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Introduction


Introduction


We often need to represent physical quantities such as mass, force, velocity,
acceleration, time, etc., mathematically. Most of the physical quantities
that we need can be classified into two types: scalars and vectors. Scalar
quantities are quantities, like mass, temperature, energy, volume and time,
that can be represented by a single real number. Other quantities, like
force, velocity and acceleration, possess magnitude and direction in space,
and cannot be represented by a single real number; they are called vector
quantities.


The definitive vector quantity is displacement. The displacement of a point
specifies the position of the point in space relative to some reference point.
We use the concept of displacement whenever we want to describe spatial
relationships. Consider, for example, the instructions written in blood on a
pirate’s treasure map:


Take five paces due north from the big oak tree, then seven paces due
west, and then dig down for three metres.


This is a specification of a displacement vector — the displacement of the
treasure from a reference point (the big oak tree). In fact, this particular
way of specifying the displacement of the treasure is known as the Cartesian
description of a displacement, although the pirate probably didn’t know
that. Alternatively, there is the so-called polar description of the same
displacement (equating paces with metres):


Starting at the big oak tree, dig for 9.1 paces along a straight sloping
line inclined at 19◦below the horizontal at a bearing of 54◦west of north.


This ‘distance (or magnitude) plus direction’ specification will also get you
to the treasure, although less conveniently because it is more difficult to
dig along a sloping line. These two different specifications are shown in
Figure 0.1.


19°


54°


N


3 metres


7 paces
5 paces


9.1 paces


Figure 0.1


Section 1 defines a vector and discusses ways of representing vectors in two
dimensions. Section 3 discusses another way of representing vectors, one
that easily generalizes from two to three (or more) dimensions. Sections 2
and 4 consider ways of operating on and combining vectors — that is, they
provide the fundamentals of vector algebra.
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Section 1 Describing and representing vectors 


1 Describing and representing vectors

Subsection 1.1 explains what scalars and vectors are. Subsections 1.2 and 1.3 
then explain how to denote vectors symbolically (i.e. algebraically) and how 
to show them in diagrams. Subsection 1.4 explains what is meant by saying 
that two vectors are equal to one another, which is a necessary first step 
in the development of an algebra for vectors. Subsection 1.5 introduces a 
method for representing vectors in two dimensions that can be useful in a 
variety of physical situations. 


1.1 Scalars and vectors 
A scalar is any quantity, such as mass, time, volume and temperature, that 
can be represented mathematically by a single real number (and often a unit 
of measurement). Real numbers themselves are examples of scalars, and you 
can regard the terms scalar and real number as synonymous. Examples of 
scalar quantities, quoted to some convenient degree of accuracy, are: 


the mass of the Earth, 5.975 × 1024 kilograms;

the temperature of melting ice, 0 degrees Celsius;

my current bank account balance, −153.12 pounds sterling;

pi (π), 3.141 59. . . .



A real number x is defined by two properties: its modulus |x| and its sign. The modulus of a real number 
Thus the magnitude of a scalar x is |x|. For example, the magnitude is also called its magnitude. 
of my current account balance is |−153.12| pounds = 153.12 pounds, which 
sounds a lot better since it doesn’t remind me that I’m in debt. Note that 
magnitudes are always non-negative (i.e. positive or zero). 


A vector quantity is any quantity, such as force, velocity, displacement, etc., 
that has a magnitude and a direction in space (or, in two dimensions, a 
direction in a plane). An example is the velocity of a motor car travelling 
on the M4 motorway from London to Bristol with a speed of 95 km per hour The familiar term speed is 
in a westerly direction. The magnitude of the velocity vector is 95 (dropping used to mean the magnitude 


units for convenience), and the direction of the velocity vector is due west. of a velocity. Speed is a 


Thus the specification of a vector consists of: non-negative scalar. 


(a) a non-negative real number, called its modulus or magnitude; 
(b) a direction in space. 


This unit is mainly concerned with just two vector quantities: displacement 
and velocity. Later in the course you will come across other vector quantities 
such as force, torque and momentum. Fortunately, all vector quantities obey 
exactly the same laws of algebra. Thus what you learn about displacements 
and velocities in this unit can be carried over to all vector quantities. 


1.2 Vector notation 
Vectors are denoted in printed text by bold letters, e.g. v, F. In your 
written work, you should denote vectors by drawing either a straight line or 


∼, Fa squiggly line under the letter, e.g. v, F  or v ∼.  Thus if a symbol is used  
to represent the velocity of an object, then it must be handwritten by you 
as either v or v∼ (but will be printed in the text as v). 


It is important that you learn to write vectors using the underlining: if

you do not do so, someone reading your work may not be able to tell

that you are referring to a vector. In particular, you may lose marks!
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Section 1 Describing and representing vectors 


The modulus or magnitude of the vector v is denoted by |v| or, sometimes, 
where there is no possibility of ambiguity, by v; |v| is a non-negative scalar. 


1.3 Using arrows to represent vectors 


A vector can be conveniently represented in a diagram by an arrow, i.e. a 
straight line with an arrowhead on it. The tail of the arrow may be placed 
at some fixed origin, the direction of the arrow is chosen to represent that 


We read |v| as ‘the modulus 
of v’ or ‘the magnitude of v’, 
or simply ‘mod v’. 


y 


2 


1 
π 


of the vector. In Figure 1.1, which uses the origin of the Cartesian coor- O 1 2 x 


dinate system as the fixed origin, the shorter arrow represents a vector of 
magnitude 1 in the positive x-direction, and the longer arrow represents Figure 1.1√ 


of the vector, and its length is chosen to be proportional to the magnitude 4 


a vector of magnitude 2 2 in a direction at 4
π radians (45◦) to the posi-


tive x-direction. (Note that we use the convention that positive angles are y 
measured anticlockwise.) If we decide to denote these vectors by letters a 2 
and b, respectively, then we can also put this information on the diagram, 
by writing a and b near the arrowheads, as shown in Figure 1.2. 1 


Note that in this course, and commonly elsewhere, the arrows representing 
x 


a 


b 


vectors are drawn using thick lines. This helps to distinguish vector arrows O 1 2 


from other arrowed lines such as those representing the coordinate axes 
(e.g. Figures 1.1 and 1.2) or those representing compass directions (e.g. Figure 1.2

Figure 1.3).



*Exercise 1.1 


Represent the following two vectors on a diagram by arrows: 
• vector a has magnitude 3 units and points in the positive y-direction; 


vector b has magnitude 4 units and points in the direction at
 3
π radians• 


(60◦) to the positive x-direction. 


Vector notation and the use of arrows in diagrams is now illustrated further 
by specific reference to displacement vectors and velocity vectors. 


Displacement is the position of a point in space relative to some reference 
point or origin. For example, the city of Leeds is 296 km from the city of 
Bristol in the direction of 15◦ east of north (N 15◦E). The displacement of 
Leeds from Bristol can be specified as the vector 


s = 296 km N 15◦E. 


Here the bold symbol s has been used to denote the displacement. Note that 
both magnitude and direction are specified: the magnitude of the displace-
ment is |s| = 296 km, and the direction is specified by the compass bearing 
N 15◦E. 


The displacement s = 296 km N 15◦E can be represented in a diagram by an 
arrow, as shown in Figure 1.3. The length of the arrow represents 296 km,

which may be shown in the diagram by writing |s| = 296. 


For any two points P and Q, we can define the displacement vector from 
P to Q: it is the vector whose magnitude is the distance from P to Q and 
whose direction is the direction of the straight line from P to Q. A useful 


It would be wrong to write 
s = 296 km, because the 
left-hand side is a vector 
symbol and the right-hand 
side is a scalar. 


N s 


s 


15° 


= 296


−−→notation for this vector is PQ  (see Figure 1.4). In this context the symbol 
O 


PQ  (without an arrow) represents the length of the straight line joining P −−→ −−→ −−→ −−→ 0 100 200 300
and Q, i.e.  PQ  = |PQ|. Note that PQ  = QP but PQ  =� QP (because PQ  → 


QP are in opposite directions). 
Scale (km)


and 
−−


Figure 1.3 
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Section 1 Describing and representing vectors 


→
Displacement vector 


The displacement vector 
tance from P to Q and whose direction is the direction of the straight 
line from P to Q. 


→ is the vector whose magnitude is the dis-PQ
−−


PQ Q 


P 


Figure 1.4 


One query may have occurred to you. What is the displacement vector of a →? Clearly its lengthPP
−−point from itself? In other words, what is the vector 


is zero, but what is its direction? The answer is that it does not have one!

We define the zero vector to be the unique vector with magnitude zero 
and no direction. It is denoted by 0. Thus we can conclude that PP  = 0. →−−


Zero vector 
The zero vector is the unique vector with magnitude zero and no 
direction. It is denoted by 0. 


Be particularly careful to 
underline the zero vector 
(0 or 0∼) in your written work! 


A constant velocity is also defined by a magnitude and a direction. For 
N


instance, in a weather forecast, a typical wind velocity might be 35 knots 
from the north-west. It is not sufficient to say that ‘the wind velocity is O 


35 knots’; the obvious question about such a statement would be ‘from 
which direction?’. The vector v representing this velocity has magnitude 35 
and direction from the north-west and towards the south-east (since the 
air is travelling in the south-easterly direction). It can be represented on a 
diagram as shown in Figure 1.5. The length of the arrow represents a wind



45° 


v 


v | = 35  


speed of 35 knots. 0 10 20 30 40 


Note that the direction of a vector consists of two attributes: Scale (knots) 


(a) an orientation, represented by the slope of the arrow in diagrams like 
Figures 1.1 to 1.5; Figure 1.5 


(b) a sense, represented by the arrowhead. 


For instance, the arrow representing the velocity 35 knots from the north-
west in Figure 1.5 is a line making an angle of 45◦ anticlockwise from the 
south direction (the orientation) and an arrowhead pointing towards south-
east as opposed to north-west (the sense). 


*Exercise 1.2 


The displacement of Birmingham from Derby is 57 km in the direction 
S 30◦W. The displacement of Leicester from Derby is 32 km in the direction 
S 45◦E. 


Draw a diagram, to a suitable scale, representing these two displacements 
by arrows. 


Exercise 1.3 


A car travelling from London along the M1 with speed 70 mph heads in the 
direction N 60◦W near Junction 14. 


Represent the velocity of the car by an arrow, drawn to a suitable scale. 
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Section 1 Describing and representing vectors 


1.4 Equality of vectors 


Definition 


Two vectors are said to be equal if they have the same magnitude and 
the same direction. 


You have seen how to represent a vector by an arrow. This definition of 
equality of vectors tells us that the two features needed to define a vector 
uniquely are its magnitude and direction. This means that any two arrows 
drawn at different places on the page but which are equal in length, parallel 
and have the same sense, can be used to represent the same vector. For 
instance, the two arrows in Figure 1.6 are each of length 2 units and point 
in the positive x-direction. They represent two equal vectors, and we write 
b = d. In other words, the arrow representing a vector does not have to be 
drawn so that its tail is at any particular point. 


Example 1.1 


Figure 1.7 shows several vectors represented by arrows drawn to scale. Find 
the vector equal to the vector a. 


y 
c 


3 b 


ef 2 


d 
1 


x–4 –3 –2 –1 O 1 2 3 4 5 6 
–1 a 


g
–2 


–3 
h 


Figure 1.7 


Solution 


We are looking for a vector that is equal in length to a (i.e. one unit), parallel 
to a and points in the same direction (i.e. the positive x-direction). There 
are two arrows (and thus vectors) other than a that point in the positive 
x-direction; they are c and h. (The arrow representing d points in the 
negative x-direction.) The magnitudes of c and h are 1 unit and 3 units, 
respectively. Since the magnitude of a is 1 unit, c = a but h �= a. 


Note that although a and c are drawn at different places in the (x, y)-plane, 
they are equal in magnitude and have the same direction, so they are equal 
vectors. 


*Exercise 1.4 


Which vector in Figure 1.7 is equal to vector b? 


y 


3



2



1



b 


d 


xO 1 2 3 


Figure 1.6 
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1.5 Polar representation of two-dimensional vectors 


This subsection introduces a systematic way of specifying the magnitude 
and direction of a vector in a coordinate system. 


You should be familiar with using a two-dimensional Cartesian coordinate 
system for specifying the position (x, y) of a point in a plane, and indeed the 
same system is commonly used for displaying vectors (as in Figures 1.1, 1.2, 
1.6 and 1.7). The plane polar coordinate system, however, is in some 
sense a more natural one for specifying vectors since it effectively regards 
magnitude and direction as two coordinates. 


Let r be a vector on a plane surface. Introduce a Cartesian coordinate 
system, and draw the vector as an arrow with its tail at the origin O, as  
in Figure 1.8. The magnitude of r is |r| = r, the distance of the tip P of 
the arrow from O. The direction of r is specified by the angle φ measured 
(usually in radians) anticlockwise from the positive x-axis. 


O 


P 


x = r cos φ 


r = |  r | 


φ 


y = r sin φ 


y 


x 


r 


Figure 1.8 


We have not quite finished the description, because a vector now has many 
representations (since rotating the line segment OP through 2nπ, where n is In fact, a vector has an 
any integer, leaves it unchanged). To avoid this ambiguity, we shall normally infinite number of 
take φ to lie in the range −π < φ  ≤ π. (Note that under this convention a representations! 


vector below the x-axis has a negative value for φ — see Figure 1.9.) 


Thus the endpoint P of a vector r is specified by the two numbers r (a dis-
tance) and φ (an angle). These two numbers r and φ are the plane polar y positive φ 
coordinates (or simply polar coordinates) of the endpoint P of the vec-
tor r, when the tail of its arrow is at O. We use the notation 〈r, φ〉 in order 
to distinguish polar coordinates from the Cartesian variety, so the vector is φ 
now specified as 


r = 〈r, φ〉. y 


You can see from Figure 1.8 that the polar coordinates 〈r, φ〉 of P are related 
to the Cartesian coordinates (x, y) of  P by the following formulae: φ 


x = r cos φ, y = r sin φ; 
2)1/2 r = (x 2 + y , tan φ = y/x. negative φ 


However, the statement tan φ = y/x does not define φ uniquely since, for Figure 1.9 
example, tan φ = tan(π + φ). To pin down the value of φ in the range 
−π < φ  ≤ π, we can use the two equations 


y 
sin φ = y/r and cos φ = x/r. quadrant 2 quadrant 1 


AIn practice, when finding the angle φ from the values of x and y, it usually 
S 


sin > 0 sin > 0 
helps to sketch the Cartesian coordinates in the (x, y)-plane so that you can cos < 0 cos > 0 
see in which quadrant φ must lie. The signs of sin and cos for angles in 


sin < 0 sin < 0 
the four quadrants are shown in Figure 1.10: you will find it useful to know cos < 0 cos > 0 


Cthese. (A simple acronym to aid the memory is ‘CAST’: starting from the T 
quadrant 4lower right, and working anticlockwise round the quadrants, the following quadrant 3 


are positive: Cos, All (of sin, cos, tan), Sin and Tan.) 
Figure 1.10 


x 


x 


x 
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Section 1 Describing and representing vectors 


Example 1.2 


Give the polar representation of the vectors a, b, e and g in Figure 1.11. 


y 


x 


e 
b 


g 


a–1 


–1 1 


2 


O 


Figure 1.11 


Solution 


In Figure 1.11 each vector is drawn as an arrow from the origin, so the 
polar representation of each vector is given by the polar coordinates of its 
endpoint. In some cases we can specify r and φ simply from inspection of 
Figure 1.11, but we shall use the above formulae in order to illustrate the 
general method. 


The endpoint of a has Cartesian coordinates (1, −1), so we have 
√ 


r = (12 + (−1)2)1/2 = 2,√ √ 
sin φ = y/r = −1/ 2 and cos φ = x/r = 1/ 2. 


√ 
Thus φ = − π radians, i.e. a = 〈 2, − π 〉. (Since − π < − π < 0, the angle 4 4 2 4 
coordinate − π indicates that a should lie in the fourth quadrant, which is 4 
confirmed by Figure 1.11.) 


Vector b is of length 2 units and points in the positive y-direction. The 
Cartesian coordinates of its endpoint are (0, 2), so we have 


r = (02 + 22)1/2 = 2, 


sin φ = y/r = 2/2 = 1 and cos φ = x/r = 0/2 = 0. 


Hence φ = π radians (which is obvious from the fact that b points in the 2 
πpositive y-direction). Hence b = 〈2, 〉.2 


The endpoint of vector e has Cartesian coordinates (−1, 2), so 
√ √ √ 


r = ((−1)2 + 22)1/2 = 5, sin φ = 2/ 5 and cos φ = −1/ 5, 
√ 


giving φ = 2.034 radians. Hence e = 〈 5, 2.034〉. (Since π < 2.034 < π, the 2 
angle coordinate 2.034 indicates that e should lie in the second quadrant, 
which is confirmed by Figure 1.11.) 


Finally, g is of unit length (i.e. of length 1 unit) and points in the positive 
x-direction. The Cartesian coordinates of its endpoint are (1, 0), so 


r = (12 + 02)1/2 = 1, sin φ = 0 and cos φ = 1. 


Thus g = 〈1, 0〉. (This is an exceptional case where the numerical values of 
the coordinates are the same in the two coordinate systems.) 


*Exercise 1.5 


Complete Table 1.1. Each row should show the Cartesian and corresponding 
polar coordinates of a particular point. If any entry is invalid, say so and 
explain why. 
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Table 1.1 


Cartesian Polar 
coordinates (x, y) coordinates 〈r, φ〉 


(0,−1) 〈1,−π 
2 〉 


(1, 1) 


〈4,−π 
4 〉 


〈6, π〉 
(−1,−1) 


〈−1, π〉 
〈108 , exp(0.1π)〉 


*Exercise 1.6 


As you saw earlier, the displacement of Leeds from Bristol can be expressed 
as s = 296 km N 15◦E (see Figure 1.3 on page 6). Express this vector in 
polar form 〈r, φ〉 using a suitable coordinate system. 


The polar representation of vectors can be a useful representation in a variety 
of physical situations, as you will see later in the course. (It is generalized 
to three dimensions in Unit 23.) 


End-of-section Exercises 


Exercise 1.7 


The following is a list of some physical quantities: temperature, velocity, 
volume, energy, force, displacement, time, acceleration. Decide which are 
scalar and which are vector quantities. 


Exercise 1.8 


What are the polar coordinates of a point Q whose Cartesian coordinates 
are (0,−3)? What is the magnitude of the vector −−→ 


OQ where O is the origin 
of coordinates? 


2 Scaling and adding vectors

This section defines two arithmetic or algebraic operations involving vectors. 
The first and simpler of these is the multiplication of a vector by a scalar, 
or scaling of a vector. The second is the addition of two vectors to give a 
third vector called the resultant of the two vectors. 


2.1 Scaling of a vector 


Consider vectors c and h in Figure 1.7 (page 8). Both vectors point in the 
same direction, but h has a length three times that of c. We say that h is 
a scaling of c by the number 3, and we write h = 3c. 
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Generally, if v is a vector and m is a positive number, then the product mv 
is a vector in the same direction as v but with magnitude m|v|, i.e.  m times 
the magnitude of v. This multiplication of a vector by a scalar is called 
scaling or scalar multiplication, and mv is called a scalar multiple of v. For  Note that there is no 
example, if v has magnitude 4 and points in the positive x-direction, then multiplication sign between 


3v has magnitude 12 and points in the positive x-direction also. This is the m and the v. In vector 
algebra the dot and crossillustrated in Figure 2.1.	 symbols are reserved for other 
products, to be discussed in 
Section 4.O O 


v x	 x3v 


Figure 2.1	 Ov 


We can also scale a vector v by a negative number. When m is negative, 
the vector mv has magnitude |m||v| and points in the opposite direction 
to v. A special case is when m = −1. Then the vector (−1)v has the same O –v 
magnitude as v but points in the opposite direction; see Figure 2.2. We 
normally write (−1)v simply as −v, i.e. (−1)v = −v. Figure 2.2 


What happens when we multiply a vector by zero (m = 0)? The above 
definitions imply that the result should be a vector with magnitude zero. 
You will recall from Section 1 that there is a special vector with magnitude 
zero, namely the zero vector, 0. Thus  0v = 0. 


Definition 


For any vector v and any real number m, the scalar multiple mv is 
the vector with magnitude |m||v| which is: 
• in the same direction as v if m >  0; 
• in the opposite direction to v if m <  0; 
• the zero vector (i.e. with unspecified direction) if m = 0.  


The multiplication of v by m is called scaling or scalar multiplica-
tion. 


Example 2.1 
(a) Let u represent the velocity of my car travelling with a speed of 30 mph 


along a straight road due north. Write down, in terms of u, the velocity 
of a car overtaking me and travelling at 45 mph. If another car is trav-


C


A B 


elling in the opposite direction to me with speed 60 mph, write down 
this car’s velocity in terms of u. F −−→(b) If ABCDEF is a regular hexagon (Figure 2.3) and, for example, AB 
represents the displacement vector from A to B, write down algebraic 
relations connecting: E D 


−−→ −−→ −→ −−→(i) AB and ED; (ii) AF and DC.	 Figure 2.3 


Solution 


(a) The velocity vector u has magnitude 30 mph and points due north. The 
car overtaking me is travelling in the same direction but has a velocity 
of magnitude 45 mph; suppose that its velocity vector is denoted by v 
(see Figure 2.4). Then v is parallel to u and has the same sense as u, Two vectors are parallel if 


45and |v| = |u|. Therefore v is just a scaling of u, i.e.	 they have either the same, or 
30 opposite, directions. 


v = 1.5u. 
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Section 2 Scaling and adding vectors 


Now suppose that the velocity of the car travelling in the opposite di-
rection is denoted by w. Then w is parallel to u but has the opposite 


60sense to u, and  | w| = | u| . So we can write30 


w = − 2u, 


where the negative sign indicates the opposite sense. 


(b) The opposite sides of a regular hexagon are parallel, and all the sides 
have the same length. 


−−→ −−→(i) Thus the displacement vectors AB and ED have equal magnitudes 
and the same direction. So we have 


−−→ −−→ 
AB = ED. 


−→ −−→(ii) The displacement vectors AF and DC have equal magnitudes but 
opposite directions, thus 


−→ −−→	 −−→ −→ 
AF	 = − DC (or, equivalently, DC = − AF ). 


*Exercise 2.1 
(a) If	 d is the displacement vector from Bristol to Leeds, write down in 


terms of d the displacement vectors from Leeds to Bristol and from 
Leeds to Leeds. 


(b) If v represents the velocity of a wind of 35 knots from the north-east, 
what vectors represent the following? 


(i) A wind of 70 knots from the north-east. 


(ii) A wind of 35 knots from the south-west. 


(iii) Still air. 


(c) Relate the direction and magnitude of − 1.5v to those of v, where v is 
any given non-zero vector. Do the same for − kv, where k is an arbitrary 
positive number. 


−−→(d) If ABCD is a parallelogram (Figure 2.5) and, for example, AB repre-
sents the displacement vector from A to B, write down algebraic rela-
tions connecting: 


−−→ −−→ −−→ −−→(i)	 AB and DC; (ii) BC and DA. 


(e) If v is any non-zero vector, what are the magnitude and direction of the 
1 


vector v? | v| 


Unit vectors 


1
The vector v in Exercise 2.1(e) is a vector that has magnitude 1 and | v|
points in the direction of v. It is called the unit vector in the direction of v. 
The unit vector in the direction of v is often denoted by the symbol v̂. 


Definition 


For any non-zero vector v, the unit vector in the direction of v is the 
vector 


1 
v = v. | v| 


N 


50 
v 


40 


30 u 


20 


10 


O 


Figure 2.4 


B	 C 


A	 D 


Figure 2.5 
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Section 2 Scaling and adding vectors 


Unit vectors are often used to denote directions in the plane, or in space. 


A particular example is provided by the unit vectors in the positive directions 
of the x- and  y-axes in the plane Cartesian coordinate system. These unit 
vectors are denoted by i and j, respectively, and are called Cartesian unit 
vectors. 


Figure 2.6 shows these Cartesian unit vectors and two other vectors, a and b. 
The vector a has magnitude 2 and points in the positive x-direction; b has 
magnitude 3.5 and points in the positive y-direction. The unit vector i has 
magnitude 1 and points in the same direction as a. Thus we can write a in 
terms of i by a scaling: 


a = 2i. 


Similarly, we can write b in terms of j: 


b = 3.5j. 


Any vector parallel to the x- or  y-axis can be written as a scaling of i or j. 


Exercise 2.2 


Four vectors, a, b, c and d, of magnitudes 2, 2.5, 3 and 1, respectively, are 
shown in Figure 2.7. The directions of the four vectors are defined by the 
arrows. Write down a, b, c and d as scalings of the Cartesian unit vectors 
i and j. 


y 


3 c 


2 
a 


b 
1 


–4 –3 –2 –1 1 2 3 4 x 


–1 j 


d –2 
i 


–3 


Figure 2.7 


Exercise 2.3 


Let the unit vectors i and j denote the directions of east and north, respec-
tively. Specify the following vectors as scalings of i and j. 


(a) The wind velocity of 35 km per hour due south. 


(b) The displacement of Bristol from London (112 miles due west). 


(c) The displacement of London from Bristol. 


We shall develop the 
Cartesian representation of 
vectors in Section 3. 


y 


3.5 b 
3



2



a 
1 j 


i 


O 1 2 3 4 x 


Figure 2.6 


Note that although i and j are 
shown in Figure 2.6 with their 
tails at the origin, this is not 
necessary. They can be drawn 
at any convenient position, 
provided only that they are of 
unit magnitude and point in 
the positive x- and  
y-directions, respectively — 
see, for example, Figure 2.7. 
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Section 2 Scaling and adding vectors 


2.2 Addition of vectors 
d1 


Leeds 


What is meant by the addition of vectors? Suppose that we make a journey 
from Bristol to Leeds, and then another journey from Leeds to Norwich. The 
first journey produces a displacement of d1 and the second a displacement d2
of d2. The net result of the two journeys is a displacement of d3 from Bristol Norwich 
to Norwich. This is illustrated by the triangle of displacements shown in d3 


Figure 2.8. Displacements are said to add by the triangle rule, and we write 
Bristol 


d3 = d1 + d2. The vector d3 is called the resultant of d1 and d2. Figure 2.8 
Velocities also add by the triangle rule, and so do forces, accelerations and 
all other vector quantities. Thus the triangle rule is also called the vector 
addition rule. 


Triangle rule or vector addition rule 
a + b Q 


To add any two vectors a and b: choose an origin O; draw the line b 
OP in the direction of a and with length equal to the magnitude of a;

and draw the line PQ  in the direction of b and with length equal to



O Pthe magnitude of b (as in Figure 2.9). Then a + b is the vector with a 
magnitude equal to the length of OQ and with the direction from O

to Q. The vector a + b is called the sum or resultant of a and b.
 Figure 2.9 


Note that the sum of two displacement vectors can also be written using the 
notation 


−−→ −−→ −−→ 
OP + PQ  = OQ. 


Now recall that when discussing displacements we mentioned the zero vector 
0 (representing no displacement). Once addition of vectors is introduced, we y 


need the zero vector in order to answer questions such as ‘what is i + (−1)i?’. 
Geometrically, no construction is needed when adding the zero vector, which 
obeys the rather obvious rule 


a + 0 = a. 


Exercise 2.4 O 


Three vectors a, b and c of magnitudes 3, 2 and 4 are shown in Figure 2.10. 


(a) Draw a rough sketch to show the vectors a + b and a + c. 


x 


c 


a 


b 


π 
3 


π 
4 


(b) Sketch the vector −b, and draw a rough sketch to show the addition of 
a and −b. Figure 2.10 


Exercise 2.4(b) suggests a definition of vector subtraction. To subtract 
the vector b from the vector a, we  add the vectors a and −b by the triangle 
rule of vector addition; that is, in symbols, 


a − b = a + (−b). 


*Exercise 2.5 


A vector a has magnitude 3 units and points in the positive x-direction. A 
vector b has magnitude 4 units and points in the positive y-direction. Draw 
a diagram showing the vectors a + b and a − b. 
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Section 2 Scaling and adding vectors 


Vector addition is commutative, i.e. the order in which we add two vectors 
ydoes not matter. This can be illustrated by reference to vectors a and c of 


Exercise 2.4 (see Figure 2.11). The triangle OP1Q illustrates the addition 


a + cc + a  
aP2 Q−−→ a + c, while triangle OP2Q illustrates c + a. The same resultant OQ is c c


obtained in both cases. Thus 


a + c = c + a. 


Exercise 2.6 


For the particular cases of the vectors a, b, c defined in Exercise 2.4, and O a P1 
x 


for the scalar m = 2, draw sketches to illustrate the associative property of 
vector addition, Figure 2.11 


(a + b) +  c = a + (b + c), 


and the distributive property of scaling over vector addition, 


m(a + b) =  ma + mb. 


An alternative geometrical construction for adding two vectors can be seen 
from Figure 2.11. It is called the parallelogram rule. Draw the two −−→ −−→ vectors OP 1 and OP 2 with the same beginning point O. Complete the 
parallelogram OP1QP2. Then the resultant vector is the vector −−→ 


OQ on 
the diagonal of the parallelogram. The parallelogram rule gives the same 
resultant as the triangle rule. 


2.3 Algebraic rules for scaling and adding vectors 


Subsections 2.1 and 2.2 showed how to multiply a vector by a scalar and 
how to add vectors, i.e. what is meant by mv and a + b. We  also  saw  
illustrations of the commutative, associative and distributive rules. These 
are only some of the algebraic rules for manipulating vectors by addition 
and scaling. A complete list of these rules, which apply whether or not the 
vectors are confined to a plane, is given below. 


Algebraic rules for scaling and adding vectors 
Let a, b and c be vectors, and let m, m1 and m2 be scalars. 
1 Addition is commutative: a + b = b + a. 
2 Addition is associative: (a + b) +  c = a + (b + c). 
3 ma is a vector with magnitude |m||a|, in the same direction as a 


when m >  0 and in the opposite direction when m <  0. 
4 Scaling is associative: m1(m2a) = (m1m2)a. 
5 Scaling is distributive: (m1 + m2)a = m1a + m2a. 
6 Scaling is distributive over vector addition: m(a + b) =  ma + mb. 
7 Addition and scaling involving the zero vector are as expected: 


0 + a = a and 0a = 0. 
8 Subtraction is defined by a − b = a + (−1)b. 


These rules allow us to manipulate algebraic expressions involving scalings 
and vector addition in a familiar way. 


Example 2.2 


Simplify the expression 


2(a + b) + 3(b + c) − 5(a + b − c). 


Notice that these rules say 
nothing about the 
multiplication of one vector 
by another: vector 
multiplication is defined in 
Section 4. Nor has anything 
been said about division by a 
vector: in fact, division by a 
vector is not defined. 


A more abstract approach 
would be to define a vector to 
be something that obeys 
these rules, then explore the 
consequences. This is the 
approach taken in the 
second-level pure 
mathematics course. 
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Section 2 Scaling and adding vectors 


Solution 


Strict use of the rules requires us to write the expression solely in terms of 
addition. So we have 


2(a + b) + 3(b + c) − 5(a + b − c) 
= 2(a + b) + 3(b + c) + (−5)(a + b + (−1)c) (using Rule 8) 
= 2(a + b) + 3(b + c) + (−5)((a + b) + (−1)c) (using Rule 2) 
= 2a + 2b + 3b + 3c + (−5)(a + b) + (−5)((−1)c) (using Rule 6 three times) 
= 2a + 2b + 3b + 3c + (−5)(a + b) + 5c (using Rule 4) 
= 2a + 2b + 3b + 3c + (−5)a + (−5)b + 5c (using Rule 6) 
= 2a + (−5)a + 2b + 3b + (−5)b + 3c + 5c (using Rule 1 several times) 
= (2  − 5)a + (2 + 3  − 5)b + (3 + 5)c (using Rule 5 four times) 
= (−3)a + 0 + 8c (using Rule 7) 
= (−3)a + 8c (using Rule 7) 
= 8c + (−3)a (using Rule 1) 
= 8c + (−1)(3a) (using Rule 4) 
= 8c − 3a (using Rule 8). 


However, because Rules 1, 2, 4, 5, 6, 7 and 8 are exactly the same as 
the familiar rules for manipulating algebraic expressions involving scalar 
quantities, we would usually write the solution more succinctly as 


2(a + b) + 3(b + c) − 5(a + b − c) 
= 2a + 2b + 3b + 3c − 5a − 5b + 5c 


= (2  − 5)a + (2 + 3  − 5)b + (3 + 5)c 


= 8c − 3a. 


In the following exercises, use the more succinct method. 


Exercise 2.7 


Simplify the expression 4(a − c) + 3(c − b) + 2(2a − b − 3c). 


*Exercise 2.8 


Find the vector x in terms of a and b in the following vector equations. 


(a) 2b + 4x = 7a (b) n(b − a) +  x = m(a − b) 


In Subsection 1.1 a vector was defined as a quantity having a magnitude and 
a direction. In fact, this definition is incomplete in that it does not include 
a rule for combining two such quantities. Hence a complete definition of a 
vector is as follows. 


Vectors 
•	 A vector has magnitude and direction. 
•	 Any two vectors can be added by the triangle rule. 
•	 A vector can be scaled by a real number in such a way that the 


above rules apply. 


It is a rather surprising fact that so many physical quantities — displace-
ment, velocity, acceleration, force, torque, momentum, to name but a few — 
all qualify as vectors under the above simple definition. This is one reason 
why the subject of vectors is so important. 
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Section 3 Cartesian components of a vector 


End-of-section Exercises 
y 


bExercise 2.9 


The vectors a and b are represented by the arrows shown in Figure 2.12.

The magnitudes of a and b are 4 and 6, respectively. Draw a sketch to show

the vectors a + b, a − b and 2a + 1 b.
2 


P 
4 aExercise 2.10 


O x 
If v = − 4.7u, what can you say about the magnitude and direction of v in

terms of the magnitude and direction of the non-zero vector u? Figure 2.12



Exercise 2.11 
−−→If ABCD is a quadrilateral, with AB denoting the displacement vector from −−→ −−→ 


A to B, and  
−−→ 
BC, CD, DA defined similarly, show that 


−−→ −−→ −−→ −−→ 
AB + BC + CD + DA = 0. 


*Exercise 2.12 
πTwo vectors p and q are defined in polar form: p = 〈 3, 2 〉 , q = 〈 4, π〉 . Sketch 



p, q and p + q, and give the polar forms of 5p, − q and p + q.



Exercise 2.13 
(a) Which of the following proposed general rules is true for the scalar



multiplication of a vector in polar form? (Assume m >  0.)

? 


m〈 r, φ〉 = 〈 mr, φ〉 , 
? 


m〈 r, φ〉 = 〈 mr, mφ〉 . 
(b) Does the following proposed general rule hold for the addition of vectors



in polar form?

?〈 r1, φ1〉 + 〈 r2, φ2〉 = 〈 r1 + r2, φ1 + φ2〉 


3 Cartesian components of a vector

So far we have approached vectors, and the laws of vector addition and scal-
ing, geometrically. To add vectors geometrically requires drawing diagrams 
representing the vectors by arrows. An alternative, and sometimes more 
convenient, algebraic approach to representing vectors is developed in this 
section, first in two dimensions and then in three. 


3.1 Vectors in two dimensions 
We have already seen in Subsection 2.1 how to write vectors that are parallel 
to the x-axis or y-axis as scalar multiples of the Cartesian unit vectors i y 


a 


A =  (a1, a2)and j, respectively. (Recall that i and j are the unit vectors in the directions C 


of the positive x- and  y-axes, respectively.) Of course, in general, vectors 
do not lie parallel to either the x-axis or the y-axis. However, you will see 
in this subsection how use of the rules for vector addition and for scalar O B x 


multiplication allows us to write any vector in the (x, y)-plane in terms of 
the Cartesian unit vectors i and j. Figure 3.1 


−→Consider an arbitrary vector a = OA in the (x, y)-plane, whose tail is at −→the origin O, as shown in Figure 3.1. The vector OA is called the position Note that if A were in one of 
vector of the point A, and its endpoint is determined by the Cartesian the other three quadrants of 
coordinates a1 and a2 of A, i.e. by the distances OB and OC, respectively. the plane, then one or both of 


a1, a2 would be negative. 
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Section 3 Cartesian components of a vector 


−−→ −−→Furthermore, the vectors OB and OC can be written as scalings of the 
Cartesian unit vectors i and j: 


−−→ −−→ 
OB = a1i and OC = a2j. 


Hence the triangle rule (or parallelogram rule) for the addition of vectors 
OB and 


−−→allows the vector a to be expressed as the sum of −−→ 
OC, i.e. as  


−−→ −−→ a = OB + OC or a = a1i + a2j. 


The latter is called the component form of a, and the numbers a1 and a2 


are called the i- and  j-components of a, respectively. 


When the tail of the vector a is not at the origin, its components are defined 
in an obvious way. 


y 


q2 


p2 


Q 
a 


C 


P 
B 


a2 


a1 


p1 q1O x 


Figure 3.2 


Referring to Figure 3.2, the components of a are 


a1 = q1 − p1 and a2 = q2 − p2. 


A shorter way of writing a vector in component form is as an ordered pair 
of numbers, (a1, a2), where the unit vectors i and j are not shown explicitly. 
This notation needs to be used with care because the coordinates of a point 
in a plane are also denoted in this way, and vectors are conceptually different 
from points. To avoid such confusion, in this course the column vector 
notation 


a1a = 
a2 


will be used instead. In the text, to save space, the column vector will often 
be written as a = [a1 a2]T , where the transpose symbol T here changes the 
row into a column. 


Definition 
−−→A vector a = PQ  in the (x, y)-plane, where P is the point (p1, p2) and  


Q is the point (q1, q2), has component form 


a = a1i + a2j, 


where a1 = q1 − p1 and a2 = q2 − p2, and  i and j are the Cartesian unit 
vectors. 


The component form may also be written as 


a1 Ta = or a = [a1 a2] . 
a2 


The numbers a1 and a2 are the (Cartesian) components of a. 


You may also see these 
numbers referred to as the 
x- and  y-components of a. 


This is the way in which 
many computer algebra 
packages display vectors. 
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Section 3 Cartesian components of a vector 


*Exercise 3.1 


Write each of the vectors in Figure 1.7 (page 8) in the form a = a1i + a2j 
and as a column vector. 


The magnitude of a vector given in component form is found very easily. 
For example, the magnitude of the vector a in Figure 3.2 is just the length 


2 2of the line PQ. This is found by Pythagoras’s Theorem to be a + a2. 


Magnitude of a two-dimensional vector in component form 
−−→If a = PQ  = a1i + a2j, where P and Q have coordinates (p1, p2) and  


(q1, q2), respectively, then 


2| a| = a2 + a2 = (q1 − p1)2 + (q2 − p2)2 .1 


Vectors in component form can also be added and scaled very easily, by 
making use of the algebraic rules for the scaling and adding of vectors. For 
example, 


a + b = (a1i + a2j) + (b1i + b2j)

= a1i + a2j + b1i + b2j

= (a1i + b1i) + (a2j + b2j)

= (a1 + b1)i + (a2 + b2)j.



So, to add two vectors one adds their respective components. Similarly, 


ma = m(a1i + a2j) 
= (ma1)i + (ma2)j, 


so scaling a vector is achieved by scaling its components. 


Adding and scaling two-dimensional vectors in component 
form 


If a = a1i + a2j, b = b1i + b2j and m is a scalar, then 


a + b = (a1 + b1)i + (a2 + b2)j 


and 


ma = (ma1)i + (ma2)j. 


Equivalently, using column vector notation, 


a1 + 
b1 = 


a1 + b1 


a2 b2 a2 + b2 


and 


ma1 m
a1 = . 
a2 ma2 


Exercise 3.2 


Figure 3.3 shows four vectors in the (x, y)-plane. 
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Section 3 Cartesian components of a vector 


y 


x6 


1 


2 


3 


1 2 3 4 5–4 –3 –2 –1 


c 


a 


b 


–1 


–2 


d 


Figure 3.3 


(a) Write down the vectors in component form. 


(b) Draw a diagram to verify that the scaling 3.5a is the same when obtained 
geometrically or algebraically using components. 


(c) Use the triangle rule to obtain the vector a + b. Verify that this vector 
is the same as that obtained by adding the component forms of a and b. 


(d) Find, algebraically, the components of the vector 2a + b − c. Hence find 
the magnitude of the vector 2a + b − c. 


*Exercise 3.3 
p + q −3(a) Find the numbers p and q if r = 
p − q 


, s = and r = s.7 


1 1(b) Find the magnitude of the vector t if t = u + v, where u = √ 
2 1 


1 1and v = √ 
2 −1 . 


Exercise 3.4 


The three vectors a, b and c in Figure 3.4 are specified in polar coordinates 
by 


π 
4 


y 
b 


a 


3


c 
(a) What are the magnitudes of the three vectors? 


O
x 


(b) Write down the vectors a, b and c in terms of i and j. 


(c) Obtain the vector a + c in terms of i and j.	 Figure 3.4 


π 
3 


π 
62,
 b = 3, 1,a = c =, , . 


y 


In Exercise 3.4 the vectors were given in polar coordinate form, which is 
just a systematic way of specifying magnitude and direction. The process 
of finding the Cartesian components of a vector given its magnitude and 
direction is known as resolving a vector into its components. This is j 


essentially what you did in Exercise 3.4(b). Thus given the magnitude |a|

of the vector a in Figure 3.5, and its direction φ, we can resolve it into its



a 


F 


icomponents:



a1 = |a| cos φ and a2 = |a| sin φ. Figure 3.5



Conversely, given the components a1 and a2 of a vector, we can specify its	 You had practice at doing 
magnitude and direction:	 these calculations in 


Subsection 1.5. 
2 2|a| = (a1 + a2)


1/2 , cos φ = a1/|a|, sin φ = a2/|a|. 


x 
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Section 3 Cartesian components of a vector 


You will see this idea again in Section 4. For now, note that if you wish to 
add two vectors in polar form it will be necessary first to resolve them into y 


their Cartesian components (since there is no convenient formula for vector 
addition in polar coordinates). 


Exercise 3.5 
(a) Resolve the vector v of magnitude 5 shown in Figure 3.6 into its Carte-


sian components. 


5 


v 


�P 
18 


(b) Find the magnitudes and directions of the vectors 
√ 


a = 3i − j and b = − 3i + 3j.	 Figure 3.6 


S3.2 Vectors in three dimensions 


Thus far we have discussed vectors in the plane, reaching the component 
representation of such vectors in the previous subsection. However, the 
world is three-dimensional, and few real problems are restricted to a plane 
surface. For example, starting at point A at one corner of the cube shown in B 
Figure 3.7, you can reach the opposite corner S by three successive displace-−→ −−→ −→ ments: AQ + QB + BS. In order to work with such addition of displace- A Q 
ments in three dimensions, it is necessary to introduce a three-dimensional 
coordinate system. Figure 3.7 


A three-dimensional Cartesian coordinate system 


Consider a two-dimensional Cartesian coordinate system Oxy.  Draw a third  
axis, the z-axis, through the origin O, perpendicular to both the x- and  y-
axes of the two-dimensional system. This produces a coordinate system with 
three mutually perpendicular axes, the x-, y- and  z-axes (see Figure 3.8), 
intersecting at O. Alternatively, the coordinate system can be characterized 
by three planes: 
•	 the (x, y)-plane, which contains the x- and  y-axes and is perpendicular 


to the z-axis; 
•	 the (x, z)-plane, analogously defined; 
•	 the (y, z)-plane, again analogously defined. 


Any point P can be represented uniquely by its perpendicular distances from The x-axes shown in 
the (x, y)-, (x, z)- and (y, z)-planes. These distances, called the (Cartesian) Figures 3.8 and 3.9 are meant 
coordinates of P , are shown in Figure 3.8. to point out of the plane of 


the page. 


R 


C 


A 


B 
O 


P 
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z-axis 
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Figure 3.8	 Figure 3.9 
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Section 3 Cartesian components of a vector 


QP , RP and SP are perpendicular to the (x, y)-plane, (x, z)-plane and 
positive z(y, z)-plane, respectively. 


yWe denote the point P by the ordered triple of coordinates (p1, p2, p3), where 


p1 = SP = OA, 
x 


p2 = RP = OB, 


p3 = QP = OC. 
y 


For example, the point (2, 3, 4) is shown in Figure 3.9. 
xWhen drawing Figure 3.9 it was necessary to choose one of two possible ways 


for the positive z-direction to be defined; these are shown in Figure 3.10, 
where in both cases the y-axis is meant to point into the plane of the page, 


positive zaway from you. 


The usual convention for relating the positive directions of x, y and z is given Figure 3.10 
by the following rule, called the right-hand rule. The right hand is held 
with the middle finger, first finger and thumb placed (roughly) perpendicular 
to each other, and the other two fingers closed (see Figure 3.11). If the 
thumb and first finger are pointing in the directions of the positive x- and  
y-axes, respectively, then the middle finger is pointing in the direction of 
the positive z-axis. 


Alternatively, you can think of Figure 3.9 as showing a corner of a room 
(with the z-axis pointing upwards). If you are standing in the corner facing 
outwards, then the left-hand edge of the floor is the y-axis, and the right-
hand edge is the x-axis. A coordinate system defined in this way is called 
a right-handed system. Only right-handed systems will be used in this 
course. The systems drawn in Figure 3.9 and the top of Figure 3.10 are 
right-handed systems. 


positive z-direction 


positive x-direction 


positive y-direction 


Figure 3.11 


An alternative definition of the same positive z-direction is given by the 
screw rule, stated as follows. Suppose that we are turning a screw into 
a piece of wood; then a clockwise rotation makes the screw move into the 
wood (see Figure 3.12(a)). If we turn the screw in the sense from x to y 
as shown in Figure 3.12(b), then the direction in which the screw moves is 
along the positive z-direction. 


For the rest of this unit the screw rule will be used to characterize a right-
handed system, but you should use whichever rule you find easier to apply. 


screw 
moves 


in 


clockwise 
turn 


(a) 


z 


turn x to yx y 


(b) 


Figure 3.12 
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Section 3 Cartesian components of a vector 


Exercise 3.6 


Decide which of the sets of perpendicular axes in Figure 3.13 define right-
handed coordinate systems. 


x 


y 


z 


O 
y 


x 


z 


O 
z 


y 


x 


O 
z 


y 


x 


O 


(a) (b) (c)	 (d) 


Figure 3.13 


(The x-axis points out of the plane of the paper in (a) and (b). The z-axis 
points into and out of the plane of the paper in (c) and (d), respectively.) 


The component form of three-dimensional vectors 


The algebraic representation of vectors can be extended to vectors in three 
dimensions, such as in Figure 3.14. The vector a, drawn from the origin O, is  
the position vector of point A with three-dimensional Cartesian coordinates 
(a1, a2, a3). A third Cartesian unit vector k is introduced to represent the 
positive z-direction. We now have three Cartesian unit vectors, i, j and k, 
which are perpendicular to each other. The vector a may thus be written 
in component form as ⎡ ⎤ 


a1 
Ta = a1i + a2j + a3k or a = ⎣ a2 ⎦ or a = [a1 a2 a3] .



a3



y


z


x 


O	


j 


k 


i 


k
a 


A 


j


a1 


a3 


a2 


iDefinition 


The position vector of a point A relative to the origin O of three- Figure 3.14 
dimensional space is the displacement of A from O, i.e. the vector 


−→ a = OA. 


The i-, j- and  k-components of the position vector a are the coordinates These may sometimes be 
a1, a2 and a3 of the point A, respectively. referred to as x-, y- and  


z-components. 


The components of vectors not based at the origin are defined similarly, as 
follows. 


Definition 
−−→A vector a = PQ  in three-dimensional space, where P is the point Note that the component 


(p1, p2, p3) and  Q is the point (q1, q2, q3), has component form form may also be written as 
a1



a = a1i + a2j + a3k,
 a =	 a2 
a3where a1 = q1 − p1, a2 = q2 − p2, a3 = q3 − p3, and  i, j, k are the or


Cartesian unit vectors. The numbers a1, a2, a3 are the (Cartesian) Ta = [a1 a2 a3] . 
components of a. 
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Section 3 Cartesian components of a vector 


As in two dimensions, the operations of vector algebra can be expressed in 
terms of components. 


Adding and scaling three-dimensional vectors in component 
form 


If a = a1i + a2j + a3k, b = b1i + b2j + b3k and m is a scalar, then 


a + b = (a1 + b1)i + (a2 + b2)j + (a3 + b3)k 


and 


ma = (ma1)i + (ma2)j + (ma3)k. 


The magnitude of a vector in terms of its components a1, a2, a3 can be found 
2 2using Pythagoras’s Theorem (see Figure 3.15). The length ON is a + a2,1 


and OA2 = ON2 + NA2. But  OA = | a| , thus  


2 2| a| = a2 + a2 + a3.1 


A 


x 


y 


z 


a 


N 


a3 k 


O 
a 2


1 + a 2
2 


a1 


a1i 


a2 a2 j 


a3 


Figure 3.15 


This can be summarized as follows. 


Magnitude of a three-dimensional vector in component form 
−−→If a = PQ  = a1i + a2j + a3k, where the points P and Q have coordi-


nates (p1, p2, p3) and  (q1, q2, q3), respectively, then 


2| a| = a2 + a2 + a2 = (q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2 .1 3 


*Exercise 3.7 


Given vectors a = i + j + k, b = 2i − 3j − k and c = 3i + k: 


(a) express d = 2a − 3b and e = a − 2b + 4c in component form; 


(b) find the magnitudes of the vectors d and e; 


(c) evaluate | a| , and write down a unit vector in the direction of a; 


(d) find the components of a vector x such that a + x = b. 


Exercise 3.8 ⎡ ⎤ ⎡ ⎤ 
1 2



Find the magnitude of the vector p = 3  ⎣ 0 ⎦ − ⎣ 3 ⎦.

6 − 1
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Section 3 Cartesian components of a vector 


Vector equation of a straight line 


One useful application of position vectors (in two or three dimensions) is in 
obtaining a vector equation of a straight line. 


Example 3.1 


Find the position vector of a point T lying on the straight-line segment PQ  y

(see Figure 3.16) in terms of the position vectors of P and Q.



Solution 
− →Let T be any point on PQ  (see Figure 3.16). The position vector OT of T



relative to the origin can also be written, using the triangle rule, as

− → −−→ − → 
OT = OP + PT .  
− → −−→Now PT  = sPQ, for some number s, and the point T traces out the line O



segment PQ  as s varies from 0 to 1. Thus the straight-line segment PQ  is

described by the vector equation Figure 3.16



P 


Q 


T 
p 


q 


t 


− → −−→ −−→ 
OT = OP + sPQ  (0 ≤ s ≤ 1).



−−→ −−→ − →
Writing p = OP , q = OQ, t = OT , and noting (using the triangle rule) that −−→ −−→ −−→ 
PQ  = OQ − OP = q − p, this equation can also be written as 


t = p + s(q − p) = (1  − s)p + sq (0 ≤ s ≤ 1). 


Note that if the parameter s in Example 3.1 is allowed to range over all the

real numbers (−∞ < s <  ∞ ), then the point T traces out the entire straight

line of which PQ  is a segment. Also note that the ideas in Example 3.1 are

easily extended to three dimensions.



Vector equation of a straight line 


If P and Q are any two distinct points on a straight line in space, 
with position vectors p and q, respectively, with respect to some given 
origin, then the vector equation of the straight line is 


If 0 ≤ s ≤ 1, then the 
equation represents only the 


t = (1  − s)p + sq (−∞ < s <  ∞ ), 


where t represents the position vector of any point on the line. line segment PQ. 


*Exercise 3.9 


Write down, in component form, the vector equation of the straight line on

which lie the points with Cartesian coordinates (1, 1, 2) and (2, 3, 1).



End-of-section Exercises 


Exercise 3.10 


Let a = 2i − j, b = i + 3j + 5k and c = j − 2k. 


(a) Find the magnitudes of a and b, and describe the direction of a. 


(b) Find the vectors a + b, 2a − b and c + 2b − 3a in component form. 


(c) What is the endpoint Q of the displacement represented by the vector 
2a − b if (0, 2, 3) is its beginning point P? 


Exercise 3.11 


Write the vectors 0, i, j and k as column vectors in three dimensions. 


x 
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Section 4 Products of vectors 


4 Products of vectors



So far in this unit we have defined two algebraic operations: vector addition 
(by the triangle rule) and the scaling of a vector. The addition of vectors can 
be usefully applied only to two vectors representing the same type of physical 
quantity. For example, the addition of a displacement and a velocity has no 
physical meaning. However, vectors representing the same or different types 
of physical quantities can be combined in operations that are called the dot 
product and the cross product. They are called products because in some 
respects they behave like ‘multiplications’ in the algebra of real numbers. 
Dot products and cross products of vectors have numerous applications in 
geometry, mechanics and electromagnetism. 


In this section the dot product and cross product are defined geometrically 
and also in terms of components of vectors. The dot product of two vectors 
is interpreted in terms of projecting a shadow of one vector onto another, 
and is applied to the problem of finding the angle between two vectors or 
lines. The cross product of two vectors is interpreted as a vector whose 
magnitude is an area. Both dot and cross products can be used in problems 
involving finding the areas of plane figures and the volumes of solid objects. 


4.1 The dot product 


Definition 


The dot product of two vectors a and b is 


a . b = |a| |b| cos θ, 


where θ (0 ≤ θ ≤ π) is the angle between the directions of a and b (see 
Figure 4.1). 


The product a . b is read as 
‘a dot b’. 


b 


θ 


, i.e.  when  θ is a 


The dot product of two vectors is a scalar quantity, i.e. it is a real number: 
a . b is the product of the three scalars |a|, |b| and cos θ. So the operation of 
the dot product combines two vectors to define a scalar, and for this reason 
the dot product is also called the scalar product. The angle θ lies in the 
range 0 ≤ θ ≤ π: the value of a . b is positive for 0 ≤ θ < 
2


π 


an acute angle; the value of a . b is negative for
 2
π < θ ≤ π, i.e.  when  θ is 


obtuse; the value of a . b is zero for θ = 


It is important, when writing a dot product, to make sure that the dot 
between the vectors is clear. 


2
π , i.e. when θ is a right angle. Figure 4.1 


a 


b 


P 
6 


P 
3 


1 


2 


4 


*Exercise 4.1 


Three vectors a, b and c of magnitudes 2, 4 and 1 units, respectively, lying 
in the same plane, are represented by arrows as shown in Figure 4.2. The 
angle between the vectors a and b is 3


π radians, and that between the vectors c 
b and c is 6


π radians. Use the definition of dot product to find the values of

a . b, b . c, a . c and b . b. 


Figure 4.2 
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Section 4 Products of vectors 


This exercise demonstrates two important properties of the dot product. 


(a) If two vectors a and b are perpendicular to each other (i.e. the angle 
π π 


2 = 0, 
between them is radians), then since cos 2 


2
π = 0.a . b = |a| |b| cos 


(b) The dot product of a vector with itself gives the square of the magnitude 
of the vector, i.e. 


a . a = |a| |a| cos 0 = |a|
2 .



The converse of (a) also holds: if a and b are two non-zero vectors such

that a . b = 0, then the definition of the dot product tells us that cos θ = 0; 

therefore θ =
 2


π and the vectors are perpendicular.



In the product of real numbers, xy = 0 implies that either x or y (or both)

is zero. In contrast, for the dot product, a . b = 0 gives an extra possibility:

either a or b (or both) is the zero vector, or the angle between a and b is



2
π radians. 


Properties of the dot product 


The following are some important properties of the dot product of two vec-
tors. They include the rules for manipulating dot products in algebraic 
expressions. 


Properties of the dot product 


Let a, b and c be vectors, and let m be a scalar. 
1 a . b is a scalar. 
2 a . b = b . a, i.e. the dot product is commutative. 
3 a . (b + c) =  a . b + a . c and (a + b) . c = a . c + b . c, i.e. the  dot  


product is distributive over vector addition. 
4	 (ma) . b = m(a . b) =  a . (mb), i.e. a scalar can be ‘moved through’ 


2 


a dot product. 
5	 If neither a nor b is the zero vector, then a . b = 0 if and only if a 


is perpendicular to b. 
6 a . a = |a| . 


These properties can all be 
derived from the definition of 
the dot product, but the 
derivations are not given here. 


The following example shows how these properties can be used to simplify 
expressions. 


Example 4.1 


Expand the expression x . y, given that x = 2u + v and y = u − 5v. Cal-
culate its value when u and v are perpendicular unit vectors. 


Solution 
x . y = 2u + v) . (u − 5v) 


= (2u) . (u − 5v) +  v . (u − 5v) (Property 3) 
= (2u) . u + (2u) . (−5v) +  v . u + v . (−5v) (Property 3) 
= 2(u . u) − 10(u . v) +  v . u − 5(v . v) (Property 4) 
= 2(u . u) − 9(u . v) − 5(v . v) (Property 2) 


Now u . u = |u|2 = 1 and v . v = |v|2 = 1 when u and v are unit vectors. 
Furthermore, u . v = 0 when u and v are perpendicular vectors. So when u 
and v are perpendicular unit vectors, we have 


x . y = 2  − 0 − 5 =  −3. 
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Section 4 Products of vectors 


*Exercise 4.2 
(a) Expand the expression (a + b) . (a − b). 


2 2(b) Expand the expression |a + b| . Recall that |a| = a . a. 


Exercise 4.3 


Given that a and b are perpendicular unit vectors: 


(a) find the value of m such that the two vectors 2a + 3b and ma + b are

perpendicular;



(b) find the value of |c| if c = 3a + 5b. 


Finally, a word of caution: (a . b)c is not in general the same as a(b . c). In general, if m is a scalar 
The vector (a . b)c is a scaling of c by the number a . b, whereas a(b . c) is a  and a is a vector, we can 


scaling of a by the number b . c. Clearly these two vectors are not generally write ma or am as 
convenient, although ma iseven parallel, let alone equal. For example, if a = b = i and c = j, then more usual; thus a(b . c) 
means the same as (b . c)a.(a . b)c = (i . i)j = j but a(b . c) =  i(i . j) =  0. 


The component form of the dot product 


We saw in Section 3 that an arbitrary vector a in three dimensions may be 
expressed in terms of the Cartesian unit vectors as ⎡ ⎤ 


a1 


a = a1i + a2j + a3k = ⎣ a2 ⎦ . k



a3



With this representation, vector addition and scaling become simple alge-
braic operations without any reference to diagrams. The definition of the 
dot product was expressed in terms of the magnitudes of two vectors and j 


the angle between them. We shall now see how to express the dot product 
in terms of components of vectors. 


i 
First observe that, by definition, i, j and k are unit vectors and are perpen-
dicular to one another (see Figure 4.3). Thus: Figure 4.3 


i . j = j . i = 0, i . k = k . i = 0, j . k = k . j = 0;  Note that for the 
right-handed system shown, 


i . i = 1, j . j = 1, k . k = 1. the unit vector i points out of 


If two vectors a and b have component forms a = a1i + a2j + a3k and the plane of the page towards 


b = b1i + b2j + b3k, then the dot product of a and b may be written as 
you. 


(a1i + a2j + a3k) . (b1i + b2j + b3k). 


We can now apply Properties 3 and 4 of the dot product and the above rules 
for combining i, j and k to this expression to obtain a very simple formula 
for the dot product of vectors in component form. Specifically, we have 


(a1i + a2j + a3k) . (b1i + b2j + b3k) 
= a1i . (b1i + b2j + b3k) +  a2j . (b1i + b2j + b3k) +  a3k . (b1i + b2j + b3k) 
= a1i . b1i + a1i . b2j + a1i . b3k 


+ a2j . b1i + a2j . b2j + a2j . b3k 


+ a3k . b1i + a3k . b2j + a3k . b3k



= a1b1(i . i) +  a1b2(i . j) +  a1b3(i . k)

+ a2b1(j . i) +  a2b2(j . j) +  a2b3(j . k) 


+ a3b1(k . i) +  a3b2(k . j) +  a3b3(k . k)

= a1b1 + a2b2 + a3b3.



29 







Section 4 Products of vectors 


This extremely important formula is worth remembering. 


Component form of the dot product 


If a = a1i + a2j + a3k and b = b1i + b2j + b3k, then 


a . b = a1b1 + a2b2 + a3b3. 


*Exercise 4.4 


If a = 4i + j − 5k and b = i − 3j + k, show that a . b = −4. What does the 
negative sign tell us? 


The angle between two vectors 


The component form of the dot product has an important application in 
calculating the angle between two vectors. You have already seen that if 
a . b = 0 and neither a nor b is zero, then a and b are perpendicular. For 
instance, if a = 2i − j and b = 2i + 4j, then a . b = (2  × 2) + (−1 × 4) = 0, 
so the angle between a and b is
 π 


2 radians. In general, the equation defining

the dot product of a and b, i.e. a . b = |a| |b| cos θ, gives the following simple 
expression for finding the angle between a and b. 


Angle between two vectors



The angle θ between any two non-zero vectors a and b is given by



a . b a1b1 + a2b2 + a3b3 cos θ = = √ √ ,
2|a| |b| a2 + a2 + a2 b2 + b2 + b2 


1 3 1 2 3 


where 0 ≤ θ ≤ π. 


Example 4.2 √ 
(a) Find the angle between the vector a = i + 3k and the x-axis. √ √ 
(b) Find the angle between the vectors a = i + 3k and b = 3i − 2j + 3k. √ √ 
(c) Show that c = −2 3i + 2k is perpendicular to a = i + 3k. 


Solution 


(a) The direction of the x-axis is the same as the direction of i, and the 
angle θ between a and i is given by 


a . i a1 1 1 
cos θ = = = √ 


1 + 3  
= 


2 
. 


a| |
Thus the angle between a and the x-axis is 


|
a| |i |
π 
3 radians. 


√ √ 
(b) We have |a| = 1 + 3  =  2,  |b| = 3 + 4 + 9  =  4  and  


√ √ √ 
a . b = (1  × 3) + (0 ×−2) + ( 3 × 3) = 4 3. 


Therefore the angle θ between a and b is given by 
√ √ 


4 3 3 
cos θ = 


2 × 4
= 


2 
, 


so θ = π 
6 radians.
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(c) To test whether a and c are perpendicular, we calculate their dot prod-
uct: √ √



a . c = (i + 3k) . (−2 3i + 2k)
√ √ 
= (1  ×−2 3) + (0 × 0) + ( 3 × 2) 
= 0. 


Since a . c = 0 and a and c are non-zero vectors, c is perpendicular 
to a. 


*Exercise 4.5 


Consider the vectors



a = 2i − 3j + k and b = −i + 2j + 4k.



Find the magnitudes of a and b, and the angle between them.



Resolving a vector into components 


The dot product has a useful geometric interpretation. 


*Exercise 4.6 


If a = a1i + a2j + a3k, find the values of a . i, a . j and a . k. 


The solution to Exercise 4.6 shows the important fact that the i-component

of any vector a may be found by taking the dot product a . i. The j- and  


P 
u


Q 


a A



k-components can be found similarly (by taking dot products with j and k,

respectively).



We can also find the components of a vector in other directions. Suppose
−→that a vector a, represented by OA, makes an angle θ with a unit vector u

(see Figure 4.4). Draw the line AP perpendicular to the direction of u. O



Then the distance OP is seen from simple trigonometry to be |a| cos θ. Now 

observe that the dot product of a and u is Figure 4.4



a . u = |a| |u| cos θ = |OP | (since |u| = 1). 


The distance OP represents the component of a in the direction of u.	 Note that a . u will be 
negative if θ >  π , i.e. if P and2 
u lie on opposite sides of O. 


Definition 


The component of a vector a in the direction of an arbitrary unit

vector u is a . u.



*Exercise 4.7 


Consider the vectors



a = 2i − 3j + k and b = −i + 2j + 4k.



(a) Which of the following vectors is perpendicular to a?



c = −i + j + 3k, d = −2i + k, e = −i − j − k.



(b) Find the component of the vector a + 2b in the direction of the line

joining the origin to the point (1, 1, 1).
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Section 4 Products of vectors 


Resolving vectors will be a vital technique in subsequent units, and some-
times you will need to be able to resolve a vector into components in di-
rections other than horizontal and vertical. For example, suppose that two 
forces, N and W, are acting at a point on an inclined plane (see Figure 4.5). 
These forces can be represented by vectors, and you will see that it may be 


N j 


convenient to take axes as shown, with i pointing up the plane. It is then W 


necessary to be able to resolve N and W into components along and per-
pendicular to the plane. Figure 4.5 


The dot product method of obtaining components always works, but a ge-
ometric view is also useful. This follows because the component of a vector 
a in the direction of a unit vector u is 


a . u = |a| cos θ, 


where θ is the angle between a and u. We summarize the method as a 
procedure. 


Procedure 4.1 Resolving a vector into components 


Given a vector a and a unit vector u, to find the component of a in 
the direction of u, do the following. 
•	 Find (usually from a diagram) the angle θ between a and u (with 


0 ≤ θ ≤ π). 
•	 The component of the vector a in the direction of the unit vector 


2
π 


u is |a| cos θ. 
•	 If necessary (for example, if θ >  ), use the trigonometric formulae 


from the Handbook to simplify the result. 


The following example uses Cartesian unit vectors that are not horizontal 
and vertical. 


Example 4.3 


Suppose that the unit vector i points up a plane which is inclined at an angle 
α to the horizontal, and the unit vector j is perpendicular to the plane, as 
shown in Figure 4.6. Find the i- and  j-components of the vectors N and W. 


Solution



It is easy to resolve the vector N into its component form: 


N = 0i + |N|j = |N|j. 
W i 


j 


N 


A 


P¼
¼A 


A 


P 
2 �¼A 


For the vector W, we note from the geometry of the diagram that the angles Figure 4.6 
between W and i, and  W and j, are given by 2


π + α and π − α, respectively.

Applying Procedure 4.1 twice (with u = i and then u = j) allows us to 
resolve W into its component form: 


j 


i 


v 


P 
6 


P 
6 


w 


2
πW = W cos( + α) i + |W| cos(π − α) j



cos α j

|


= −|W
| 


sin α i − |W
| | . 


*Exercise 4.8 


The two-dimensional vectors v and w in Figure 4.7 have magnitudes 1.5 
and 2, respectively. Resolve v and w into their i- and  j-components. 


Exercise 4.9 
Figure 4.7 


In Figure 4.8 the point P lies on a line making an angle α with the x-axis. 
The vectors a, b, c, d have magnitudes 1, 1.5, 1.5 and 2, respectively, and 
point in the directions shown. 


32 







Section 4 Products of vectors 


x 


y 


a 


b
c 


d 
P 


A 


i 


j 


Figure 4.8 


Resolve each of these vectors into their i- and  j-components. 


*Exercise 4.10 


Figure 4.9 shows a configuration similar to Figure 4.8, but with the unit 
vectors i and j aligned along and perpendicular to the line, respectively. 


x 


y 


a 


b
c 


d 
P 


A 


i 


j 


Figure 4.9 


Resolve each of the vectors a, b, c and d into their i- and  j-components. 


*Exercise 4.11 


The vectors p, q and r in Figure 4.10 have magnitudes 2.5, 3 and 2.5, 
respectively. Resolve p, q and r into their i- and  j-components. 


x 


y 


j 


B i 
A 


G 


p 


q 
r 


j 
a 


i 


PFigure 4.10 b 
4 


Exercise 4.12 


The sum of the two-dimensional vectors a, b, c in Figure 4.11 is the zero vec-
tor, and |c| = 2. By resolving the vectors into their components, determine c 


the magnitudes of a and b. Figure 4.11 
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4.2 The cross product 
You have seen that the dot product of two vectors is a scalar (i.e. a real 
number). In contrast, the cross product of two vectors is a vector, whose 
direction is perpendicular to both. The cross product has numerous appli-
cations in geometry and mechanics, as you will see later in the course. 


Definition 


The cross product of two vectors a and b is



a × b = (|a| |b| sin θ) ̂ 
c, 


where θ (0 ≤ θ ≤ π) is the angle between the directions of a and b, and  


The product a × b is read as 
‘a cross b’. 


ĉ a and b


turn 
a to b 


a 


b 


θ 


direction 
of screw’s 


motion 


c ̂ 


is a unit vector perpendicular to both , whose sense is given 
by the right-hand screw rule as shown in Figure 4.12. 


to a


a 


b 


θ 


d
^


turn 
b


The order of writing down a and b is very important. According to the

screw rule, b × a is a vector in the direction opposite to a × b. Figure 4.13

shows what would happen to the screw in Figure 4.12 if we turned from b

to a: it would ‘unscrew’. The unit vector ̂
d in the direction of b × a is in

the opposite sense to ̂ d = −̂
c, i.e. ̂ c. Hence Figure 4.12 


d = −(|b| |a| sin θ) ̂b × a = (|b| |a| sin θ) ̂ c = −(a × b). 
direction 


of screw’s 
motion 


*Exercise 4.13 


Three vectors u, v and w lie in the (x, y)-plane. Their magnitudes are 2, 3 


The angle θ between two vectors a and b lies in the range 0 ≤ θ ≤ π, so  
sin θ ≥ 0 and hence |a| |b| sin θ ≥ 0. So the cross product of a and b is a 
vector with magnitude |a| |b| sin θ and direction defined by ĉ. The direction 
of ĉ is the direction in which the screw in Figure 4.12 would advance when 
turned from a towards b through the angle θ. Notice that ĉ is not defined 
if a and b are parallel or if a or b is the zero vector; but in these cases 
|a| |b| sin θ = 0 so we take a × b = 0. The cross product is also called the 
vector product, which stresses the fact that a × b is a vector. 


and 4 units, respectively, their directions make angles
 ππ and
 π radians,,6 3 6 
respectively, with the positive x-axis, and they have positive j-components. 
Use the definition of the cross product to find the vectors u × v, u × w and 
v × w. 


Exercise 4.13 illustrates an important property of the cross product. If two

vectors a and b are parallel, then the angle θ between their directions is zero

or π radians, so the cross product of a and b is the zero vector, because the 
magnitude of the vector, i.e. |a| |b| sin θ, is zero. The converse also holds: if 
a and b are two non-zero vectors such that a × b = 0, then the definition 
of the cross product tells us that sin θ = 0; therefore θ = 0  or  θ = π, and the Figure 4.13 
vectors are parallel. We can also deduce that 


a × a = 0 for any vector a. 


So we can test for perpendicular vectors by using the dot product and for 
parallel vectors by using the cross product. 


Properties of the cross product 


The following are some important properties of the cross product of two 
vectors. They include the rules for manipulating cross products in algebraic 
expressions. 
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Section 4 Products of vectors 


Properties of the cross product



Let a, b and c be vectors, and let m be a scalar.

1 a  × b is a vector.

2 b  × a = −(a × b).

3 a  × (b+c)=(a × b)+(a × c) and  (a+b) × c =(a × c)+(b × c),



i.e. the cross product is distributive over vector addition. 
4 (ma) × b = m(a × b) =  a × (mb), i.e. a scalar can be ‘moved 


through’ a cross product. 
5 If neither a nor b is the zero vector, then a × b = 0 if and only if 


a and b are parallel. 
6 a  × a = 0. 
7 In general, a × (b × c) �= (a × b) × c. 


These properties can all be derived from the definition of the cross product, 
but the derivations are not given here. Note in particular Property 2: the 
cross product is not commutative — the order does matter. 


The component form of the cross product 


*Exercise 4.14 
(a) Show that i × j = k, j × k = i and k × i = j. 


(b) Calculate j × i, k × j and i × k. 


(c) Calculate i × i, j × j and k × k. 


(d) Expand and simplify



(i + k) × (i + j + k) and  (i × (i + k)) − ((i + j) × k).



The cyclic pattern of the products i × j, j × k, k × i and of the products 
i × k, k × j, j × i, as demonstrated in Exercise 4.14, can be remembered 
using Figure 4.14. For example, if we go round the circle clockwise starting 
at i, we have  


i × j = k, j × k = i, k × i = j. i 


However, if we go in an anticlockwise direction, the cross products are neg-
ative: 


k j 
i × k = −j, k × j = −i, j × i = −k. 


If two vectors a and b have component forms a = a1i + a2j + a3k and Figure 4.14 
b = b1i + b2j + b3k, then the cross product a × b may be written as 


a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k) 
= a1i × (b1i + b2j + b3k) 


+ a2j × (b1i + b2j + b3k) 
+ a3k × (b1i + b2j + b3k) (using Property 3) 


= a1i × b1i + a1i × b2j + a1i × b3k 
+ a2j × b1i + a2j × b2j + a2j × b3k 


+ a3k × b1i + a3k × b2j + a3k × b3k (using Property 3) 
= a1b2(i × j) +  a1b3(i × k) 


+ a2b1(j × i) +  a2b3(j × k) 
+ a3b1(k × i) +  a3b2(k × j) (using Properties 4 and 6) 


= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k (using the results above). 
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Section 4 Products of vectors 


We highlight this important formula. 


Component form of the cross product 


If a = a1i + a2j + a3k and b = b1i + b2j + b3k, then 


a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k ⎡ ⎤ 
a2b3 − a3b2



= ⎣ a3b1 − a1b3 ⎦
.

a1b2 − a2b1



This formula is not easy to remember or use. For this reason, simpler meth- Another quick way to 
ods have been devised, such as the following, which is known as Sarrus’s evaluate cross products is to 


Rule. Given two vectors a = [a1 a2 a3]T and b = [b1 b2 b3]T , draw  a  use determinants. This 
method is introduced in tableau with i, j and k in the top row, then repeat i and j. In the second Unit 9 when we discuss 


row do the same with the components of a, and in the third row with those determinants. If you already 
of b. Then following the diagonal lines as shown, and multiplying the en- know this method, then we 
tries, gives the corresponding components of the cross product a × b, which suggest that you continue to 


are the elements on the fourth row of the tableau. use it. 


i j k i j 
b b " b " 


"
" 


b b" b" 
b " b " b " b " b " b " a1 a2 a3 a1 a2 


"
" b " b " b


b" b" b
" " b " b b b2b1 


" b2 
" b b3 


" b b1 
b


"
"


" 
"


"
" 


"
"


" b
b


b
b


b
b


b
b


b" " " b b b 


−a2b1k −a3b2i −a1b3j a2b3i a3b1j a1b2k 


(The diagonals pointing to the right yield positive terms, while those point-
ing to the left have a minus sign.) 


Example 4.4 


If a = 2i + j − k and b = i − 3j + 4k, find a × b. 


Solution 


Since a1 = 2,  a2 = 1,  a3 = −1 and  b1 = 1,  b2 = −3, b3 = 4, the formula 
above gives 


a × b = ((1 × 4) − (−1 ×−3))i

+ ((−1 × 1) − (2 × 4))j



+ ((2 ×−3) − (1 × 1))k



= i − 9j − 7k.



Alternatively, using the tableau, we have 


i j k i j 
b b " b " 


"
" 


b b" b" 
b " b " b " b " b " b " 2 1 −1 2 1 
"


" b " b " b
b" b" b


" " b " b b" " b " b b


" 
1 


"
−3 4 1 −3



" " 
"


"
" b


b
b


b
b


b 


b
b


b
" " " " " b b b 


−k −3i −8j 4i −j −6k 


so a × b = i − 9j − 7k, as before. 
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Section 4 Products of vectors 


*Exercise 4.15 


If a = 2i − 3j + k, b = −i + 2j + 4k and c = −4i + 6j − 2k, find a × b, a × c

and b × c. From your results, what can you say about a and c?



*Exercise 4.16 


If a = 2i + 2j + k and b = 4i + 4j − 7k, find a unit vector whose direction

is perpendicular to the directions of both a and b.



We close the section, and the unit, with some useful geometric applications 
of the cross product. The following example is the first step. 


Example 4.5 


Any two non-zero and non-parallel vectors a and b define a parallelogram, 


b 


θ 


a 
as shown in Figure 4.15. Express the area of the parallelogram in terms of 
a × b. Figure 4.15 


Solution 


The area A of the parallelogram defined by the two vectors a and b is 
the same as the area of the rectangle of height |b| sin θ and width |a| (see 
Figure 4.16). Thus A = |a| |b| sin θ, and this is the magnitude of a × b. So  


A = |a × b|. 


a
b 


θ 


b sin θ 


a 


Figure 4.16 


Area of a parallelogram 
The area of a parallelogram with sides defined by vectors a and b is 
|a × b|. 


b 


|a × b|. 


a 


This idea is easily extended for the area of a triangle. Any two non-zero,

non-parallel vectors a and b define a triangle (see Figure 4.17). The area of

this triangle is half that of the corresponding parallelogram, so it is
1 


2 


1 
2 


Area of a triangle 
The area of a triangle with sides defined by vectors a and b is |a × b|. Figure 4.17 


Using the formula for the area of a parallelogram, it is easy to find the 
volume of a parallelepiped (see Figure 4.18). This is given by A parallelepiped is like a 


distorted brick. All of its 
volume of parallelepiped = base area × vertical height h faces are parallelograms. 


= |(a × b) . c|. 
Here we have made use of the fact that the base is a parallelogram (assumed 


b 


to be in the (x, y)-plane) defined by the vectors a and b. The base therefore 
has an area equal to the magnitude of a × b. Now the vertical height h 
is the component of the vector c in the direction of the Cartesian unit 
vector k pointing vertically upwards, i.e. it is the z-component of c, given  
by c . k = k . c. So the volume of the parallelepiped is |a × b|(k . c). But 
the vector product a × b points vertically upwards and can therefore be 
expressed as |a × b|k. Hence the volume of the parallelepiped is 


|a × b|(k . c) = (|a × b|k) . c = (a × b) . c. 


Of course, the scalar (a × b) . c can be negative if one of the defining vec-


h 


a 


Figure 4.18 


The scalar quantity 
tors a or b is chosen to be in the opposite direction to the one chosen in (a × b) . c is an example of a



Figure 4.18, or if the order of the cross product is reversed. The modulus scalar triple product.



signs in the formula |(a × b) . c| ensure that the volume comes out positive.



c 
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Outcomes 


End-of-section Exercises 


Exercise 4.17 
(a) Is a . b a vector? 


(b) Can a . b be negative? 


(c) What is special about a and b if a . b = |a| |b|? 


(d) If a . b = 0, what can you say about a and b? 


(e) If a × b = 0, what can you say about a and b? 


Exercise 4.18 


Suppose that the vectors r and s are directed towards north and north-east, 
respectively, and define r × s = t. 


(a) What is the direction of t? 


(b) In what direction is s × r? 


(c) In what direction is t × r? 


(d) If |r| = |s| = 1, what is |t|? 


(e) Calculate the vector t × (r × s). 


(f)	 If |r| = |s| = 1, what is the value of r . s? 


(g) If |r| = |s| = 1, what is the value of s . (t × r)? 


Exercise 4.19 


Find the value of (a × b) . a for any non-zero vectors a and b. 


Outcomes 
After studying this unit you should be able to: 
•	 understand the meaning of the terms scalar, vector, displacement vector, 


unit vector and position vector, and know what it means to say that two 
vectors are equal; 


•	 use vector notation and represent vectors as arrows on diagrams; 
•	 use the plane polar coordinate representation of the magnitude and di-


rection of a vector, and convert between the polar coordinates and the 
Cartesian coordinates of the endpoint of a vector drawn from the origin; 


•	 scale a vector by a number, and add two vectors geometrically using the 
triangle rule (or the parallelogram rule); 


•	 resolve a vector into its Cartesian components, and scale and add vectors 
given in Cartesian component form; 


•	 calculate the dot product (scalar product) and cross product (vector 
product) of two given vectors; 


•	 determine whether or not two given vectors are perpendicular or parallel 
to one another; 


•	 determine the magnitude of a vector and the angle between the directions 
of two vectors; 


•	 write down the vector equation of a given straight line; 
•	 resolve a vector in a given direction; 
•	 manipulate vector expressions and equations involving the scaling, ad-


dition, dot product and cross product of vectors; 
•	 use the cross product to determine the area of a parallelogram or triangle. 
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1.1 
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Solutions to the exercises 


Solutions to the exercises



Section 1 
Cartesian Polar 


coordinates (x, y) coordinates 〈r, φ〉 
y (0, −1) 


b 
a 


π 
3 


π1, − 〈√ 2 
π(1, 1) 2,


3 4√ √ 〈 
π 
4(2 2, −2 2) 4, − 


(−6, 0) 〈6, π〉2 〈√ 〉 
(−1, −1) 2, − 34 


π 


〈−1, π〉1 
(2.003 × 107 , 9.797 × 107) 〈108 , exp(0.1π)〉 


x The entry in row 6 is an invalid entry because r mustO 1 2 3 
be non-negative. 


1.6 The most obvious choice is the Cartesian coordi-
nate system with origin at Bristol (see Figure 1.3 on 
page 6), the x-axis pointing east and the y-axis point-


π 
12 


π 
180− 15 5


〉. Another choice would have the origin at 


π 
2ing north. Then r = 296 and φ = Hence 


30° 


N 


45° 


Leicester 
57 km 


32 km 


Derby 


0 2010 30 


Birmingham Scale (km) 


= . 
π 


12 
5


Bristol but the x-axis pointing from Bristol to Leeds, 
in which case you would have s = 〈296, 0〉. (Infinitely 
many other choices are possible.) 


1.7 Scalar quantities: temperature, volume, energy, 
time.

Vector quantities: velocity, force, displacement, accel
-
eration.



1.8 Since (0, −3) lies on the negative part of the y-axis,

we can immediately write down the polar coordinates
−−→ 


s = 〈296, 


of −−→ 
OQ as 〈3, −π 


2 〉, so  |OQ| = 3.  


Alternatively, using the formulae 


r = (02 + (−3)2)1/2 = 3, 
sin φ = −3/3 =  −1, cos φ = 0  


gives the same results. 
N 


Section 2 
70 mph



60°

2.1 (a) Leeds to Bristol: −d. 
Leeds to Leeds: 0. 


(b) (i) 2v (ii) −v (iii) 0 


(c) The vector −1.5v has magnitude 1.5|v| and direc-
tion opposite to v. 


0 10 20 30 40 50 60 70 


Scale (mph) 


1.4 f = b, as both are of length 2 units and both point 
in the positive y-direction. 


1.5 The completed table is as follows. 


The vector −kv (k positive) has magnitude k|v| and 
direction opposite to v. 


→(d) (i) The vectors −− DC are equal in lengthAB and 
−−→ 


and parallel, and point the same way (i.e. have the same 
direction). Thus 


−−→ −−→ 
AB = DC. 


(ii) The vectors −−→ 
DA are equal in length andBC and 
−−→ 


parallel, but point in opposite directions. Thus 
−−→ −−→ −−→ 
BC = −DA (or, equivalently, −−→ 


DA = −BC). 
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2.5 


Solutions to the exercises 


1
(e)	


1 
v is a scaling of v by the positive scalar m = . 2.6 The following sketch illustrates the associative 


|v| |v| property. 
1


The direction of v is thus the same as that of v, and  |v| 
1 ythe magnitude is m|v| = |v| = 1.  


P 
3 


P 
3 


x 


c 


a 


b 


a + b 


c c 


b 


(a + b) + c 
= a + (b + c) 


b + c 


b + c 


|v| 


2.2	 a = 2i, b = −2.5i, c = 3j, d = −j. 


2.3	 (a) −35j (where |j| represents 1 km per hour). 
O 


(b)	 −112i (where |i| represents 1 mile). 


(c)	 112i (where |i| represents 1 mile). 


2.4	 (a) y 


x 


c 


a 


b 
b 


c 


a + b 


a + c 
(To evaluate (a + b) +  c, we go first to a + b (in 
the lower quadrant) and then add c. To evaluate 
a + (b + c), we go first to a (along the x-axis) and then 
add b + c.) 
The following sketch illustrates the distributive prop-
erty. 


O 


y 


O 
P 
4 


P 
4 


x 
a 


b a + b 


b 


2a 


2b 


= 2 a + 2 b 
)2(a + b 


(b) 


– b 
a + (– b) 


– b 


xO a 


b 


y 


y 


2.7	 4(a − c) + 3(c − b) + 2(2a − b − 3c) 
= 4a − 4c + 3c − 3b + 4a − 2b − 6c 


= 8a − 5b − 7c 


– ba – b 


a + b 


– b 


x 
O 


a 


bb 2.8	 (a) 2b + 4x = 7a, therefore 


4x = 7a − 2b, 


so 
7 1b.a −x = 4 2 


(b)	 n(b − a) +  x = m(a − b), therefore 


x = m(a − b) − n(b − a)

= m(a − b) +  n(a − b)

= (m + n)(a − b).
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2.9 


Solutions to the exercises 


2.13 (a) The first rule is true and the second is false 


a – b 


2a 


b1 
2 


2a + b1 
2 


– b 


a + b 


x 
O 


a 


y 


P 
4 


P 
4 


bb 


2.10 The magnitude of v is 4.7 times the magnitude 
of u. v is parallel to u, but the sense of v is opposite 
to the sense of u, i.e.  v and u have opposite directions. 


2.11 By the triangle rule, 
−−→ −−→ −→ 
AB + BC = AC, 
−−→ −−→ −→ 
CD + DA = CA. 


−→But −→ 
CA = − AC, so we have  


−−→ −−→ −−→ −−→ −→ −→ 
AB + BC + CD + DA = AC − AC = 0. 


C 


B 


A D 


−−→ −→Alternatively, −−→ 
AB + BC = AC. Hence 


−−→ −−→ −−→ −→ −−→ −−→ 
AB + BC + CD = AC + CD = AD, 


so 
−−→ −−→ −−→ −−→ −−→ −−→ 
AB + BC + CD + DA = AD + DA = 0, 


−−→since 
−−→ 
AD = − DA. 


1 


(scalar multiplication does not change direction). 


(b) The proposed rule does not hold. (Consider r + r, 
for example, where r = 〈 r, φ〉 . The proposed rule gives 
r + r = 〈 2r, 2φ〉 , whereas actually r + r = 2r = 〈 2r, φ〉 .) 
(There is an algebraic rule for adding vectors in polar 
form, but it is rather unwieldy. This is one reason why 
Section 3 introduces the Cartesian representation of a 
vector, for which there is a simple algebraic rule for the 


y 


3.5 


addition of vectors.) 


Section 3 


a = i = [1  0]T3.1 
b = 2j = [0  2]T 


c = i = [1  0]T (= a) 


d = − 2i = [− 2 0]T 


e = − i + 2j = [− 1 2]T 


f = 2j = [0  2]T (= b) 


g = i − j = [1  − 1]T 


h = 3i = [3  0]T 


3.2 (a) a = 3i + j, b = − i + 3j, c = − 3i − 2j, 
d = 3i + j (= a). 


(b) 


3.5a 


a 


3 10.5 x 


3.5a = 3.5(3i + j) = 10.5i + 3.5j, as in the diagram. 


(There are various other possible arguments!) (c) y 


4 
a + b b2.12 The vectors p, q and p + q are sketched below. 


3 


p


q 


y 


p + q P 2�3, 2 ® 


F 1 


�4, P ®  x 


a 


4 xO 1 2 3 
π5p = 〈 15, 2 〉 , − q = 〈 4, 0〉 . 


Since the directions of p and q are at right angles, a + b = (3i + j) + (− i + 3j) = 2i + 4j, as in the diagram. 
√ | p + q| = 32 + 42 = 5 and φ = π + arctan 4 = 2.498 (d) 2a + b − c = 2(3i + j) + (− i + 3j) − (− 3i − 2j)


2 3 
radians, so = 8i + 7j. √
p + q = 〈 5, 2.498〉 . Thus | 2a + b − c| = 82 + 72 = 


√ 
113.
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( ) ( ) 


( )	 ( ) 


Solutions to the exercises 


3.3 (a) Given r = s, we can equate the corresponding 
components. Thus 


p + q = − 3 and  p − q = 7, 
which gives p = 2 and q = − 5. ([ ] [ ])


1 1 1
(b)	 t = u + v = √ + 


2 1 − 1 [ ] [ √ ]
1	 2 2 = √	 = 
2 0 0 


. 


√ 
Hence | t| = 2.


3.4	 (a) | a| = 2,  | b| = 3,  | c| = 1.  


(b)	 Use the formulae x = r cos φ and y = r sin φ (see 
Subsection 1.5).

First consider the vector a. The Cartesian components

of a are the numbers a1 and a2 given by
√ 


a1 = 2 cos π = 1, a2 = 2 sin π = 3.3	 3 


Thus √ 
a = a1i + a2j = i + 3j. 


Similarly for b and c: 
3 3b =	 3 cos  3π i + 3 sin  3π j = − √ i + √ j,4 4 2 2 √ 


3 i + 1c = cos π	 i + sin π j = 2 2 j.6	 6 


(c)	 We now have (	 √ ) ( √ ) 
3 i + 1a + c = i + 3j + 2 2 j (	 √ ) (√ ) 


= 1 +  3	 i + 3 +  1 j2 2 



 1.866i + 2.232j. 


3.5	 (a) The components are 


v1 = 5 cos 5π 
 3.214,18 


v2 = 5 sin 5π 
 3.83.18 


(b)	 The magnitudes are √

| a| = ((  3)2 + (− 1)2)1/2 = 2,
√

| b| = ((− 3)2 + 32)1/2 = 3  2 
 4.243.



To specify the directions, we need a reference direction. 
Using the plane polar coordinate convention, we can 
specify the angle φ with respect to the positive x-axis. 
Thus, for vector a, √



cos φ = a1/| a| = 3/2,



sin φ = a2/| a| = − 1/2, 
πhence φ = − .6 


For vector b, √ √

cos φ = − 3/(3 2) = − 1/ 2,
√ √ 
sin φ = 3/(3 2) = 1/ 2, 


3πhence φ = .4 


3.6	 Systems (b), (c) and (d) are right-handed. 


3.7	 (a) d = 2(i + j + k) − 3(2i − 3j − k) 
= − 4i + 11j + 5k, 


e = (i + j + k) − 2(2i − 3j − k) + 4(3i + k)

= 9i + 7j + 7k.
√	 √ √ 


(b)	 | d| = (− 4)2 + 112 + 52 = 162 (= 9 2), √ √

| e| = 92 + 72 + 72 = 179.



√ √

(c) | a| =	 12 + 12 + 12 = 3.
A unit vector in the direction of a is 


1 1 
a = √ (i + j + k). | a| 3 


(d)	 If a + x = b, then 


x = b − a = (2i − 3j − k) − (i + j + k) 
= i − 4j − 2k. 


Thus the components of x are 1, − 4 and  − 2. 


⎡	 ⎤ ⎡ ⎤ ⎡ ⎤ 
3 2 1 


3.8	 p = ⎣ 0 ⎦ − ⎣ 3 ⎦ = ⎣ − 3 ⎦, so  
18 − 1 19 


| p| = (12 + (− 3)2 + 192)1/2 = 3711/2 (
 19.26). 


3.9 Relative to the origin of the Cartesian coordinate 
system, the two points have position vectors i + j + 2k 
and 2i + 3j + k. Thus the vector equation of the line is 


t = (1  − s)(i + j + 2k) +  s(2i + 3j + k) 
= (1  +  s)i + (1 + 2s)j + (2  − s)k, 


where −∞ < s <  ∞ . 


√ √ 
3.10 (a)	 | a| = 22 + (− 1)2 = 5, √ √ 


| b| = 12 + 32 + 52 = 35. 
The vector a lies in the (x, y)-plane, and the angle√ φ 
that it makes with the x-axis is given by cos φ = 2/ 5√ 
and sin φ = − 1/ 5. Hence φ 
 −  0.4636 radians. 


(b)	 a + b = 3i + 2j + 5k, 


2a − b = 3i − 5j − 5k, 


c + 2b − 3a = − 4i + 10j + 8k. 


(c)	 The vector −−→ 
PQ  is equal to 2a − b. The point Q is 


the end of the vector −−→ 
OQ, which  is  given by  


−−→ −−→ −−→ 
OQ = OP + PQ 



= (2j + 3k) + (3i − 5j − 5k)

= 3i − 3j − 2k,



so Q is the point (3,− 3,− 2). 


T3.11 0 = [0 0 0] , 
Ti = [1 0 0] , 
Tj = [0 1 0] , 
Tk = [0 0 1] . 
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4.1 


Solutions to the exercises 


Section 4 4.6 a . i = (a1i + a2j + a3k) . i 
= a1i . i + a2j . i + a3k . i 


a . b = |a| |b| = a1.π 
3 
π 
6 


cos θ = 2  × 4 × cos = 4, √ 
3, Similarly, cos θ = 4  × 1 × cos = 2b . c = |b| |c|


a . j = a2 and a . k = a3. 
π 
3 +


π 
6cos θ = 2  × 1 × cosa . c = |a| |c| (Notice that this means that the components of a vec-


= 2 cos π 
2 = 0, tor are given by the dot products of the vector with the 


Cartesian unit vectors i, j, k.) 


4.7 (a) a . c = −2, a . d = −3, a . e = 0. 
Thus only e is perpendicular to a. 


(b)	 First, 
a + 2b = j + 9k. 


Now a suitable vector along the line joining the origin 
to the point (1, 1, 1) is i + j + k. The corresponding unit 
vector is u = 1√ (i + j + k). The component of a + 2b 


b . b = |b| |b| cos θ = 4  × 4 × cos 0 = 16. 


4.2	 (a) (a + b) . (a − b) =  a . (a − b) +  b . (a − b) 
= a . a − a . b + b . a − b . b 


= a . a − a . b + a . b − b . b 


= a . a − b . b 


(b) |a + b|2 = (a + b) . (a + b) 
= a . (a + b) +  b . (a + b) 


3 
= a . a + a . b + b . a + b . b in the direction of this line is 
= a . a + a . b + a . b + b . b	 u . (a + 2b) =  1√ 


3 
(i + j + k) . (j + 9k) 


= a . a + 2a . b + b . b	 = 10√ . 
3 


4.3 (a) If 2a+ 3b and ma+ b are perpendicular, then 4.8 The angle between i and v is π ,6 and that be-
(2a + 3b) . (ma + b) = 0. tween j and v is π 


2 − π 
6 = π 


3 Also, |v| = 1.5. So the . 
Expanding this expression,	 i-component of v is 


√√ 
2ma . a + 2a . b + 3mb . a + 3b . b = 0. 


Now a and b are perpendicular, so a . b = b . a = 0,  


π 
6 


3 3 33 =|v| cos 
and the j-component of v is 


= × ,2 2 4 


and they are unit vectors, so a . a = b . b = 1.  Thus  π 
3 


3 × 1 = 3 
2|v| cos 


The angle between i and w is 


= 4 .2
2m + 3  =  0, 


so m = −1.5. 
π 
3 


π 
6 


2


5 Also, |w| = 2. Moreover, 
using the formulae from the Handbook, 


π 
2 


π 
6 , and that be-+ = 


π 
6tween j and w is π − = . 


(b) |c|2 = c . c 
π 
3cos 2


= 9a . a + 15a . b + 15b . a + 25b . b. = cos  π cos 


π )3 
π 
3 


= cos(π −= (3a + 5b) . (3a + 5b) 
π 
3+ sin  π sin 


Thus, since a and b are perpendicular unit vectors, π 
3 = − cos 


|c|2 = 9  +  25 = 34, 


so |c| = 
√ 


34 (
 5.831). 


= − 1 
2 


and 


cos 5π 
6 


π )6= cos(π − 
π 
6= cos  π cos π 


6+ sin  π sin
4.4 a . b = (4  × 1) + (1 ×−3) + (−5 × 1) = −4. π 


6 = − cos 
The negative sign tells us that the angle between a and √ 


= − 3
b is between π 


2 and π radians, i.e. it is an obtuse angle. .2 


The i-component of w is therefore 
π 
3√ √ |w| cos 2


22 + (−3)2 + 12 = 14, and the j-component of w is 
= −2 × 1 = −1,2 |a| = √ √√(−1)2 + 22 + 42 = 21.|b| = 


Also, 
π 
6|w| cos 5


In summary, 


3= −2 × = − 3.2 


√√a . b = (2  ×−1) + (−3 × 2) + (1 × 4) = −4, v = 3 3 i + 3 
4 j and w = −i − 3j.4


so if θ is the angle between a and b, then 
a . b −4	 4 


cos θ = = √ √ = − √ . |a| |b| 14 × 21 7 6 
The negative sign means that θ is obtuse, so θ 
 1.806 
radians. 


4.5 
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Solutions to the exercises 


4.9 The technique here is the same for all the vectors. and the j-component of d is 
One must find the angle between the vector in question |d| cos( 2


π + α) =  −2 sin  α 
and the unit vectors i and j. (using the usual trigonometric formulae). So 
Vector a points vertically downwards, in the direc-


d = −2 cos  α i − 2 sin  α j.tion −j. Hence i and a are perpendicular, and 


a = 0i − j = −j. 4.10 As in the previous exercise, we must find the 
The angle between i and b is α, and the angle between angles between a, b, c, d and the unit vectors i and j. 


− α. Hence the i-component of b is First notice that b points in the direction i, so  b = 1.5i. 
cos α = 1.5 cos  α, Similarly, d points in the direction −i, so  d = −2i. 


2
πj and b is 


|b|

and the j-component of b is
 Also, c points in the direction j, so  c = 1.5j. 


2
π|b|


where we have used the formula 


cos( − α) = 1.5 sin  α, 


− α) (see the Handbook). So 
A


P 


P 



¼A 


A a 


y 


cos(β − α) = cos  β cos α + sin  β sin α 


to evaluate cos( 2
π 


b = 1.5 cos  α i + 1.5 sin  α j. 


2
πThe angle between i and c is + α, and the angle be-


2tween j and c is α. j 


i 


x 


y 


c 


P 


A 


A 


i 


j 


A 


The remaining vector, a, makes an angle 2
π + α with i, 


and an angle π − α with j. Hence the i-component of a 
is 


2
πcos( + α) =  − sin α,|a|



and the j-component of a is

|a| cos(π − α) =  − cos α. 


Therefore 


a = − sin α i − cos α j. 
Therefore the i-component of c is 


2
π 4.11 Here the angle between i and p is π − α, and  cos( + α) =  −1.5 sin  α,|c|


where we have used the formula 2
π − α. Therefore the i-the angle between j and p is 


cos(β + α) = cos  β cos α − sin β sin α component of p is 
|p| cos(π − α) =  −2.5 cos  α, 


2
πto evaluate cos( + α) (see the Handbook). 


The j-component of c is and the j-component of p is 


cos α = 1.5 cos  α, |p| cos(

Thus



2
π − α) = 2.5 sin  α.|c| 


so 


c = −1.5 sin  α i + 1.5 cos  α j. p = −2.5 cos  α i + 2.5 sin  α j. 


The angle between i and q is π − β, and the angle be-Finally, the angle between i and d is π − α, and the 
tween j and q is π 


2 + β. Therefore the i-component of πangle between j and d is + α. 
q is 


|q| cos(π − β) =  −3 cos  β, 


and the j-component of q is 


2 


x 


y 


P 
A 


P 
2 
¼A 


d 


A 


i 


j 


2
π + β) =  −3 sin  β.cos(|q|


Hence 


q = −3 cos  β i − 3 sin  β j.



Finally, the angle between i and r is γ, and the angle

between j and r is 2


π + γ. Thus  the  i-component of r is 
|r| cos γ = 2.5 cos  γ, 


and the j-component of r is 
|r|


Thus the i-component of d is So 


cos( 2
π + γ) =  −2.5 sin  γ. 


|d| cos(π − α) =  −2 cos  α, r = 2.5 cos  γ i − 2.5 sin  γ j. 


x 


44 







( ) 


( ) 


Solutions to the exercises 


4.12	 The i-component of a is clearly zero, while the 4.14 (a) i, j and k are unit vectors forming a right-
j-component is simply |a|. Similarly, the i-component handed system. 


while the j-component is zero. Hence of b is −|b
| j
| 


and b = −|b| i.

The i- and  j-components of c are, respectively,



a = |a k 


j 


i 


√ 
π 1√= 2  × 2|c| cos 


and 


= 4 2 


√ 
π π π 


4|c| cos( ) =  −2 sin  = − 2,+2 4 


so √	 √ 
c = 2i − 2j. 


Given that a + b + c = 0, the sum of all the i-
Thus, using the definition of the cross product, components of a + b + c must be zero, and so must the 


2
π )k = k.i × j = (|i| |j| sinsum of all the j-components. Therefore (i-components) √ 


0 − |b| + 2 = 0  Similarly, 


and (j-components) j × k = i and k × i = j. 
√



|a| + 0  − 2 = 0.
 √ 
Thus we see that |a| = |b| = 2.


4.13 For the sake of clarity, here is a diagram showing 
u, v and w (where all three vectors start at O) drawn 
in the (x, y)-plane. (The z-axis points out of the page.) 


(b) Since (a × b) =  −(b × a) for any vectors a and b, 
we have 


j × i = −k, k × j = −i and i × k = −j. 


(c)	 Since a × a = 0 for any vector a, we have 


i × i = j × j = k × k = 0. 


(d)	 (i + k) × (i + j + k) 
= (i × (i + j + k)) + (k × (i + j + k)) 
= (0 + k + (−j)) + (j + (−i) +  0) 
= −i + k, 


(i × (i + k)) − ((i + j) × k)

= (0 + (−j)) − (−j + i)

= −i.



4.15	 To compute a × b, we use Sarrus’s Rule: 


i j k i j 


y 


u 


v 


w 


π 
6 


π 
6 


xO 2 −3 1 2 −3 
−1 2 4 −1 2 


The cross products are all perpendicular to the (x, y)- −3k −2i −8j −12i −j 4k 
plane.

A unit vector in the direction of u × v is k, so  


so a × b = −14i − 9j + k.

Similarly for a × c:π 1sin k = (2  × 3 × )k = 3k.u × v = |u| |v|



The angle between u and w is zero, so

6 2


i j k i j 
2 −3	 1 2 −3 u × w = (|u| |w| sin 0) ̂ c = 0̂c = (2  × 4 × 0) ̂ c = 0. −4 6 −2 −4 6 


A unit vector in the direction of v × w is −k, so  −12k −6i 4j 6i −4j 12k 
π 1sin (−k) = (3  × 4 × )(−k)v × w = |v| |w|


so a × c = 0.6 2 


= −6k. 
Finally, for b × c: 


i j k i j 
−1 2 4 −1 2 
−4 6 −2 −4 6 


8k −24i −2j −4i −16j −6k 


so b × c = −28i − 18j + 2k.

Since a × c = 0, and neither vector is zero, the vectors

a and c are parallel. In fact, c = −2a.
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Solutions to the exercises 


4.16 A vector perpendicular to a and b is a × b, which  
we can compute using Sarrus’s Rule: 


i j k i j 
2 2 1 2 2 
4 4 −7 4 4 


−8k −4i 14j −14i 4j 8k 


so a × b = −18i + 18j. 
We are asked for a unit vector, so the obvious choice is 


1 −18i + 18j
(a × b) =  √ |a × b| 18 2 


2 
1√ (−i + j).= 


(Note that 
2 


1√ (i − j) is also a unit vector perpendicular 


to a and b. This can be obtained by considering b × a 
rather than a × b.) 


4.17 (a) No, it is a scalar. 


(b) Yes, if the angle between a and b is between 2
π and 


π radians. 


(c) If either a = 0 or b = 0, then indeed a . b = 
|a| |b| (= 0). So assume that a and b are both non-
zero. If a . b = |a| |b| cos θ = |a| |b|, then cos θ = 1,  so  
θ = 0, i.e. a and b are in the same direction. 


(d) If a . b = 0, then either a = 0 or b = 0 (or both), 
or a and b are perpendicular. 


(e) If a × b = 0, then either a = 0 or b = 0 (or both), 
or a and b are parallel (but may have opposite senses). 


4.18 (a) t is perpendicular to both r and s, and its 
sense is vertically down, i.e. into the ground. 


(b) Conversely, the sense of s × r is vertically up. 


(c) t × r is perpendicular to t (and thus in the hori-
zontal plane) and perpendicular to r, and by the screw 
rule its sense is due east. 


(d) |t| = |r| |s| sin π = 1√ 
24 


(e) t × (r × s) =  t × t = 0 
π = 1√ 


24(f ) r . s = |r| |s| cos 
π(g) s . (t × r) =  (by part (b)) |s| |t × r| cos 4 


π πsin|s|
= 1  × 1√ 


|t| |r|
× 1 × 1 × 


= cos2 4 
1√ = 1 


222 


4.19 (a × b) . a = 0 for any non-zero vectors a and b, 
because a × b is perpendicular to a, and the dot prod-
uct of perpendicular vectors is zero. 
(If a and/or b is the zero vector, then the answer is still 
zero.) 
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