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        Introduction

        This course is concerned with the tools required to perform music, namely musical instruments. When you see the term musical instrument, you probably automatically think of the instruments found in an orchestra such as the violins, trumpets and flutes. Maybe
          you think of keyboard instruments like the piano or the organ. Or perhaps you visualise more modern instruments such as the
          electric guitar or the electronic synthesiser. You may even think of the human voice. These are all certainly examples of
          what we traditionally consider to be musical instruments (Figure 1). But what is it about these examples that makes us classify them as musical instruments?
        

        On the face of it, they all seem bewilderingly different. Some involve plucking or bowing a string, others involve blowing
          air through a tube, and still others involve pressing keys. As if this weren't enough, consider the difference in size between
          some of these instruments. A flute is small enough to be able to be carried comfortably in one hand, while a pipe organ may
          be so large that it has to be permanently installed in a spacious building like a church or concert hall. However, despite
          all these differences, there are some features that are common to all musical instruments. Here we shall examine the general
          principles of sound production that apply to all instruments.
        

        Please note that Activity 21 and Activity 22 are optional and require additional materials and software.
        

        This OpenLearn course provides a sample of Level 2 study in Technology http://www.open.ac.uk/courses/find/technology.
        

      

    

  
    
      
        Learning outcomes

        After studying this course, you should be able to:

        
          	Explain correctly the meaning of the emboldened terms in the main text and use them correctly in context

        

        
          	Identify whether a given sound source can be classed as a musical instrument and explain why (Activity 2)
          

        

        
          	Identify the primary vibrator and any secondary vibrators in the most common types of instrument (Activity 3)
          

        

        
          	Appreciate that, when a note is played, a musical instrument vibrates strongly at certain specific frequencies and that these
            frequencies correspond to the natural frequencies of the primary vibrator; (Activity 4)
          

        

        
          	Determine whether the sound from a given instrument is transient or sustained (Activity 5)
          

        

      

    

  
    
      
        1 Aims of Creating musical sounds

        The aims of this unit are to:

        
          	
            introduce the idea that a musical instrument is made up of several component parts and that each component has natural frequencies
              at which it prefers to vibrate;
            

          

          	
            introduce the concept of standing waves and explain how a standing wave is made up of two travelling waves;

          

          	
            show that a component prefers to vibrate at its natural frequencies because these are the frequencies at which standing waves
              can be set up within the component;
            

          

          	
            explain that, when a note is played, a musical instrument vibrates strongly at the natural frequencies of the dominant component
              (the primary vibrator);
            

          

          	
            calculate the natural frequencies of the primary vibrators of string, wind and percussion instruments and describe the corresponding
              standing-wave patterns;
            

          

          	
            show that pitched instruments tend to have primary vibrators with harmonically related natural frequencies while unpitched
              instruments tend to have primary vibrators that do not have harmonically related natural frequencies;
            

          

          	
            explain how the other components of an instrument (the secondary vibrators) are often responsible for improving the radiation
              of sound from the instrument.
            

          

        

      

    

  
    
      
        2 What is a musical instrument?

        
          [image: Figure 1]

          (a–c) Peter Seabrook, The Open University; (d) Richard Seaton, The Open University; (e) Courtesy of Bowling Green State University,
            Ohio; (f) © Getty Images; (g) Courtesy of Yamaha; (h) © Paul Bergen/ Redferns 
          

           Figure 1 A selection of musical instruments: (a) violin, (b) trumpet, (c) flute, (d) piano, (e) pipe organ, (f) electric
            guitar, (g) synthesiser, and (h) voice (Luciano Pavarotti, an opera singer)
          

        

        What exactly is a musical instrument?

        Any sound, whatever it may be, is caused by something vibrating – in other words, by something that is moving back and forth,
          either in a regular manner or in a random manner, about the position it occupies when at rest. The source of the sound may
          be a car engine, a burglar alarm or a bird singing. Whatever it is, some part of it must be vibrating for it to produce sound.
          The vibrating part pushes and pulls against neighbouring air molecules, creating regions of higher pressure called compressions (regions where the air molecules are pushed together) and regions of lower pressure called rarefactions (regions where the air molecules are pulled apart). These compressions and rarefactions travel away from the vibrating source
          in the form of a longitudinal wave (a sound wave) until they reach the ear, where they are interpreted as sound.
        

        When a musician plays a musical instrument, sound is produced. Therefore, by playing the instrument the musician must be causing
          it to vibrate. This is our first signpost as to what a musical instrument is. A musical instrument is a sound source and as
          such at least part of it must be able to vibrate. Note that in this unit I shall be talking only about acoustic musical instruments,
          so when I mention a musical instrument you should assume I am talking about such an instrument rather than an electronic instrument.
          However, even electronic instruments ‘vibrate’ in some way to produce sound, but in this case the vibrations are in the form
          of electrical voltage variations and the sound is produced by feeding these voltage variations through an amplifier to a loudspeaker.
        

        So, what sets a musical instrument apart from, say, a barking dog or waves breaking on a beach? These two things produce sound
          but you wouldn't consider them to be musical instruments. Is it that a musical instrument is able to produce sounds of different
          pitches? Instruments such as the violin, flute and trumpet can certainly do so. Consequently, these instruments can be used
          to play melodies or tunes. However, what about percussion instruments such as maracas or castanets (Figure 2)? The sound produced when maracas are shaken resembles the noise produced by your television set when you pull the aerial
          lead out or the noise produced by water rushing down a waterfall (this type of hissing noise is often called white noise).
          Castanets, on the other hand, produce sharp clicks when struck together. Neither of these two sounds has a discernible pitch
          and yet we refer to maracas and castanets as musical instruments. They emphasise the rhythmic structure in a piece of music
          rather than providing the melody. It is clear, then, that the ability to produce pitched notes is not the thing that distinguishes
          a musical instrument.
        

        
          [image: Figure 2]

          (a) © Getty Images; (b) Peter Seabrook, The Open University    (a) © Getty Images; (b) Peter Seabrook, The Open University 

           Figure 2 Percussion instruments: (a) a pair of maracas; (b) a pair of castanets

        

        So, what does characterise a musical instrument? Well, what we really want from a musical instrument is to be able to use
          it to produce sounds in a controlled and predictable manner. Both our pitched instruments (violin, flute, trumpet) and our
          unpitched instruments (maracas, castanets) satisfy this criterion. A barking dog and breaking waves do not satisfy the criterion
          because neither produce sounds in a predictable manner nor can the production of the sounds be humanly controlled. What about
          a vacuum cleaner? Could it be classed as a musical instrument? Well, it can be controlled by a human and can produce sound
          in a predictable manner, so according to our criterion it could be used as a musical instrument. Indeed, three vacuum cleaners
          are employed (along with an electric floor polisher and several rifles!) in Malcolm Arnold's ‘A Grand, Grand Overture’, a
          piece composed for the 1956 Hoffnung Music Festival (see Box 1).
        

        
          
            Box 1: Hoffnung Music Festivals

          

          
            Gerard Hoffnung (1925–1959) (Figure 3) was a man of many talents. He originally came to prominence as a cartoonist (see Figure 4), and was particularly renowned for his caricatures of musicians. However, he was also a teacher, a humorist, a well-respected
              broadcaster and raconteur, and a musician. Although he died at the early age of thirty-four, he left behind a wealth of sketches,
              cartoons, ideas and the Hoffnung Music Festivals.
            

            
              [image: Figure 3]

              © The Hoffnung Partnership, London    © The Hoffnung Partnership, London 

               Figure 3 Gerard Hoffnung

            

            
              [image: Figure 4]

              © The Hoffnung Partnership, London    © The Hoffnung Partnership, London 

               Figure 4 Hoffnung cartoon featuring the ‘Vacuum Quartet’

            

            In the mid-1950s, Hoffnung decided to translate some of his musical cartoons on to the concert stage. Leading composers were
              commissioned to write humorous compositions, and top conductors, soloists and musicians were enlisted. The result was the
              first Hoffnung Music Festival held on 13 November 1956 at London's Royal Festival Hall (Figure 5). The concert proved a huge success, providing an evening of fun, laughter and musical caricature.
            

            Such was the popularity of the first concert that a second was staged in 1958 and a third followed in 1961 after Hoffnung's
              death. Since those performances over forty years ago, internationally famous orchestras have continued to present items from
              the Hoffnung repertoire to packed audiences.
            

            
              [image: Figure 5]

              The Hoffnung Music Festival Concert 1956, designed by Gerard Hoffnung © Gerard Hoffnung    The Hoffnung Music Festival Concert 1956, designed by Gerard Hoffnung © Gerard Hoffnung 

               Figure 5 Programme cover of the 1956 Hoffnung Music Festival concert

            

          

        

        
          
            Activity 1

          

          
            
              The audio track below contains a short section from ‘A Grand, Grand Overture’ for you to listen to. You should be able to
                hear the vacuum cleaners around 45 seconds into the track, with the rifles following about 5 seconds later.
              

              Click 'Play' to listen to Audio Clip 1

              
                
                  Audio content is not available in this format.

                

              

            

          

        

        We can now be a little bit more precise in defining what constitutes a musical instrument. A musical instrument is a sound
          source with a predictable output that can be controlled by a player.
        

        
          
            Activity 2

          

          
            
              Discuss which of the following could be classed as a musical instrument according to the definition above:

              
                	
                  a miaowing cat;

                

                	
                  a flute;

                

                	
                  breaking glass;

                

                	
                  an anvil with hammer;

                

                	
                  a car engine.

                

              

            

            View answer - Activity 2

          

        

        Before we finish this section, I should just add the comment that modern technology allows us to digitally sample any sound
          and play it back via a keyboard in a controlled and repeatable manner. In this way, a cat's miaows can be turned into the
          notes of a piece of music. However, it is important to note that the cat is not the musical instrument. The electronic keyboard
          with the stored sample of the cat's miaow is the instrument.
        

      

    

  
    
      
        3 Sound production in musical instruments

        Musical instruments come in all shapes and sizes and produce an enormous variety of different sounds. Yet, with the exception
          of certain electronic instruments, the basic physical principles by which sound is produced are the same for all instruments
          – including the human voice. In this section, I shall introduce some of these principles. These will then be expanded upon
          over the rest of the unit.
        

        Remember I told you that when a musician plays an instrument they cause it to vibrate. Therefore, for every musical instrument
          there must be a means of initiating or exciting the vibration. In other words, there must be a mechanism by which the player can put energy into the instrument to make it
          sound.
        

        When excited, an instrument doesn't just vibrate randomly. Instead it vibrates particularly strongly at certain frequencies.
          Exactly what these frequencies are and just how strongly the instrument vibrates at them plays a large part in determining
          the properties of the sound generated by the instrument: in other words, the timbre and the pitch, if any, of the note produced.
        

        So, why is it that an instrument vibrates strongly at certain frequencies? To help us to answer this question, the first thing
          to consider is that most instruments are made up of several component parts. For example, the violin comprises a set of strings
          that are stretched over a hollow, air-filled box. In this case, there are three component parts: the strings, the violin body
          and the air contained within the body.
        

        Now, when a note is played on an instrument, each of these component parts has certain frequencies at which it prefers to
          vibrate. These frequencies are known as the component's natural frequencies. In some instruments, all that is needed is to
          give one of the components an initial excitation and then let the resultant vibrations die away. In such cases, the component
          will vibrate in some combination of its natural frequencies. The kinds of instruments I'm thinking of here are, for example, the guitar where a string is plucked and then allowed to
          vibrate freely, or the xylophone where a wooden bar is struck with a hammer. More often than not, however, we want to be able
          to sustain the sound an instrument makes. To be able to do this, we need to feed in energy continuously, for example by using
          the bow on the violin. When we do this we are forcing the component to vibrate. That is, we are driving the component. As you might expect, this has most effect – that is, the component vibrates most strongly – when the frequencies
          at which the component is being driven correspond to the component's natural frequencies. This phenomenon is known as resonance. Because of this, these frequencies are often referred to as resonance frequencies. Indeed, the terms natural and resonance frequencies tend to be used interchangeably.
        

        Remember though that an instrument usually consists of not one but several component parts. For example, when we bow a violin
          we force one of the strings to vibrate, which in turn forces the body of the violin, and the air contained within the body,
          to vibrate as well. So, how do the natural frequencies (or, if you like, the resonance frequencies) of these other components
          affect the way in which the overall instrument vibrates? Well, this is where things get a little complicated because the different
          parts of the instrument are not independent of each other. That is, each vibrating component influences the behaviour of the
          other vibrating components – the components are said to be coupled together. The coupling may be strong, in which case the influence of one component on another will be large; or it may be
          weak, in which case the influence will be small.
        

        Analysing the collective behaviour of several coupled vibrating components can require quite a lot of complicated mathematical
          calculations. Fortunately, in most instruments, the collective behaviour of the vibrating components is dominated by just
          one component – for example, the string in the case of a stringed instrument, or the column of air in the case of a wind instrument.
          The frequencies at which the instrument as a whole vibrates strongly then closely match the natural frequencies of that dominant
          component. I'll call this component the primary vibrator.
        

        The other vibrating components – I'll call them secondary vibrators – still have an influence on the sound produced by the instrument. They either play a part in the excitation of the instrument,
          determining what frequencies the primary vibrator is driven at, or they affect just how strongly the whole instrument vibrates
          at each of the natural frequencies of the primary vibrator. Either way, secondary vibrators influence the loudness and timbre
          of notes produced by the instrument.
        

        In summary, when a note is played on an instrument, the primary vibrator is responsible for determining the frequencies at
          which the instrument vibrates strongly and consequently the pitch, if any, of the note. Secondary vibrators affect how strongly
          the instrument vibrates at each of these frequencies and consequently they influence the loudness and timbre of the note.
        

        Again the violin provides a good example of this. The string that is being excited is the primary vibrator, while the violin
          body and the enclosed air are the secondary vibrators. The instrument vibrates strongly at the natural frequencies of the
          violin string. How strongly it vibrates at these frequencies depends to a great extent on the violin body and the air contained
          within it. While the string is responsible for determining the pitches of the notes that the violin produces, the violin body
          and enclosed air play a large part in determining both the tonal quality and the loudness of the notes.
        

        In the case of a woodwind instrument that is excited by blowing through a reed, such as a clarinet or bassoon, the column
          of air contained within the tubing of the instrument is the primary vibrator and the reed is the secondary vibrator. The air
          column is responsible for determining the pitches of the notes that the instrument produces. The reed does, however, affect
          the tonal quality of the notes because it plays a part in determining what frequencies the air column is driven at.
        

        For a brass instrument such as a trumpet or euphonium, the primary vibrator is again the air column but now it is the player's
          lips that act as a secondary vibrator. The air column determines the pitches of the notes produced by the instrument. Meanwhile,
          the player's lips help in determining the frequencies at which the air column is driven. In this way, they influence the loudness
          and timbres of the notes that the instrument produces.
        

        I should point out that when any wind instrument is blown, the walls of the instrument also vibrate. In reed woodwind instruments,
          these vibrations are tiny in amplitude and it is generally accepted that they have no noticeable effect on the sound produced.
          In brass instruments, though, the wall vibrations are a little larger in amplitude. Whether they significantly affect the
          sound produced by the instrument is a subject of much debate.
        

        
          
            Activity 3

          

          
            
              Identify the primary vibrator and any secondary vibrators in each of the following instruments:

              
                	
                  guitar

                

                	
                  trombone

                

                	
                  piano

                

                	
                  oboe

                

                	
                  xylophone

                

              

            

            View discussion - Activity 3

          

        

        Let me summarise all these points. When a musician plays an instrument, they cause it to vibrate. Therefore, for every musical
          instrument there must be a means of initiating or exciting the vibration – in other words, a mechanism by which the player
          can feed energy into the instrument to make it sound. The input of energy will cause the instrument to vibrate strongly at
          certain frequencies. These frequencies correspond to the natural (or resonance) frequencies of the primary vibrator. Other parts of the instrument – the secondary vibrators – influence just how strongly the instrument
          vibrates at these frequencies. Finally, all instruments must efficiently radiate their vibrations to the surrounding air so that they can be heard by a listener.
        

        
          
            Activity 4

          

          
            
              Below are three true statements (1 to 3).

              
                	
                  Each component part of a musical instrument influences the vibrational behaviour of the other component parts.

                

                	
                  The primary vibrator is responsible for determining the pitch, if any, of the note produced by a musical instrument.

                

                	
                  Secondary vibrators influence the loudness and timbre of the note produced by a musical instrument.

                

              

              Here are three explanations (a to c) of the above statements. These are in the wrong order. Which explanation goes with which
                statement?
              

              
                	
                  (a) Because they affect just how strongly the whole instrument vibrates at the natural frequencies of the primary vibrator.
                  

                

                	
                  (b) Because they are all coupled together.
                  

                

                	
                  (c) Because the instrument as a whole vibrates strongly at the natural frequencies of the primary vibrator.
                  

                

              

            

            View answer - Activity 4

          

        

        In the remaining sections of this unit we shall be looking in more detail at the mechanisms for exciting vibrations in musical
          instruments, at the phenomenon of resonance and why instruments vibrate particularly strongly at certain frequencies, and
          at the role played by the primary and secondary vibrators in the effective radiation of the sound vibrations.
        

      

    

  
    
      
        4 Excitation

        For a player to be able to sound a musical instrument, there must be a means of inputting energy to set up the vibration.
          This energy may be introduced in a short, sharp burst or continuously over a period of time.
        

        In the case of brass instruments such as the trumpet and trombone, and woodwind instruments such as the flute and oboe, the
          player feeds in energy by blowing air into the instrument. The energy can be supplied in a short burst – in which case short-lived
          ‘staccato’ notes are produced. Or it can be supplied continuously for as long as the player keeps blowing – in which case
          longer-lasting notes are produced.
        

        With many percussion instruments, drums and triangles for example, the player provides the energy to initiate a vibration
          by striking the instrument with a stick or similar device. In this case, the energy is supplied in a short, sharp burst.
        

        Stringed instruments such as the violin or cello can be excited in different ways. The player can either pluck the string,
          when energy is supplied in a short burst. Or they can bow the string, in which case energy is supplied either in a short burst
          (if the player wishes to produce staccato notes) or continuously (if the player wishes to produce longer-lasting notes).
        

        If a player feeds energy into an instrument in a short burst, the resultant vibration will die away. As a result, the sound
          produced will be short-lived or transient. If, instead, the energy input from the player is continuous, the resultant vibration will be maintained. The sound produced
          will be long-lived or sustained.
        

        
          
            Activity 5

          

          
            
              Listen to the five sound clips of instruments provided in the track below. For each sound, judge whether the energy was introduced
                in a short burst or continuously, and whether the sound is transient or sustained.
              

              Click 'Play' to listen to Audio Clip 2

              
                
                  Audio content is not available in this format.

                

              

            

            View discussion - Activity 5

          

        

        
          
            Activity 6

          

          
            
              Identify possible excitation mechanisms for the following instruments and in each case indicate whether the energy is introduced
                in a short burst or continuously:
              

              
                	
                  guitar

                

                	
                  trombone

                

                	
                  piano

                

                	
                  oboe

                

                	
                  xylophone

                

              

            

            View answer - Activity 6

          

        

        So what actually happens when a bow is dragged across a violin string, or when a hammer strikes a piano string, or when air
          is blown through a reed into an oboe? How do these actions supply energy to the instrument to excite a vibration? There are
          some common principles on which these different classes of instruments rely, and it is these that I want to introduce you
          to in the rest of this unit.
        

      

    

  
    
      
        5 Primary Vibrators

        
          5.1 Standing waves

          You learned earlier that when a musician plays a note on an instrument, they supply it with energy that causes the primary
            vibrator to oscillate at certain specific frequencies. In Section 5 we are going to look at what determines these specific
            frequencies for some of the primary vibrators found in different instruments.
          

          In Unit TA212_1 Sound for music technology: an introduction, we talk about travelling waves: that is, waves that propagate outwards away from their source, becoming weaker and weaker the further they travel. The example
            presented there is of a sound wave travelling away from a tuning fork.
          

          I am now going to introduce you to standing waves. Standing waves are so called because they appear to stand still – that is, they don't appear to travel anywhere. You may be surprised to
            learn, therefore, that a standing wave can be made up of two travelling waves. Just like travelling waves, standing waves
            can be either longitudinal or transverse. However, for the purposes of this particular discussion, it is not important whether the travelling waves and the resultant
            standing wave are longitudinal or transverse.
          

          
            
              Activity 7

            

            
              
                Describe what is meant by:

                
                  	
                    a longitudinal wave

                  

                  	
                    a transverse wave

                  

                

              

              View answer - Activity 7

            

          

          Let us consider what happens when two travelling waves move in opposite directions. The resultant disturbance is the superposition of the forward and backward travelling waves. In other words, it is found by adding together the two waves.
          

          Figure 6 shows two sinusoidal waves that have the same wavelength and amplitude but are travelling in opposite directions. The wave
            denoted by the solid line is travelling in the forwards direction (to the right); the wave denoted by the dashed line is travelling
            in the backwards direction (to the left). In each diagram, each wave has moved one eighth of a wavelength from the position
            shown in the previous diagram.
          

          
            [image: Figure 6]

             Figure 6 Formation of a standing wave from two travelling waves travelling in opposite directions

          

          At the instant shown in Figure 6(a), the peaks and troughs of the forward and backward travelling waves coincide and the two waves are said to be exactly
            in phase. By adding together the two travelling waves, the resultant disturbance is found to be a sine wave that has the same
            wavelength but twice the amplitude of each of the travelling waves.
          

          At the later time shown in Figure 6(b), the forward travelling wave has moved by an eighth of a wavelength to the right, and the backward travelling wave has
            moved a similar distance to the left. The resultant disturbance is like that of Figure 6(a) but with a smaller amplitude.
          

          Advancing by the same amount of time again, the forward travelling wave has moved another eighth of a wavelength to the right,
            and the backward travelling wave another eighth of a wavelength to the left (see Figure 6(c)). Now the two waves are exactly out of phase. The peaks of the forward travelling wave coincide with the troughs of the
            backward travelling wave and vice versa. The resultant disturbance at this instant is zero everywhere.
          

          Figure 6(d) shows the situation after the waves have advanced another eighth of a wavelength in the direction that they are travelling.
            The resultant disturbance is like that of Figure 6(b) but in the opposite sense, so that the positive displacements of Figure 6(b) are now negative, and vice versa.
          

          By Figure 6(e), each travelling wave has moved half a wavelength (either to the left or right) from its starting position. They are now
            back in phase and the resultant disturbance is now as it was in Figure 6(a) but in the opposite sense.
          

          If we kept advancing by the same time steps, we would see the resultant disturbances successively appear like those of (d),
            (c), (b) and (a) of Figure 6. We would then be back where we started originally and the whole cycle would start over again.
          

          
            
              Activity 8

            

            
              
                Run the Flash animation below. It should help you to see just how two travelling waves interact to form a standing wave.

                Use the controls below (Play/Pause, Step, Reset) to run the flash animation.

                
                  
                    Interactive content is not available in this format.

                  

                

              

            

          

          The disturbance that results from adding together the forward and backward travelling waves is called a standing wave. Standing waves are characterised by there being locations where the displacement is always zero. These positions are called nodes (a good way to remember this is to think ‘no-deviation’ in displacement). The distance between adjacent nodes is half a wavelength.
            Halfway between adjacent nodes are locations where the displacement oscillates between a large positive value and a large
            negative value. These positions are called antinodes. The distance between a node and a neighbouring antinode is a quarter of a wavelength.
          

          
            
              Activity 9

            

            
              
                Figure 7 shows a standing wave. The solid curve shows the maximum displacement in one direction (i.e. the resultant disturbance at
                  an instant when the two travelling waves forming the standing wave are fully in phase, as in Figure 6(a)). The dashed curve shows the displacement one half-cycle later (i.e. the resultant disturbance when the two travelling
                  waves are next fully in phase as in Figure 6(e)). How many nodes and how many antinodes are shown in the figure?
                

                
                  [image: Figure 7]

                   Figure 7 Standing wave for Activity 9

                

              

              View answer - Activity 9

            

          

          I mentioned earlier that when a note is played on a musical instrument the primary vibrator, and indeed the instrument as
            a whole, vibrates strongly at certain specific frequencies – the primary vibrator's natural frequencies. What is actually
            happening is that standing waves are being set up in the primary vibrator at these frequencies.
          

          You should recall that the primary vibrator of a stringed instrument is the string and the primary vibrator of a wind instrument
            is the air column. Over the next two sections we'll see how standing waves are set up on a string and in an air column, and
            it will become apparent why this occurs only at certain simply related frequencies. This will lead us to discover why stringed
            instruments and wind instruments produce pitched notes.
          

          After this, in Section 5.13, we shall look at standing-wave formation in the primary vibrators of some other instruments. For example, we shall look
            at a circular membrane (the primary vibrator in timpani and other types of drum), a circular plate (the primary vibrator of
            a cymbal) and a rectangular bar (the primary vibrator of the xylophone). We shall see again that standing waves are set up
            only at certain frequencies. However, you will learn that for these primary vibrators, the natural frequencies are not simply
            related. This will lead us to understand why for many percussion instruments the notes produced have a less well-defined sense
            of pitch.
          

        

        
          5.2 Vibrating string: speed of wave propagation

          If standing waves are set up when two travelling waves moving in opposite directions interact, then how are standing waves
            set up on a string and why are they set up only at certain frequencies?
          

          To help answer these questions, I want you first to imagine a length of string that is fixed at one end and held in someone's
            hand at the other. Suppose the person holding the string flicks their end of the string in such a way that an upward pulse
            is sent along the string.
          

          As the pulse passes a given position, the string at that position is displaced first upwards and then down again (Figure 8(a)). The string displacement is perpendicular to the direction of propagation of the pulse. For this reason, waves on a string
            are said to be transverse.
          

          When the pulse reaches the fixed end it is reflected (Figure 8(b)). The reflected pulse travels back towards the person holding the string and has exactly the same shape as the initial
            pulse except that it is upside down. It has been inverted and is now a downward pulse (Figure 8(c)).
          

          
            [image: Figure 8]

             Figure 8 Reflection of a pulse on a string from a fixed end

          

          
            
              Activity 10

            

            
              
                Run the Flash animation below. It shows a pulse travelling down a string, then being reflected and inverted at a fixed end.

                Use the controls below (Play/Pause, Step, Reset) to run flash animation.

                
                  
                    Interactive content is not available in this format.

                  

                

              

            

          

          The speed with which a pulse or a wave travels along the string is called the wave speed. It is measured in metres per second (m/s) and depends on both the tension of the string and its mass per unit length. Indeed,
            the wave speed v in a stretched string can be described by the following equation:
          

          
            [image: ]

          

          where the tension T is measured in newtons (N) and the mass per unit length μ is measured in kilograms per metre (kg/m).
          

          
            
              Activity 11

            

            
              
                Watch the video clip below. It shows a pulse travelling along a 5 m length of elastic rope, being reflected and inverted at
                  the far end and returning back along the rope. The elasticity in the rope ensures that the pulse can be seen clearly. Note
                  that the time the pulse takes to travel to the end of the rope and back again is 0.8 second.
                

                
                  
                    Video content is not available in this format.

                  

                

              

            

          

          
            
              Activity 12

            

            
              
                
                  	
                    (a) Using the time you noted in Activity 11, and remembering that the rope is 5 m long, calculate the speed at which the pulse travels along the rope.
                    

                  

                  	
                    (b) When the video in Activity 11 was filmed, the rope was being stretched so that its tension was 10N. The total mass of the rope was 0.32 kg. Using the wave
                      speed equation given above, calculate the speed at which the pulse travels along the rope. Compare your answer with the speed
                      that you calculated in part (a).
                    

                  

                

              

              View answer - Activity 12

            

          

        

        
          5.3 Vibrating string: standing waves on a string

          We still haven't answered the question of how standing waves are set up on a string. To do so we need to return to our string,
            fixed at one end and held in someone's hand at the other end. Imagine now that instead of sending a single pulse along the
            string, the person flicks their hand up and down periodically and sends a sinusoidal wave along the string. This wave gets
            reflected and inverted at the fixed end and travels back towards the person holding the string. There are now two waves of
            the same wavelength travelling in opposite directions on the string. Just the condition needed to set up a standing wave!
          

          But why should standing waves be set up only at certain frequencies? The answer to this question lies in what happens when
            our reflected wave gets back to the hand holding the string. Here it is reflected and inverted again and travels back along
            the string towards the fixed end. So, there are now three waves travelling along the string. Of course, when the third wave
            reaches the fixed end it will be reflected and inverted, resulting in a fourth wave. This will carry on until eventually there
            are hundreds of waves travelling backwards and forwards along the string.
          

          So won't there end up being a messy jumble of waves on the string? Well, most of the time this will be exactly the case. However,
            there are certain frequencies at which the person can flick their hand up and down that will cause the third wave to be in
            phase with the initial wave (Figure 9). That is, the peaks and troughs of the third wave will line up with the peaks and troughs of the initial wave. Under such
            circumstances, it will follow that all the waves travelling towards the fixed end will be in phase with each other. And, indeed,
            all the waves travelling back from the fixed end will be in phase with each other too. The waves travelling towards the fixed
            end will look and behave like one wave, and the same will be true for the waves travelling back towards the person holding
            the string. Therefore, only at these certain frequencies will there be the equivalent of just two travelling waves moving
            in opposite directions on the string. These travelling waves will combine to produce a standing wave.
          

          
            [image: Figure 9]

             Figure 9 Waves travelling on a string with the resultant displacement of the string also displayed. Note that the first and
              third waves are in phase
            

          

          
            
              Activity 13

            

            
              
                Run the Flash animation below. It should help you see how a standing wave can be set up on a string if the string is driven
                  at the correct frequency.
                

                Use the controls below (Play/Pause, Step, Reset) to run flash animation.

                
                  
                    Interactive content is not available in this format.

                  

                

              

            

          

        

        
          5.4 Vibrating string: normal modes of vibration

          The frequencies at which standing waves can be set up on a string are the string's natural frequencies. They can be determined
            quite easily. The first thing to note is that the end of the string being held by the person is tightly gripped so any pulse
            or wave that returns to the person's hand will be reflected and inverted. Therefore both ends of the string can be considered
            to be fixed and so must be at nodes of the standing wave. But you learned earlier that the distance between adjacent nodes
            is half a wavelength. So, the length of the string must be an exact number of half wavelengths. That is, the string must be
            one half wavelength long, two half wavelengths long (i.e. one whole wavelength long), three half wavelengths long, four half
            wavelengths long (i.e. two whole wavelengths long), etc. If the length of the string is denoted by L and the wavelength by λ, then this can be expressed in the following way:
          

          
            [image: ]

          

          This can be written more concisely as:

          
            [image: ]

          

          where n is an integer number (i.e. 1, 2, 3, 4, … ).
          

          Rearranging this equation, we can show that the wavelengths of standing waves that can be set up on the string are therefore
            given by:
          

          
            [image: ]

          

          However, the frequency of a wave is related to its wavelength by the expression f = v/λ, where v is the wave speed. Therefore, the natural frequencies for the string are given by:
          

          
            [image: ]

          

          The different standing-wave patterns, known as normal modes of vibration, are shown in Figure 10. The solid and dashed lines indicate the positions of the string at opposite phase positions in the cycle. You should be
            able to see that for each normal mode the string contains an integer number of half wavelengths.
          

          
            [image: Figure 10]

             Figure 10 The first four normal modes of vibration of a string fixed at each end. The solid and dashed lines indicate the
              positions of the string at opposite phase positions in the cycle
            

          

          In the first mode (n = 1) there are nodes at either end of the string but no nodes elsewhere on the string. The frequency at which this standing-wave
            pattern will be set up is f = v/2L. The first mode is known as the fundamental mode and, for this reason, the first natural frequency tends to be referred to as the fundamental frequency.
          

          In the second mode (n = 2) there are again nodes at either end of the string but now there is also a node in the middle of the string. The frequency
            at which this standing-wave pattern will be set up is f = v/L. This is twice the value of the fundamental frequency.
          

          In the third mode (n = 3) there are nodes at either end of the string and two more nodes positioned along the string. The frequency at which this
            standing-wave pattern will be set up is f = 3v/2L. This is three times the value of the fundamental frequency.
          

          In the fourth mode (n = 4) there are the anticipated nodes at either end of the string and three more positioned at equal distances along the string.
            The frequency at which this standing-wave pattern will be set up is f = 2v/L. This is four times the value of the fundamental frequency.
          

          You may well be seeing a trend emerging here! The frequencies at which standing waves are set up on the string are harmonically
            related. If the frequency at which the first mode occurs is denoted f1, then the frequencies at which the second, third and fourth modes occur are 2f1, 3f1 and 4f1 respectively. This set of frequencies and its indefinite continuation (5f1, 6f1, 7f1 … ) is known as a harmonic series. The fact that its natural frequencies form a harmonic series makes the vibrating string
            one of the most useful means of producing musical sounds.
          

          
            
              Activity 14

            

            
              
                Calculate the first four natural frequencies of a 0.5 m long string that is fixed at each end. Assume the wave speed is 250
                  m/s.
                

              

              View answer - Activity 14

            

          

        

        
          5.5 Vibrating string: pitches of notes produced by stringed instruments

          When a string is bowed, plucked or struck, energy is supplied that starts the string vibrating. The string doesn't just vibrate
            in one single mode; instead, it vibrates in a combination of several modes simultaneously. The displacement along the string
            is the superposition of the standing-wave patterns corresponding to those modes. For example, if the string vibrated only
            in the first and second modes, the displacement at a given instant of time might appear as shown in Figure 11.
          

          
            [image: Figure 11]

             Figure 11 Example of the superposition of two waves on a string. The displacement shown in (c) results from adding together,
              at every point along the string, the displacements shown in (a) and (b)
            

          

          In instruments such as the violin, guitar and piano, where the string is the primary vibrator, the frequencies at which the
            instrument vibrates strongly are essentially the natural frequencies of the string. Exciting the string causes both it and
            the instrument as a whole to vibrate at a number of these natural frequencies simultaneously. Because the natural frequencies
            of the string are harmonically related, the sound radiated by the instrument will be the sum of a number of harmonics. This
            will be interpreted by the ear as a single musical note with a pitch corresponding to the fundamental frequency of these harmonics.
            It is then the relative magnitudes of the harmonic components that provide the basis for the timbre of the note.
          

          To adjust the pitch of notes produced by instruments like the violin, guitar and piano, the string's fundamental frequency
            must be altered. You learned in Section 5.4 that the fundamental frequency of a string is f1 = v/2L, where v is the speed of a wave travelling on the string and L is the string's length. You also know that the speed of a wave travelling on a string is:
          

          
            [image: ]

          

          where T is the string's tension and μ is its mass per unit length. By combining these two equations, the following expression for the fundamental frequency of
            a string can be written:
          

          
            [image: ]

          

          Clearly then, to adjust this frequency and hence the pitch of the note produced by the instrument, either the length, tension
            or mass per unit length of the string must be altered.
          

          You don't have to look very far to find some examples. When playing a guitar, the player presses a finger on a given string
            to effectively change its length and enable notes of different pitches to be produced. The shorter the effective length of
            the string, the higher the pitch of the note produced. Alternatively, when tuning a violin, the player tightens or loosens
            the strings to alter the tension. Increasing the tension causes the note produced to be higher in pitch. Decreasing the tension
            lowers the pitch of the note produced. As a final example, to be able to achieve the low pitch of the bass strings found on
            pianos and bass guitars, the core string is wound with additional wire to increase the mass per unit length.
          

          The equation for the fundamental frequency of a string can be rearranged to give the following additional three equations.
            These equations can be used to find the length, the tension or the mass per unit length required for a string to produce a
            note of a given pitch:
          

          
            [image: ]

          

          You are not expected to memorise these equations, but you do need to be able to use them. One important thing to remember
            is that when entering values into the equations they must be expressed in SI units: that is, the length must be expressed
            in metres, the mass per unit length in kilograms per metre and the tension in newtons.
          

          
            
              Activity 15

            

            
              
                Suppose the A-string of a violin has been tightened until its tension is 53 N. Its length is 330 mm and its mass per unit
                  length is 0.6 g/m.
                

                
                  	
                    Calculate the fundamental frequency of the string.

                  

                  	
                    The present international pitch standard has the pitch A4 set to a frequency of 440 Hz. Is the instrument in tune, or will it play flat or sharp?
                    

                  

                  	
                    Will the string need to be loosened or tightened further to get it in tune?

                  

                  	
                    What tension should the string be under?

                  

                

              

              View discussion - Activity 15

            

          

          
            
              Activity 16

            

            
              
                (a) One type of steel piano wire has a mass per unit length of 0.0059 kg/m. If it is under a tension of 700 N, calculate the
                  length of wire required for the string to produce a pitch of C1 (the lowest C on the piano keyboard, with a fundamental frequency of 32.7 Hz).
                

                (b) Your answer to part (a) should have shown you that the length of the wire required is clearly too long to fit in the body
                  of a piano. To reduce the length of wire required to produce a pitch of C1, its mass per unit length is therefore increased by winding extra copper wire around it. Assuming now that the length of
                  a C1 piano string is 1.4 m but it still experiences 700 N of tension, calculate the required mass per unit length if it is to
                  play in tune (remember that the fundamental frequency of C1 is 32.7 Hz).
                

              

              View answer - Activity 16

            

          

        

        
          5.6 Vibrating air column

          You learned in the previous section that for standing waves to be set up on a string there must be reflection. A travelling
            wave reaches the end of the string and is reflected. This results in a second travelling wave, which moves back up the string
            in the opposite direction to the first wave. The two travelling waves interact to produce a standing wave.
          

          Standing waves are set up in an air column enclosed within a tube in a very similar way. Again there must be reflection. In
            this case, a travelling wave reaches the end of the air column and is reflected. This results in a second travelling wave,
            which moves back up the air column. The two travelling waves interact to produce a standing wave. But now the two travelling
            waves are sound waves. That is, they are longitudinal waves consisting of pressure compressions and rarefactions, rather than
            the transverse waves we saw on the string. Associated with the pressure changes are forward and backward movements of the
            air molecules in the direction of the tube axis.
          

          Standing waves will be set up in an air column only at certain frequencies – the air column's resonance frequencies. These
            frequencies depend on the reflection conditions at the end of the air column.
          

        

        
          5.7 Vibrating air column: reflection at the end of an air column

          When a sound wave reaches the end of an air column, it is clear that it will be reflected if the tube end is closed. You only
            have to imagine yourself standing some distance, let's say 50 metres, away from a flat wall. If you shout, you will hear an
            echo – the reflection of the sound wave you projected.
          

          There is one difference, though, between the reflection of a sound wave and the reflection of the wave on a string that you
            met previously. When a sound wave is reflected from a closed end, it is not inverted. In other words, a compression (a high-pressure
            region) in the incident wave will return as a compression in the reflected wave. Similarly, a rarefaction (a low-pressure
            region) in the incident wave will return as a rarefaction in the reflected wave. Figure 12 shows one cycle of a sinusoidal pressure wave travelling down an air column and being reflected at a closed end. In the incident
            wave, a compression leads a rarefaction. Upon reflection, there is no inversion: the compression still leads the rarefaction
            in the reflected wave. (In Figure 12, the pressure variation is represented both graphically and in terms of the separation of the air molecules.)
          

          You may be surprised to learn that a sound wave is also reflected when it reaches an open end of a tube. In practice, it will
            be only partially reflected. There must be some wave energy transmitted from the end of the air column otherwise wind instruments,
            for example, wouldn't produce any sound when blown! However, the amount of wave energy that is emitted by a wind instrument
            is surprisingly small, being only around 1% of the energy possessed by the vibrating air column. But why should the sound
            wave be largely reflected back up the air column? Surely upon reaching the open end of the tube it should just continue into
            the outside world.
          

          To help explain why there is reflection, consider a rarefaction propagating along an air column towards an open end. The open
            end is at atmospheric pressure. When the rarefaction reaches the open end, the pressure there is suddenly reduced. Air molecules
            are sucked into this partial vacuum from the outside world and the pressure at the open end is restored to atmospheric pressure.
            However, the air molecules that are sucked into the tube have inertia. They don't just suddenly stop at the open end; instead,
            they continue moving into the tube and squeeze against the air molecules already residing there. A compression is created,
            which propagates back down the air column away from the open end.
          

          
            [image: Figure 12]

             Figure 12 One cycle of a sinusoidal pressure wave (e.g. a sound wave): (a) approaching the closed end of an air column; (b)
              returning after reflection from the closed end
            

          

          
            [image: Figure 13]

             Figure 13 One cycle of a sinusoidal pressure wave (e.g. a sound wave): (a) approaching the open end of an air column; (b)
              returning after reflection from the open end
            

          

          You may have noticed from this explanation that when a sound wave reaches the open end of a tube, not only is it reflected
            but it is also inverted. A rarefaction in the incident wave becomes a compression in the reflected wave. Similarly, a compression
            in the incident wave becomes a rarefaction in the reflected wave. Figure 13 shows one cycle of a sinusoidal pressure wave travelling down an air column and being reflected at the open end. In the incident
            wave, a compression leads a rarefaction. In this case, when the wave is reflected it is also inverted. As a result, in the
            reflected wave, it is a rarefaction that leads a compression.
          

        

        
          5.8 Vibrating air column: standing waves in a cylindrical tube open at both ends

          The frequencies at which standing waves can be set up in an air column enclosed by a cylindrical tube that is open at both
            ends can be determined quite easily. Because both ends are open to the atmosphere, the pressure at these positions always
            remains at atmospheric pressure. In other words, there is no fluctuation in the pressure at the open ends so they must be
            pressure nodes (think ‘no-deviation’ in pressure). So, as we saw with the string fixed at both ends, the length L of the air column must be equal to an exact number of half wavelengths:
          

          
            [image: ]

          

          where n is an integer number (i.e. 1, 2, 3, 4, …) and λ is the wavelength measured in metres. Following the same arguments as we did for the string, the resonance frequencies of
            the air column are:
          

          
            [image: ]

          

          where in this case v is the speed of sound in air, which is approximately 340 m/s.
          

          The normal modes of vibration plotted in terms of pressure are shown in Figure 14. For each mode of vibration, I have superimposed a graphical representation of the pressure over a diagram of the air column.
          

          
            [image: Figure 14]

             Figure 14 The first four normal modes of vibration for a cylindrical tube open at both ends, plotted in terms of pressure.
              The solid curve shows the pressure at one extreme of the cycle and the dashed curve shows the pressure one half-cycle later
            

          

          The solid curve shows the pressure at one extreme of the cycle and the dashed curve shows the pressure one half-cycle later.
            The separation between the curved lines at any position along the tube represents the pressure amplitude at that position.
          

          I've presented these standing-wave patterns in terms of pressure variations in the air column because this is the analysis
            that will be most useful when we come to describe individual woodwind and brass instruments. However, had we been trying to
            create an exact analogy with the standing waves on a string we should really have looked at the displacement of the air molecules
            from the mean position. Thinking in these terms, at the open end of an air column, the air molecules are free to move in and
            out of the tube. Therefore for an air column open at both ends, the ends must be displacement antinodes. Adjacent antinodes
            are separated by half a wavelength so the length of the air column must be an integer number of half wavelengths. Displacement
            nodes are then found at positions halfway between adjacent displacement antinodes.
          

          The normal modes of vibration plotted in terms of displacement are shown in Figure 15. In this case, for each mode of vibration, I have superimposed a graphical representation of the displacement over a diagram
            of the air column. The solid curve shows the displacement of the air molecules at one extreme of the cycle and the dashed
            curve shows the displacement one half-cycle later. The separation between the curved lines at any position along the tube
            represents the displacement amplitude at that position.
          

          
            [image: Figure 15]

             Figure 15 The first four normal modes of vibration for a cylindrical tube open at both ends, plotted in terms of displacement.
              The solid curve shows the displacement at one extreme of the cycle and the dashed curve shows the displacement one half-cycle
              later
            

          

          You may well have already realised that pressure nodes correspond to displacement antinodes and that pressure antinodes correspond
            to displacement nodes. If not, compare the positions of the nodes and antinodes in Figures 14 and 15 to satisfy yourself that this is the case.
          

          
            
              Activity 17

            

            
              
                Run the Flash animation below. This animation demonstrates standing waves in a cylindrical tube open at both ends. It shows
                  graphical representations of both the pressure variation along the tube and the displacement of the air molecules from their
                  mean position. This should help to clarify the relationship between these two quantities. It also shows the motion of the
                  air molecules.
                

                Use the controls below (Play/Pause, Step, Reset) to run flash animation. You can also select the mode.

                
                  
                    Interactive content is not available in this format.

                  

                

              

            

          

          Just as was the case for the string fixed at both ends, the frequencies at which standing waves are set up in a cylindrical
            air column with two open ends form a harmonic series. The first resonance frequency (the fundamental frequency of the air
            column) is v/2L. If this frequency is denoted f1, then the frequencies at which the second, third, fourth and later modes of vibration occur are 2f1, 3f1, 4f1 …, nf1.
          

          
            
              Activity 18

            

            
              
                Calculate the first three resonance frequencies of a 1.5 m long cylindrical tube open at each end. Assume the speed of sound
                  is 340 m/s.
                

              

              View answer - Activity 18

            

          

        

        
          5.9 Vibrating air column: standing waves in a cylindrical tube closed at one end

          We'll now turn our attention to the setting up of standing waves in an air column contained within a cylindrical tube that
            is open at one end but closed at the other. Straight away we can say that the closed end must be a displacement node since
            the air molecules can't move at this boundary. That means it must be a pressure antinode. The open end, as we saw previously,
            will be a displacement antinode (that is, a pressure node).
          

          Now, you may recall that the distance between a node and a neighbouring antinode is a quarter of a wavelength (look back at
            the discussion preceding Activity 9 if you are unsure). More to the point, as is clear from a careful look at Figure 7, the distance between a node and any arbitrary antinode must be an odd number of quarter wavelengths. Therefore, the air
            column must be either one quarter wavelength long, three quarter wavelengths long, five quarter wavelengths long, seven quarter
            wavelengths long and so on. If the length of the air column is denoted by L and the wavelength by λ then this can be expressed in the following way:
          

          
            [image: ]

          

          Since we can use the expression (2n − 1), where n = 1, 2, 3, 4, …, to represent the series of odd numbers (try it out to satisfy yourself), this can be written more concisely
            as:
          

          
            [image: ]

          

          Rearranging this equation, we can show that the wavelengths of standing waves that can be set up in the air column are therefore
            given by:
          

          
            [image: ]

          

          Remembering that the frequency of a sound wave is related to its wavelength by the expression f = v/λ, where v is the speed of sound, the resonance frequencies of an air column that is closed at one end can be written:
          

          
            [image: ]

          

          The normal modes of vibration plotted in terms of pressure are shown in Figure 16. Again, the solid curve shows the pressure at one extreme of the cycle and the dashed curve shows
            the pressure one half-cycle later. The separation between the curved lines at any position along the tube represents the pressure
            amplitude at that position.
          

          
            [image: Figure 16]

             Figure 16 The first four normal modes of vibration for a cylindrical tube closed at one end, plotted in terms of pressure.
              The solid curve shows the pressure at one extreme of the cycle and the dashed curve shows the pressure one half-cycle later
            

          

          In the first mode (n = 1) there is a pressure antinode at the closed end and a pressure node at the open end. There are no other nodes or antinodes
            within the air column. The frequency at which this standing-wave pattern is set up is f = v/4L.
          

          In the second mode (n = 2) again there is a pressure antinode at the closed end and a pressure node at the open end. However, there is now another
            pressure node a third of the way along the air column from the closed end and another pressure antinode two thirds of the
            way along. The frequency at which this standing-wave pattern is set up is f = 3v/4L

          In the third mode (n = 3) there is a pressure antinode at the closed end, a pressure node at the open end, and two more pressure nodes and two
            more pressure antinodes within the air column. The frequency at which this standing-wave pattern is set up is f = 5v/4L.
          

          If the fundamental frequency of the air column is denoted by f1, then the frequencies at which the second, third, fourth and later modes occur are 3f1, 5f1, 7f1 …, (2n − 1)f1. The resonance frequencies don't form a complete harmonic series. Only the odd harmonics are present.
          

          
            
              Activity 19

            

            
              
                Calculate the first three resonance frequencies of a 1.5 m long cylindrical tube open at one end and closed at the other.
                  Assume the speed of sound is 340 m/s.
                

              

              View answer - Activity 19

            

          

        

        
          5.10 Vibrating air column: end effects

          In the previous two sections on standing waves in cylindrical tubes, we assumed that at an open end there must be a pressure
            node. In fact, the pressure node (and the corresponding displacement antinode) actually lies a small distance outside the
            tube. The effect is that the air column behaves as though it were a little longer than it really is by an amount called the
            end correction. Because of this end correction, the resonance frequencies will be a little lower than originally expected.
          

          For a cylindrical tube of radius r, the end correction is approximately 0.6 × r. This amount should be added to the geometrical length of the tube for each open end to find the effective length of the
            air column. In other words, for a tube closed at one end and open at the other, an end correction of 0.6r must be added to find the effective air-column length. For a tube open at both ends, an end correction of 1.2r must be added to find the effective air-column length. The effective air-column length should then be used in the expressions
            for the resonance frequencies developed in the previous two sections.
          

          
            
              Activity 20

            

            
              
                (a) Calculate the effective length of a 1.5 m long cylindrical tube of radius 0.02 m that is open at one end and closed at the
                  other.
                

                (b) Using your result from part (a), calculate the first three resonance frequencies of the tube. Assume that the speed of sound
                  is 340 m/s.
                

                (c) Compare your answers with those from Activity 19.
                

              

              View answer - Activity 20

            

          

        

        
          5.11 Vibrating air column: standing waves in a conical tube

          The third configuration of air column that we shall consider is that enclosed by a conical tube. Figure 17 shows the normal modes of vibration for a conical tube plotted in terms of pressure. As you would expect, there is a pressure
            antinode at the closed tip of the cone and a pressure node at the open end of the cone. However, it is important to notice
            that the pressure amplitude decreases as the distance from the tip of the cone increases. This has the remarkable effect of
            making the resonance frequencies of a conical tube match those of a cylindrical tube open at both ends. That is to say, the
            resonance frequencies are given by:
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          where n is an integer number and L, in this case, is the slant length of the cone (the length along the outside of the tube, not the length down the middle).
            You don't need to know why a conical air column has the same resonance frequencies as a cylindrical tube open at each end.
            You just need to be aware that it does and that the resonance frequencies form a complete harmonic series.
          

          
            [image: Figure 17]

             Figure 17 The first three normal modes of vibration for a cone, plotted in terms of pressure. The solid curve shows the pressure
              at one extreme of the cycle and the dashed curve shows the pressure one half-cycle later
            

          

        

        
          5.12 Vibrating air column: pitches of notes produced by wind instruments

          In a wind instrument, the air column is the primary vibrator. To excite the air column, a musician either blows across it
            (e.g. flute) or blows down it via a mouthpiece (e.g. trumpet) or reed (e.g. oboe). This supplies energy, which starts the
            air column vibrating. The air column isn't just forced to vibrate in one single mode; as with the string, it vibrates in a
            combination of several modes.
          

          To a good approximation, the air column of a flute is cylindrical with two open ends and, as a result, its resonance frequencies
            form a complete harmonic series. The resonance frequencies of an oboe's air column also form a complete harmonic series but
            in this case it is because the air column is conical in shape. So, when these instruments are played, the sound radiated will
            be composed of any of the harmonics of the series.
          

          The clarinet, on the other hand, has an air column that is cylindrical in shape but has one end effectively closed. Although
            the resonance frequencies are harmonically related, the even harmonics are missing. Therefore, when the clarinet is played,
            the radiated sound is predominantly composed of odd harmonics.
          

          Just as with a stringed instrument, all of these harmonics will be fused into a single pitch sensation at the frequency of
            the fundamental. This will still be true in the case of notes produced by the clarinet where the even harmonics are missing
            – only the timbre of the notes will be affected, not their perceived pitch.
          

          For all three configurations of air column we have looked at, the first resonance frequency is inversely proportional to the
            length of the air column. In other words, the longer the air column, the lower its fundamental frequency. One might expect,
            therefore, that altering the length of the air column of a wind instrument should lead to a change in the pitch of the note
            it produces.
          

          
            
              Activity 21 – Optional

            

            
              
                This optional activity requires the following additional materials:

                Part 1: a descant recorder and three cardboard tubes that fit the end of the mouthpiece of the recorder as tightly as possible.
                  The tubes should measure 100 mm, 200 mm and 300 mm in length.
                

                Part 2: a microphone and sound editor software, such as Audition or Audacity, which is free to download from audacity.sourceforge.net.

              

            

          

          
            
              Part 1

            

            
              
                Part 1 requires a descant recorder and three cardboard tubes that fit the end of the mouthpiece of the recorder as tightly
                  as possible. The tubes should measure 100 mm, 200 mm and 300 mm in length.
                

                (a) Which tube would you expect to produce notes of the lowest pitch?
                

                Remove the mouthpiece from the descant recorder and attach it to the 0.1 m tube to create a simple wind instrument. The window
                  (the slit in the mouthpiece positioned above the U-shaped gouge) ensures that when this simple instrument is played there
                  is a pressure node at the tip of the mouthpiece. Measure the distance in metres from the tip of the mouthpiece to the end
                  of the 0.1 m tube. (Make sure your measurement is in metres – divide the result by 100 if you measure in centimetres, or 1000
                  if your measurement is in millimetres.)
                

                (b) Treating the simple instrument as having a cylindrical air column open at each end, calculate the air column's first resonance
                  frequency (its fundamental frequency). Assume that the speed of sound is 340 m/s but ignore end corrections.
                

                (c) Replace the 0.1 m tube with the 0.2 m tube. Measure the distance from the tip of the mouthpiece to the end of this tube and
                  perform a calculation to determine the fundamental frequency of the new air column.
                

                (d) Finally, replace the 0.2 m tube with the 0.3 m tube. Again, measure the distance from the mouthpiece tip to the tube end
                  and perform a calculation to determine the fundamental frequency of the new air column.
                

              

              View answer - Part 1

            

          

          
            
              Part 2

            

            
              
                Part 2 requires a microphone and sound editor software, again such as Audition or Audacity, which is free to download from
                  audacity.sourceforge.net.
                

                Make sure the microphone is connected to your computer. Install and run your sound-editor program, and open a new untitled
                  window.
                

                Reattach the recorder mouthpiece to the 0.1 m tube. Set your computer to record and play the simple instrument by blowing
                  gently down the mouthpiece. Stop recording.
                

                Select about 10 cycles of the waveform from the central steady-state part of your recording. Display a frequency spectrum
                  of this section of the waveform and identify the frequency of the first peak in the spectrum. Compare this with the prediction
                  for the frequency of the first mode of vibration of the air column that you made in Part 1(b).
                

                Repeat the experiment for the 0.2 m and 0.3 m tubes. There is no need to save any of your results.

              

              View discussion - Part 2

            

          

          
            
              Part 3

            

            
              
                Suggest reasons why the air column fundamental frequency predictions that you calculated in Part 1 may not exactly match the frequencies of the first peaks in the spectra that you measured in Part 2.
                

              

              View answer - Part 3

            

          

          In Activity 21, you saw that altering the length of the air column changed the pitch of the note produced by our simple wind instrument.
            Shortening the air column resulted in notes of higher pitch. Lengthening the air column resulted in notes of lower pitch.
          

          Most, but not all, wind instruments have some means of altering the length of the air column to enable notes of different
            pitches to be played. In brass instruments this is commonly done either by depressing valves to introduce new sections of
            tubing, or by pulling a slide in or out to adjust the existing tube length. In woodwind instruments, the effective length
            of the air column tends to be altered by covering or uncovering holes along the length of the tube called side holes. A large side hole acts like an open end and defines the position of a pressure node. A smaller side hole will make a partial
            reduction in the effective length of the air column (Figure 18).
          

          
            [image: Figure 18]

             Figure 18 Effect of a side hole on the effective length of an air column

          

          
            
              Activity 22 – Optional

            

            
              
                This optional activity requires the following additional materials:

                Parts 1 and 2: a descant recorder.

                Reattach the recorder mouthpiece to the main body of the recorder, making sure the line of holes is lined up with the top
                  of the mouthpiece.
                

                Play the instrument with all the holes covered (use the first three fingers and thumb of your left hand on the top three holes
                  and the hole underneath, and the four fingers of your right hand for the remaining holes; blow very gently). Slowly shorten
                  the effective air-column length by uncovering the holes one by one, working from the bottom of the instrument up. You should
                  hear the pitch of the notes rise.
                

                The window (the slit in the mouthpiece positioned above the U-shaped gouge) ensures that when the recorder is played there
                  is a pressure node at the tip of the mouthpiece. Using a ruler, measure the length of the whole instrument (make sure your
                  measurement is in metres).
                

              

            

          

          
            
              Part 1

            

            
              
                Treating the instrument as a cylinder with two open ends, estimate the first resonance frequency of the recorder's air column
                  when all the holes are covered (don't include any end corrections). The note that the recorder produces when all the holes
                  are covered is C5. The pitch C5 has a fundamental frequency of 523.25 Hz. How does your estimate for the fundamental frequency of the air column compare
                  with this?
                

              

              View answer - Part 1

            

          

          
            
              Part 2

            

            
              
                Now measure the distance from the input end to the last finger hole (a double hole). Again, treating the recorder as a cylinder
                  open at both ends, estimate the first resonance frequency of the air column when all but the last finger hole are covered
                  (again don't include any end corrections). The note that the recorder produces when all but the last finger hole is covered
                  is D5. This pitch has a fundamental frequency of 587.3 Hz. How does your estimate for the fundamental frequency of the air column
                  compare with this?
                

              

              View answer - Part 2

            

          

          
            
              Part 3

            

            
              
                Why do you think the two values in Part 2 do not agree as closely as do those in Part 1?
                

              

              View discussion - Part 3

            

          

          If altering the length of a wind instrument's air column were the only way a musician could change the pitch of the note produced,
            the range of the instrument would be very limited. Fortunately, the range can be extended by using the technique of overblowing (which does not necessarily just involve blowing harder, but in some instruments may involve such things as adjusting the
            tension of the lips). This has the effect of feeding less energy into the first mode of vibration and more energy into the
            higher modes of vibration. The result is that notes can be produced with pitches corresponding to the frequencies of these
            higher modes. Many of the notes available on a brass instrument are produced by using this technique of overblowing. In the
            case of the woodwind instruments, the technique is used to extend the range above that available just by uncovering all the
            finger holes. For an instrument that has a conical air column or a cylindrical air column open at each end, the musician can
            produce a note an octave higher by overblowing into the second mode of vibration. If the air column is cylindrical but closed
            at one end, overblowing into the second mode of vibration will produce a note that is an interval of a twelfth (that is, an
            octave plus a fifth) higher. With some woodwind instruments, a speaker key (or register key) is used to open a small side hole to assist with the overblowing process.
          

          There is another factor that affects the pitches of notes produced by wind instruments. This will be familiar to wind players,
            who I'm sure are well aware of the need to warm up their instruments (by blowing down them) prior to a performance, and is
            a factor you might have mentioned in your answer to Part 3 of Activity 21. If you recall, as well as depending on geometry, the resonance frequencies of an air column also depend on the speed of
            sound. Although we have been tending to take this as 340 m/s, it is in fact dependent on temperature. The higher the temperature,
            the faster the speed of sound. The faster the speed of sound, the higher the resonance frequencies. So, increasing the temperature
            has the effect of raising the pitch of the instrument.
          

          
            
              Activity 23

            

            
              
                For the purposes of this Activity, the air column of a flute can be considered to be a cylinder of length 0.65 m and radius
                  0.01 m, open at each end.
                

                (a) Before the instrument has been warmed up, assume that the average temperature of the column of air is 15 °C. The speed of
                  sound at this temperature can be taken as being 340.5 m/s. The lowest note on the flute has the pitch C4 (this pitch has a fundamental frequency of 261.6 Hz). To play this note, all the keys must be covered. Calculate the first
                  resonance frequency when this fingering is applied. Include any end corrections. Would you expect the flute to play flat or
                  sharp, or will it be in tune?
                

                (b) When the instrument has been warmed up, assume that the average temperature of the air column has increased to 25 °C. The
                  speed of sound at this temperature can be taken as being 346.5 m/s. Recalculate the fundamental frequency of the air column.
                  How would you expect the tuning of the instrument to be now?
                

              

              View answer - Activity 23

            

          

        

        
          5.13 Other primary vibrators

          You saw in the previous two sections that stringed instruments and wind instruments possess primary vibrators that have harmonically
            related natural frequencies. As a result, these two classes of instruments produce notes that have a well-defined sense of
            pitch.
          

          In this section, I want to briefly introduce you to some primary vibrators that don't have harmonically related natural frequencies.
            Specifically we shall take a look at a rectangular bar, a circular membrane and a circular plate. These primary vibrators
            are often found in percussion instruments, many of which produce notes without a well-defined sense of pitch. For example,
            the primary vibrator in a cymbal is a circular plate and the primary vibrator in a snare drum is a circular membrane. Neither
            of these instruments produces notes that have a very definite pitch.
          

          
            5.13.1 Rectangular bar

            If a solid rectangular bar is excited by striking it, energy is supplied that starts the bar vibrating transversely. The bar
              will vibrate in a number of modes simultaneously since the striking action supplies energy over a range of frequencies. The
              motion of the bar will be the superposition of the standing-wave patterns of the excited modes.
            

            Assume for the moment that the rectangular bar is supported in such a way that both ends are free to vibrate and the effects
              of the supports can be neglected. The standing-wave patterns for the bar are given in Figure 19. Note that for each normal mode of vibration, the ends of the bar are displacement antinodes (points of maximum vibration).
            

            The fundamental vibrational mode is shown in Figure 19(a). In addition to the antinodes at the free ends, there is a third antinode at the centre of the bar and two nodes approximately
              halfway between the centre and each end. When the middle of the bar rises the ends fall, and vice versa. Each successive mode
              of vibration (Figure 19(b), (c) and (d)) has one additional displacement node and one additional antinode.
            

            
              [image: Figure 19]

               Figure 19 The first four modes of vibration of a rectangular bar. The solid and dashed lines indicate the positions of the
                bar at opposite phase positions in the cycle
              

            

            This is more complicated than the cases we have met before. For a start, the frequency of the first mode of vibration depends
              on a number of factors to do with the bar's size and what it's made of. In fact, the first natural frequency of the bar is
              given approximately by:
            

            
              [image: ]

            

            where E is known as the Young's modulus and is a measure of the elasticity or rigidity of the material from which the bar is made,
              ρ is the density of the material, t is the thickness of the bar and L is the length of the bar. The Young's modulus is expressed in newtons per metre squared (N/m2), the density is expressed in kilograms per metre cubed (kg/m3) and the thickness and length are expressed in metres (m).
            

            Looking at Figure 19, it would seem that once the frequency of the first mode of vibration has been determined from the above formula, the frequencies
              of the higher modes would form a harmonic series. This is because the wavelengths of the standing waves are related and look
              very similar to the situation for air vibrating in an air column that is open at both ends (you may like to refer back to
              Figure 15). However, frequency is related not only to wavelength but to wave speed. In the case of the rectangular bar it turns out
              that wave speed is not constant but increases with frequency (unlike a stretched string where the wave speed is essentially
              constant). Thus the frequencies of the increasing modes of vibration are spaced further apart than would be the case if wave
              speed was constant. The frequencies of the second, third and fourth modes of vibration actually turn out to be 2.76f1, 5.40f1 and 8.93f1. Don't worry, you don't need to memorise either these frequencies or the expression for the first natural frequency given
              above. The important thing that you need to note is that the frequencies are not harmonically related. That is, they do not form a harmonic series.
            

          

          
            5.13.2 Circular membrane

            When a membrane that is stretched over a circular frame is struck, energy is supplied, which again causes the membrane to
              vibrate in a number of modes simultaneously.
            

            The first six modes in which the circular membrane can vibrate are shown in Figure 20. The diagrams comprise circles that are concentric with the rim and lines that pass through the centre of the membrane.
            

            
              [image: Figure 20]

               Figure 20 The first six normal modes of vibration of a circular membrane. The shaded parts of the membrane show where the
                membrane is moving up (say) at a particular instant, and the unshaded parts where it is moving down
              

            

            These represent nodal circles and nodal lines. They are the two-dimensional equivalent of the nodes on a vibrating string. There is no upwards and downwards motion of
              the membrane at any position along a nodal circle or line. Note that since the membrane is fixed all around its circumference,
              there is a nodal circle here for all the modes.
            

            The fundamental vibrational mode is shown in Figure 20(a). The only feature is the nodal circle around the outside of the membrane. The whole membrane falls and rises en masse.
            

            The second mode of vibration is shown in Figure 20(b). In addition to the outer nodal circle, there is now a nodal line across the centre dividing the membrane into two semi-circular
              segments. The two segments vibrate with opposite phase – while one is rising, the other is falling. The angular position of
              the nodal line through the centre is determined by where the membrane is struck – it will be roughly at right angles to an
              imaginary line drawn between the point where the membrane is struck and the centre.
            

            The third mode of vibration is shown in Figure 20(c). There are now two nodal lines and the outer nodal circle. In this mode, two diametrically opposite quarters of the membrane
              vibrate in phase while the other two segments vibrate with the opposite phase.
            

            The fourth mode of vibration is shown in Figure 20(d). There are no nodal lines but there are now two nodal circles. As with the second mode, the two segments vibrate with
              opposite phase, the central disc rising while the outer ring falls and vice versa.
            

            The fifth mode has six segments separated by three nodal lines, while the sixth mode combines one nodal line and two nodal
              circles. Higher modes of vibration (not shown) continue to become more complicated.
            

            
              
                Activity 24

              

              
                
                  Run the Flash animation below. It shows three-dimensional representations of a circular membrane vibrating in each of its
                    first six modes of vibration and should help you to visualise the motion of the membrane in each mode. Please note: to view this animation correctly, you will need to click on the ‘Launch in separate player’ link below.

                  
                    
                      Interactive content is not available in this format.

                    

                  

                

              

            

            It turns out that, just like we discovered for the rectangular bar, the natural frequencies of a circular membrane are not
              harmonically related. If the first natural frequency is denoted by f1, then the frequencies of the second, third, fourth, fifth and sixth modes of vibration are 1.59f1, 2.13f1, 2.29f1, 2.65f1 and 2.91f1 respectively. Again, you don't need to remember these values – just be aware that the natural frequencies do not form a harmonic
              series.
            

          

          
            5.13.3 Circular plate

            By now you shouldn't be at all surprised to learn that when a circular plate that has an outer rim that is free to vibrate
              is struck, the plate will vibrate in a number of modes at the same time.
            

            The first four modes of vibration of a circular plate with a free edge are shown in Figure 21. As with the circular membrane, the circles and lines correspond to nodal circles and nodal lines. Having said that, the
              dotted circle around the rim of the plate is not a nodal circle. In all its modes of vibration, the plate is free to vibrate
              at its edge. However, you shouldn't assume that the dotted circle is an antinode either; it simply indicates the boundary
              of the plate.
            

            
              [image: Figure 21]

               Figure 21 The first four normal modes of vibration of a circular plate. As in Figure 20, the shaded parts of the plate show
                where the plate is moving up (say) at a particular instant, and the unshaded parts where it is moving down
              

            

            The fundamental vibrational mode is shown in Figure 21(a). There are two nodal lines through the centre dividing the plate into four segments. In this mode, two diametrically opposite
              quarters of the membrane vibrate in phase while the other two segments vibrate with the opposite phase. Again the angular
              position of these lines is determined by the place at which the plate is struck.
            

            The second mode of vibration is shown in Figure 21(b). There is a single nodal circle located midway between the centre of the plate and the outside edge. The central disc
              vibrates with opposite phase to the outside ring. It rises as the outside ring falls and vice versa.
            

            The third mode of vibration has six segments separated by three nodal lines, while the fourth mode of vibration contains one
              nodal line and one nodal circle.
            

            
              
                Activity 25

              

              
                
                  Run the Flash animation below. It shows three-dimensional representations of a circular plate vibrating in each of its first
                    four modes of vibration and should help you visualise the motion of the plate in each mode. Please note: to view this animation correctly, you will need to click on the ‘Launch in separate player’ link below.

                  
                    
                      Interactive content is not available in this format.

                    

                  

                

              

            

            Again, it turns out that the natural frequencies of a circular plate are not harmonically related. If the first natural frequency
              is denoted by f1 then the frequencies of the second, third and fourth modes of vibration are 1.73f1, 2.33f1 and 3.91f1 respectively. Again, you don't need to memorise these values. But do note that, once more, the natural frequencies are not
              harmonically related.
            

          

          
            5.13.4 Pitches of notes produced by percussion instruments

            We have seen that none of the rectangular bar, the circular membrane and the circular plate have harmonically related natural
              frequencies. It may not surprise you to learn, therefore, that instruments containing these primary vibrators tend to produce
              notes that don't have a very well-defined sense of pitch.
            

            This is certainly true in the case of the cymbal, which has a circular plate as its primary vibrator. Whether a single cymbal
              is struck with a drumstick or two cymbals are crashed together, the note produced is essentially unpitched. It is also true
              of the snare drum, which has a circular membrane as the primary vibrator. You would be hard pushed to say that the sound produced
              when the drum is hit can be assigned a pitch.
            

            But hang on! What about timpani (also known as kettledrums)? A kettledrum has a circular membrane as the primary vibrator
              but it produces a pitched note. Indeed, a timpanist can tune the drum by altering the tension of the membrane. So, why does
              a kettledrum produce a note of definite pitch when the natural frequencies of a circular membrane are not harmonically related?
              Well, in my analysis of the vibrational modes of a circular membrane I failed to take into account the effects of air damping.
              When the tension of the membrane is relatively low, the air-damping force has the effect of shifting the frequency of those
              modes of vibration that radiate a significant amount of sound, so that they do become approximately harmonically related.
            

            You may also raise the same question regarding xylophones and glockenspiels. These instruments have rectangular bars as primary
              vibrators. We have already seen that a rectangular bar has natural frequencies that do not form a harmonic series. So, on
              the face of it one would expect that a xylophone or glockenspiel should produce unpitched notes. Of course, nothing could
              be further from the truth. In this case, I failed to take into account the effect of the supports on which the rectangular
              bars rest. The reason why these instruments actually produce pitched notes is beyond the scope of this unit.
            

          

        

        
          5.14 Response and damping

          You have learned so far in this chapter that when a musician plays an instrument, they force the primary vibrator to vibrate.
            If the primary vibrator is driven at one of its resonance frequencies, the normal mode of vibration corresponding to that
            resonance frequency will be excited. Now, in practice it is also true to say that even if the primary vibrator is driven at
            a frequency close to the resonance frequency, the normal mode will still be excited, but just to a lesser degree. In other
            words, there is a range of frequencies over which the normal mode will be excited.
          

          This is depicted graphically in Figure 22, which shows a frequency-response curve, also sometimes referred to as a resonance curve, for the first mode of vibration of an instrument. As the frequency at which the primary vibrator is driven is increased,
            the resulting standing wave increases in amplitude then decreases. The amplitude of the standing wave is largest when the
            primary vibrator is forced to vibrate at exactly the resonance frequency fR.
          

          
            [image: Figure 22]

             Figure 22 Frequency-response curve for the first mode of vibration of an instrument. The resonance frequency is fR and the sharpness of the frequency response can be expressed as f″−f′
            

          

          The sharpness of the frequency response is often expressed in terms of the range of frequencies over which the amplitude of
            vibration is greater than half the amplitude at resonance, i.e. the width of the resonance peak at half its height. For example,
            in Figure 22, the sharpness of the frequency response is equal to f″−f′.
          

          
            [image: Figure 23]

             Figure 23 Frequency-response curves showing the first mode of vibration for both lightly and heavily damped primary vibrators

          

          If energy is supplied to the instrument in a short burst, the primary vibrator will be set vibrating but the vibrations will
            gradually die away because of damping. The damping is a measure of how rapidly the system loses energy through friction or by radiating the energy away as sound,
            etc. If the damping is light, the vibrations will continue for a long time. It turns out that lightly damped primary vibrators
            have a narrow frequency response. If the damping is heavy, on the other hand, the vibrations will die away quickly, and heavily
            damped primary vibrators have a broad frequency response. Figure 23 shows frequency-response curves for the first mode of vibration of a lightly damped primary vibrator (solid line) and of
            a heavily damped primary vibrator (dashed line).
          

          The curves shown in Figure 22 and Figure 23 show the frequency response of only a single mode of vibration. If the frequency range is extended upwards to take in more
            modes of vibration, the frequency-response curve will contain several peaks – each peak being at the frequency of a mode of
            vibration (see Figure 24).
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             Figure 24 Frequency-response curve showing three modes of vibration of a primary vibrator

          

        

        
          5.15 Summary of Section 5

          It is probably worth summarising some of the main points you should take away from this section on primary vibrators. The
            first thing to remember is that when an instrument is excited, it vibrates strongly at certain frequencies called natural
            (or resonance) frequencies. The reason for this is that standing waves are set up in the instrument's primary vibrator at
            these frequencies. The next thing to note is that some primary vibrators, such as a string or an air column, have natural
            frequencies that are essentially harmonically related. Instruments containing these primary vibrators tend to produce notes
            that have a well-defined pitch. Other primary vibrators, such as a circular membrane, a circular plate or a rectangular bar,
            have natural frequencies that are not harmonically related. Instruments containing these primary vibrators usually (but not
            always) produce notes that do not have a well-defined pitch.
          

        

      

    

  
    
      
        6 Radiation

        All the primary vibrators we discussed in the previous section can to some extent communicate vibrations to the surrounding
          air and hence radiate sound. However, some radiate sound better than others. Air columns, for example, radiate sound quite
          well. Even though only around 1% of the energy possessed by a vibrating air column is radiated away, this is enough to produce
          a clearly audible note.
        

        Similarly, circular membranes and circular plates are also good sound radiators. They have a large surface area and so move
          a large amount of air when they vibrate.
        

        A vibrating string, on the other hand, produces very little sound by itself, as it is too thin to disturb very much air. It
          is unable to create the large pressure differences required at the ear to produce a loud sound. So, in all instruments that
          have a string as the primary vibrator there must be some means of improving the efficiency of the sound radiation. This is
          usually done by coupling the string to one or more secondary vibrators. In the case of the piano, the string is coupled to
          a soundboard. In the case of the violin, it is coupled to the violin body and the air contained within the body. So, how does
          this help?
        

        To help answer this question, let us first look at what happens when a tuning fork is struck. Striking a tuning fork causes
          its prongs to vibrate, but very little sound is produced because the prongs move back and forth through the air without particularly
          disturbing it. As a result, the tuning fork cannot be heard more than a few centimetres away. However, if the base of the
          tuning fork is pressed against a flat surface such as a table top, the sound may be heard throughout the room. The tuning
          fork causes the table top to vibrate and the large vibrating area of the table radiates sound much better than the fork itself
          (Figure 25). Clearly we can't get something for nothing and indeed we don't. The quieter sound produced by the tuning fork on its own
          dies away very slowly, whereas the louder sound produced when the tuning fork is in contact with the table top is damped much
          more rapidly.
        

        
          [image: Figure 25]

           Figure 25 Improved sound radiation when a tuning fork is pressed against a table top

        

        Coupling a string to a secondary vibrator such as a piano soundboard or violin body achieves the same effect as pressing a
          tuning fork against a table top. The vibrations of the string force the secondary vibrator to vibrate. These vibrations are
          then radiated effectively to the surrounding air.
        

        Another primary vibrator that sometimes needs the help of a secondary vibrator to improve the sound radiation is the rectangular
          bar. In instruments such as the xylophone and vibraphone, each bar is coupled to an air column enclosed within a cylindrical
          tube that is suspended below the bar. When a bar is struck, its vibrations force the air column to vibrate too. The vibrations
          of the air column are then radiated effectively to the surrounding air.
        

        This all seems fairly straightforward. In some instruments, the primary vibrator enlists the help of a secondary vibrator
          to ensure that the sound produced by the instrument is sufficiently loud. The primary vibrator oscillates strongly at its
          resonance frequencies and, in turn, forces the secondary vibrator to vibrate at these frequencies. The secondary vibrator
          then radiates the vibrations to the surrounding air.
        

        Hang on a minute! Won't the secondary vibrator have its own set of resonance frequencies at which it will vibrate strongly?
          The answer is yes. But surely we need the secondary vibrator to vibrate strongly at the frequencies at which it is being driven,
          i.e. the resonance frequencies of the primary vibrator!
        

        In the case of a xylophone, this is no problem. The secondary vibrators are the air columns. The lengths of the air columns
          on a xylophone are chosen so that their resonance frequencies coincide with those of the xylophone bars.
        

        But what about a piano? The soundboard is the secondary vibrator. If there were just one string attached to it, it might be
          possible to design the soundboard so that its resonance frequencies coincided with those of the string. However, in reality
          there are many strings of different lengths, tensions and masses attached to the soundboard. As each string has a different
          set of natural frequencies, it doesn't seem very likely that we can find a soundboard whose resonance frequencies coincide
          with those of all the strings. On a violin there are only four strings attached to the secondary vibrators (the violin body
          and contained air). However, their lengths and therefore their natural frequencies are being constantly altered by the player.
          So, again, it seems pretty unlikely that the violin body and air cavity could be designed to have resonance frequencies that
          coincide with all the possible string natural frequencies.
        

        So, what do we want from a piano soundboard and from a violin body? Well, really what we want is for these secondary vibrators
          to vibrate reasonably strongly at all frequencies. In other words, we want them to have a relatively uniform response curve
          covering the whole frequency range used by the instrument. This is achieved by designing the soundboard or violin body in
          such a way that there are many overlapping broad peaks in the frequency-response curve (see Figure 26).
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           Figure 26 Frequency-response curve showing an essentially flat response due to the combination of a number of overlapping
            broad resonance peaks
          

        

        To sum up, in cases where the primary vibrator requires assistance to make sure that the sound produced by the instrument
          is sufficiently loud, secondary vibrators are employed to improve the radiation of the sound.
        

        This improvement needs to be at the resonance frequencies of the primary vibrator. This is sometimes achieved by ensuring
          that the resonance frequencies of the primary and secondary vibrators coincide (e.g. the xylophone). Or, at other times, it
          is achieved by using a secondary vibrator that has as uniform a frequency response as possible (e.g. the piano and violin).
        

      

    

  
    
      
        Conclusion

        This free course provided an introduction to studying Technology. It took you through a series of exercises designed to develop
          your approach to study and learning at a distance, and helped to improve your confidence as an independent learner.
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        Activity 2

        Answer

        
          	
            The miaowing of a cat can't be classed as a musical instrument. It is neither predictable nor controllable by a human.

          

          	
            A flute can be classed as a musical instrument. Its output is predictable and controllable by a human.

          

          	
            Breaking glass could possibly be classed as a musical instrument. Although it can be controlled by a human, the sound produced
              may have a degree of unpredictability.
            

          

          	
            An anvil struck with a hammer can be classed as a musical instrument. A human can strike an anvil in a controlled manner and
              the sound produced is predictable. Indeed, an anvil is used as a percussion instrument in Verdi's ‘Anvil Chorus’ and in Wagner's
              ‘Ring’ for the forging of the ring.
            

          

          	
            A car engine can be classed as a musical instrument. The revving of a car engine can be controlled by a human and the output
              is predictable.
            

          

        

        Back

      

    

  
    
      
        Activity 4

        Answer

        The correct pairings are given below.

        1 and (b) – Each component part of a musical instrument influences the vibrational behaviour of the other component parts
          because they are all coupled together.
        

        2 and (c) – The primary vibrator is responsible for determining the pitch, if any, of the note produced by a musical instrument
          because the instrument as a whole vibrates strongly at the natural frequencies of the primary vibrator.
        

        3 and (a) – Secondary vibrators influence the loudness and timbre of the note produced by a musical instrument because they
          affect just how strongly the whole instrument vibrates at the natural frequencies of the primary vibrator.
        

        Back

      

    

  
    
      
        Activity 6

        Answer

        
          	
            The guitar is excited by the player plucking the strings. Energy is introduced in short bursts.

          

          	
            The trombone is excited by blowing air into the instrument. Energy can be introduced in a short burst or continuously.

          

          	
            The piano is excited by hammers striking the strings. Energy is introduced in short bursts.

          

          	
            The oboe is excited by blowing air into the instrument. Energy can be introduced in a short burst or continuously.

          

          	
            The xylophone is excited by striking the wooden bars. Energy is introduced in short bursts.

          

        

        Back

      

    

  
    
      
        Activity 7

        Answer

        
          	
            A longitudinal wave is a wave where the displacement of the medium is in the direction of travel of the wave.

          

          	
            A transverse wave is a wave where the displacement of the medium is at right angles to the direction of travel of the wave.
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        Activity 9

        Answer

        Nodes are places where the displacement is always zero. There are four of these shown in the figure.

        Antinodes are places where the displacement oscillates between a large positive value and a large negative value. They occur
          midway between the nodes, and there are three such places shown in the figure.
        

        Back

      

    

  
    
      
        Activity 12

        Answer

        
          	
            (a) The pulse takes 0.8 second to travel down the rope and back. That is, it takes 0.8 second to travel 10 m. Therefore it travels
              at a speed of v = 10/0.8 = 12.5 m/s.
            

          

          	
            (b)The mass per unit length μ of the rope is simply the mass that a 1 m length of the rope would have. So, if a 5 m length has a mass of 0.32 kg, a 1 m
              length will have a mass of 0.32/5 = 0.064 kg. Therefore the mass per unit length μ = 0.064 kg/m. The tension T = 10 N, so substituting the values for T and μ into the wave speed equation gives:
            
 
            
              [image: ]

            
 
            The wave speed predicted by the wave speed equation matches that calculated in part (a).
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        Activity 14

        Answer

        First natural frequency f1 = v/2L = 250/(2 × 0.5) = 250 Hz.
        

        Second natural frequency f2 = 2v/2L = (2 × 250)/(2 × 0.5) = 500 Hz.
        

        Third natural frequency f3 = 3v/2L = (3 × 250)/(2 × 0.5) = 750 Hz.
        

        Fourth natural frequency f4 = 4v/2L = (4 × 250)/(2 × 0.5) = 1000 Hz.
        

        Back

      

    

  
    
      
        Activity 16

        Answer

        
          	
            (a) The length of wire required for the string to produce a pitch of C1 (fundamental frequency f1 = 32.7 Hz) if its tension is 700 N and mass per unit length is 0.0059 kg/m is:
            
 
            [image: ]

          

          	
            (b) The mass per unit length required for the 1.4 m long C1 string is:
            

            [image: ]
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        Activity 18

        Answer

        If the cylinder is open at both ends, then the formula that gives the resonance frequencies is:

        
          [image: ]

        

        where L is the length of the cylinder and v is the speed of sound.
        

        If L = 1.5 m and v = 340 m/s, the first three resonance frequencies are determined as follows:
        

        First resonance frequency f1 = v/2L = 340/(2 × 1.5) = 113.3 Hz.
        

        Second resonance frequency f2 = 2v/2L = (2 × 340)/(2 × 1.5) = 226.7 Hz.
        

        Third resonance frequency f3 = 3v/2L = (3 × 340)/(2 × 1.5) = 340 Hz.
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        Activity 19

        Answer

        If the cylinder is closed at one end, then the formula that gives the resonance frequencies is:

        
          [image: ]

        

        where L is the length of the cylinder and v is the speed of sound.
        

        If L = 1.5 m and v = 340 m/s, the first three resonance frequencies are determined as follows:
        

        First resonance frequency f1 = v/4L = 340/(4 × 1.5) = 56.7 Hz.
        

        Second resonance frequency f2 = 3v/4L = (3 × 340)/(4 × 1.5) = 170 Hz.
        

        Third resonance frequency f3 = 5v/4L = (5 × 340)/(4 × 1.5) = 283.3 Hz.
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        Activity 20

        Answer

        (a) The total end correction for a 1.5 m long cylindrical tube of 0.02 m radius that is open at one end and closed at the other
          is 0.6 × r = 0.6 × 0.02 = 0.012 m. Therefore, the effective length of the tube is 1.5 + 0.012 = 1.512 m.
        

        (b) Using the above value for the effective length, the first three resonance frequencies are determined as follows:
        

        First resonance frequency f1 = v/4L = 340/(4 × 1.512) = 56.2 Hz.
        

        Second resonance frequency f2 = 3v/4L = (3 × 340)/(4 × 1.512) = 168.7 Hz.
        

        Third resonance frequency f3 = 5v/4L = (5 × 340)/(4 × 1.512) = 281.1 Hz.
        

        (c) Comparing these results with those of Activity 19 shows that when the end correction is taken into account, the calculated resonance frequencies are slightly lower.
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        Part 1

        Answer

        (a) You should have predicted that the longest tube will provide the lowest pitch (in other words, the 0.3 m tube).
        

        (b) When the 0.1 m tube is attached to the mouthpiece, the overall length of the simple instrument is 0.2 m. The first resonance
          frequency (the fundamental frequency) is therefore f1 = v/2L = 340/(2 × 0.2) = 850 Hz. (You should replace the overall length in this equation with your own measurement.)
        

        (c) When the 0.2 m tube is attached, the overall length of the instrument is 0.3 m. The fundamental frequency is thus f1 = v/2L = 340/(2 × 0.3) = 566.7 Hz. (You should replace the overall length in this equation with your own measurement.)
        

        (d) When the 0.3 m tube is attached, the overall length of the instrument is 0.4 m. The fundamental frequency is thus f1 = v/2L = 340/(2 × 0.4) = 425 Hz. (You should replace the overall length in this equation with your own measurement.)
        

        Back

      

    

  
    
      
        Part 3

        Answer

        The theoretical predictions of the air-column fundamental frequencies that you calculated in Part 1 may be slightly inaccurate because:
        

        
          	
            The end correction at the open end has not been taken into account, so the effective length of the tube is not the length
              you measured (i.e. not the length from the end of the tube to the tip of the recorder mouthpiece). Note that there is no end
              correction to be taken into account at the mouthpiece end, as the length measurement has been taken from the tip of the recorder
              where there is a pressure node.
            

          

          	
            The bore of a tube/recorder combination does not act as a purely cylindrical air column.

          

          	
            The speed of sound is not exactly 340 m/s. You should remember from earlier in the course that the speed of sound in air is
              affected by the temperature of the air. In particular, when the instrument is being played, the temperature of the air that
              is blown out of your mouth is higher than the normal air temperature.
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        Part 1

        Answer

        The length of the recorder is 0.325 m. The fundamental frequency of the air column is thus f1 = v/2L = 340/(2 × 0.325) = 523.1 Hz. This is very close to what one would expect for the recorder to produce the pitch C5. (You should replace the overall length in this equation with your own measurement.)
        

        Back

      

    

  
    
      
        Part 2

        Answer

        The distance from the mouthpiece to the last finger hole is 0.28 m. The fundamental frequency of the air column is thus f1 = v/2L = 340/(2 × 0.28) = 607.1 Hz. This frequency is higher than one would expect if the recorder is to produce the pitch D5.(You should replace the overall length in this equation with your own measurement.)
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        Activity 23

        Answer

        (a) The total end correction for a 0.65 m long cylindrical tube of radius 0.01 m that is open at both ends is 2 × 0.6 × r = 1.2 × 0.01 = 0.012 m. Therefore, the effective length of the tube is 0.65 × 0.012 = 0.662 m.
        

        The fundamental frequency of the air column at 15 °C is therefore f1 = v/2L = 340.5/(2 × 0.662) = 257.2 Hz. However, the flute should be producing the note C4, which has a fundamental frequency of 261.6 Hz. Thus the flute will play flat.
        

        (b) Using the same value for the effective length, the fundamental frequency of the air column at 25 °C is now f1 = v/2L = 346.5/(2 × 0.662) = 261.7 Hz, which is very close to the correct frequency for the note C4. At this temperature, the flute should therefore play in tune.
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        Activity 3

        Discussion

        Comment

        
          	
            Each string of the guitar is a primary vibrator. The body of the guitar and the air contained within the body are secondary
              vibrators.
            

          

          	
            The trombone is a brass instrument and so it is played in the same way as the trumpet, by the player blowing air through their
              lips into the instrument. Thus the primary vibrator is the air column and the player's lips act as a secondary vibrator.
            

          

          	
            The piano is a stringed keyboard instrument. When a note is played, a string is struck, and the string is therefore the primary
              vibrator. The soundboard is a secondary vibrator.
            

          

          	
            The oboe is a woodwind instrument that uses a reed. Thus the primary vibrator is the air column. The reed is a secondary vibrator.

          

          	
            The xylophone comprises a number of wooden bars that are struck with a hammer. Hanging under each bar is a vertical tube.
              Each bar is a primary vibrator and the air columns contained within the tubes are secondary vibrators.
            

          

        

        Back

      

    

  
    
      
        Activity 5

        Discussion

        Comment

        The first sound is that of a trumpet blowing a staccato note. Energy is introduced in a short burst. The sound is transient.

        The second sound is that of a trumpet blowing a long-lasting note. Energy is introduced continuously. The sound is sustained.

        The third sound is a violin bowing a long-lasting note. Energy is introduced continuously. The sound is sustained.

        The fourth sound is that of a violin being plucked. Energy is introduced in a short burst. The sound is transient.

        The last sound is a snare drum being hit. Energy is introduced in a short burst. The sound is transient.

        Back

      

    

  
    
      
        Activity 15

        Discussion

        Comment

        
          	
            The length of the string is given as 330 mm. However, the length must be expressed in metres. Hence, the length of the string
              L is 330/1000 = 0.33 m. Similarly, the string's mass per unit length is given as 0.6 g/m. This must be expressed in kilograms
              per metre. Hence, the mass per unit length μ = 0.6/1000 = 0.0006 kg/m. The tension T = 53 N.
            
 
            Using the equation for f1 given above, the fundamental frequency is then given by:
            
 
            [image: ]

          

          	
            The fundamental frequency of the string is higher than the international pitch standard of A4 = 440 Hz. Therefore, the instrument will play slightly sharp.
            

          

          	
            To lower the pitch of the note, the tension in the string will need to be reduced. That is, the string will need to be loosened.

          

          	
            The tension required for the string to have a fundamental frequency of 440 Hz can be found using the equation for T given above, as follows:
            
 
            [image: ]
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        Part 2

        Discussion

        Comment

        You should find that, for each tube/recorder mouthpiece combination, the frequency of the first peak in the frequency spectrum
          is close to the prediction of the first resonance frequency that you made in Part 1.
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        Part 3

        Discussion

        Comment

        What needs to be considered is that, because the last finger hole is quite small, the sounding length will be only partially
          reduced by the presence of the finger hole. Therefore the effective air-column length will actually be longer than measured,making
          the resulting calculation much closer to the value of 587.3 Hz required to produce the pitch D5.
        

        This also explains the function of the double hole. By uncovering one of the two holes, the effective reduction in the length
          of the tube is even less than when both holes are open. This allows the player to produce the note in between C5 and D5 (i.e. C#5 or D♭5 ).
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