Geometry
Geometry

This free course is available to start right now. Review the full course description and key learning outcomes and create an account and enrol if you want a free statement of participation.

Free course

Geometry

1.4.1 Corresponding angles

If you trace the lines at one of the intersections in the diagram below and place them over the lines at the other intersection, you will find that the two sets of lines coincide exactly. The four angles at each intersection also coincide exactly: thus α = a, β = b, γ = c and δ = d.

The pairs of angles that correspond to each other at such intersections are called corresponding angles.

In the diagram below, α and a are corresponding angles: they are equal because m and n are parallel.

When a line intersects two parallel lines, corresponding angles are equal.

You can check these results using ‘Corresponding angles’ activity in the previous section.

Example 5

This diagram represents the type of arrangement that occurs in a garden trellis or a wine rack (r and s are parallel lines, indicated by the single arrowheads; l and m are also parallel, indicated by the double arrowheads). Calculate the angles α and β.

Answer

Line l is parallel to line m, therefore α and the angle 60° are corresponding angles. So α = 60°.

The angles 60° and θ are vertically opposite angles. So θ = 60°.

Line r is parallel to line s, therefore θ and β are corresponding angles. So β = 60°.

MU120_4M7

For further information, take a look at our frequently asked questions which may give you the support you need.

Have a question?
Free Courses

OpenLearn has over 800 free courses across all our subjects designed by our academic experts. From 1 to 100 hours, introductory to advanced, you can start learning at any time and all for free.