from The Open University
Alternatively you can skip the navigation by pressing 'Enter'.

TV, Radio & Events menu item
Coming up
Canals: The Making of a Nation: Heritage
Tuesday, 6th October 2015 20:00  BBC FourEpisode 1 of 6 investigates the heritage of our canal network and how the Birmingham and Fazeley Canal is still... Read more: Canals: The Making of a Nation: HeritageThe world’s busiest railway 2015 – Mumbai Railway: Episode 4
Wednesday, 7th October 2015 00:45  BBC TwoCanals: The Making of a Nation: Heritage
Wednesday, 7th October 2015 00:55  BBC FourThe world’s busiest railway 2015 – Mumbai Railway: Episode 4
Wednesday, 7th October 2015 01:15  BBC TwoCatch up
The Great British Year: Winter
Available until Friday, 6th November 2015 22:00A frozen nation, but not a wasteland... Read more: The Great British Year: WinterThe Bottom Line: Autumn 2015: Art and the Business of Taste
Available for over a yearThe world’s busiest railway 2015 – Mumbai Railway: Episode 4
Available until Friday, 6th November 2015 01:15BBC Inside Science: Preserving global diversity: Kew special
Available for over a year 
Get Started menu item
Welcome to OpenLearn
Get the most out of OpenLearn  Sign in
OpenLearn is the home of free learning from the UK's largest university, The Open University. We've got thousands of ways to learn  including 800 free courses you can dip into. More about this site
Inspire me
How can a genetic mutation shared by many Brazilians help in the fight agains...
The startling discovery that hundreds of thousands of Brazilians have a genetic mutation that... Read more: How can a genetic mutation shared by many Brazilians help in the fight against cancer?OpenLearn Live: 6th October 2015
Celebrating a small village with a role in two explosive events in history  then more free... Read more: OpenLearn Live: 6th October 2015Free courses
Innovation through representation
Innovations are realised through design, and some of the most useful tools in the designers’... Try: Innovation through representation nowEnglish: skills for learning
This course is for anybody who is thinking of studying for a university degree and would like to... Try: English: skills for learning nowBecome an OU student
Learning to learn
Try our free course and get the most out of all our free courses Try: Learning to learn now
 You are here:
 Home
 Science, Maths & Technology
 Mathematics and Statistics
 Vectors and conics
 4.6 Hyperbola (e > 1)
Vectors and conics
Attempts to answer problems in areas as diverse as science, technology and economics...
Attempts to answer problems in areas as diverse as science, technology and economics involve solving simultaneous linear equations. In this unit we look at some of the equations that represent points, lines and planes in mathematics. We explore concepts such as Euclidean space, vectors, dot products and conics.
By the end of this unit you should be able to:
 Section 1
 recognise the equation of a line in the plane;
 determine the point of intersection of two lines in the plane, if it exists;
 recognise the oneone correspondence between the set of points in threedimensional space and the set of ordered triples of real numbers;
 recognise the equation of a plane in three dimensions.
 Section 2
 explain what are meant by a vector, a scalar multiple of a vector, and the sum and difference of two vectors;
 represent vectors in and in terms of their components, and use components in vector arithmetic;
 use the Section Formula for the position vector of a point dividing a line segment in a given ratio;
 determine the equation of a line in or in terms of vectors.
 Section 3
 explain what is meant by the dot product of two vectors;
 use the dot product to find the angle between two vectors and the projection of one vector onto another;
 determine the equation of a plane in , given a point in the plane and the direction of a normal to the plane.
 Section 4
 explain the term conic section;
 determine the equation of a circle, given its centre and radius, and the centre and radius of a circle, given its equation;
 explain the focus–directrix definitions of the nondegenerate conics.
 Duration 20 hours
 Updated Wednesday 18th May 2011
 Intermediate level
 Posted under Mathematics and Statistics
Contents
 Introduction
 Learning outcomes
 1 Coordinate geometry: points, planes and lines
 1.1 Points, lines and distances in twodimensional Euclidean space
 1.2 Lines
 1.3 Parallel and perpendicular lines
 1.4 Intersection of two lines
 1.5 Distance between two points in the plane
 1.6 Points, planes, lines and distances in threedimensional Euclidean space
 1.7 Planes in threedimensional Euclidean space
 1.8 Intersection of two planes
 1.9 Distance between points in threedimensional Euclidean space
 1.10 Further exercises
 2 Vectors
 3 Dot product
 4 Conics
 Acknowledgements
Study this free course
Enrol to access the full course, get recognition for the skills you learn and track your progress. Make your learning visible!
4.6 Hyperbola (e > 1)
A hyperbola is the set of points P in the plane whose distances from a fixed point F are e times their distances from a fixed line d, where e > 1. We obtain a hyperbola in standard form if
the focus F lies on the xaxis, and has coordinates (ae, 0), where a > 0;
the directrix d is the line with equation x = a/e.
Let P (x, y) be an arbitrary point on the hyperbola, and let M be the foot of the perpendicular from P to the directrix. Since FP = e × PM, by the definition of the hyperbola, it follows that FP^{2} = e^{2} × PM^{2}; that is,
Multiplying out the brackets, we obtain
x^{2} − 2aex + a_{2}e_{2} + y_{2} = e_{2}x_{2} − 2aex + a_{2},
which simplifies to the equation
x_{2}(e_{2} − 1) − y_{2} = a_{2}(e_{2} − 1),
that is,
Substituting b for , so that b^{2} = a^{2}(e^{2} − 1), we obtain the standard form of the equation of the hyperbola
This equation is symmetric in x and in y, so that the hyperbola also has a second focus F′ at (−ae, 0), and a second directrix d′ with equation x = −a/e.
The hyperbola intersects the xaxis at the points (±a, 0). We call the line segment joining the points (±a, 0) the major axis or transverse axis of the hyperbola, and the line segment joining the points (0, ±b) the minor axis or conjugate axis of the hyperbola (this is not a chord of the hyperbola). The origin is the centre of this hyperbola.
Each point with coordinates (a sec t, b tan t) lies on the hyperbola, since
Note: In general, sec^{2}t = 1 + tan^{2}t.
Then, just as for the parabola, we can check that
gives a parametric representation of the hyperbola.
Note: An alternative parametrisation, using hyperbolic functions, is x = acosht, y = bsinht (t ∈ ).
Two other features of the shape of the hyperbola stand out.
First, the hyperbola consists of two separate curves or branches.
Secondly, the lines with equations y = ±bx/a divide the plane into two pairs of opposite sectors; the branches of the hyperbola lie in one pair. As x → ±∞, the branches of the hyperbola get closer and closer to these two lines. We call the lines y = ±bx/a the asymptotes of the hyperbola.
We summarise these facts as follows:
Hyperbola in standard form
A hyperbola in standard form has equation
It can also be described by the parametric equations
It has foci (±ae, 0) and directrices x = ±a/e; its major axis is the line segment joining the points (±a, 0), and its minor axis is the line segment joining the points (0, ±b).
Exercise 57
Let P be a point , t ∈ , on the hyperbola with equation x^{2} − 2y^{2} = 1.
(a) Determine the foci F and F′ of the hyperbola.
(b) Determine the gradients of FP and F′P, when these lines are not parallel to the yaxis.
(c) Find the point P on the hyperbola, in the first quadrant, for which FP is perpendicular to F′P.
Answer
(a) This hyperbola is of the form with a = 1 and , so . If e denotes the eccentricity of the hyperbola, so that b^{2} = a^{2}(e^{2} − 1), we have

it follows that , so
In the general case, the foci are (±ae, 0); it follows that here the foci are .
(b) Let F and F′ be and , respectively. (It does not matter which way round these are chosen.)
Then the gradient of FP is

where we know that , since FP is not parallel to the yaxis.
Similarly, the gradient of F′P is

where we know that , since F′P is not parallel to the yaxis.
(c) When FP is perpendicular to F′P, we have

We may rewrite this in the form

so 2sec^{2}t − 3 + tan^{2}t = 0.
Since sec^{2}t = 1 + tan^{2}t, it follows that 3 tan^{2}t = 1.
Since we are looking for a point P in the first quadrant, we choose .
When , we have . Since we are looking for a point P in the first quadrant, we choose .
It follows that the required point P has coordinates .
Comments
Be the first to post a comment
Copyright & revisions
Publication details

Originally published: Wednesday, 18th May 2011
Copyright information
 CreativeCommons: The Open University is proud to release this free course under a Creative Commons licence. However, any thirdparty materials featured within it are used with permission and are not ours to give away. These materials are not subject to the Creative Commons licence. See terms and conditions. Full details can be found in the Acknowledgements section.
 This site has Copy Reuse Tracking enabled  see our FAQs for more information.
Feeds
If you enjoyed this, why not follow a feed to find out when we have new things like it? Choose an RSS feed from the list below. (Don't know what to do with RSS feeds?)
Remember, you can also make your own, personal feed by combining tags from around OpenLearn.
Alternative formats
Tags, Ratings and Social Bookmarking
Page Tags
Sign in or create a free account to add tags to your OpenLearn profile
About this site
OpenLearn: free learning from The Open University