculate the total displacement of the particle over the time interval given in the table.

                
                   Table 10: Data for Self-assessment question 27
                  

                  
                    
                      
                        	v  x /m s−1
                        	t/s
                        
                      

                      
                        	4
                        	0
                      

                      
                        	−4
                        	10
                      

                      
                        	0
                        	15
                      

                      
                        	2
                        	20
                      

                    
                  

                  

                

              

              View answer - Question 27

            

          

          Comment In questions 28 to 32, you are not required to draw any graphs.
          

          
            
              Question 28

            

            
              
                The variable z is related to the variable y by the equation
                

                
                  z = 3 + 2y + y3.
                  

                

                (a) Find the derivative dz/dy.
                

                (b) Evaluate dz/dy at y = 2.
                

                (c) What would be the gradient of a graph of z plotted against y for the value y = 2?
                

              

              View answer - Question 28

            

          

          
            
              Question 29

            

            
              
                A rocket travels vertically away from the surface of the Moon. It is still close to the Moon's surface when it jettisons an
                  empty fuel tank. The fuel tank initially travels with the same velocity as the rocket, but falls back to the Moon, reaching
                  the Moon's surface 50 s after being released. If the fuel tank hits the surface at a speed of 50 m s−1, calculate the speed of the fuel tank when it was jettisoned. You may assume that the magnitude of the acceleration due to
                  gravity near the Moon's surface is 1.6 m s﻿−﻿2.
                

              

              View answer - Question 29

            

          

          
            
              Question 30

            

            
              
                For time t greater than or equal to zero, a particle's position as it travels along the x-axis is described by the function x(t) = At 2, where A = 4.0 m s−2. Use differentiation to calculate how fast the particle is travelling at t = 10 s.
                

              

              View answer - Question 30

            

          

          
            
              Question 31

            

            
              
                A vase falls to the ground from a shelf at height 1.80 m above the floor. Neglecting air resistance, calculate the time taken
                  for the vase to strike the floor.
                

              

              View answer - Question 31

            

          

          
            
              Question 32

            

            
              
                (This question is more difficult than its predecessors.) A rocket is initially at rest on the Earth's surface. At time t = 0 s the rocket motor is fired and the rocket accelerates vertically upwards at a constant 2.00 m s−2. After a time interval of 20.0 s the motor fails completely and the rocket accelerates back to Earth with a downward acceleration
                  of magnitude 9.81 m s−2.
                

                (a) Calculate the height reached by the rocket at the instant the motor fails.

                (b) Calculate the velocity of the rocket at the instant the motor fails.

                (c) Find an equation that, for situations involving constant acceleration, gives the displacement in terms of the initial
                  velocity, the final velocity, and the constant acceleration.
                

                (d) Calculate the distance travelled by the rocket from the instant the motor fails until the rocket reaches its highest point.
                  Hence, find the total height gained by the rocket. [Hint: The equation you obtained in part (c) may be useful here.]
                

                (e) Find the total time taken for the rocket to fall back to Earth from its highest point.

              

              View answer - Question 32

            

          

        

      

    

  
    
      
        Conclusion

        This free course provided an introduction to studying Science. It took you through a series of exercises designed to develop
          your approach to study and learning at a distance, and helped to improve your confidence as an independent learner.
        

      

    

  
    
      
        Keep on learning
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        Question 1

        Answer

        Your list might well include items such as: the motion of a passenger on a train, or in a plane or in any other vehicle, as
          long as it is the passenger's overall position that is important, and not their posture or internal movement. You might also
          have listed the vehicles themselves, provided the same conditions apply. Indeed, you might list almost anything, including
          the Earth or the Sun, provided you are considering a context in which the moving object can be treated as point-like.
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        Question 2

        Answer

        (a) From Figure 7, the position at t = 32 s is 59 m.
        

        (b) In Figure 6 the car is at x = 30 m. According to Figure 7, the time corresponding to x = 30 m is 21 s.
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        Question 3

        Answer

        The whole graph could be shifted to the right or the left (without altering its shape) by choosing the origin of time (t = 0 s) to be earlier or later than that used in Table 2.
        

        Back

      

    

  
    
      
        Question 4

        Answer

        sx  = 50 m, and s = 50 m.
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        Question 5

        Answer

        Since we are interested in the displacement of the getaway car from the police car, we need to plot xget − xpol. You may find it useful to tabulate these values by adding another column (headed x﻿get − x﻿pol) to Table 3. The result of the plot is given in Figure 11.
        

        
          [image: ]

           Figure 11: A displacement-time graph based on Table 3
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        Question 6

        Answer

        Only you will know the answer to this, but it is common to see graphs in which the axes have not been labelled, or the units
          have been omitted. This is especially true when automated graph-plotting packages are used; such packages often require special
          instructions if they are to show labels and units, and these are easily overlooked. If you are using such a package (or a
          graphical calculator), don't forget that the line you have to plot is far from being the whole graph: axes and labels are
          also important.
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        Question 7

        Answer

        The displacement of the car from the pedestrian is plotted in Figure 13. The significant feature is that we get a straight
          line and consequently the relative motion is uniform, i.e. at constant speed. The straight line does not run through the origin, so this curve is of the general form x = At + B, where x stands for x﻿car − x﻿ped in this case.
        

        
          [image: ]

           Figure 13: The result of plotting the displacements in Table 5
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        Question 8

        Answer

        Using [image: ]and Figure 12b we obtain
        

        

        
          [image: ]

        

        A point to note here is that choosing such closely separated values as t = 50 s and t = 60 s makes the evaluation of the velocity trickier, and more prone to error than would have been the case if more widely
          separated values had been chosen. When evaluating a gradient from a graph, it is always wise to use the widest convenient
          range of values on the horizontal axis.
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        Question 9

        Answer

        (a) The speed is given by the magnitude of Δx/Δt obtained from the velocity-time graph. In the order of increasing speed, the objects are B, D, A, C.
        

        (b) The objects with positive velocity have positive values of Δx/Δt, these are A and B.
        

        (c) Treating large negative values as being less than small negative values, and any negative value as less than any positive value, as is conventional, the list is C, D,
          B, A.
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        Question 10

        Answer

        The gradient of the temperature-height graph is

        
          [image: ]

        

        With h1 = 0 and h2 = 2 km, Figure 15 shows that T1 = 20 °C and T2 = 6 °C.
        

        It follows that the gradient is

        
          [image: ]

        

        Note that care has to be taken to arrange the values in the correct order when performing the subtractions if the right sign
          (minus in this case) is to be obtained.
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        Question 11

        Answer

        The equation will have the general form of Equation 6a, with velocity vx  = 1 m s﻿−﻿1 (found from the gradient) and initial position x﻿0 = − 20 m (found from the value of x when t = 0). Consequently the required equation may be written:
        

        
          [image: ]

        

        Back

      

    

  
    
      
        Question 12

        Answer

        Since vx  = constant in this case, the motion is described by the uniform motion equation x = vxt + x0. However, on this occasion we are not given the value of x0, though we are given enough information to work it out. Substituting x = −2 m and t = 100 s into the equation we find
        

        
          [image: ]

        

        Adding 1200 m to both sides shows that 1198 m = x0.
        

        It follows that for this particular motion the equation of uniform motion takes the form x = (−12 m s−1)t + (1198 m).
        

        Consequently, when t = 250 s,
        

        
          x = −3000 m + 1198 m = − 1802 m.
          

        

        An alternative method that requires slightly fewer manipulations may be based on the definition of the gradient and the given
          value of the velocity.
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        Question 13

        Answer

        The relevant velocity-time graph is shown in Figure 21. In this case there are two rectangular areas to evaluate. Their total
          area is
        

        
          (20 s) × (1 m s−1) + (20 s) × (10 m s−1) = 220 m.
          

        

        This is equal to the change in position over the full 40 s duration of the motion.

        
          [image: ]

           Figure 21: The graph for Question 13. Note that the time values are not known, only the durations, which have been indicated by Δt
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        Question 14

        Answer

        The relevant tangents are shown in Figure 26. Their gradients give the following estimates for the instantaneous velocities

        
          [image: ]
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        Question 15

        Answer

        Since acceleration is the rate of change of velocity with respect to time, the units of acceleration are the units of velocity
          (m s﻿−﻿1﻿) divided by the units of time (﻿s﻿), so acceleration is measured in metres per second per second, which is abbreviated to
          m s﻿−﻿2.
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        Question 16

        Answer

        (a) The particle moves in the direction of increasing x when its velocity is positive. This occurs in regions A and B. Conversely, the particle moves in the direction of decreasing
          x when its velocity is negative. This occurs in regions C and D.
        

        (b) The particle is speeding up when the magnitude of its velocity is increasing. This occurs in regions A and C. Conversely, the particle is slowing down in regions B and
          D.
        

        (c) The particle will have a positive acceleration when the gradient of the velocity-time graph is positive. This occurs in
          regions A and D. Conversely the acceleration is negative in regions B and C.
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        Example 1

        Answer

        (a) The velocity vx is the derivative with respect to time of the position function x﻿(t) which is of the form At﻿n , with A = k and n = 2. It therefore follows from the third of the standard results in Table 6 that
        

        
          [image: ]

        

        This is the required answer. No measuring of the gradients of tangents to curves is involved!

        (b) Remembering that k is given as −5 m s−2, the velocity at time t = 3 s is now easily obtained from Equation 16, as follows
        

        
          vx(3 s) = 2kt = 2 × (−5 m s−2) × (3 s) = −30 m s−1

        

        Note that we have multiplied m s﻿−2 by s to give m s﻿−﻿1, i.e. the units have been treated just like algebraic quantities.
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        Question 17

        Answer

        The expression for the acceleration is given by

        
          [image: ]

        

        using Table 6. Therefore ax(3 s) = (2 × 4 × 3) m s−2 = 24 m s−2.
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        Example 2

        Answer

        We use Equation 14 and the third result in Table 6 with A = k, y = t and n = 2, to obtain
        

        

        
          [image: ]

        

        It then follows from Equation 18, that

        
          [image: ]

        

        where we have again used the third result in Table 6 but with A = 2k and n = 1.
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        Question 18

        Answer

        Using Equations 14 and 15 and Table 6, we find
        

        
          [image: ]
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        Question 19

        Answer

        (a) The displacement over the first 6 s is equal to the total signed area between the graph and the t-axis and between t = 0 s and t = 6 s in Figure 37. Recall that regions below the axis are regarded as negative areas. In this case the total area is composed
          of two triangles, one above the axis, one below. The total displacement is therefore given by
        

        sx(6 s) = (1/2)×(1 s)×(1.2 m s−1) −(1/2)×(5 s)×(6 m s−1)
        

        i.e. s﻿x﻿(﻿6 s﻿) = (﻿0.60 m﻿) −(15 m) = −14.4 m.
        

        (b) The distance travelled between t = 2 s and t = 6 s will be the magnitude of the displacement over that time. Note that the displacement will be negative since it is represented
          by the area of the colour-shaded trapezium, which is entirely below the axis. However, the corresponding distance will be
          positive (since it is a magnitude) and will have the value
        

        
          s = [(1/2) × (6 s − 2 s) × (6 m s−1 − 1.2 m s−1)] + [(6 s − 2 s) × 1.2 m s−1] = 14.4 m
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          Figure 37: The velocity-time graph for Self-assessment question 19
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        Question 20

        Answer

        In this case we wish to eliminate ax  from Equations 28a and 28b. One way is to rearrange Equation 28b (subtracting ux  from both sides and dividing both sides by t) to obtain:
        

        
          [image: ]

        

        Substituting this into Equation 28a gives

        
          [image: ]
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        Question 21

        Answer

        Graphically, sx  is the signed area under the velocity-time graph between the given times. In this case those times are t = 0 when the initial velocity is ux  and some later time t when the velocity is vx . Since the velocity-time graph for uniformly accelerated motion is a straight line of fixed gradient, the area required will
          always be either a trapezium (above or below the axis) or a pair of triangles. (Figure 37 shows a particular case.)
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          Figure 37: The velocity-time graph for Self-assessment question 19
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        Question 22 

        Answer

        (a) In this case we know sx  = 20 m, vx  = 30 m s−1 and ax  = 2 m s−2, and we need to find ux. As a first step we should make ux  the subject of an equation that involves the known quantities. Rearranging Equation 28c gives
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        Taking the square root of each side

        
          [image: ]

        

        Substituting the given values,
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        (b) The duration of the acceleration is given by Equation 26 as t = (vx  − ux)/ax, which was itself obtained by rearranging constant acceleration equations. Substituting the relevant values gives
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        Question 23

        Answer

        Using Equation 28c

        
          [image: ]

        

        with ux  = 4.00 m s−1, vx  = 16.0 m s−1 and ax  = 2.00 m s−2, we obtain, after rearranging
        

        
          [image: ]
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        Example 3

        Answer

        It is convenient to split the calculations into three corresponding parts.

        Part 1: Finding the time to fall the first 500 m

        When carrying out calculations it is always wise to choose a coordinate system that fits the problem. In this case it seems
          natural to choose an x﻿-﻿axis that points down the shaft, so that downward displacements and velocities will be positive and the acceleration due
          to gravity will be a﻿x = + g. It is also sensible to use the equations that lead to the least amount of work. In this case, we know only the initial velocity
          (assuming the object is initially at rest), the acceleration (g) and the final displacement (500 m). So, in order to work out the time to fall, the best approach is to use Equation 28a
        

        [image: ]

        with s﻿x﻿ = 500 m, u﻿x = 0 m s﻿−﻿1 and a﻿x = g = 9.81 m s﻿−﻿2. Setting u﻿x = 0 m s﻿−1 and rearranging Equation 28a we obtain
        

        
          [image: ]

        

        Part 2: Finding the velocity at the end of the first 500 m

        To calculate the velocity after a free fall of 500 m, there are two convenient methods. We could either use

        [image: ]

        with ux  = 0 m s−1, ax  = g = 9.81 m s−2 and t = 10.1 s, or
        

        [image: ]

        with ux  = 0 m s−1, ax  = g = 9.81 m s−2 and sx  = 500 m.
        

        We choose the second method since it uses only values that we have been given rather than ones we have calculated. (It is
          always possible that we made some slip in our calculation.) So using Equation 28c with u﻿x = 0 m s﻿−﻿1, we obtain
        

        
          [image: ]

        

        Part 3: Finding the acceleration over the final 200 m

        To find the uniform acceleration necessary to bring the object to rest at the bottom of the shaft we can again make use of
          Equation 28c. This time, the quantity ax  is what we want to calculate and the known parameters are v﻿x = 0 m s﻿−﻿1, u﻿x = 99.0 m s−1 and s﻿x = 200 m. Substituting v﻿﻿x = 0 m s﻿−﻿1 and rearranging Equation 28c gives
        

        
          [image: ]
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        Question 24

        Answer

        (a) Using a coordinate system in which up is the positive direction means that the acceleration due to gravity will be negative,
          that is ax  = −g. With vx  = 0 m s−1 and sx  = 130 m, the initial velocity will be given (as in Question 22) by
        

        
          [image: ]

        

        (b) In this case we know ux  = 0 m s−1, vx  = 50.5 m s−1 and sx  = 10.0 m. (Note that what was an initial velocity in the last part of the question has become a final velocity in this part.)
          Rearranging Equation 28c and substituting the given values
        

        
          [image: ]

        

        To find the duration of the acceleration rearrange Equation 28b

        
          [image: ]

        

        (c) The time in free motion is given by Equation 26 with ux  = 50.5 m s−1, vx  = −50.5 m s−1 and ax  = −9.81 m s−2

        
          [image: ]

        

        (Pay attention to signs here, remember that up is positive so the initial velocity will be positive, but the final velocity
          will be negative.)
        

        (d) When at its highest point the acceleration of the vehicle will be ax  = −g. (The fact that the vehicle's velocity is momentarily zero as it passes through the highest point does not affect the (constant)
          acceleration.)
        

        (e) When the particle returns to its starting point its displacement from that point will be zero. The distance travelled,
          however, will be twice the height of the tower, 280 m.
        

        (f) The acceleration-time graph is given in Figure 42. Note that the initial and final accelerations are both positive because
          both increase the vehicle's velocity, even though the final acceleration reduces the vehicle's speed. (This subtlety concerning
          acceleration was discussed in Section 4.2.) The plan is feasible. In fact a similar system is in use at various drop-towers
          and drop-shafts.
        

        
          [image: ]

           Figure 42: The acceleration-time graph for Question 24(f)
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        Question 25

        Answer

        The graph is given in Figure 43. Notice how the vertical axis is scaled by 105 in order to avoid a confusion of numbers on this axis. Since the pressure is the dependent variable, it is plotted on the
          vertical axis. Conversely, since height is the independent variable, it is plotted along the horizontal axis.
        

        The rate of change of atmospheric pressure with height at 10 km is given by the gradient of the graph at this point. Using
          the tangent shown in Figure 43, we obtain
        

        
          [image: ]

        

        (Differentiating the function that was used to produce Table 8 gives a gradient of −3435 Pa km −1 at 10 km.)
        

        
          [image: ]

          Figure 43: Graph for question 25
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        Question 26

        Answer

        (a) The position of a point on a line is represented by a coordinate x, measured from some arbitrarily chosen origin. Such a point might represent the instantaneous position of a particle moving
          along the line. Displacement refers to the difference in position of two points, these might be the initial and final positions of a moving particle,
          in which case the displacement would represent the change in the particle's position.
        

        (b) The position-time graph for Table 9 is given by the curve in Figure 44.
        

        (c) The instantaneous velocity is given by the gradient of the tangent at t = 5 s. The gradient of the tangent shown is
        

        
          [image: ]

        

        (This result compares with the value of 1.087, which is obtained by differentiating the function that was used to produce
          Table 9.)
        

        (d) The displacement-time graph for the second particle is the tangent at t = 5 s, which we have already drawn in Figure 44 since for uniform motion x = x0 + vxt. From this tangent, we can see that the position of the second particle at t = 10 s is 8.5 km. Hence, the displacement of the second particle from the first is (8.5 − 12.8) km = −4.3 km. Note that the
          minus sign is an essential part of the answer.
        

        
          [image: ]

           Figure 44: Position-time graph for question 26
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        Question 27

        Answer

        (a) The velocity of a particle is its rate of change of position. The acceleration of a particle is its rate of change of velocity.
        

        (b) (i) The velocity-time graph for Table 10 is given in Figure 45.
        

        (ii) The displacement is equal to the signed area under the velocity-time graph. For the interval between 0 s and 10 s, the
          areas above and below the time axis cancel and consequently the displacement is zero.
        

        For the interval between 10 s and 15 s, the displacement is given by

        −(1/2) x 5 x 4 m = −10 m.

        For the interval between 15 s and 20 s, the displacement is given by

        (1/2) x 5 x 2 m = 5 m.

        The total displacement is the sum of all three contributions:

        (0 − 10 + 5) m = −5 m.

        
          [image: ]

           Figure 45: Velocity-time graph for question 27
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        Question 28

        Answer

        (a) dz/dy = 2 + 3y2.
        

        (b) Substituting y = 2 into the derivative found in part (a) we obtain
        

        [image: ].
        

        (c) Since the gradient is equal to dz/dy evaluated at y = 2, the answer is 14.
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        Question 29

        Answer

        Choose an x-axis pointing vertically upwards from the Moon's surface. Using Equation 28b
        

        
          [image: ]

        

        with vx  = −50 m s−1, ax  = −﻿1.6 m s−2 and t = 50 s, we obtain
        

        
          ux = vx − axt = (−50 + 1.6 × 50) m s−1 = 30 m s−1.
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        Question 30

        Answer

        [image: ] and therefore
        

        
          vx (10 s) = (2 × 4.0 × 10) m s−1 = 80 m s−1.
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        Question 31

        Answer

        Taking up as the positive direction, and using Equation 28a

        
          [image: ]

        

        with ux  = 0 m s−1, ax  = −9.81 m s−2 and sx  = −1.80m, we obtain
        

        
          [image: ]
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        Question 32

        Answer

        (a)Taking up as positive, and using Equation 28a

        with ux  = 0 m s−1, ax  = 2.00 m s−2 and t = 20.0 s, we obtain
        

        
          sx = (1/2) × 2 × (20.0)2 m = 400 m.
          

        

        This is the displacement from the initial position when the motor fails. It follows that the height at which the motor fails
          is s = |sx  | = 400 m.
        

        (b) Using Equation 28b

        
          vx = ux + axt

        

        with ux  = 0 m s−1, ax  = 2.00 m s−2 and t = 20.0 s, we obtain
        

        
          vx = 0 + 2 × 20.0 m s−1 = 40.0 m s−1.
          

        

        (c) As shown in Section 5.2, eliminating t from Equations 28a and 28b gives Equation 28c
        

        
          [image: ]

        

        which we can write as

        
          [image: ]

        

        (d) Substituting vx = 0 m s−1, ux  = 40.0 m s−1 and ax  = −9.81 m s−2 in the above equation, we obtain
        

        
          [image: ]

        

        Adding this result to the displacement obtained in part (a) we obtain a total height of 482 m.

        (e) Using Equation 28a

        
          [image: ]

        

        with ux = 0 m s−1, ax  = −9.81 m s−2 and sx  = −482 m, we obtain
        

        
          [image: ]
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        Video 1

        Transcript

        
          JOHN

          Here's an intriguing experiment. The cannon on this train is pointing vertically upwards. When a ball is fired from it, it
            goes straight up and straight down. But what would happen if the cannon was fired when the train was in motion? Will the ball
            land... near the cannon...? or behind the train...? or where? What do you think?
          

          Well, it lands more or less back on the cannon.

          

        

        
          JOY

          Maybe that experiment surprised you. Many of our intuitive ideas about motion are wrong and yet they were embodied in the
            theories of one of the greatest thinkers in history - Aristotle. He lived in Greece in the fourth century BC. He was a pupil
            of Plato and tutor to Alexander the Great...
          

          

        

        
          ARISTOTLE

          Do you still consider the Universe illogical? Does not nature enjoy simplicity and go about its business by means of laws
            every bit as rigorous as those which govern the affairs of men?
          

          

        

        
          ALEXANDER

          Then what law, master, decrees that a stone, hurled into the air, must always fall back down to Earth?

          

        

        
          ARISTOTLE

          An excellent question! And here we have a stone to provide you with an answer. See, it sits, on the floor, immobile. Now why
            is it motionless?
          

          

        

        
          ALEXANDER

          Because it has nothing to make it move.

          

        

        
          ARISTOTLE

          Correct. It is in its natural state, at rest. Only if I force it to move, so...

          ... is its natural resistance to movement overcome. When I cease to exert an influence, it ceases to move. In other words,
            for a stone to be in motion, there must be a reason, a cause - a force - to persuade it to move.
          

          

        

        
          ALEXANDER

          For the stone to rise into the air, I must provide a force to lift it.

          

        

        
          ARISTOTLE

          Just so.

          

        

        
          ALEXANDER

          And yet, when I let it go, it falls, without any prompting from me.

          I applied no force to make it move downwards. Did I?

          

        

        
          ARISTOTLE

          Look all around you, Alexander. Do you see any heavy object that is not resting on the ground?

          

        

        
          ALEXANDER

          No, master.

          

        

        
          ARISTOTLE

          That is because all heavy objects naturally exist on the ground. Though you might perform a violent action in raising that
            stone, it will always try to return to the ground where it belongs. As soldiers, sent to battle, yearn for home, so a stone
            raised in the air will want to return to its proper place. That tendency, in itself, is a force of nature, whereby all heavy
            objects will take the most direct route to the ground, by falling vertically downwards.
          

          

        

        
          ALEXANDER

          I comprehend. Master, might I ask - If I were in a chariot, drawn by four strong horses, and I raised a stone above my head,
            and let it fall - would it land at my feet in the chariot?
          

          

        

        
          ARISTOTLE

          Is your chariot moving at speed?

          

        

        
          ALEXANDER

          Oh, yes! Like Phoebus' chariot, charging through the heavens!

          

        

        
          ARISTOTLE

          Well, your stone would fall vertically, taking the straightest route to the ground, while your chariot moves forward, away
            from the direct path of the stone. In consequence, the stone would fall behind your chariot. Why, in the time it takes for
            your stone to return to its natural place, your chariot would have sped on many paces! It is the same as if you let fall a
            stone from the mast of a ship. If the ship were moving fast over the sea, the stone would plunge into he waves behind it.
          

          

        

        
          ALEXANDER

          Ye-es

          

        

        
          ARISTOTLE

          There is no need for experiment, when the logic is impeccable.

          

        

        
          ALEXANDER

          So then, master - what is there to stop the moon from falling to the ground?

          

        

        
          ARISTOTLE

          The moon?

          

        

        
          ALEXANDER

          Yes, and the same goes for the sun and the stars, why do these heavenly bodies not fall towards us?

          

        

        
          ARISTOTLE

          I have heard it said that the Celtic tribes believe the sky will fall on their heads. Have you been speaking to these savages?

          

        

        
          ALEXANDER

          No master, but I am unsure of how to think of these matters. There are philosophers who say that the Earth travels in a great
            circle, and that the ground we stand upon is moving.
          

          

        

        
          ARISTOTLE

          Alexander, who is your tutor? Me, or those charlatans?

          

        

        
          ALEXANDER

          You, master.

          

        

        
          ARISTOTLE

          Yes, I! I, Aristotle, standing upon my solid ground! While you Alexander, standing on your moving ground, do you experience
            any sense of giddiness? Do you fancy the whole world is flying around in a great circle?
          

          

        

        
          ALEXANDER

          Well... no.

          

        

        
          ARISTOTLE

          "Well, no" - if the whole Earth were in motion, what would happen to the birds of the air? They would get left behind as soon
            as they left their perches! And if I were to throw that stone into the air, with the Earth moving and me upon it, why, the
            stone would come down on the far side of the Parthenon! Which is why this whole notion of a moving Earth is so patently silly!
            I forbid you to entertain such freakish ideas! The Earth is in its proper place at the centre of the cosmos, and the ground
            we stand upon is still!
          

          

        

        
          ALEXANDER

          I believe you... 

          

        

        
          ARISTOTLE

          At last!

          

        

        
          ALEXANDER

          ... but, what about the moon?

          

        

        
          ARISTOTLE

          Oh, the moon, the moon ... !

          

        

        
          ALEXANDER

          By all your laws of motion, the moon must fall to the Earth if there is no cause or force to hold it in the sky!

          

        

        
          ARISTOTLE

          Is it heavy?

          

        

        
          ALEXANDER

          The moon? I cannot say.

          

        

        
          ARISTOTLE

          I think you can. Logic, Alexander, logic! If the heavenly bodies were as heavy as Earthly matter, they would fall. Yet they
            do not. Conclusion? The moon is made of a substance vastly different to that of a stone. I have called this substance aether.
            Aether, such a good word.
          

          

        

        
          ALEXANDER

          So, master, according to your laws, the natural place for such bodies is in the heavens.

          

        

        
          ARISTOTLE

          Of course. The moon has no tendency to fall to the ground. The same applies to the sun and the stars, and everything is in
            its place.
          

          

        

        
          ALEXANDER

          Then, if a man could sprout wings, and fly to the Moon, he could not stand upon it?

          

        

        
          ARISTOTLE

          I do not think that standing upon the Moon would be very good for the Moon or for the Man. Let us put these speculations aside,
            Alexander. You have worlds enough to conquer here on Earth, without dreaming of the Moon.
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        Video 2

        Transcript

        
          JOY

          Aristotle was convinced that the Earth is stationary. It feels stationary and things don't get left behind when they are thrown
            up in the air. But then, neither did the ball get left behind on the moving train. So Aristotle's ideas were not correct.
            Yet, for centuries his theories were generally accepted. It wasn't until the Middle Ages that people began to seriously challenge
            his world system.
          

          Galileo Galilei, in about 1600, made one of the earliest studies of the moon and the stars, using the newly invented telescope.
            This gave him a radical new perspective on the Universe, but it got him into terrible trouble with the authorities.
          

          

        

        
          SIMPLICIO

          Your thoughts, Signor - are heresy!

          

        

        
          GALILEO

          The truth is the truth! Is the Mother Church so fearful of science? Our Earth behaves as do all the wandering stars! I have
            observed that there are four moons that circle Jupiter in orbits of their own. So does our Moon circle the Earth, as the Earth
            describes her orbit round the Sun.
          

          

        

        
          SIMPLICIO

          Oh, you are deranged! If the Earth were truly spinning around the Sun - surely we would feel this ceaseless motion! The very
            air we breathe would be snatched away from our lips! And a ball thrown upwards would vanish over the horizon!
          

          

        

        
          GALILEO

          No, it would not! I have explained, and I have proven.

          

        

        
          SIMPLICIO

          Proven, Signor?

          

        

        
          GALILEO

          Where do I begin? A ball, falling from a great height, will fall faster and faster till it reaches the ground.

          

        

        
          SIMPLICIO

          Why faster and faster?

          

        

        
          GALILEO

          There is a gravity which pulls the ball downwards. The speed of its fall increases in proportion to the duration of the fall.
            In my experiments I have shown that all bodies fall at the same increasing rate. That is vertical motion. But I can also make
            a ball move horizontally?
          

          

        

        
          SIMPLICIO

          Sideways motion.

          

        

        
          GALILEO

          Sideways motion. Give me a plank of infinite length, smooth and horizontal, and could I but remove all impediments, this marble
            could roll along that plank at a uniform speed, forever.
          

          

        

        
          SIMPLICIO

          Without an external force to keep it in motion? Oh come now! Nothing is eternal, but the Maker of all things.

          

        

        
          GALILEO

          You have been sent to trap me.

          

        

        
          SIMPLICIO

          Galileo, no.

          

        

        
          GALILEO

          I have suffered enough! I have recanted what I know to be the truth! The Earth moves round the Sun!

          

        

        
          SIMPLICIO

          A dangerous contention. Senor, I am Simplicio, a simple man. Enlighten me.

          

        

        
          GALILEO

          Simplicio? I have stared too long at the Moon - their instruments of torture - I do not see too well...!

          

        

        
          SIMPLICIO

          Signor, how can a marble roll along a plank forever? Enlighten me.

          

        

        
          GALILEO

          Simplicio, imagine this incline were as smooth as polished silver. I place the marble at the top, and release it. What would
            happen?
          

          

        

        
          SIMPLICIO

          It would roll downwards, faster and faster, until it reached the bottom.

          

        

        
          GALILEO

          Faster and faster? You learn quickly! Now, starting at the base of the board - will the marble roll upwards?

          

        

        
          SIMPLICIO

          Only if it were pushed.

          

        

        
          GALILEO

          Then I give it a thrust, to send it rolling up the incline. Its motion?

          

        

        
          SIMPLICIO

          It would slow down constantly, given that the marble's natural tendency is to roll downwards, not upwards, which is contrary
            to nature.
          

          

        

        
          GALILEO

          You declare that on a downward inclining plane, a body continuously speeds up. And on an upward incline it continuously slows
            down. But what would happen to the self-same body, placed on a surface with no upward or downward tilt.
          

          

        

        
          SIMPLICIO

          Indeed, it would go nowhere.

          

        

        
          GALILEO

          Not if it were propelled?

          

        

        
          SIMPLICIO

          Ah, then it would travel in the direction in which it was pushed.

          

        

        
          GALILEO

          Would it accelerate?

          

        

        
          SIMPLICIO

          No.

          

        

        
          GALILEO

          Would it decelerate?

          

        

        
          SIMPLICIO

          No.

          

        

        
          GALILEO

          Then, at that constant speed, how far should the body continue to travel?

          

        

        
          SIMPLICIO

          For as far as the surface remained flat.

          

        

        
          GALILEO

          On a limitless surface, perfectly straight and flat, on the Earth's surface the body's motion would be perpetual?

          

        

        
          SIMPLICIO

          Well ... yes.

          

        

        
          GALILEO

          Then we agree! In the absence of friction or resistance, the motion of a body on a horizontal plane is constant. Now, when
            a body has both horizontal and vertical motion, it's path will be a parabola.
          

          

        

        
          SIMPLICIO

          But I don't see...

          

        

        
          GALILEO

          I have proved this. I propel the marble, so that it moves across the board this way, while at the same time accelerating downwards
            - its curve.... is a parabola. Now - take note.
          

          If I, at one and the same time, propel this marble horizontally and simply release this second one, they reach the bottom
            at the exact same instant. Thus, the two parts of the motion - the vertical and the horizontal - are independent, and distinct
            from one another.
          

          

        

        
          SIMPLICIO

          This is all very well. But how does it reflect on the question of whether the Earth moves or not, and if it moves, why the
            air is not snatched away, and the birds left behind?
          

          

        

        
          GALILEO

          I have answered your question!

          

        

        
          SIMPLICIO

          Signor, I am a simple man, merely helping you to write your Dialogues...

          

        

        
          GALILEO

          Imagine a ship - a Man o' War -ploughing through the seas. You stand in the crow's nest, and you let fall a brass ball. Where
            would it land?
          

          

        

        
          SIMPLICIO

          Behind the Mast!

          

        

        
          GALILEO

          No, no, no, no, no, no, no!

          

        

        
          SIMPLICIO

          Where then?!

          

        

        
          GALILEO

          It would fall directly beneath you! Motion in two directions, remember, the horizontal and the vertical! Whilst the ball is
            in your hand at the top of the mast, the ball is moving with horizontal velocity, the same speed as the ship! And that is
            its motion horizontally when you let it drop. Its vertical motion accelerates as it falls, but it retains its original horizontal
            motion, the same speed as the ship, so it lands at the foot of the mast!
          

          

        

        
          SIMPLICIO

          That's as much as to say that the fall of an object on a moving ship is the same as if the ship were not moving!

          

        

        
          GALILEO

          Simplicio, you have seen the light! Here we stand on a floor that does not appear to move, but we are on the surface of a
            revolving Earth. We have horizontal motion. And the air stays with us because its horizontal motion is the same as ours, and
            the birds of the air do not get left behind for the self-same reason! Now, please, do you see?
          

          

        

        
          SIMPLICIO

          Yet...

          

        

        
          GALILEO

          Yet?

          

        

        
          SIMPLICIO

          ... the heavenly bodies, Jupiter, and his "moons". And why does our moon not fall downwards? Hmm?

          

        

        
          GALILEO

          If I understood the nature of gravity and the role of forces, I have drawn her in detail, I have measured her mountains, but
            what keeps her there, and the stars in the heavens, forever out of reach, I cannot say, but gravity must be the key!
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        Transcript

        
          JOHN

          So Galileo had solved the problem of the moving Earth. It's very similar towhat happened with the moving train. Galileo would
            have said that when the ball is fired it pursues its upward and downward motion whilst maintaining the horizontal motion that
            it had on the train - in fact, taking a parabolic path.
          

          But the story is not yet complete. Galileo has rightly separated motion into its horizontal and vertical components. But this
            was his difficulty. The concepts of horizontal and vertical are intimately tied up with a fact of standing on the surface
            of the Earth. So Galileo was unable to extend his understanding to the motion of the planets. What was needed was a synthesis
            to understand motion in any circumstances. The man who knitted these ideas together into a coherent theory was born in 1642,
            the year that Galileo died. His name was Isaac Newton.
          

          

        

        
          NEWTON

          It was in the year of our Lord, 1684, that my friend Edmund Halley approached me with a question: "what would be the shape
            of the orbits of the planets around the Sun if the force of their attraction to the Sun diminished as the square of the distance
            to the planet?" I was pleased to give him the answer instantly, 'it is an elipse' I cried. I have proved it.
          

          It must have been twenty years since I had performed the calculations, and when I retraced my steps on paper, I saw to my
            satisfaction that I had already written down the Universal Laws governing the motion of all bodies. I have Halley to thank
            for the publication of my Principia. And I acknowledge my debt to that former giant, Galileo, upon whose shoulders I admit
            I stood. Of course, the Greeks came two thousand years before him, but the trouble with the likes of Aristotle was that he
            assumed that the natural state of motion....is rest! Whereas my first law of motion states 'that with no forces acting upon
            it, a body can be at rest, but it can also move in a straight line at constant speed'.
          

          This was Galileo's understanding of horizontal motion, but my law is universal. You see Galileo believed that an object travelling
            horizontally, without friction, would go on forever. But for him this entailed that the object must newtons revolution transcript
            remain at the surface of the Earth, where it would travel, not in a straight line, but in a great curve around the Earth's
            circumference.
          

          Effectively Galileo was saying that an object could travel thus, but with no forces acting on it. That can not be correct.
            According to my law, as it does not travel in a straight line, there must be a force acting upon it. And, indeed, there is
            a force - the force of gravity.
          

          

        

        
          JOY

          We all know the legend of the apple falling on Newton's head. It was more likely that Newton was observing the moon through
            the branches of an apple tree, and wondering 'well, if an apple can fall to the ground, why can't the moon?'. Then he realised
            that the moon is falling towards the Earth. I'll go and ask him about it...
          

          

        

        
          JOY

          Sir Issac?

          

        

        
          NEWTON

          Mmm? Oh, I had forgotten I was expecting a visitor. Do forgive me dear lady - my study is the bane of my housekeeper's existence.

          

        

        
          JOY

          I'm sure you have other things on your mind, Sir Isaac. I was wondering if perhaps we might talk a little bit about gravity?

          

        

        
          NEWTON

          Yes, thank you. Well, in that case, I would need to expound my laws of motion. Pray, be seated - oh, I beg your pardon - clutter,
            clutter, clutter!
          

          Motion itself does not require a force: that is the basis for my First Law, which goes on: for there to be any deviation from
            motion at a constant speed in a straight line, there must be a force to cause the deviation. My second Law states that the
            force causes the body to accelerate, but only in the direction of the force. And the acceleration is equal to the force divided
            by the mass. So, in the case of an object thrown horizontally, it accelerates only downwards, the direction of gravity: the
            horizontal motion is unchanged, as Galileo showed.
          

          

        

        
          JOY

          But what about the Moon orbiting the Earth, or the planets orbiting the Sun? How do you explain those?

          

        

        
          NEWTON

          The Moon is travelling here in its orbit round the Earth. Now, suppose that at this point there were no gravitational force
            acting on it - it would continue in this straight line at the same speed. But, observe, the pull of gravity tugs it round,
            towards the Earth and causes it to deviate, and here it does again, and again, and the motion curves into a closed orbit -
            an ellipse. 
          

          

        

        
          JOY

          Of course, and that shape, the ellipse, that's due to the nature of gravity - your Law of Universal Gravitation...

          

        

        
          NEWTON

          Indeed. My law of Universal Gravitation states simply that any two particles in the Universe attract one another with the
            force of gravity. This force is proportional to the product of their masses and inversely proportional to the square of the
            distance between them.
          

          

        

        
          JOY

          Ah yes, the inverse square law. Sir Edmund Halley must have been pleased with that discovery.

          

        

        
          NEWTON

          Halley, why Halley? Certes, it allows me to predict the motions of planets and comets, as much as the tides of the ocean,
            the path of a stone through the air, newtons revolution transcript the fall of an apple. It enabled me to predict the true
            shape of the Earth, whose constant rotation requires it to bulge slightly at the Equator, and to be flattened somewhat at
            the Poles. Did Halley tell us the Earth is not round after all?
          

          

        

        
          JOY

          Well, it would seem then that your theory is the last word on motion in the Universe?

          

        

        
          NEWTON

          I thought God always had the last word? Have not our laws of motion always arisen to fit the current concept of our place
            in God's cosmos?
          

          

        

        
          JOY

          But surely, Sir Isaac, your theory is so successful - it predicts so much, and so accurately - it will be difficult for anyone
            to challenge it.
          

          

        

        
          NEWTON

          Dear lady, I do not know what I may seem to the world. But to myself I seem to have been only a boy playing on the seashore,
            diverting myself now and then finding another smoother pebble or prettier shell than the ordinary, whilst the great ocean
            of truth lay all undiscovered before me...
          

          

        

        Back
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