from The Open University
Alternatively you can skip the navigation by pressing 'Enter'.

TV, Radio & Events menu item
Coming up
Life: Hunters and Hunted
Wednesday, 10th February 2016 10:00  Eden EdenEveryone's hungry. Everyone's lunch. Read more: Life: Hunters and HuntedThinking Allowed 2016: Weather forecasting, Young people and politics
Wednesday, 10th February 2016 16:00  BBC Radio 4Life: Hunters and Hunted
Wednesday, 10th February 2016 16:00  Eden EdenThinking Allowed 2016: Weather forecasting, Young people and politics
Wednesday, 10th February 2016 16:30  BBC Radio 4Catch up
The London Markets: The Fruit And Veg Market: Inside New Spitafields
Available until Sunday, 13th March 2016 00:40The fruit and veg trade in England was once a closed world dominated by traditional British costermonger families.... Read more: The London Markets: The Fruit And Veg Market: Inside New SpitafieldsThinking Allowed 2016: Consumerism, Worklife balance
Available for over a yearMore or Less: Ecigs, politics, school and birthdays
Available for over a yearThe Bottom Line: Winter 201516: Renewable Energy
Available for over a year 
Get Started menu item
Welcome to OpenLearn
Get the most out of OpenLearn  Sign in
OpenLearn is the home of free learning from the UK's largest university, The Open University. We've got thousands of ways to learn  including 800 free courses you can dip into. More about this site
Inspire me
OpenLearn Live: 10th February 2016
A king with long arms; and the debate about assisted suicide. Free learning across the day. Read more: OpenLearn Live: 10th February 2016OpenLearn Live: 9th February 2016
The king who saw a tree bend and embraced peace and the day when pancakes are centre stage. Free... Read more: OpenLearn Live: 9th February 2016Free courses
Landschaftliche Vielfalt
German regions and landscapes, local traditions and the notion of Heimat are at the centre of... Try: Landschaftliche Vielfalt nowIntroduction to bookkeeping and accounting
Learn about the essential numerical skills required for accounting and bookkeeping. This free... Try: Introduction to bookkeeping and accounting nowBecome an OU student
Learning to learn
Try our free course and get the most out of all our free courses Try: Learning to learn now
 You are here:
 Home
 Science, Maths & Technology
 Mathematics and Statistics
 Vectors and conics
 4.6 Hyperbola (e > 1)
Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this free course, Vectors and conics, we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.
By the end of this free course you should be able to:
 Section 1
 recognise the equation of a line in the plane;
 determine the point of intersection of two lines in the plane, if it exists;
 recognise the oneone correspondence between the set of points in threedimensional space and the set of ordered triples of real numbers;
 recognise the equation of a plane in three dimensions.
 Section 2
 explain what are meant by a vector, a scalar multiple of a vector, and the sum and difference of two vectors;
 represent vectors in and in terms of their components, and use components in vector arithmetic;
 use the Section Formula for the position vector of a point dividing a line segment in a given ratio;
 determine the equation of a line in or in terms of vectors.
 Section 3
 explain what is meant by the dot product of two vectors;
 use the dot product to find the angle between two vectors and the projection of one vector onto another;
 determine the equation of a plane in , given a point in the plane and the direction of a normal to the plane.
 Section 4
 explain the term conic section;
 determine the equation of a circle, given its centre and radius, and the centre and radius of a circle, given its equation;
 explain the focus–directrix definitions of the nondegenerate conics.
 Duration 20 hours
 Updated Wednesday 18th May 2011
 Intermediate level
 Posted under Mathematics and Statistics
Contents
 Introduction
 Learning outcomes
 1 Coordinate geometry: points, planes and lines
 1.1 Points, lines and distances in twodimensional Euclidean space
 1.2 Lines
 1.3 Parallel and perpendicular lines
 1.4 Intersection of two lines
 1.5 Distance between two points in the plane
 1.6 Points, planes, lines and distances in threedimensional Euclidean space
 1.7 Planes in threedimensional Euclidean space
 1.8 Intersection of two planes
 1.9 Distance between points in threedimensional Euclidean space
 1.10 Further exercises
 2 Vectors
 3 Dot product
 4 Conics
 Keep on learning
 Acknowledgements
Study this free course
Enrol to access the full course, get recognition for the skills you learn, track your progress and on completion gain a statement of participation to demonstrate your learning to others. Make your learning visible!
4.6 Hyperbola (e > 1)
A hyperbola is the set of points P in the plane whose distances from a fixed point F are e times their distances from a fixed line d, where e > 1. We obtain a hyperbola in standard form if
the focus F lies on the xaxis, and has coordinates (ae, 0), where a > 0;
the directrix d is the line with equation x = a/e.
Let P (x, y) be an arbitrary point on the hyperbola, and let M be the foot of the perpendicular from P to the directrix. Since FP = e × PM, by the definition of the hyperbola, it follows that FP^{2} = e^{2} × PM^{2}; that is,
Multiplying out the brackets, we obtain
x^{2} − 2aex + a_{2}e_{2} + y_{2} = e_{2}x_{2} − 2aex + a_{2},
which simplifies to the equation
x_{2}(e_{2} − 1) − y_{2} = a_{2}(e_{2} − 1),
that is,
Substituting b for , so that b^{2} = a^{2}(e^{2} − 1), we obtain the standard form of the equation of the hyperbola
This equation is symmetric in x and in y, so that the hyperbola also has a second focus F′ at (−ae, 0), and a second directrix d′ with equation x = −a/e.
The hyperbola intersects the xaxis at the points (±a, 0). We call the line segment joining the points (±a, 0) the major axis or transverse axis of the hyperbola, and the line segment joining the points (0, ±b) the minor axis or conjugate axis of the hyperbola (this is not a chord of the hyperbola). The origin is the centre of this hyperbola.
Each point with coordinates (a sec t, b tan t) lies on the hyperbola, since
Note: In general, sec^{2}t = 1 + tan^{2}t.
Then, just as for the parabola, we can check that
gives a parametric representation of the hyperbola.
Note: An alternative parametrisation, using hyperbolic functions, is x = acosht, y = bsinht (t ∈ ).
Two other features of the shape of the hyperbola stand out.
First, the hyperbola consists of two separate curves or branches.
Secondly, the lines with equations y = ±bx/a divide the plane into two pairs of opposite sectors; the branches of the hyperbola lie in one pair. As x → ±∞, the branches of the hyperbola get closer and closer to these two lines. We call the lines y = ±bx/a the asymptotes of the hyperbola.
We summarise these facts as follows:
Hyperbola in standard form
A hyperbola in standard form has equation
It can also be described by the parametric equations
It has foci (±ae, 0) and directrices x = ±a/e; its major axis is the line segment joining the points (±a, 0), and its minor axis is the line segment joining the points (0, ±b).
Exercise 57
Let P be a point , t ∈ , on the hyperbola with equation x^{2} − 2y^{2} = 1.
(a) Determine the foci F and F′ of the hyperbola.
(b) Determine the gradients of FP and F′P, when these lines are not parallel to the yaxis.
(c) Find the point P on the hyperbola, in the first quadrant, for which FP is perpendicular to F′P.
Answer
(a) This hyperbola is of the form with a = 1 and , so . If e denotes the eccentricity of the hyperbola, so that b^{2} = a^{2}(e^{2} − 1), we have

it follows that , so
In the general case, the foci are (±ae, 0); it follows that here the foci are .
(b) Let F and F′ be and , respectively. (It does not matter which way round these are chosen.)
Then the gradient of FP is

where we know that , since FP is not parallel to the yaxis.
Similarly, the gradient of F′P is

where we know that , since F′P is not parallel to the yaxis.
(c) When FP is perpendicular to F′P, we have

We may rewrite this in the form

so 2sec^{2}t − 3 + tan^{2}t = 0.
Since sec^{2}t = 1 + tan^{2}t, it follows that 3 tan^{2}t = 1.
Since we are looking for a point P in the first quadrant, we choose .
When , we have . Since we are looking for a point P in the first quadrant, we choose .
It follows that the required point P has coordinates .
Comments
Be the first to post a comment
Copyright & revisions
Publication details

Originally published: Wednesday, 18th May 2011

Last updated on: Wednesday, 18th May 2011
Copyright information
 CreativeCommons: The Open University is proud to release this free course under a Creative Commons licence. However, any thirdparty materials featured within it are used with permission and are not ours to give away. These materials are not subject to the Creative Commons licence. See terms and conditions. Full details can be found in the Acknowledgements and our FAQs section.
 This site has Copy Reuse Tracking enabled  see our FAQs for more information.
Feeds
If you enjoyed this, why not follow a feed to find out when we have new things like it? Choose an RSS feed from the list below. (Don't know what to do with RSS feeds?)
Remember, you can also make your own, personal feed by combining tags from around OpenLearn.
Alternative formats
All our alternative formats are free for you to download, for more information about the different formats we offer please see our FAQs. The most frequently used are Word (for accessibility), PDF (for print) and ePub and Kindle to download to eReaders*.
 Word (2.1 MB)
 ePub 2.0 (23.9 MB)
 RSS (930 KB)
 OUXML File (333 KB)
*Please note you will need an ePub and Mobi reader for these formats.
Tags, Ratings and Social Bookmarking
About this site
OpenLearn: free learning from The Open University