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        Introduction

        The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists,
          engineers and businessmen. Intense research has taken place to discover new superconductors, to understand the physics that
          underlies the properties of superconductors, and to develop new applications for these materials. In this course you will
          read about the history of superconductors, taking a brief look at their properties. You will also learn about modelling the
          properties of superconductors and the two different types of superconductor that exist today.
        

        Superconducting electromagnets produce the large magnetic fields required in the world's largest particle accelerators, in
          MRI machines used for diagnostic imaging of the human body, in magnetically levitated trains (Figure 8) and in superconducting
          magnetic energy storage systems. But at the other extreme superconductors are used in SQUID (superconducting quantum interference
          device) magnetometers, which can measure the tiny magnetic fields (~10﻿−﻿13﻿T) associated with electrical activity in the brain, and there is great interest in their potential as extremely fast switches
          for a new generation of very powerful computers.
        

        In this course we will focus on the macroscopic electrodynamic properties of superconductors, and particularly on some of
          the properties that can be explained in terms of electromagnetism concepts with which you should be familiar. A full understanding
          of superconductivity requires knowledge of materials science and quantum theory, and discussion of these aspects is beyond
          the scope of this course. We begin with a review of some of the main developments over the last hundred years, then describe
          in more detail some of the key electromagnetic properties. These can be modelled in a simple way without using quantum mechanics,
          and we shall show how this can be done. Finally, we distinguish between the type of superconductivity shown by most of the
          elemental superconductors, known as type-I superconductivity, and that shown by superconducting alloys that have commercial applications, known as type-II superconductivity.
        

        This OpenLearn course is an adapted extract from the Open University course : SMT359 Electromagnetism.
        

      

    

  
    
      
        Learning outcomes

        After studying this course, you should be able to:

        
          	explain the meanings of the newly defined (emboldened) terms and symbols, and use them appropriately

        

        
          	distinguish between perfect conduction and perfect diamagnetism, and give a qualitative description of the Meissner effect

        

        
          	explain how observation of a persistent current can be used to estimate an upper limit on the resistivity of a superconductor,
            and perform calculations related to such estimates
          

        

        
          	explain why the magnetic flux through a superconducting circuit remains constant, and describe applications of this effect

        

        
          	show how the London equations and Maxwell's equations lead to the prediction of the Meissner effect.

        

      

    

  
    
      
        1  Superconductivity

        Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes (Figure 1) as he studied the properties of metals at low
          temperatures. A few years earlier he had become the first person to liquefy helium, which has a boiling point of 4.2 K at
          atmospheric pressure, and this had opened up a new range of temperature to experimental investigation. On measuring the resistance
          of a small tube filled with mercury, he was astonished to observe that its resistance fell from ~﻿0.1 Ω at a temperature of
          4.3 K to less than 3  × ﻿10﻿﻿−﻿6 Ω at 4.1 K. His results are reproduced in Figure 2. Below 4.1 K, mercury is said to be a superconductor, and no experiment
          has yet detected any resistance to steady current flow in a superconducting material. The temperature below which the mercury
          becomes superconducting is known as its critical temperature T﻿c. Kamerlingh Onnes was awarded the Nobel Prize for Physics in 1913 ‘for his investigations on the properties of matter at
          low temperatures which led, inter alia, to the production of liquid helium’ (Nobel Prize citation).
        

        
          [image: Figure 1]

           Figure 1 Heike Kamerlingh Onnes (left) and Johannes Van der Waals beside a helium liquefier (1908).

        

        
          [image: Figure 2]

           Figure 2 Graph showing the resistance of a specimen of mercury versus absolute temperature.

        

        Since this initial discovery, many more elements have been discovered to be superconductors. Indeed, superconductivity is
          by no means a rare phenomenon, as the Periodic Table in Figure 3 demonstrates. The dark pink cells indicate elements that
          become superconducting at atmospheric pressure, and the numbers at the bottoms of the cells are their critical temperatures,
          which range from 9.3 K for niobium (﻿Nb, Z = 41﻿) down to 3 × 10﻿−﻿4 K for rhodium (Rh, Z = 45﻿). The orange cells are elements that become superconductors only under high pressures. The four pale pink cells are
          elements that are superconducting in particular forms: carbon (C, Z = 6﻿) in the form of nanotubes, chromium (﻿Cr, Z = 24﻿) as thin films, palladium (﻿Pd, Z = 46﻿) after irradiation with alpha particles, and platinum (﻿Pt, Z = 78﻿) as a compacted powder. It is worth noting that copper (﻿Cu, Z  = 29﻿), silver (﻿Ag, Z = 47﻿) and gold (﻿Au, Z = 79﻿), three elements that are excellent conductors at room temperature, do not become superconductors even at the lowest
          temperatures that are attainable.
        

        
          [image: Figure 3]

           Figure 3 The Periodic Table showing all known elemental superconductors and their critical temperatures.

        

        A major advance in the understanding of superconductivity came in 1933, when Walter Meissner and Robert Ochsenfeld discovered
          that superconductors are more than perfect conductors of electricity. They also have the important property of excluding a
          magnetic field from their interior. However, the field is excluded only if it is below a certain critical field strength,
          which depends on the material, the temperature and the geometry of the specimen. Above this critical field strength the superconductivity
          disappears. Brothers Fritz and Heinz London proposed a model that described the exclusion of the field in 1935, but it was
          another 20 years before a microscopic explanation was developed.
        

        The long awaited quantum theory of superconductivity was published in 1957 by three US physicists, John Bardeen, Leon Cooper
          and John Schrieffer, and they were awarded the Nobel Prize for Physics in 1972 ‘for their jointly developed theory of superconductivity,
          usually called the BCS theory’ (Nobel Prize citation). According to their theory, in the superconducting state there is an
          attractive interaction between electrons that is mediated by the vibrations of the ion lattice. A consequence of this interaction
          is that pairs of electrons are coupled together, and all of the pairs of electrons condense into a macroscopic quantum state,
          called the condensate, that extends through the superconductor. Not all of the free electrons in a superconductor are in the condensate; those
          that are in this state are called superconducting electrons, and the others are referred to as normal electrons. At temperatures very much lower than the critical temperature, there are very few normal electrons, but the proportion of
          normal electrons increases as the temperature increases, until at the critical temperature all of the electrons are normal.
          Because the superconducting electrons are linked in a macroscopic state, they behave coherently, and a consequence of this
          is that there is a characteristic distance over which their number density can change, known as the coherence length ξ (the Greek lower-case xi, pronounced ‘ksye’).
        

        It takes a significant amount of energy to scatter an electron from the condensate – more than the thermal energy available
          to an electron below the critical temperature – so the superconducting electrons can flow without being scattered, that is,
          without any resistance. The BCS theory successfully explained many of the known properties of superconductors, but it predicted
          an upper bound of roughly 30 K for the critical temperature.
        

        Another important theoretical discovery was made in 1957. Alexei Abrikosov predicted the existence of a second type of superconductor
          that behaved in a different way from elements like lead and tin. This new type of superconductor would expel the field from
          its interior when the applied field strength was low, but over a wide range of applied field strengths the superconductor
          would be threaded by normal metal regions through which the magnetic field could pass. The penetration of the field meant
          that superconductivity could exist in magnetic field strengths up to 10 T or more, which opened up the possibility of many
          applications. For this work, and subsequent research, Abrikosov received a Nobel Prize for Physics in 2003 ‘for pioneering
          contributions to the theory of superconductors and superfluids’ (Nobel Prize citation).
        

        By the early 1960s there had been major advances in superconductor technology, with the discovery of alloys that were superconducting
          at temperatures higher than the critical temperatures of the elemental superconductors. In particular, alloys of niobium and
          titanium (NbTi, T﻿c = 9﻿.﻿8 K﻿) and niobium and tin (﻿Nb﻿3﻿Sn, T﻿c = 18﻿.﻿1 K﻿) were becoming widely used to produce high-field magnets, and a major impetus for this development was the requirement
          for powerful magnets for particle accelerators, like the Tevatron at Fermilab in the USA. At about the same time, Brian Josephson
          made an important theoretical prediction that was to have major consequences for the application of superconductivity on a
          very small scale. He predicted that a current could flow between two superconductors that were separated by a very thin insulating
          layer. The so-called Josephson tunnelling effect has been widely used for making various sensitive measurements, including
          the determination of fundamental physical constants and the measurement of magnetic fields that are a billion (﻿10﻿9﻿) times weaker than the Earth's field. The significance of his work was recognised when he was awarded a Nobel Prize for
          Physics in 1973 ‘for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular
          those phenomena which are generally known as the Josephson effects’ (Nobel Prize citation).
        

        The hunt for superconductors with higher critical temperatures continued in the decades following publication of the BCS theory,
          in spite of its prediction that the upper limit for T﻿c was less than 30 K. The holy grail for scientists working in this area was a material that was superconducting at the temperature
          of liquid nitrogen (﻿77 K﻿), or, even better, at room temperature. This would mean that all of the technology and costs associated
          with use of liquid helium for cooling could be dispensed with, and applications of superconductivity would immediately become
          far more economically worthwhile. The breakthrough came in 1986, when Georg Bednorz and Alex Muller discovered that ceramics
          made of barium, lanthanum, copper and oxygen became superconducting at 30 K, the highest known critical temperature at that
          time. The discovery was particularly surprising because this material is an insulator at room temperature. The following year
          they received the Nobel Prize for Physics ‘for their important breakthrough in the discovery of superconductivity in ceramic
          materials’ (Nobel Prize citation), and the unprecedented rapidity with which the prize followed publication of their results
          reflects the importance attached to their work.
        

        As a result of this breakthrough, a scientific bandwagon started to roll and many other scientists began to examine similar
          materials. In 1987, Paul Chu produced a new ceramic material by replacing lanthanum by yttrium, and found that it had a critical
          temperature of 90 K. This great jump in the critical temperature made it possible to use liquid nitrogen as a coolant, and
          with the promise of commercial viability for the new materials, a scramble ensued to find new high-temperature superconductors
          and to explain why they superconduct at such high temperatures. At the time of writing (2005), the highest critical temperature
          was 138 K, for a thallium-doped mercuric-cuprate, Hg﻿0.8﻿Tl﻿0﻿.﻿2﻿﻿Ba﻿2﻿Ca﻿2﻿Cu﻿3﻿O﻿8﻿.﻿33. Figure 4 shows the progress of the highest known superconducting critical temperature over the last century.
        

        
          [image: Figure 4]

           Figure 4 The critical temperature Tc of various superconductors plotted against their discovery date.
          

        

        In recent years, no materials with significantly higher critical temperatures have been found, but other discoveries of equal
          importance have been made. These include the discovery that, against conventional wisdom, several materials exhibit the coexistence
          of ferromagnetism and superconductivity. We have also seen the discovery of the first high-temperature superconductors that
          do not contain copper. Startling discoveries like these are demanding that scientists continually re-examine long-standing
          theories on superconductivity and consider novel combinations of elements.
        

        Unfortunately, no superconductors have yet been found with critical temperatures above room temperature, so cryogenic cooling
          is still a vital part of any superconducting application. Difficulties with fabricating ceramic materials into conducting
          wires or strips have also slowed down the development of new applications of high-temperature superconductors. However, despite
          these drawbacks, the commercial use of superconductors continues to rise.
        

      

    

  
    
      
        2 Properties of superconductors

        
          2.1 Zero electrical resistance

          In this section we shall discuss some of the most important electrical properties of superconductors, with discussion of magnetic
            properties to follow in the next section.
          

          The most obvious characteristic of a superconductor is the complete disappearance of its electrical resistance below a temperature
            that is known as its critical temperature. Experiments have been carried out to attempt to detect whether there is any small
            residual resistance in the superconducting state. A sensitive test is to start a current flowing round a superconducting ring
            and observe whether the current decays. The current flowing in the superconducting loop clearly cannot be measured by inserting
            an ammeter into the loop, since this would introduce a resistance and the current would rapidly decay.
          

          
            
              SAQ 1

            

            
              
                Suggest a method of monitoring the current that does not involve interfering with the superconducting loop.

              

              View answer - SAQ 1

            

          

          The magnitude of the magnetic field is directly proportional to the current circulating in the loop, and the field can be
            measured without drawing energy from the circuit. Experiments of this type have been carried out over periods of years, and
            the magnetic field – and hence the superconducting current – has always remained constant within the precision of the measuring
            equipment. Such a persistent current is characteristic of the superconducting state. From the lack of any decay of the current it has been deduced that the resistivity
            ρ of a superconductor is less than 10﻿−﻿26 Ω m. This is about 18 orders of magnitude smaller than the resistivity of copper at room temperature ([image: ] 10﻿−﻿8 Ω m﻿).
          

          Resistivity is the reciprocal of conductivity, that is, ρ = σ﻿﻿−﻿1. We prefer to describe a superconductor by ρ = 0﻿, rather than by σ = [image: ].
          

          In the following Exercise you can estimate an upper limit for the resistivity of a superconductor.

          
            
              Exercise 1

            

            
              
                (a) A circuit, with self-inductance L, has a current I﻿0 flowing in it at time t = 0. Assuming that the circuit has a small residual resistance R but contains no source of emf, what will be the current in the circuit after a time T has elapsed?
                

                (b) In a classic experiment performed by Quinn and Ittner in 1962, a current was set up around the ‘squashed tube’, shown
                  in Figure 5, which was made from two thin films of superconducting lead separated by a thin layer of insulating silicon oxide.
                  The inductance L of the tube was estimated to be 1.4 × 10﻿−﻿13 H. No change in the magnetic moment due to the current could be detected after 7 hours, to within the 2 per cent precision
                  of their measurement, so the current was at least 98 per cent of its initial value. Estimate the maximum possible resistance
                  of the tube for circulating currents.
                

                (c) The dimensions of the tube used in the experiment are shown in Figure 5. Estimate the maximum possible resistivity ρmax of the lead films. Compare your answer with the resistivity of pure lead at 0°C, which is 1.9  ×  10﻿–﻿7﻿Ω m.
                

              

              View answer - Exercise 1

            

          

          
            [image: Figure 5]

             Figure 5 A lead ‘tube’ used in a persistent current experiment.

          

          

        

        
          2.2  Persistent currents lead to constant magnetic flux

          An important consequence of the persistent currents that flow in materials with zero resistance is that the magnetic flux
            that passes through a continuous loop of such a material remains constant. To see how this comes about, consider a ring of
            metal, enclosing a fixed area A, as shown in Figure 6a. An initial magnetic field B﻿0 is applied perpendicular to the plane of the ring when the temperature is above the critical temperature of the material
            from which the ring is made. The magnetic flux Φ through the ring is B﻿0﻿A, and if the ring is cooled below its critical temperature while in this applied field, then the flux passing through it is
            unchanged. If we now change the applied field, then a current will be induced in the ring, and according to Lenz's law the
            direction of this current will be such that the magnetic flux it generates compensates for the flux change due to the change
            in the applied field. From Faraday's law, the induced emf in the ring is −﻿d﻿Φ﻿/﻿d﻿t = −﻿A﻿d(B − B﻿0)﻿/﻿d﻿t, and this generates an induced current I given by
          

          
            [image: ]

          

          where L is the self-inductance of the ring. Note that there is no ohmic term, IR, on the left-hand side of this equation, because we are assuming that R = 0. Integrating this equation, we obtain
          

          
            LI + BA = constant.
            

          

          
            [image: Figure 6]

             Figure 6 (a) A ring cooled below its critical temperature in an applied field B0. (b) When the applied field is removed, a superconducting current maintains the flux through the ring at the same value.
            

          

          But LI is the amount of flux passing through the ring generated by the current I flowing in the ring – this is just the definition of self-inductance L  – so (﻿LI﻿ + BA) is the total magnetic flux through the ring. The total flux threading a circuit with zero resistance must therefore remain
            constant – it cannot change. If the applied magnetic field is changed, an induced current is set up that creates a flux to
            compensate exactly for the change in the flux from the applied magnetic field. Because the circuit has no resistance, the
            induced current can flow indefinitely, and the original amount of flux through the ring can be maintained indefinitely. This
            is true even if the external field is removed altogether; the flux through the ring is maintained by a persistent induced
            current, as in Figure 6b. However, note that constant flux through the ring does not mean that the magnetic field is unchanged.
            In Figure 6a there is a uniform field within the ring, whereas in Figure 6b the field is produced by a current flowing in
            the ring and will be much larger close to the ring than at its centre.
          

          An important application of the constant flux through a superconducting circuit is shown in Figure 7. A superconducting solenoid,
            used to produce large magnetic fields, is connected to a power supply that can be adjusted to provide the appropriate current
            to generate the required field. For some applications it is important for the field to remain constant to a higher precision
            than the stability of the power supply would allow. A stable field is achieved by including a superconducting switch in parallel
            with the solenoid. This is not a mechanical switch, but a length of superconducting wire that is heated to above its critical
            temperature to ‘open’ the switch, and cooled below the critical temperature to ‘close’ it. With the switch open, the current
            from the power supply is set to give the required field strength. The switch is then closed to produce a completely superconducting
            circuit that includes the solenoid, the switch and the leads connecting them. The flux through this circuit must remain constant
            in time, so the field inside the solenoid will also remain constant in time. An added bonus is that the power supply can now
            be disconnected, which means that no energy is being dissipated while maintaining the field.
          

          
            [image: Figure 7]

             Figure 7 A superconducting solenoid with a superconducting switch that allows it to operate in a persistent current mode.

          

          Superconducting coils with persistent currents can be used in high-speed magnetically-levitated trains. In the system used
            on the Yamanashi Maglev Test Line in Japan (Figure 8), superconducting coils mounted on the sides of the train induce currents
            in coils mounted in the walls of a guideway, and the attractive and repulsive forces between the superconducting magnets and
            the track-mounted coils both levitate the train and provide lateral guidance. The train is propelled forwards by attractive
            and repulsive forces between the superconducting magnets and propulsion coils located on the walls of the guideway that are
            energised by a three-phase alternating current that creates a shifting magnetic field along the guideway. In 2003, a train
            reached the record-breaking speed of 581 km h﻿−﻿1 on this track.
          

          
            [image: Figure 8]

             Figure 8 (a) A train that uses superconducting coils for magnetic levitation. (b) The guideway for the train, showing the
              coils used for levitation, guidance and propulsion.
            

          

          A second application is the use of a superconducting tube to screen sensitive components from magnetic fields, as shown in
            Figure 9. The tube is cooled below its critical temperature in a very small magnetic field. If a magnetic field is subsequently
            applied in the region of the tube, screening currents will be induced that generate fields which cancel out the applied field
            within the tube. However, note that effective screening requires a long tube, because only this geometry will generate a uniform
            magnetic field in the middle of the tube.
          

          
            [image: Figure 9]

             Figure 9 A long superconducting tube screens the region inside from externally applied magnetic fields.

          

          

        

        
          2.3  The Meissner effect

          The second defining characteristic of a superconducting material is much less obvious than its zero electrical resistance.
            It was over 20 years after the discovery of superconductivity that Meissner and Ochsenfeld published a paper describing this
            second characteristic. They discovered that when a magnetic field is applied to a sample of tin, say, in the superconducting
            state, the applied field is excluded, so that B = 0 throughout its interior. This property of the superconducting state is known as the Meissner effect.
          

          The exclusion of the magnetic field from a superconductor takes place regardless of whether the sample becomes superconducting
            before or after the external magnetic field is applied. In the steady state, the external magnetic field is cancelled in the
            interior of the superconductor by opposing magnetic fields produced by a steady screening current that flows on the surface
            of the superconductor.
          

          It is important to recognise that the exclusion of the magnetic field from inside a superconductor cannot be predicted by
            applying Maxwell's equations to a material that has zero electrical resistance. We shall refer to a material that has zero
            resistance but does not exhibit the Meissner effect as a perfect conductor, and we shall show that a superconductor has additional properties besides those that can be predicted from its zero resistance.
          

          Consider first the behaviour of a perfect conductor. We showed in the previous subsection that the flux enclosed by a continuous
            path through zero resistance material – a perfect conductor – remains constant, and this must be true for any path within the material, whatever its size or orientation. This means that the magnetic field throughout the material must
            remain constant, that is, ∂﻿B/∂﻿t = 0. The consequences of this are shown in Figure 10 parts (a) and (b).
          

          
            [image: Figure 10]

             Figure 10 A comparison of the response of a perfect conductor, (a) and (b), and a superconductor, (c) and (d), to an applied
              magnetic field.
            

          

          In part (a) of this figure, a perfect conductor is cooled in zero magnetic field to below the temperature at which its resistance
            becomes zero. When a magnetic field is applied, screening currents are induced in the surface to maintain the field at zero
            within the material, and when the field is removed, the field within the material stays at zero. In contrast, part (b) shows
            that cooling a perfect conductor to below its critical temperature in a uniform magnetic field leads to a situation where
            the uniform field is maintained within the material. If the applied field is then removed, the field within the conductor
            remains uniform, and continuity of magnetic field lines means there is a field in the region around the perfect conductor.
            Clearly, the magnetisation state of the perfect conductor depends not just on temperature and magnetic field, but also on
            the previous history of the material.
          

          Contrast this with the behaviour of a superconductor, shown in Figure 10 parts (c) and (d). Whether a material is cooled below
            its superconducting critical temperature in zero field, (c), or in a finite field, (d), the magnetic field within a superconducting
            material is always zero. The magnetic field is always expelled from a superconductor. This is achieved spontaneously by producing
            currents on the surface of the superconductor. The direction of the currents is such as to create a magnetic field that exactly
            cancels the applied field in the superconductor. It is this active exclusion of magnetic field – the Meissner effect – that
            distinguishes a superconductor from a perfect conductor, a material that merely has zero resistance. Thus we can regard zero
            resistance and zero magnetic field as the two key characteristics of superconductivity.
          

          
            2.3.1 Perfect diamagnetism

            Diamagnetism is due to currents induced in atomic orbitals by an applied magnetic field. The induced currents produce a magnetisation
              within the diamagnetic material that opposes the applied field, and the magnetisation disappears when the applied field is
              removed. However, this effect is very small: the magnetisation generally reduces the applied field by less than one part in
              10﻿5 within the material. In diamagnetic material, B = ﻿μ﻿μ﻿0﻿H, with the relative permeability μ slightly less than unity.
            

            Superconductors take the diamagnetic effect to the extreme, since in a superconductor the field B is zero – the field is completely screened from the interior of the material. Thus the relative permeability of a superconductor
              is zero.
            

          

        

        
          2.4  Critical magnetic field

          An important characteristic of a superconductor is that its normal resistance is restored if a sufficiently large magnetic
            field is applied. The nature of this transition to the normal state depends on the shape of the superconductor and the orientation
            of the magnetic field, and it is also different for pure elements and for alloys. In this subsection we describe the behaviour
            in the simplest situation; we shall discuss other more complex behaviour in Section 4.
          

          If an increasing magnetic field is applied parallel to a long thin cylinder of tin at a constant temperature below the critical
            temperature, then the cylinder will make a transition from the superconducting state to the normal state when the field reaches
            a well-defined strength. This field at which the superconductivity is destroyed is known as the critical magnetic field strength, B﻿c. If the field is reduced, with the temperature held constant, the tin cylinder returns to the superconducting state at the
            same critical field strength B﻿c.
          

          Experiments indicate that the critical magnetic field strength depends on temperature, and the form of this temperature dependence
            is shown in Figure 11 for several elements. At very low temperatures, the critical field strength is essentially independent
            of temperature, but as the temperature increases, the critical field strength drops, and becomes zero at the critical temperature.
            At temperatures just below the critical temperature it requires only a very small magnetic field to destroy the superconductivity.
          

          The temperature dependence of the critical field strength is approximately parabolic:

          
            [image: ]

          

          where Bc(0) is the extrapolated value of the critical field strength at absolute zero and T﻿c is the critical temperature. The curves in Figure 11 indicate that a superconductor with a high critical temperature T﻿c has a high critical field strength B﻿c at T = 0 K, and Table 1 confirms this correlation for a larger number of superconducting elements.
          

          
            [image: Figure 11]

             Figure 11 The temperature dependences of the critical magnetic field strengths of mercury, tin, indium and thallium.

          

          

          
            Table 1 The critical temperatures Tc and critical magnetic field strengths Bc(0) for various superconducting elements.
            

            
              
                
                  	
                  	T﻿c﻿/﻿K
                  
                  	B﻿c﻿(﻿0﻿)﻿/﻿mT
                  
                

                
                  	aluminium
                  	1.2
                  	10
                

                
                  	cadmium
                  	0.52
                  	2.8
                

                
                  	indium
                  	3.4
                  	28
                

                
                  	lead
                  	7.2
                  	80
                

                
                  	mercury
                  	4.2
                  	41
                

                
                  	tantalum
                  	4.5
                  	83
                

                
                  	thallium
                  	2.4
                  	18
                

                
                  	tin
                  	3.7
                  	31
                

                
                  	titanium
                  	0.40
                  	5.6
                

                
                  	zinc
                  	0.85
                  	5.4
                

              
            

            

          

          
            
              Exercise 2

            

            
              
                Estimate the magnetic field strength necessary to destroy superconductivity in a sample of lead at 4.2 K.

              

              View answer - Exercise 2

            

          

          It is interesting to compare the magnetic behaviour of a superconducting element with typical curves for diamagnetic, paramagnetic
            and ferromagnetic materials. The magnetic behaviour of magnetic materials can be represented by B versus H graphs. Figure 12a shows the behaviour of typical diamagnetic and paramagnetic materials. Note that we have plotted μ0H on the horizontal axis rather than H, so that both axes use the same unit (tesla). The straight lines plotted correspond to the relationship B = μ﻿μ﻿0﻿H, with μ slightly smaller than unity for the diamagnetic material and slightly greater than unity for the paramagnetic material. The
            behaviour of a ferromagnet, shown in Figure 12b, is quite different, with B ≫ μ﻿0﻿H, and a highly non-linear and irreversible curve until the magnetisation saturates, after which B increases linearly with H.
          

          
            [image: Figure 12]

             Figure 12 Graphs showing B versus μ﻿0﻿H for (a) diamagnetic and paramagnetic materials, and (b) a ferromagnetic material. Note the different scales for the μ﻿0﻿H-axes in the two graphs.
            

          

          Compare these graphs with Figure 13, which shows the B﻿-﻿H curve for a superconducting cylinder of tin, with the field parallel to its axis. The field strength B within the superconductor is zero when μ0﻿H is less than the critical field strength B﻿c; the superconductor behaves like a perfect diamagnetic material and completely excludes the field from its interior. But then
            B jumps abruptly to a value B﻿c, and at higher fields the tin cylinder obeys the relationship B [image: ] ﻿μ0﻿H, since the material is weakly diamagnetic in its normal state, with μ = 0.9998. The linear graphs in Figure 12a are similar to those for a superconductor above the critical field strength.
          

          
            [image: Figure 13]

             Figure 13 Graph showing B versus μ﻿0﻿H for a tin cylinder, aligned parallel to the field.
            

          

          

        

        
          2.5  Critical current

          The current density for a steady current flowing along a wire in its normal state is essentially uniform over its cross-section.
            A consequence of this is that the magnetic field strength B within a wire of radius a, carrying current I, increases linearly with distance from the centre of the wire, and reaches a maximum value of μ﻿0I / 2﻿[image: ]﻿a at the surface of the wire (see Exercise 3.6). Within a superconductor, however, the magnetic field B is zero.
          

          
            
              SAQ 2

            

            
              
                What can you deduce about the current flow in a superconducting wire from the fact that B = 0 within a superconductor?
                

              

              View answer - SAQ 2

            

          

          
            
              SAQ 3

            

            
              
                How does the magnetic field just outside the surface of a superconducting wire, radius a, carrying current I, compare with the field just outside the surface of a normal wire with the same radius, carrying the same current?
                

              

              View answer - SAQ 3

            

          

          The magnetic field strength B just outside the surface of the wire is μ﻿0﻿I / 2﻿[image: ]﻿a. It follows that if the current flowing in a superconducting wire is increased, eventually the field strength at the surface
            of the wire will exceed B﻿c and the sample will revert to its normal state. The maximum current that a wire can carry with zero resistance is known as
            its critical current, and for a long straight wire the critical current I﻿c is given by I﻿c = 2﻿[image: ]﻿aB﻿c / μ﻿0. A current greater than I﻿c will cause the wire to revert to its normal state. This critical current is proportional to the radius of the wire.
          

          In the previous subsection you saw that the critical field strength is dependent on temperature, decreasing to zero as the
            temperature is increased to the critical temperature. This means that the superconducting current that a wire can carry will
            also decrease as the temperature gets closer to the critical temperature. Because of this, in real applications superconductors
            generally operate at temperatures less than half of the critical temperature, where the critical field strength, and therefore
            the critical current, is greater than 75 per cent of the maximum value.
          

          Now, the current carried by a superconducting wire actually flows in a thin layer at the surface; it cannot be restricted
            to an infinitesimal layer, because that would lead to an infinite current density. As you will see in Section 3, this means
            that the magnetic field penetrates into this thin layer, and we derive there relationships between the field and the current
            density. But in the present context, the point to note is that the transition to the normal state takes place when the magnetic
            field strength at the surface corresponds to the critical field strength, and this occurs when the current density at the
            surface reaches a critical current density. This critical current density is much greater than I﻿c / [image: ]﻿a﻿2 because the current flows only in a thin surface layer.
          

          The magnetic field at the surface of a superconductor may have a contribution from an external source of magnetic field, as
            well as from the field produced by the current in the wire. This external field will set up screening currents in the surface
            layer of the material. The transition to the normal state then occurs when the vector sum of the current densities at the
            surface due to the current in the wire and due to the screening current exceeds the critical current density, or, equivalently,
            when the magnitude of the vector sum of the magnetic fields that are present at the surface of the wire exceeds the critical
            field strength.
          

          
            
              Exercise 3

            

            
              
                Tin has T﻿c = 3.7 K and B﻿c = 31 mT at T = 0 K. What is the minimum radius required for tin wire if it is to carry a current of 200 A at T = 2.0 K﻿?
                

              

              View answer - Exercise 3

            

          

        

      

    

  
    
      
        3  Modelling properties of superconductors

        
          3.1  A two-fluid model

          As was mentioned earlier, a substantial dose of quantum mechanics would be required to provide a full explanation of the properties
            of superconductors. This would take us too far away from electromagnetism, and we shall therefore restrict our discussion
            to aspects that can be discussed using classical concepts of electromagnetism.
          

          We shall model the free electrons within a superconductor as two fluids. According to this two-fluid model, one fluid consists of ‘normal’ electrons, number density n﻿n, and these behave in exactly the same way as the free electrons in a normal metal. They are accelerated by an electric field
            E, but are frequently scattered by impurities and defects in the ion lattice and by thermal vibrations of the lattice. The
            scattering limits the speed of the electrons, and they attain a mean drift velocity [image: ] = −﻿e﻿[image: ]﻿E / m, where [image: ] is the mean time between scattering events for the electrons and m is the electron mass. The current density Jn due to flow of these electrons is
          

          
            [image: ]

          

          Interspersed with the normal electrons are what we shall call the superconducting electrons, or superelectrons, which form
            a fluid with number density ns. The superconducting electrons are not scattered by impurities, defects or thermal vibrations, so they are freely accelerated
            by an electric field. If the velocity of a superconducting electron is vs, then its equation of motion is
          

          
            [image: ]

          

          Combining this with the expression for the current density, J﻿s = −﻿n﻿s﻿e﻿v﻿s, we find that
          

          
            [image: ]

          

          Compare this with Equation 2, which relates current density and electric field in a normal conductor. Scattering of the normal
            electrons leads to a constant current in a constant electric field, whereas the absence of scattering of the electrons in
            a superconductor means that the current density would increase steadily in a constant electric field. However, if we consider
            a constant current flowing in the superconductor, then ∂﻿J﻿s/∂﻿t = 0, so E = 0. Therefore the normal current density must be zero – all of the steady current in a superconductor is carried by the superconducting
            electrons. Of course, with no electric field within the superconductor, there will be no potential difference across it, and
            so it has zero resistance.
          

        

        
          3.2  Magnetic field in a perfect conductor

          When discussing the Meissner effect in Subsection 2.3, we argued qualitatively that a material that just had the property
            of zero resistance – a perfect conductor rather than a superconductor – would maintain a constant magnetic field in its interior,
            and would not expel any field that was present when the material became superconducting. We shall now show how that conclusion
            follows from an application of Maxwell's equations to a perfect conductor. We can then see what additional assumptions are
            needed to account for the Meissner effect in a superconductor.
          

          We assume that the electrons in a perfect conductor (or a proportion of them) are not scattered, and therefore the current
            density is governed by Equation 3. However, we shall use the subscript ‘pc’ (for perfect conductor) here to indicate that
            we are not dealing with a superconductor. We are interested in the magnetic field in a perfect conductor, so we shall apply
            Maxwell's equations to this situation. Faraday's law is valid in all situations,
          

          
            [image: ]

          

          and if we substitute for E using Equation 3, we obtain
          

          
            [image: ]

          

          Looking now at the Ampère-Maxwell law, curl H = J﻿f + ∂﻿D/∂﻿t, we shall assume that our perfect conductor is either weakly diamagnetic or weakly paramagnetic, so that
          

          μ [image: ] 1 and H [image: ] B/μ0 are very good approximations.
          

          We shall also omit the Maxwell term, ∂﻿D/∂﻿t, since this is negligible for the static, or slowly-varying, fields that we shall be considering. With these approximations,
            the Ampère-Maxwell law simplifies to Ampère's law,
          

          
            [image: ]

          

          where use of the subscript pc for the current density reminds us that the free current J﻿f is carried by the perfectly-conducting electrons. We now use this expression to eliminate J﻿pc from Equation 4:
          

          
            [image: ]

          

          We can use a standard vector identity from inside the back cover to rewrite the left-hand side of this equation:

          
            [image: ]

          

          The no-monopole law, div B = 0, means that the first term on the right-hand side of this equation is zero, so Equation 6 can be rewritten as
          

          
            [image: ]

          

          This equation determines how ∂﻿B﻿/﻿∂﻿t varies in a perfect conductor.
          

          We shall look for the solution to Equation 7 for the simple geometry shown in Figure 14; a conductor has a boundary corresponding
            to the plane z = 0, and occupies the region z > 0, with a uniform field outside the conductor given by B﻿0 = B﻿0﻿e﻿x.
          

          
            [image: Figure 14]

             Figure 14 A plane boundary between a conductor and air.

          

          The uniform external field in the x-direction means that the field inside the conductor will also be in the x-direction, and its strength will depend only on z. So Equation 7 reduces to the one-dimensional form
          

          
            [image: ]

          

          where we have simplified the equation, for reasons that will soon become clear, by writing 

          
            [image: ]

          

          The general solution of this equation is

          
            [image: ]

          

          where a and b are independent of position. The second term on the right-hand side corresponds to a rate of change of field strength that
            continues to increase exponentially with distance from the boundary; since this is unphysical, we set b = 0. The boundary condition for the field parallel to the boundary is that H∥ is continuous, and since we are assuming that μ [image: ] 1 in both the air and the conductor, this is equivalent to B﻿∥ being the same on either side of the boundary at all times. This means that ∂﻿B/∂﻿t is the same on either side of the boundary, so
          

          
            [image: ]

          

          and the field within the perfect conductor satisfies the equation

          
            [image: ]

          

          This indicates that any changes in the external magnetic field are attenuated exponentially with distance below the surface of the perfect conductor. If
            the distance λpc is very small, then the field will not change within the bulk of the perfect conductor, and this is the behaviour that we
            described qualitatively in Subsection 2.3. Note that this does not mean the magnetic field must be expelled: flux expulsion requires B = 0, rather than just ∂﻿B/∂﻿t = 0. So how do we modify the description that we have given of a perfect conductor so that it describes a superconductor
            and leads to a prediction that B = 0?
          

        

        
          3.3  The London equations

          A simple but useful description of the electrodynamics of superconductivity was put forward by the brothers Fritz and Heinz
            London in 1935, shortly after the discovery that magnetic fields are expelled from superconductors. Their proposed equations
            are consistent with the Meissner effect and can be used with Maxwell's equations to predict how the magnetic field and surface
            current vary with distance from the surface of a superconductor.
          

          In order to account for the Meissner effect, the London brothers proposed that in a superconductor, Equation 4 is replaced
            by the more restrictive relationship
          

          
            [image: ]

          

          This equation, and Equation 3 which relates the rate of change of current to the electric field, are now known as the London equations.
          

          
            
              London equations

            

            
              
                [image: ]

              

              
                [image: ]

              

            

          

          It is important to note that these equations are not an explanation of superconductivity. They were introduced as a restriction
            on Maxwell's equations so that the behaviour of superconductors deduced from the equations was consistent with experimental
            observations, and in particular with the Meissner effect. Their status is somewhat similar to Ohm's law, which is a useful
            description of the behaviour of many normal metals, but which does not provide any explanation for the conduction process
            at the microscopic level.
          

          To demonstrate how the London equations lead to the Meissner effect, we proceed in the same way as for the perfect conductor.
            First we use Ampère's law, curl B = μ﻿0﻿J﻿s, to substitute for J﻿s in Equation 9, and we obtain
          

          
            [image: ]

          

          where

          
            [image: ]

          

          But curl﻿(curl B﻿) = grad﻿(﻿div B﻿) − ∇﻿2﻿B = −﻿∇﻿2﻿B, since div B = 0. So
          

          
            [image: ]

          

          This equation is similar to Equation 7, but ∂﻿B/∂﻿t has been replaced by B. The important point to note about this equation is that the only solution that corresponds to a spatially uniform field
            (for which ∇﻿2﻿B = 0﻿) is the field that is identically zero everywhere. If B were not equal to zero, then ∇﻿2﻿B would not be zero, so B would depend on position. Thus, a uniform magnetic field like that shown in Figure 10b cannot exist in a superconductor.
          

          If we consider again the simple one-dimensional geometry shown in Figure 14, then we obtain the solution to Equation 11 by
            simply replacing the partial time derivatives of the fields in the solution for the perfect conductor (Equation 8) by the
            fields themselves, that is,
          

          
            [image: ]

          

          Therefore, the London equations lead to the prediction of an exponential decay of the magnetic field within the superconductor,
            as shown in Figure 15.
          

          
            [image: Figure 15]

             Figure 15 The penetration of a magnetic field into a superconducting material, showing the penetration depth, λ.

          

          

        

        
          3.4  Penetration depth

          The characteristic length, λ, associated with the decay of the magnetic field at the surface of a superconductor is known
            as the penetration depth, and it depends on the number density n﻿s of superconducting electrons.
          

          We can estimate a value for λ by assuming that all of the free electrons are superconducting. If we set n﻿s = 10﻿29 m﻿−﻿3, a typical free electron density in a metal, then we find that
          

          
            [image: ]

          

          The small size of λ indicates that the magnetic field is effectively excluded from the interior of macroscopic specimens of
            superconductors, in agreement with the experimentally observed Meissner effect.
          

          The small scale of the field penetration means that carefully-designed experiments are needed to measure the value of λ. Many
            experiments have been done with samples that have a large surface to volume ratio to make the penetration effect of the field
            appreciable. Thin films, thin wires and colloidal particles of superconductors have all been used for this purpose. But it
            is also possible to use large specimens if the measurement is sensitive to the amount of magnetic flux passing through the
            superconductor's surface, and not to the ratio of flux excluded by the superconductor to flux through the normal material,
            which is close to unity.
          

          In a classic experiment performed in the 1950s, Schawlow and Devlin measured the self-inductance of a solenoid within which
            they inserted a long single-crystal cylinder of superconducting tin, 7.4 mm in diameter. They minimised the space between
            the coil and the tin cylinder, and since no magnetic flux passed through the bulk of the superconductor, the flux was essentially
            restricted to a thin cylindrical shell of thickness λ at the surface of the cylinder. The inductance of the solenoid was therefore
            determined mainly by the magnitude of the penetration depth. To measure the inductance, a capacitor was connected in parallel
            with the solenoid, and the natural angular frequency, [image: ]n = 1/[image: ], of the LC circuit was measured. The precision of the frequency measurement was about one part in 10﻿6, which corresponded to a precision of 0.4 nm in the value of the penetration depth. The result that they obtained for the
            penetration depth of tin for temperatures much lower than the critical temperature was 52 nm.
          

          The number density of superconducting electrons depends on temperature, so the penetration depth is temperature dependent.
            For T ≪ T﻿c, all of the free electrons are superconducting, but the number density falls steadily with increasing temperature until it
            reaches zero at the critical temperature. Since λ [image: ] ns-1/2 according to the London model, the penetration depth increases as the temperature approaches the critical temperature, becoming
            effectively infinite – corresponding to a uniform field in the material – at and above the critical temperature. Figure 16
            shows this temperature dependence for tin, which is well represented by the expression
          

          
            [image: ]

          

          where λ(0) is the value of the penetration depth at T = 0 K.
          

          
            [image: Figure 16]

             Figure 16 The penetration depth λ as a function of temperature for tin.

          

          

        

        
          3.5  The screening current

          The London equations relate the magnetic field in a superconductor to the superconducting current density, and we derived
            the dependence of field on position by eliminating the current density. However, if we eliminate the magnetic field instead,
            we can derive the following equation for the current density:
          

          
            [image: ]

          

          
            
              Exercise 4

            

            
              
                Derive Equation 13 by taking the curl of both sides of Equation 9 and then using Ampère's law to eliminate curl B. Assume that the currents are steady.
                

              

              View answer - Exercise 4

            

          

          Equation 13 has exactly the same form as Equation 11. So for the planar symmetry that we discussed earlier – superconducting
            material occupying the region z > 0 (Figure 14) – the solution for the current density will have the same form as Equation 12, that is,
          

          
            [image: ]

          

          This equation gives no indication of the absolute magnitude or direction of current flow, but we can deduce this by using
            Ampère's law, curl B = μ﻿0﻿J﻿s. In the planar situation that we are considering, B = Bx (z) ex, so
          

          
            [image: ]

          

          Then

          
            [image: ]

          

          where

          
            [image: ]

          

          But we know that Bx(z) = B﻿0﻿e﻿−﻿z﻿/﻿λ (Equation 12), so
          

          
            [image: ]

          

          Thus the current that screens the interior of the superconductor from an applied field flows within a thin surface layer,
            which has a thickness characterised by the penetration depth λ, and the current flows parallel to the surface and in a direction
            perpendicular to the magnetic field, as shown in Figure 17.
          

          
            [image: Figure17]

             Figure 17 The magnetic field and current density vectors in the surface layer of a superconductor.

          

          
            
              Exercise 5

            

            
              
                The number density of free electrons in tin is 1.5 × 10﻿29 m﻿−﻿3. Calculate the penetration depth predicted by the London model, assuming that all of the free electrons are superconducting,
                  and compare the result with the value measured by Schawlow and Devlin.
                

              

              View answer - Exercise 5

            

          

          The numerical discrepancy between the London model prediction for the penetration depth of tin and the experimentally measured
            value indicates that this model has limitations. One limitation is that the model is essentially a local model, relating current density and magnetic field at each point. Superconductivity, though, is a non-local phenomenon, involving
            coherent behaviour of the superconducting electrons that are condensed into a macroscopic quantum state. The characteristic
            distance over which the behaviour of the superconducting electrons is linked is known as the coherence length, ξ, introduced
            in Section 1. This distance represents the distance over which the number density of the superconducting electrons changes,
            and is a measure of the intrinsic non-local nature of the superconducting state. The London local model is a good description
            if ξ ≪ λ, that is, the coherence length is much shorter than the distance λ over which the fields and current density are
            changing. Since the penetration depth increases sharply as the temperature approaches the critical temperature (Figure 16),
            the London model becomes a good approximation in this limit. More importantly, the coherence length of superconductors decreases
            as the critical temperature increases and as the scattering time for normal electrons decreases. Both of these effects mean
            that the coherence length is short compared with the penetration depth in alloy and ceramic superconductors, so the London
            local model is a good approximation in these cases too, and predicted and experimental results for the penetration depth are
            in good agreement.
          

          For pure elements, well below their critical temperatures, the penetration depth is generally much shorter than the coherence
            length, so a local model is not appropriate. In this limit, the number density of superconducting electrons does not reach
            the bulk value until a distance of the order of ξ, which is greater than λ, from the surface, and the reduced value of n﻿s accounts for the discrepancy between the predicted and experimental results for the penetration depth of tin discussed earlier.
          

          The ratio of the penetration depth to the coherence length is an important parameter for a superconductor, and we shall return
            to this subject in Subsection 4.2.
          

        

      

    

  
    
      
        4  Two types of superconductor

        
          Preamble

          The two main types of superconducting materials are known as type-I and type-II superconductors, and their properties will be discussed in the remainder of this course. All of the pure elemental superconductors are type-I,
            with the exception of niobium, vanadium and technetium. The discussion of the effects of magnetic fields and currents on superconductors
            earlier in this course has been confined to thin cylinders of type-I materials like lead or tin in a parallel magnetic field. In Subsection 4.1 we shall discuss what happens when the magnetic field is perpendicular to cylinders made of these materials.
          

          Superconducting alloys and high critical temperature ceramics are all type-II, and these are the materials that are used in
            most practical applications. In Subsection 4.2, we shall consider the response to a magnetic field of this type of superconductor.
            Such materials behave quite differently from lead and tin, and this is the reason that they are widely used.
          

        

        
          4.2 Type-I superconductors

          You saw in Subsection 2.4 that superconductivity in a tin cylinder is destroyed when an applied field with strength B﻿0  > B﻿c is applied parallel to the cylinder. However, when the field is applied perpendicular to the cylinder, as shown in Figure
            18, the field strength at points A and C is substantially greater than the strength of the applied field at a distance from
            the cylinder, and this is indicated by the increased concentration of the field lines shown near these points. In fact, it
            can be shown that the field strength at these points is a factor of two greater than the applied field strength. This means
            that as the applied field B﻿0 is increased, the field at points A and C will reach the critical field strength Bc when B0 = B﻿c﻿/﻿2.
          

          
            [image: Figure 18]

             Figure 18 The magnetic field B in a plane perpendicular to the axis of a superconducting cylinder (shown in cross-section)
              for an applied field with B﻿0 < B﻿c﻿/﻿2.
            

          

          You might think that superconductivity in the cylinder would be completely destroyed at this lower field strength. However,
            were this to be the case, then the material would be in the normal state with a field strength in its interior of less than
            B﻿c, which is not possible. Instead, for applied field strengths B﻿0 in the range B﻿c﻿/﻿2 < B﻿0 < B﻿c, the cylinder splits up into small slices of normal and superconducting material that run parallel to the applied field.
            This state in which regions of normal and superconducting material coexist in a type-I superconductor is known as the intermediate state, and it is shown schematically in Figure 19. Within the normal regions, B = B﻿c, and in the superconducting regions, B decreases rapidly and is confined to a thin layer, the width of which is determined by the penetration depth, as shown in
            Figure 20. The number density of superconducting electrons n﻿s increases from zero at the boundary to the bulk value over the coherence length ξ. Note that since n﻿s is not constant in the superconducting regions, the magnetic field strength does not fall exponentially. The proportion of
            the material in the normal state increases from zero for B﻿0 = B﻿c﻿/﻿2 to 100 per cent for B﻿0 = B﻿c.
          

          
            [image: Figure 19]

             Figure 19 Schematic representation of the intermediate state for a cylinder of a type-I superconductor aligned perpendicular
              to the magnetic field.
            

          

          
            [image: Figure 20]

             Figure 20 Variation of magnetic field strength and number density of superconducting electrons in the region of a boundary
              between normal and superconducting regions in the intermediate state of a type-I superconductor.
            

          

          The lowest applied field strength at which the intermediate state appears depends on the shape of the specimen and the orientation
            of the field. Essentially, it is determined by the extent to which the field is deviated by the superconductor, or equivalently,
            by how much the field strength is enhanced at the edges of the superconductor. For the thin cylinder shown in Figure 21a,
            the field just outside is essentially the same as the applied field, so there is a direct transition from superconducting
            to normal state, without the intervening intermediate state. Contrast this with the thin plate oriented perpendicular to the
            applied field shown in Figure 21b, where the field strength would be greatly enhanced outside the plate's edges if it could
            not penetrate the plate. Samples like this enter the intermediate state when the applied field strength is a very small fraction
            of the critical field strength (Figure 21c).
          

          
            [image: Figure 21]

             Figure 21 (a) A thin superconducting cylinder hardly distorts a uniform applied field. (b) Highly distorted field that would
              result if a magnetic field did not penetrate a thin plate. (c) Intermediate state in a thin plate.
            

          

          Figure 22 shows the pattern of normal and superconducting regions for an aluminium plate in the intermediate state, with the
            field perpendicular to the surface.
          

          
            [image: Figure 22]

             Figure 22 Intermediate state in an aluminium plate. Tin powder was deposited on the plate and collected in the superconducting
              regions – the dark areas of the image – where the magnetic field was low. The light normal regions are about 1 mm wide.
            

          

          

        

        
          4.3  Type-II superconductors

          For decades it was assumed that all superconductors, elements and alloys, behaved in similar ways, and that any differences
            could be attributed to impurities or defects in the materials. However, in 1957, Abrikosov predicted the existence of a different
            sort of superconductor, and Figure 23 shows direct evidence for the existence of what are now known as type-II superconductors.
            A comparison of Figures 23 and 22 indicates that the effect of an applied field on a type-II superconductor is rather different
            from that for type-I superconductors.
          

          
            [image: Figure 23]

             Figure 23 Surface of a superconducting alloy that had a magnetic field applied perpendicular to the surface. The dark regions
              were normal and the light regions superconducting. In this case, small ferromagnetic particles were applied to the surface,
              and collected where the field strength was largest. The particles remained in position when the specimen warmed up to room
              temperature, and the surface was then imaged with an electron microscope.
            

          

          For simplicity, we shall consider first a long cylindrical specimen of type-II material, and apply a field parallel to its
            axis. Below a certain critical field strength, known as the lower critical field strength and denoted by the symbol B﻿c1, the applied magnetic field is excluded from the bulk of the material, penetrating into only a thin layer at the surface,
            just as for type-I materials. But above B﻿c1, the material does not make a sudden transition to the normal state. Instead, very thin cylindrical regions of normal material
            appear, passing through the specimen parallel to its axis. We shall refer to such a normal region as a normal core. The normal cores are arranged on a triangular lattice, as shown in Figure 23, and as the applied field is increased, more
            normal cores appear and they become more and more closely packed together. Eventually, a second critical field strength, the
            upper critical field strength B﻿c2, is reached, above which the material reverts to the normal state. The state that exists between the lower and upper critical
            field strengths, in which a type-II superconductor is threaded by normal cores, is known as the mixed state. As Figure 24 shows, both the upper and lower critical field strengths depend on temperature in a similar way to the critical
            field strength for a type-I material (Figure 11).
          

          
            [image: Figure 24]

             Figure 24 Temperature dependence of the lower critical field strength (Bc1) and upper critical field strength (﻿B﻿c2﻿) for a type-II superconductor.
            

          

          The normal cores that exist in type-II superconductors in the mixed state are not sharply delineated. Figure 25 shows how
            the number density of superelectrons and the magnetic field strength vary along a line passing through the axes of three neighbouring
            cores. The value of n﻿s is zero at the centres of the cores and rises over a characteristic distance ξ, the coherence length. The magnetic field
            associated with each normal core is spread over a region with a diameter of 2λ, and each normal core is surrounded by a vortex
            of circulating current.
          

          
            [image: Figure 25]

             Figure 25 Number density of superelectrons n﻿s and magnetic field strength B around normal cores in a type-II superconductor.
            

          

          You can see from Figure 25 that the coherence length ξ, the characteristic distance for changes in n﻿s, is shorter than the penetration depth λ, the characteristic distance for changes in the magnetic field in a superconductor.
            This is generally true for type-II superconductors, whereas for type-I superconductors, ξ > λ (Figure 20). For a pure type-I
            superconductor, typical values of the characteristic lengths are ξ ~ 1 μ﻿m and λ = 50 nm. Contrast this with the values for a widely-used type-II alloy of niobium and tin, Nb﻿3Sn, for which ξ ~ 3.5 nm and λ = 80 nm.
          

          The reason that the relative magnitude of the coherence length and the penetration depth is so important is that when ξ > λ,
            the surface energy associated with the boundary between superconducting and normal regions is positive, whereas when ξ < λ,
            this surface energy is negative. Justifying this statement would involve a discussion of the thermodynamics of superconductors,
            but for our purposes it is sufficient to just look at the consequences. For a positive surface energy, the system will prefer
            few boundaries and we expect relatively thick normal and superconducting regions, as observed in the intermediate state in
            type-I materials. Conversely, a negative surface energy favours formation of as much boundary between normal and superconducting
            regions as possible, and this is what happens in the mixed state in type-II materials with many narrow normal cores. The lower
            limit for the diameter of the cores is 2ξ, as shown in Figure 25, because ξ is the distance over which ns can vary.
          

          This energy argument does not explicitly indicate how much magnetic flux passes through each of the normal cores. However,
            quantum mechanical arguments show that the magnetic flux linking any superconducting loop must be quantised, and that the
            quantum of magnetic flux is
          

          
            h / 2e = 2.07 × 10﻿−﻿15﻿T m﻿2

          

          where h = 6.63 × 10﻿−﻿34﻿J s is Planck's constant. In fact, each of the normal cores shown in Figure 23 contains just one quantum of flux, since this
            is more favorable energetically than having two or more quanta of flux in a core.
          

          The quantisation of flux in a superconductor is of particular importance in SQUIDs, the superconducting quantum interference
            devices that are at the heart of the magnetometers used for measuring the magnetic fields produced by currents in the brain.
            A SQUID contains a small loop of superconductor with a weakly superconducting link in it, and the quantisation of flux in
            the loop causes its electrical properties to depend on the flux applied to it, with a periodicity equal to the flux quantum.
            The very small magnitude of the flux quantum is responsible for the sensitivity of the device to very small magnetic fields.
          

          A final point is worth noting about the quantum of flux: the factor of 2 in the denominator of the expression h / 2﻿e is a consequence of the coupling of pairs of electrons in a superconductor and their condensation into a superconducting
            ground state. There is charge −﻿2﻿e associated with each of these electron pairs.
          

          Critical currents in type-II superconductors

          The high values of the upper critical field strength Bc2 of many type-II superconducting alloys make them very attractive for winding coils for generating high magnetic fields. For
            example, alloys of niobium and titanium (﻿NbTi﻿2﻿) and of niobium and tin (﻿Nb﻿3﻿Sn﻿) have values of B﻿c2 of about 10 T and 20 T, respectively, compared with 0.08 T for lead, a type-I superconductor. However, for type-II materials
            to be usable for this purpose, they must also have high critical currents at high field strengths, and this requires some
            help from metallurgists to overcome a significant problem.
          

          This problem is related to the interaction between the current flowing through a type-II superconductor in the mixed state
            and the ‘tubes’ of magnetic flux that thread through the normal cores. The electrons will experience a Lorentz force, perpendicular
            to both the current density and the magnetic field. We can regard this as a mutual interaction between the electrons and the
            flux in the normal cores, as a result of which each normal core experiences a force that is in the opposite direction to the
            Lorentz force on the electrons. The directions of the magnetic field, current and forces are shown in Figure 26.
          

          
            [image: Figure 26]

             Figure 26 Electrons and normal cores experience forces perpendicular to the current and to the magnetic field, but in opposite
              directions.
            

          

          This Lorentz force can cause the cores and their associated magnetic flux to move, and the flux motion will induce an emf
            that drives a current through the normal cores, somewhat like an eddy current. Energy is therefore dissipated in the normal
            cores, and this energy must come from the power supply. The energy dissipation means that the flow of electrons is impeded,
            and therefore there is a resistance to the flow of the current.
          

          Flux motion is therefore undesirable in type-II superconductors, and the aim of the metallurgists who develop processes for
            manufacturing wire for magnets is to make flux motion as difficult as possible. This is done by introducing defects into the
            crystalline structure, particularly by preparing the material in such a way that it comprises many small crystalline grains
            with different orientations and small precipitates of different composition. These defects effectively pin the normal cores
            in position – they provide a potential barrier to motion of the cores, so that the force on the cores must exceed a certain
            value before the cores can move. The more of these flux pinning centres that are present, and the greater the potential barrier
            they provide, the greater will be the current required to set them in motion, i.e. the greater the critical current. So, unlike
            a normal conductor, for which improving the purity and reducing imperfections in the crystal structure lead to better conductivity,
            with type-II superconductors the inclusion of impurities and defects in the crystal structure can improve the critical current
            and make the material more suitable for use in electromagnets.
          

          Undoubtedly the largest use of superconducting material for a single project is in the Large Hadron Collider at CERN, due
            for commissioning in 2007. The 27 km﻿-﻿long accelerator tunnel contains 1232 superconducting magnets that are responsible
            for steering the particle beams around their circular paths. Each of these magnets is 15 m long, has a mass of 35 tonnes and
            produces a magnetic field strength of 8.5 T. The coils in each magnet are made from about 6 km of niobium-titanium cable,
            with a mass of about a tonne, and will be maintained at a temperature of 1.9 K using liquid helium. To construct an accelerator
            with a similar specification using non-superconducting magnets would have required a 120 km tunnel and phenomenal amounts
            of power to operate.
          

        

      

    

  
    
      
        Conclusion

        Section 1 Superconductivity was discovered in 1911, and in the century since then there have been many developments in knowledge of
          the properties of superconductors and the materials that become superconducting, in the theoretical understanding of superconductivity,
          and in the applications of superconductors.
        

        Section 2 A superconductor has zero resistance to flow of electric current, and can sustain a current indefinitely. The magnetic flux
          remains constant in a completely superconducting circuit, since changes in the flux from the field applied to the circuit
          are balanced by changes to (persistent) currents induced in the circuit. For each superconductor there is a critical temperature
          T﻿c below which the material is superconducting.
        

        Superconductors also exhibit perfect diamagnetism, with B = 0 in the bulk of the material. The exclusion of magnetic field is known as the Meissner effect. An external magnetic field
          penetrates for a short distance into the surface of a superconducting material, and a current flows in the surface layer to
          screen the interior of the material from the applied field. Superconductivity is destroyed when the magnetic field strength
          exceeds a critical value for the material. The critical field strength falls to zero as the temperature is raised to the critical
          temperature. A superconducting specimen will have a critical current I﻿c above which the material reverts to the normal state. This critical current corresponds to the field strength exceeding the
          critical field strength in some region of the specimen.
        

        Section 3 The two-fluid model of a superconductor regards some of the conduction electrons as behaving like normal electrons and some
          like superconducting electrons. For T ≪ T﻿c, all of the conduction electrons are superconducting electrons, but the proportion of superconducting electrons drops to
          zero at the critical temperature.
        

        For a perfect conductor (which has R = 0), Maxwell's equations predict that the magnetic field cannot change, except in a thin surface layer. This does not predict
          the Meissner effect. The London equations are relationships between current density and magnetic field that are consistent
          with the Meissner effect:
        

        
          [image: ]

        

        When combined with Maxwell's equations, they lead to the prediction that the magnetic field strength and the surface current
          decrease exponentially below the surface of a superconductor, over a characteristic distance called the penetration depth
          λ, which is typically tens of nanometres. The London equations are local relationships and therefore are strictly valid only
          when λ ≫ ξ, where the coherence length ξ is the characteristic distance over which n﻿s varies.
        

        Section 4 There are two types of superconductors, type-I and type-II. For a type-I material in the form of a thin specimen parallel
          to the field, there is an abrupt transition to the normal state at the critical field strength B﻿c. When the field is inclined to the surface of a type-I material, the material exists in the intermediate state over a range
          of field strengths below B﻿c. In this state there are thin layers of normal and superconducting material, with the proportion of normal material rising
          to unity at field strength B﻿c. In type-I materials, the coherence length ξ is greater than the penetration depth λ, and the surface energy of the boundary
          between superconducting and normal material is positive, which favours a course subdivision into regions of normal and superconducting
          material.
        

        A type-II superconductor has two critical field strengths, B﻿c1 and B﻿c2, between which the material is in the mixed state. In this state the superconductor is threaded by thin cores of normal material,
          through which the magnetic field passes. The coherence length ξ is shorter than the penetration depth λ, and the surface energy
          of the boundary between superconducting and normal material is negative, which favours a fine subdivision into regions of
          normal and superconducting material. To take advantage of the high values of Bc2 to produce high magnetic fields with superconducting magnets, it is essential to pin the normal cores to inhibit their motion.
        

      

    

  
    
      
        Keep on learning

        
          [image: ]

        

         

        
          Study another free course

          There are more than 800 courses on OpenLearn for you to choose from on a range of subjects. 
          

          Find out more about all our free courses.
          

           

        

        
          Take your studies further

          Find out more about studying with The Open University by visiting our online prospectus. 
          

          If you are new to university study, you may be interested in our Access Courses or Certificates.
          

           

        

        
          What’s new from OpenLearn?

                               Sign up to our newsletter or view a sample.
          

           

        

        
          
            For reference, full URLs to pages listed above:

            OpenLearn – www.open.edu/openlearn/free-courses                 
            

            Visiting our online prospectus – www.open.ac.uk/courses                 
            

            Access Courses – www.open.ac.uk/courses/do-it/access                 
            

            Certificates – www.open.ac.uk/courses/certificates-he                 
            

            Newsletter ­– www.open.edu/openlearn/about-openlearn/subscribe-the-openlearn-newsletter                 
            

          

        

      

    

  
    
      
        Acknowledgements

        The content acknowledged below is Proprietary (see terms and conditions) and is used under licence.

        Grateful acknowledgement is made to the following sources for permission to reproduce material in this course:

        Course image: Lars Plougmann in Flickr made available under Creative Commons Attribution-ShareAlike 2.0 Licence.
        

        Figure 1 Science Photo Library;

        Figure 8a This photograph has been provided by Railway Technical Research Institute in Japan;

        Figure 22 Proceedings of the Royal Society A248 464. The Royal Society;

        Figure 23 V Essmann and H Trauble, Max Planck Institut fiir Metallforschung.

        This photograph has been provided by Railway Technical Research Institute in Japan;

        Don't miss out:

        If reading this text has inspired you to learn more, you may be interested in joining the millions of people who discover
          our free learning resources and qualifications by visiting The Open University - www.open.edu/openlearn/free-courses

      

    

  
    
      
        SAQ 1

        Answer

        The magnetic field generated by the current in the loop could be monitored.
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        Exercise 1

        Answer

        (a) The current in an RL circuit (with no source of emf) decays exponentially with time:

        [image: ]

        The time constant for the decay is L/R, so the smaller the resistance, the longer will be the time constant. Zero resistance means an infinite time constant – the
          current does not decay, but persists indefinitely (or as long as the material remains superconducting).
        

        (b) The maximum possible resistance, Rmax, of the tube corresponds to the minimum possible current, which is I(T) = 0.98I0. Thus
        

        [image: ]

        which can be rearranged to give

        [image: ]

        (c) For the tube, the length of the current path, [image: ]I, is essentially twice the width of the silicon oxide layer, and the cross-sectional area perpendicular to current flow, A﻿I, is the length of the tube times the thickness of the lead films. Since
        

        [image: ]

        the maximum resistivity is

        [image: ]

        The value of the resistivity of lead at 0°C is

        [image: ]

        The estimate for the maximum resistivity for superconducting lead obtained from the data in this exercise is almost 18 orders
          of magnitude smaller than this room temperature value.
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        Exercise 2

        Answer

        From Table 1, for lead T﻿c = 7.2 K and B﻿c﻿(﻿0﻿)  =  0.080 T. From Equation 1,
        

        
          [image: ]

        

        Back

      

    

  
    
      
        SAQ 2

        Answer

        The current density within the bulk of the wire must be zero, since Ampère's law (﻿curl B = ﻿μ﻿0﻿J﻿) indicates that a non-zero current density would produce a magnetic field. The current must therefore flow in the surface
          of the wire.
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        SAQ 3

        Answer

        The fields just outside the surface are identical. The currents in both wires are axially symmetric, so the integral version
          of Ampère's law indicates that the fields just outside the surfaces of the wires are the same.
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        Exercise 3

        Answer

        From Ampère's law, the field strength B at the surface of a wire of radius R carrying a current I is B = μ﻿0﻿I / 2﻿[image: ]﻿R. From Equation 1, we also have that
        

        
          [image: ]

        

        so the radius R required is
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        Exercise 4

        Answer

        Taking the curl of both sides of Equation 9 and using Ampère's law, curl B = μ﻿0﻿J﻿s, to eliminate B, we find that
        

        
          [image: ]

        

        We now use a standard vector identity to rewrite the curl(curl Js) term:
        

        
          [image: ]

        

        For our steady-state situation, where ∂﻿ρs/∂﻿t = 0, the equation of continuity, ∂﻿ρs/∂t + div Js = 0, reduces to div J﻿s = 0, so
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        Exercise 5

        Answer

        From Equation 10, the penetration depth is given by λ = (m/μ0nse2)1/2, so (in metres)
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        This value, predicted by the London model, is about a quarter of the measured value.
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