Science, Maths & Technology
  • Video
  • 5 mins
  • Level 1: Introductory

Mathematical striptease

Updated Thursday 5th February 2009

Does maths get your knickers in a twist? Watch this video to see how maths can hold the solution to some everyday problems

Here's a challenge: can you turn your shirt inside out if your hands are tied together?

Discuss this video, and watch other thought-provoking films on the OU YouTube channel.

The explanation

Well it's obvious how George the first turned his shirt inside out, but you might be wondering why it worked when George the second did it with his hands tied together. And should the pole really have caused George the third so much trouble? Like so many things, it can all be explained by good old mathematics.

 

George the second removes shirt Copyrighted image Icon Copyright: Production team George’s task of turning the shirt inside out with his hands tied together may be simpler than it seems. His shirt comes off his head onto his arms and down the rope.

While it is on the rope, it’s now the right way around…but it’s not yet on George.

However, while it is on the rope it can fairly easily be turned outside in again, by pushing the shirt down one of its own sleeves.

Once back on the rope, it is now inside out – but not yet on George.

He can then reverse his first move and put it back on again, which in the process turns it right way out.

Maths isn’t just about numbers. There’s a major area of maths called topology. This is the study of the properties of space.

It seems that topologists don’t care much about size, texture, shape, distance – they’re interested in very abstract notions of space.

It’s perhaps easier to imagine a topologist's view of the world as made of infinitely stretchable clay. So a cube can be made into a sphere, or a pyramid – so they are the same. A ring can be made into a loop, a doughnut shape, even a doorway – so they are all the same. However, a cube CAN’T be made into a ring without tearing a hole in the middle – so they are not the same.

Basically, it seems that in topology any object is equivalent to any other object if, when it is stretched/deformed, it can take the same shape without tearing apart or having distinct parts stuck together.

Okay – now we think that a topologist might be able to solve George the third’s problem. Like George the second, he’s got his shirt on inside out, and his hands are tied together. However, he’s also got his hands around a pole.

Let’s start with how a topologist might describe George the second. To a topologist:

  • George the second (with his rope) is just part of a ring – formed by his arms and the rope.
  • His head and lower torso are just odd, unfortunate lumps on the ring.
  • Around this ring is another ring – his shirt – which could be stretched and rolled.
  • His ‘shirt’ ring could easily twist around – turning outside in and inside out.

So if his head and body are shrunk down then his shirt can slide all along the ring, made of rope and arms (with a tiny head and tiny body), without any fuss, like his head or body getting in the way.

The closest George the second gets to this in the real world is when he’s removed the shirt over his head and the shirt is sitting on the rope in front of him – where is can easily twist around and be turned outside in – and then place back on again.

Topology of George the third Copyrighted image Icon Copyright: Production team To a topologist, George the third is just the same as George the second – except the ring his arms and rope make now also circles around a pole (think of it as another infinite ring).

Now, a topologists could repeat what happened with George the second. He shrinks his head and torso – allows the shirt to sit on the ring and twist outside in again. The pole seems irrelevant to completing the task in the world of topology.

Of course, George is not an ideal topological object – but subject to the constraints of the real world (he can’t be stretched and shrunk).

The fact that George the third can’t morph the shape of his body into a ring may mean he'll be stuck around the pole for some time…

Though you might want to think about this: if the shirt had been very stretchy would a real world George have managed to turn it outside in and put it back on again (if for example, he could pass his body down the sleeve?)

 

What could you do next?

  • Can you get out of the George the third challenge – post your clips on the 'Mathematical Striptease' You Tube page
  • Post clips of other topological challenges
  • Check out the mathematics courses at the Open University
 

For further information, take a look at our frequently asked questions which may give you the support you need.

Have a question?

Other content you may like

Who says? The origins of data that gets used to make decisions Copyrighted image Icon Copyright: Scott Adams/Universal Uclick, via educational usage article icon

Science, Maths & Technology 

Who says? The origins of data that gets used to make decisions

Numbers add authority to news stories and policy decisions. Where do the numbers come from? Should we trust them?

Article
Analysing skid marks Copyrighted image Icon Copyright: Used with permission free course icon Level 1 icon

Science, Maths & Technology 

Analysing skid marks

This free course, Analysing skid marks, is the second in the series of five courses on mathematical modelling. In it you are asked to relate the stages of the mathematical modelling process to a previously formulated mathematical model. This example, that of skid mark produced by vehicle tyres, is typical of accounts of modelling that you may see in books, or produced in the workplace. The aim of this course is to help you to draw out and to clarify mathematical modelling ideas by considering the example. It assumes that you have studied the course Modelling pollution in the Great Lakes.

Free course
4 hrs
How to compare income across countries Copyrighted image Icon Copyright: Wingspan Productions video icon

Science, Maths & Technology 

How to compare income across countries

When we want to compare figures from two different countries, what makes for a fair basis of comparison? Tony Hirst and Hans Rosling explain. 

Video
45 mins
Language, notation and formulas Copyrighted image Icon Copyright: Used with permission free course icon Level 1 icon

Science, Maths & Technology 

Language, notation and formulas

Communication is as vital in mathematics as in any language. This free course, Language, notation and formulas, will help you to express yourself clearly when writing and speaking about mathematics. You will also learn how to answer questions in the manner that is expected by the examiner.

Free course
5 hrs
Surveys: The Art Of The Possible Copyrighted image Icon Copyright: BBC article icon

Science, Maths & Technology 

Surveys: The Art Of The Possible

There are many factors that make up a 'good survey'. Kevin McConway looks at the background behind the workings of surveys

Article
Diary of a data sleuth: Football injury time Copyrighted image Icon Copyright: Michael Flippo | Dreamstime.com article icon

Science, Maths & Technology 

Diary of a data sleuth: Football injury time

Does injury time lead to last-minute goals? This is what happened when we asked Lecturer in Telematics Tony Hirst to investigate. 

Article
A prime primer Copyrighted image Icon Copyright: BBC article icon

Science, Maths & Technology 

A prime primer

They're astonishingly powerful numbers. Simon Singh introduces the primes.

Article
Prices Copyrighted image Icon Copyright: Used with permission free course icon Level 1 icon

Science, Maths & Technology 

Prices

This free course, Prices, looks at a wide variety of ways of comparing prices and the construction of a price index. You will also look at the Retail Price Index (RPI) and the Consumer Price Index (CPI), indices used by the UK Government to calculate the percentage by which prices in general have risen over any given period. You will also look at the important statistical and mathematical ideas that contribute to the construction of a price index.

Free course
20 hrs
Exploring distance time graphs Copyrighted image Icon Copyright: Used with permission free course icon Level 1 icon

Science, Maths & Technology 

Exploring distance time graphs

Graphs are a common way of presenting information. However, like any other type of representation, graphs rely on shared understandings of symbols and styles to convey meaning. Also, graphs are normally drawn specifically with the intention of presenting information in a particularly favourable or unfavourable light, to convince you of an argument or to influence your decisions. This free course, Exploring distance time graphs, will enable you to explain, construct, use and interpret distance-time graphs.

Free course
12 hrs