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Introduction
This free course, Prices, location and spread, examines aspects of the question:

Are people getting better or worse off?

The course concentrates on the statistical aspects of the question, focusing on statistics
about prices. However, it is not the case that statistics can provide all the answers – or
even the best answer – to the question of whether people are getting better or worse off.
There are many non-statistical issues which are relevant and it is important to put the
statistical approach in its correct perspective.
In the question, people does not refer specifically to you, the readers of the course, but to
the whole of society in the UK. That is quite a big batch (more than 62 million in 2010,
according to an estimate from the UK’s Office for National Statistics), consisting of men,
women and children, living alone, in large or small households, or in institutions; some of
them working, others unemployed, some retired and others still at school.
It is not possible, using statistical techniques, to provide a complete answer to this one
question covering such a big theme, particularly an answer which is valid for all these
people and their varied economic and social circumstances; data and techniques both
have to be used with common sense. Instead, the aim of this text is more modest: to
explore small batches of data relevant to the question (and relating to some individuals
and groups in society), using basic analytical and graphical techniques. The sections in
this course cover the following:

● Section 1 looks at ways to measure the overall ‘location’ (the typical value) of a batch
of data. Two very important measures looked at are the ‘median’ and the ‘arithmetic
mean’. The section also looks at patterns in data using diagrammatic methods.

● Section 2 shows how to calculate the ‘weighted mean’, which is a quantity related to
the arithmetic mean. You will learn about some circumstances where it makes sense
to calculate a weighted mean.

● Section 3 shows how to calculate one particular measure of spread for a batch: the
‘interquartile range’. It also shows some diagrammatic methods for representing the
spread and shape of the distribution of values in a batch.

● Section 4 introduces the notion of a ‘price index’ for indicating changes in the price of
a single item and for two or more different items.

● Section 5 looks at the UK’s Retail Prices Index (RPI) and Consumer Prices Index
(CPI), which measure changes in prices over time. (This section is longer than all the
other sections, so you should plan your study time accordingly.)

This OpenLearn course is an adapted extract from the Open University course
M140 Introducing statistics.
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Learning outcomes
After studying this course, you should be able to:

● find the mean and median of a batch of data
● find the weighted mean of two or more numbers
● find the lower and upper quartiles, interquartile range and five-figure summary of a

batch of data
● calculate a simple chained price index
● use the Retail Prices Index and the Consumer Prices Index to measure price

changes.
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1 Measuring location
Measuring location has two components:

● gathering data about the quantity of interest
● determining a value to represent the location of the data.

The task of gathering appropriate data is somewhat problem-specific – general strategies
are available, but exact details usually need to be decided for each problem. To determine
the price of an electric kettle, for example, we would have to decide the size and type of
kettle we’re interested in, where and when its purchased, and so forth. In contrast,
choosing a value to summarise the location of a set of data is more straightforward. In this
section, we will focus on the two most common measures of location: the median and the
mean. The data gathered about the quantity of interest does not affect the way we
calculate these location measures.

1.1 Data on prices
In order to measure how prices change, we need data on prices and some way of
measuring their overall location. Price data take many forms.
In examining the overall location, prices of all goods are relevant, but some are more
important than others. Ballpoint pens are relatively unimportant in most people’s shopping
baskets, coffee prices are unimportant for tea drinkers, and chicken prices are of little
concern to vegetarians. The first batch of price data we will look at is coffee prices.

Example 1 Price data for jars of coffee

Table 1 shows prices of a 100 g jar of a well-known brand of instant coffee obtained
in 15 different shops in Milton Keynes on the same day in February 2012.

Table 1 Coffee prices (in
pence)

299 315 268 269 295

295 369 275 268 295

279 268 268 295 305

There are several points to note concerning these prices.

● They relate to a particular brand of coffee. You might expect the price to vary
between brands.

● They relate to a standard 100 g jar. You might expect the price per gram of this
brand of coffee to vary depending upon the size of the jar – larger jars are often
cheaper (per gram).

● They relate to a particular locality. You might expect the price to vary depending
upon where you buy the coffee (e.g. central London, a suburb, a provincial
town, a country village or a Hebridean island).

● They relate to a particular day. You might expect the price to vary from time to
time depending upon changes in the cost of raw coffee beans, costs of
production and distribution, and the availability of special offers.
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Nevertheless, although we have data for a fixed brand of coffee, size of jar, locality
and date of purchase, this batch of prices still varies from the lower extreme of 268p
to the upper extreme of 369p. (In symbols: and .) One of the

most likely reasons for this is that the prices were collected from different kinds of
shops (e.g. supermarket, petrol station, ethnic grocery and corner shop).

For all these reasons, it is impossible to state exactly what the price of this brand of
instant coffee is. Yet its price is, in its own small way, relevant to the question: Are
people getting better or worse off? That is, if you drink this particular coffee, then
changes in its price in your locality will affect your cost of living. Similarly, your costs
and economic well-being will also be affected by what happens to the prices of all the
other things you need or like to consume.

On the other hand, someone who never buys instant coffee will be unaffected by any
change in its price; they will be much more interested in what happens to the prices
of alternative products such as ground coffee, tea, milk or fruit juice. The problem of
measuring the effect of price changes on individuals with different consumption
patterns will be considered in Section 5.

1.2 The median
Despite the variability in the data, Table 1 does provide some idea of the price you would
expect to pay for a 100 g jar of that particular instant coffee in the Milton Keynes area on
that particular day. The information provided by the batch can be seen more clearly when
drawn as a stemplot, shown in Figure 1 of Example 2.

Example 2 Picturing the coffee data
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n = 15 26 8 represents 268 pence

Figure 1 Stemplot of coffee prices from Table 1

This stemplot shows at a glance that if you shop around, you might well find this
brand of coffee on sale at less than 270p. (Indeed some stores seem to have been
‘price matching’ at the lowest price of 268p.) On the other hand, if you are not too
careful about making price comparisons then you might pay considerably more than
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300p (£3). However, you are most likely to find a shop with the coffee priced between
about 270p and 300p. Although there is no one price for this coffee, it seems
reasonable to say that the overall location of the price is a bit less than 300p.

Themedian of the batch is a useful measure of the overall location of the values in a
batch. It is defined as the middle value of a batch of figures when the values are
placed in order. Let us examine in more detail what that means.

The stemplot in Figure 1 shows the prices arranged in order of size. We can label
each of these 15 prices with a symbol indicating where it comes in the ordered batch.
A convenient way of showing this is to write each value as the symbol plus a

subscript number in brackets, where the subscript number shows the position of that
value within the ordered batch. Figure 2 shows the 15 prices written out in ascending
order using this subscript notation.

The subscriptis (3),so this is the third value in the orderedbatch

x(1)

268

x(2)

268

x(3)

268

x(4)

268

x(5)

269

x(6)

275

x(7)

279

x(8)

295

x(9)

295

x(10)

295

x(11)

295

x(12)

299

x(13)

305

x(14)

315

x(15)

369

EL Median EU

Figure 2 Subscript notation for ordered data

The lower extreme, , is labelled and the upper extreme, , is labelled

. The middle value is the value labelled since there are as many values,

namely 7, above the value of as there are below it. (This is not strictly true here,

since the values of , and happen also to be actually equal to the

median.)

This is illustrated in Figure 3 by a V-shaped formation. The median is the middle
value, so it lies at the bottom of the V. (This way of picturing a batch will be
developed further in Subsection 3.2.)
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x(14)

x(15)

Median

Figure 3 Median of 15 values

If you wanted to make a more explicit statement, then you could write: The median
price of this batch of 15 prices is 295p.

If we picture any batch of data as a V-shape like Figure 3, the median of the batch will
always lie at the bottom of the V. In the ordered batch, it is more places away from the
extremes than any other value.
In general, the median is the value of the middle item when all the items of the batch are
arranged in order. For a batch size , the position of the middle value is . For

example, when , this gives a position of , indicating that is the

median value. When is an even number, the middle position is not a whole number and

the median is the average of the two numbers either side of it. For example, when
, the median position is , indicating that the median value is taken as halfway

between and .

Example 3 uses prices of a digital camera to illustrate how the median is found for an even
number of values.

Example 3 Digital cameras

Table 2 shows prices for a particular model of digital camera as given on a price
comparison website in March 2012.

Table 2 Prices for a
digital camera (to the
nearest £)

60 70 53 81 74

85 90 79 65 70
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If we put these prices in order and arrange them in a V-shape, they look like Figure 4.

53

60

65

70

70 74

79

81

85

90

Figure 4 Prices of 10 digital cameras

Because 10 is an even number, there is no single middle value in this batch: the
position of the middle item is . The two values closest to the middle

are those shown at the bottom of the V: and . Their average

is 72, so we say that the median price of this batch of camera prices is £72.

The following activity asks you to find the median for an even number of values, using a
stemplot of prices for small flat-screen televisions.

Activity 1 Small flat-screen televisions

Figure 5 is a stemplot of data on the prices of small flat-screen televisions. (The
prices have been rounded to the nearest £10. Originally all but one ended in 9.99,
so in this case it makes reasonable sense to ignore the rounding and treat the data
as if the prices were exact multiples of £10.) Find the median of these data.
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Figure 5 Prices of all flat-screen televisions with a screen size of 24 inches or less
on a major UK retailer’s website on a day in February 2012
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Discussion

For a batch size of 20, the median position is . So, the median will

be halfway between and . These are both 150, so the median is £150.

This subsection can now be finished by using some of the methods we have met to
examine a batch of data consisting of two parts, or sub-batches.

Activity 2 The price of gas in UK cities

Table 3 presents the average price of gas, in pence per kilowatt hour (kWh), in 2010,
for typical consumers on credit tariffs in 14 cities in the UK. These cities have been
divided into two sub-batches: as seven northern cities and seven southern cities.
(Legally, at the time of writing, Ipswich is a town, not a city, but we shall ignore that
distinction here.)

Table 3 Average gas prices in 14 cities

Northern cities Average gas price
(pence per kWh)

Southern
cities

Average gas price
(pence per kWh)

Aberdeen 3.740 Birmingham 3.805

Edinburgh 3.740 Canterbury 3.796

Leeds 3.776 Cardiff 3.743

Liverpool 3.801 Ipswich 3.760

Manchester 3.801 London 3.818

Newcastle-
upon-Tyne 3.804 Plymouth 3.784

Nottingham 3.767 Southampton 3.795

(a) Draw a stemplot of all 14 prices shown in the table.

Discussion

A stemplot of all 14 prices in the table is shown below.
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Figure 6 Stemplot of 14 gas prices

(b) Draw separate stemplots for the seven prices for northern cities and the
seven prices for southern cities.

Discussion

Stemplots for the prices for northern and southern cities are shown below.

3.743p per kWh
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Northern Southern

3

Figure 7 Stemplots for northern and southern cities separately.

(c) For each of these three batches (northern cities, southern cities and all cities)
find the median and the range. Then use these figures to find the general level and
the range of gas prices for typical consumers in the country as a whole, and to
compare the north and south of the country.

Discussion

For a batch size of 14, the median position is . So, the all-cities

median will be halfway between and . These are 3.784 and 3.795, so the

median is 3.7895, which is 3.790 when rounded to three decimal places. (The
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rounded median should be written as 3.790 and not 3.79, to show it is accurate to
three decimal places and not just two.)
For the northern and southern batches, both of size 7, the median for each is the
value of (that is, ). This is 3.776 for the northern batch and 3.795

for the southern batch.
The range is the difference between the upper extreme, , and the lower

extreme, (range ). So the all-cities range is

the range for the northern batch is

and the range for the southern batch is

The medians and ranges are summarised below.

Batch Median Range

All cities 3.790 0.078

Northern
cities 3.776 0.064

Southern
cities 3.795 0.075

Thus the general level of gas prices in the country as a whole was about
3.790p per kWh. The average price differed by only 0.078p per kWh across the
14 cities.
The difference between the median prices for the northern and southern cities is
0.019p per kWh , with the south having the higher median.

The analysis does not clearly reveal whether the general level of gas prices for
typical consumers in 2010 was higher in the south or in the north, though there is an
indication that prices were a little higher in the south. The range of prices was also
rather greater in the south. It is worth noting that the differences in gas prices
between the cities in Table 3 were generally small, when measured in pence per
kWh – although, with a typical annual gas usage of 18 000 kWh, the price difference
between the most expensive city and the cheapest would amount to an annual
difference in bills of about £14 on a typical bill of somewhere around £700.

Activity 2 illustrates two general properties of sub-batches:

● The range of the complete batch is greater than or equal to the ranges of all the sub-
batches.
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● The median of the complete batch is greater than or equal to the smallest median of
a sub-batch and less than or equal to the largest median of a sub-batch.

1.3 The arithmetic mean
Another important measure of location is the arithmetic mean. (Pronounced arithmetic.)

Arithmetic mean

The arithmetic mean is the sum of all the values in the batch divided by the size of
the batch. More briefly,

There are other kinds of mean, such as the geometric mean and the harmonic mean, but
in this course we shall be using only the arithmetic mean; the word mean will therefore
normally be used for arithmetic mean.

Example 4 An arithmetic mean

Suppose we have a batch consisting of five values: 4, 8, 4, 2, 9. In this simple
example, the mean is

Note that in calculating the mean, the order in which the values are summed is irrelevant.
For a larger batch size, you may find it helpful to set out your calculations systematically in
a table. However, in practice the raw data are usually fed directly into a computer or
calculator. In general, it is a good idea to check your calculations by reworking them. If
possible, use a different method in the reworking; for example, you could sum the
numbers in the opposite order.
The formula ‘ ’ can be expressed more concisely as follows. Referring to the values
in the batch by , the ‘sum’ can be written as . Here is the Greek (capital) letter Sigma,
the Greek version of S, and is used in statistics to denote ‘the sum of’. Also, the symbol is
often used to denote the mean – and as you have already seen in stemplots, can be
used to denote the batch size. (Some calculators use keys marked and to produce the
sum and the mean of a batch directly.)
Using this notation,

can be written as
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In this course we shall normally round the mean to one more figure than the original data.

Activity 3 Small televisions: the mean

The prices of 20 small televisions were given in Activity 1 (Subsection 1.2). Find the
mean of these prices. Round your answer appropriately (if necessary), given that
the original data were rounded to the nearest £10.

Discussion

Using the data for the prices from Activity 1:

Or using the notation, and , so

The prices were rounded to the nearest £10, so it is appropriate to keep one more
significant figure for the mean, that is, to show it accurate to the nearest £1. So since
the exact value is £162, it needs no further rounding.

1.4 The mean and median compared
Both the mean and median of a batch are useful indicators of the location of the values in
the batch. They are, however, calculated in very different ways. To find the median you
must first order the batch of data, and if you are not using a computer, you will often do the
sorting by means of a stemplot. On the other hand, the major step in finding the mean
consists of summing the values in the batch, and for this they do not need to be ordered.
For large batches, at least when you are not using a computer, it is often much quicker to
sum the values in the batch than it is to order them. However, for small batches, like some
of those you will be analysing in this course without a computer, it can be just as fast to
calculate the median as it is to calculate the mean. Moreover, placing the batch values in
order is not done solely to help calculate the median – there are many other uses.
Drawing a stemplot to order the values also enables us to examine the general shape of
the batch. In Section 3 you will read about some other uses of the stemplot.
Comparisons based on the method of calculation can be of great practical interest, but the
rest of this subsection will consider more fundamental differences between the mean and
the median – differences which should influence you when you are deciding which
measure to use in summarising the general location of the values in a batch.
Many of the problems with the mean, as well as some advantages, lie in the fact that the
precise value of every item in the batch enters into its calculation. In calculating the
median, most of the data values come into the calculation only in terms of whether they
are in the 50% above the median value or the 50% below it. If one of them changes
slightly, but without moving into the other half of the batch, the median will not change. In
particular, if the extreme values in the batch are made smaller or larger, this will have no
effect on the value of the median – the median is resistant to outliers. In contrast, changes
to the extremes could have an appreciable effect on the value of the mean, as the
following examples show.
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Example 5 Changing the extreme coffee prices

For the batch of coffee prices in Figure 1 (Subsection 1.2), the sum of the values
is 4363p, so the mean is

Suppose the highest and lowest coffee prices are reduced so that

The median of this altered batch is the same as before, 295p. However, the sum of
the values is now 4306p and so the mean is

Example 6 Changing the small television prices

Suppose the highest two television prices in Activity 1 (Subsection 1.2) are altered
to £350 and £400. The median, at £150, remains the same as that of the original
batch, whereas the new mean is

compared with the original mean of £162.

Now, even with the very high prices of £350 and £400 for two televisions, the overall
location of the main body of the data is still much the same as for the original batch of
data. For the original batch the mean, £162, was a reasonably good measure of this.
However, for the new batch the mean, £174, is much too high to be a representative
measure since, as we can see from the stemplot in Activity 1, most of the values are
below £174.

Example 6 is the subject of the following screencast. [Note that the reference to ‘Unit 2’
should be ‘this course’. Unit 2 is a reference to the Open University course from which this
material is adapted.]

Video content is not available in this format.
Screencast 1 Effects on the median and mean when data points change
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A measure which is insensitive to changes in the values near the extremes is called
a resistant measure.

The median is a resistant measure whereas the mean is sensitive.

In the following activities, you can investigate some other ways in which the median is
more resistant than the mean.

Activity 4 Changing the gas prices

In Activity 2 (Subsection 1.2) you may have noticed that Cardiff and Ipswich had
rather low gas prices compared to the other southern cities. Here you are going to
examine the effect of deleting them from the batch of southern cities. Complete the
following table and comment on your results.

Batch Mean Median

Seven southern cities

Five southern cities (excluding Cardiff and
Ipswich)

Discussion

The completed table is:

Batch Mean Median

Seven southern cities 3.7859 3.795

Five southern cities (excluding Cardiff and
Ipswich) 3.7996 3.796

Whereas deletion of Cardiff and Ipswich has the effect of increasing the mean price
by 0.0137p per kWh, the median price increases by only 0.001p per kWh. This is
what we would expect as, in general, the more resistant a measure is, the less it
changes when a few extreme values are deleted.

Activity 5 A misprint in the gas prices

Suppose the value for London had been misprinted as 8.318 instead of 3.818 (quite
an easy mistake to make!). How would this affect your results for the batch of five
southern cities (again omitting Cardiff and Ipswich)?
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Batch Mean Median

Five cities (correct
data)

Five cities (with
misprint)

Discussion

The completed table is:

Batch Mean Median

Five cities (correct
data) 3.7996 3.796

Five cities (with
misprint) 4.6996 3.796

Here the median is completely unaffected by the misprint, although the mean
changes considerably.

Suppose you wanted to use these values – the correct ones, of course – to estimate the
average price of gas over the whole country. The simple arithmetic mean of the 14 values
given in Table 3 (Subsection 1.2) would not allow for the fact that much more gas is
consumed in London, at a relatively high price, than in other cities. To take account of this
you would need to calculate what is known as a weighted arithmetic mean. Weighted
means are the subject of Section 2.

Exercises on Section 1
The following exercises provide extra practice on the topics covered in Section 1.

Exercise 1 Finding medians

For each of the following batches of data, find the median of the batch. (We shall
also use these batches of data in some of the exercises in Section 3.)

(a) Percentage scores in arithmetic obtained by 33 school students.
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Figure 8

Discussion

For the arithmetic scores, the position of the median is , so the median is 79%.

(b) Prices of 26 digital televisions with 22- to 26-inch LED screens, quoted online
by a large department store in February 2012. The prices have been rounded to the
nearest pound (£).

170 180 190 200 220 229 230 230 230

230 250 269 269 270 279 299 300 300

315 320 349 350 400 429 649 699

Discussion

For the television prices, the position of the median is , so the median is

halfway between and . Thus, the median is

Exercise 2 Finding means

Calculate the mean for each of the batches in Exercise 1.

Discussion

For the batch of arithmetic scores in part (a) of Exercise 1, the sum of the 33 values
is 2326 and
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Therefore, the mean is 70.5%. (The original data are given to the nearest whole
number, so the mean is rounded to one decimal place.)

For the batch of television prices in part (b) of Exercise 1, the sum of the 26 values
is 7856 and

Therefore, the mean is £302.2.

Exercise 3 The effect of removing values on the median and mean

In the data on prices for small televisions in Activity 1 (Subsection 1.2), the three
highest-priced televisions were considerably more expensive than all the others
(which all cost under £200). Suppose that in fact these prices had been for a
different, larger type of television that should not have been in the batch. (In fact that
is not the case – but this is only an exercise!) Leave these three prices out of the
batch and calculate the median and the mean of the remaining prices.

How do these values compare with the original median (150) and mean (162)?
What does this comparison demonstrate about how resistant the median and
mean are?

Discussion

For the median, there are now 17 prices left in the batch, so the median is at position
. It is therefore 150.

The sum of the remaining 17 values is 2480, so the mean is

In this case, removing the three highest prices has not changed the median at all,
but it has reduced the mean considerably. This illustrates that the median is a more
resistant measure than the mean.
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2 Weighted means
For goods and services, price changes vary considerably from one to another. Central to
the theme question of this course, Are people getting better or worse off?, there is a need
to find a fair method of calculating the average price change over a wide range of goods
and services. Clearly a 10% rise in the price of bread is of greater significance to most
people than a similar rise in the price of clothes pegs, say. What we need to take account
of, then, are the relative weightings attached to the various price changes under
consideration.

2.1 The mean of a combined batch
This first subsection looks at how a mean can be calculated when two unequally weighted
batches are combined.

Example 7 Alan’s and Beena’s biscuits

Suppose we are conducting a survey to investigate the general level of prices in
some locality. Two colleagues, Alan and Beena, have each visited several shops and
collected information on the price of a standard packet of a particular brand of
biscuits. They report as follows (Figure 9).

● Alan visited five shops, and calculated that the mean price of the standard
packet at these shops was 81.6p.

● Beena visited eight shops, and calculated that the mean price of the standard
packet at these shops was 74.0p.

74.0 81.6

pence

Figure 9 Means of biscuit prices

If we had all the individual prices, five from Alan and eight from Beena, then they
could be amalgamated into a single batch of 13 prices, and from this combined batch
we could calculate the mean price of the standard packet at all 13 shops. However,
our two investigators have unfortunately not written down, nor can they fully
remember, the prices from individual shops. Is there anything we can do to calculate
the mean of the combined batch?

Fortunately there is, as long as we are interested in arithmetic means. (If they had
recorded the medians instead, then there would have been very little we could do.)

The mean of the combined batch of all 13 prices will be calculated as

We already know that the size of the combined batch is the sum of the sizes of the
two original batches; that is, . The problem here is how to find the sum of the
combined batch of Alan’s and Beena’s prices. The solution is to rearrange the
familiar formula
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so that it reads

This will allow us to find the sums of Alan’s five prices and Beena’s eight prices
separately. Adding the results will produce the sum of the combined batch prices.
Finally, dividing by 13 completes the calculation of finding the combined batch mean.

Let us call the sum of Alan’s prices ‘sum(A)’ and the sum of Beena’s prices ‘sum(B)’.

For Alan: and , so .

For Beena: and , so .

For the combined batch:

Here, the result has been rounded to give the same number of digits as in the two
original means.

The process that we have used above is an important one. It will be used several times in
the rest of this course. The box below summarises the method, using symbols.

Mean of a combined batch

The formula for the mean of a combined batch is

where batch consists of batch combined with batch , and

For our survey in Example 7,

The formula summarises the calculations we did as

This expression is an example of a weighted mean. The numbers 5 and 8 are the
weights. We call this expression the weighted mean of 81.6 and 74.0 with weights 5
and 8, respectively.
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To see why the term weighted mean is used for such an expression, imagine that
Figure 10 shows a horizontal bar with two weights, of sizes 5 and 8, hanging on it at the
points 81.6 and 74.0, and that you need to find the point at which the bar will balance. This
point is at the weighted mean: approximately 76.9.

74.0 76.9 81.6

8
5

pence

Figure 10 Point of balance at the weighted mean

This physical analogy illustrates several important facts about weighted means.

● It does not matter whether the weights are 5 kg and 8 kg or 5 tonnes and 8 tonnes;
the point of balance will be in the same place. It will also remain in the same place if
we use weights of 10 kg and 16 kg or 40 kg and 64 kg – it is only the relative sizes (i.
e. the ratio) of the weights that matter.

● The point of balance must be between the points where we hang the weights, and it
is nearer to the point with the larger weight.

● If the weights are equal, then the point of balance is halfway between the points.

This gives the following rules.

Rules for weighted means

Rule 1 The weighted mean depends on the relative sizes (i.e. the ratio) of the
weights.

Rule 2 The weighted mean of two numbers always lies between the numbers and
it is nearer the number that has the larger weight.

Rule 3 If the weights are equal, then the weighted mean of two numbers is the
number halfway between them.

Example 8 Two batches of small televisions

Suppose that we have two batches of prices (in pounds) for small televisions:

To find the mean of the combined batch we use the formula above, with

This gives
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Note that this is the weighted mean of 119 and 185 with weights 7 and 13
respectively. It lies between 119 and 185 but it is nearer to 185 because this has the
greater weight: 13 compared with 7.

Example 8 is the subject of the following screencast. [Note that references to ‘the unit’ and
‘the units’ should be interpreted as ‘this course’. The original wording refers to the Open
University course from which this material is adapted.]

Video content is not available in this format.
Screencast 2 Calculating a weighted mean

2.2 Further uses of weighted means
We shall now look at another similar problem about mean prices – one which is perhaps
closer to your everyday experience.

Example 9 Buying petrol

Suppose that, in a particular week in 2012, a motorist purchased petrol on two
occasions. On the first she went to her usual, relatively low-priced filling station
where the price of unleaded petrol was 136.9p per litre and she filled the tank; the
quantity she purchased was 41.2 litres. The second occasion saw her obliged to
purchase petrol at an expensive service station where the price of unleaded petrol
was 148.0p per litre; she therefore purchased only 10 litres. What was the mean
price, in pence per litre, of the petrol she purchased during that week?

To calculate this mean price we need to work out the total expenditure on petrol, in
pence, and divide it by the total quantity of petrol purchased, in litres.

The total quantity purchased is straightforward as it is just the sum of the two
quantities, so .

To find the expenditure on each occasion, we need to apply the formula:

This gives and , respectively.
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So the total expenditure, in pence, is . The mean price, in pence per litre,

for which we were asked, is this total expenditure divided by the total number of litres
bought:

We have left the answer in this form, rather than working out the individual products
and sums as we went along, to show that it has the same form as the calculation of
the combined batch mean. (The answer is 139.07p per litre, rounded from 139.067
97p per litre.)

The phrase ‘goods and services’ is an awkward way of referring to the things that are
relevant to the cost of living; that is, physical things you might buy, such as bread or gas,
and services that you might pay someone else to do for you, such as window-cleaning.
Economists sometimes use the word commodity to cover both goods and services that
people pay for, and we shall use that word from time to time in this course. (Note that there
are other, different, technical meanings of commodity that you might meet in different
contexts.)

The mean price of a quantity bought on two different occasions

In general, if you purchase units of some commodity at pence per unit and units

of the same commodity at pence per unit, then the mean price of this commodity,

pence per unit, can be calculated from the following formula:

Example 10 Buying potatoes

Suppose that, in one month, a family purchased potatoes on two occasions. On one
occasion they bought 10 kg at 40p per kg, and on another they bought 6 kg at 45p
per kg. We can use this formula to calculate the mean price (in pence per kg) that
they paid for potatoes in that month. We have

and

This gives
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So the mean price for that month is 41.9p per kg.

The two formulas we have been using,

are basically the same; they are both examples of weighted means.
The first formula is the weighted mean of the numbers and , using the batch sizes,

and , as weights.

The second formula is the weighted mean of the unit prices and , using the quantities

bought, and , as weights.

The general form of a weighted mean of two numbers having associated weights is as
follows.

Weighted mean of two numbers

The weighted mean of the two numbers and with corresponding weights and

is

Weighted means have many uses, two of which you have already met. The type of
weights depends on the particular use. In our uses, the weights were the following.

● The sizes of the batches, when we were calculating the combined batch mean from
two batch means.

● The quantities bought, when we were calculating the mean price of a commodity
bought on two separate occasions.

Another very important use is in the construction of an index, such as the Retail Prices
Index; we shall therefore be making much use of weighted means in the final sections of
this course.
In the next example, we do not have all the information required to calculate the mean, but
we can still get a reasonable answer by using weights.

Example 11 Weighted means of two gas prices

Let us return to the gas prices in Table 3 (Subsection 1.2). This has information
about the price of gas for typical consumers in individual cities, but no national figure.
Suppose that you want to combine these figures to get an average figure for the
whole country; how could you do it? At the end of Section 1, it was suggested that
weighted means could provide a solution. The complete answer to this question,
using weighted means, is in Example 13 towards the end of this section. To
introduce the method used there, let us now consider a similar, but simpler, question.
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Here we use just two cities, London and Edinburgh, where the prices were 3.818p
per kWh and 3.740p per kWh respectively. How can we combine these two values
into one sensible average figure?

One possibility would be to take the simple mean of the two numbers. This gives

However, this gives both cities equal weight. Because London is a lot larger than
Edinburgh, we should expect the average to be nearer the London price than the
Edinburgh price.

This suggests that we use a weighted mean of the form

where and are suitably chosen weights, with the weight of the London price

larger than the weight of the Edinburgh price.

The best weights would be the total quantities of gas consumed in 2010 in each city.
However, even if this information is not available to us, we can still find a reasonable
average figure by using as weights a readily available measure of the sizes of the
two cities: their populations.

The populations of the urban areas of these cities are approximately 8 300 000 and
400 000 respectively. So we could put and .

However, we know that the weighted mean depends only on the ratio of the weights.
Therefore, the weights 83 and will give the same answer.

These weights give

Activity 6 Using the rules for weighted means

Using the rules for weighted means, would you expect the weighted mean price to
be nearer the London price or the Edinburgh price? To check, calculate the
weighted mean price.

Discussion

You should expect the weighted mean price to be nearer the London price, because
of Rule 2 for weighted means (Subsection 2.1) and given that London has a much
larger weight then Edinburgh.
The weighted mean price given by the formula in Example 11 is (after rounding)
3.814p per kWh, which is indeed much closer to the London price than to the
Edinburgh price.
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Although we cannot think of the weighted mean price in Activity 6 as a calculation of the
total cost divided by the total consumption, the answer is an estimate of the average price,
in pence per kWh, for typical consumers in the two cities, and it is the best estimate we
can calculate with the available information.
Sometimes the weights in a weighted mean do not have any significance in themselves:
they are neither quantities, nor sizes, etc., but simply weights. This is illustrated in the
following activity.

Activity 7 Weighted means of Open University marks

Open University students become familiar with the combination of interactive
computer-marked assignment (iCMA) and tutor-marked assignment (TMA) scores
to provide an overall continuous assessment score (OCAS) for a course.
Suppose that a student obtains a score of 80 for their iCMAs and a score of 60 for
their TMAs. Calculate what this student’s overall continuous assessment score will
be if the weights for the two components are as follows.

(a) iCMA 50, TMA 50

Discussion

This is the same as a simple (unweighted) mean of the two scores, because the two
component scores have equal weight. It lies exactly halfway between the two
scores ( ).

(b) iCMA 40, TMA 60

Discussion

This is slightly less than the simple mean in (a) because the component with the
lower score (TMA) has the greater weight.

(c) iCMA 65, TMA 55

Discussion

This is slightly higher than the simple mean in (a) because the component with the
higher score (iCMA) has the greater weight.
(Note that the weights need not necessarily sum to 100, even when dealing with
percentages.)
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(d) iCMA 25, TMA 75

Discussion

This is even lower than (b), so even nearer the lower score (TMA), because the
TMA score has even greater weight.

(e) iCMA 30, TMA 90

Discussion

This is the same as (d) because the ratios of the weights are the same; they are
both in the ratio 1 to 3. That is, ( ).
(We say this as follows: ‘the ratio 25 to 75 equals the ratio 30 to 90’.)

We have seen, in Activity 7 and in Example 11, that only the ratio of the weights affects the
answer, not the individual weights. So weights are often chosen to add up to a convenient
number like 100 or 1000. (This is Rule 1 for weighted means (see Subsection 2.1).)
Activity 7 should also have reminded you of another important property of a weighted
mean of two numbers: the weighted mean lies nearer to the number having the larger
weight. (This is part of Rule 2 for weighted means.)

2.3 More than two numbers
The idea of a weighted mean can be extended to more than two numbers. To see how the
calculation is done in general, remind yourself first how we calculated the weighted mean
of two numbers and with corresponding weights and .

1. Multiply each number by its weight to get the products and .

2. Sum these products to get .

3. Sum the weights to get .

4. Divide the sum of the products by the sum of the weights.

This leads to the following formula.

Weighted mean of two or more numbers

The weighted mean of two or more numbers is
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This is the formula which is used to find the weighted mean of any set of numbers, each
with a corresponding weight.

Example 12 A weighted mean of wine prices

Suppose we have the following three batches of wine prices (in pence per bottle).

We want to calculate the weighted mean of these three batch means using, as
corresponding weights, the three batch sizes. Rather than applying the formula
directly, the calculations can be set out in columns.

Table 4 Data on wine purchases

Batch Number (batch mean) Weight (batch size) Number weight ( = product)

Batch 1 525.5 6 3 153.0

Batch 2 468.0 2 936.0

Batch 3 504.2 12 6 050.4

Sum 20 10 139.4

The weighted mean is

We round this to the same accuracy as the original means, to get a weighted mean
of 507.0. (Note that this lies between 468.0 and 525.5. This is a useful check, as a
weighted mean always lies within the range of the original means.)

The physical analogy in Example 12 can be extended to any set of numbers and weights.
Suppose that you calculate the weighted mean for:

This is given by

This is pictured in Figure 11, with the point of balance for these three weights shown
at 1.6.
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1.3 1.6 1.7 1.9

2
3

1

Figure 11 Point of balance for three means

You will meet many examples of weighted means of larger sets of numbers in
Subsection 5.2, but we shall end this section with one more example.

Example 13 Weighted means of many gas prices

Example 11 showed the calculation of a weighted mean of gas prices using, for
simplicity, just the two cities London and Edinburgh. We can extend Example 11 to
calculate a weighted mean of all 14 gas prices from Table 3, using as weights the
populations of the 14 cities. The calculations are set out in Table 5.

Table 5 Product of gas price and weight by city

City Price (p/kWh): Weight: Price weight:

Aberdeen 3.740 19 71.060

Edinburgh 3.740 42 157.080

Leeds 3.776 150 566.400

Liverpool 3.801 82 311.682

Manchester 3.801 224 851.424

Newcastle-upon-Tyne 3.804 88 334.752

Nottingham 3.767 67 252.389

Birmingham 3.805 228 867.540

Canterbury 3.796 5 18.980

Cardiff 3.743 33 123.519

Ipswich 3.760 14 52.640

London 3.818 828 3161.304

Plymouth 3.784 24 90.816

Southampton 3.795 30 113.850

Sum 1834 6973.436
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The entries in the weight column, , are the approximate populations, in 10 000s, of
the urban areas that include each city (as measured in the 2001 Census). For each
city, we multiply the price, , by the weight, , to get the entry in the last column, .

The weighted mean of the gas prices using these weights is then

or, in symbols,

As and , the weighted mean is

So the weighted mean of these gas prices, using approximate population figures as
weights, is 3.802p per kWh.

Note that this weighted mean is larger than all but three of the gas prices for
individual cities. That is because the cities with the two highest populations, London
and Birmingham, also have the highest gas prices, and the weighted mean gas price
is pulled towards these high prices.

Although the details of the calculation above are written out in full in Table 5, in practice,
using even a simple calculator, this is not necessary. It is usually possible to keep a
running sum of both the weights and the products as the data are being entered. One way
of doing this is to accumulate the sum of the weights into the calculator’s memory while
the sum of the products is cumulated on the display. If you are using a specialist statistics
calculator, the task is generally very straightforward. Simply enter each price and its
corresponding weight using the method described in your calculator instructions for
finding a weighted mean.

Activity 8 Weighted means on your calculator

Use your calculator to check that the sum of weights and sum of products of the
data in Table 5 are, respectively, 1834 and 6973.436, and that the weighted mean is
3.802. (No solution is given to this activity.)

Activity 9 Weighted mean electricity price

Table 6 is similar to Table 5, but this time it presents the average price of electricity,
in pence per kilowatt hour (kWh). These data are again for the year 2010 for typical
consumers on credit tariffs in the same 14 cities we have been considering for gas
prices, with the addition of Belfast. Again, the weights are the approximate
populations of the relevant urban areas, in 10 000s.

2 Weighted means 03/11/23



Table 6 Populations and electricity prices in 15 cities

City Price (p/kWh): Weight: Price weight:

Aberdeen 13.76 19

Belfast 15.03 58

Edinburgh 13.86 42

Leeds 12.70 150

Liverpool 13.89 82

Manchester 12.65 224

Newcastle-upon-Tyne 12.97 88

Nottingham 12.64 67

Birmingham 12.89 228

Canterbury 12.92 5

Cardiff 13.83 33

Ipswich 12.84 14

London 13.17 828

Plymouth 13.61 24

Southampton 13.41 30

Sum

Use these data to calculate the weighted mean electricity price. (Your calculator will
almost certainly allow you to do this without writing out all the values in the
column.)

Discussion

The table showing the required sums (and the values in the column, that you may
not have had to write down), is as follows.

City Price (p/kWh): Weight: Price weight:

Aberdeen 13.76 19 261.44

Belfast 15.03 58 871.74

Edinburgh 13.86 42 582.12

Leeds 12.70 150 1 905.00

Liverpool 13.89 82 1138.98
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Manchester 12.65 224 2 833.60

Newcastle-upon-Tyne 12.97 88 1141.36

Nottingham 12.64 67 846.88

Birmingham 12.89 228 2 938.92

Canterbury 12.92 5 64.60

Cardiff 13.83 33 456.39

Ipswich 12.84 14 179.76

London 13.17 828 10 904.76

Plymouth 13.61 24 326.64

Southampton 13.41 30 402.30

Sum 1892 24 854.49

Thus , and

So the weighted mean of electricity prices is 13.14p per kWh.

Exercises on Section 2
The following exercises provide extra practice on the topics covered in Section 2.

Exercise 4 A combined batch of camera prices

Find the mean price of the batch formed by combining the following two batches,
and , of camera prices.

Discussion

Mean price of all the cameras is

which is £79.3 (rounded to the same accuracy as the original means).
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Exercise 5 The mean price of fabric

Suppose you buy 8.5 metres of fabric in a sale, at £10.95 per metre, to make some
bedroom curtains. The following year you decide to make a matching bedspread
and so you buy 6 metres of the same material, but the price is now £12.70 per
metre. Calculate the mean price of all the material, in £ per metre.

Discussion

Mean price of all the material is

which is £11.67 (rounded to the nearest penny).
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3 Measuring spread
As you have already seen, it is difficult to measure price changes when they so often vary
from shop to shop and region to region. Taking some average value, such as the median
or the mean, helps to simplify the problem. However, it would be a mistake to ignore the
notion of spread, as averages on their own can be misleading.
Information about spread can be very important in statistical analysis, where you are often
interested in comparing two or more batches. In this section we shall look first at
measures of spread, and then at some methods of summarising the shape of a batch of
data.
But how can spread be measured? Just as there are several ways of measuring location
(mean, median, etc.), there are also several ways of measuring spread. Here, we shall
examine two such measures: the range and the interquartile range. (A further, even more
important, measure of spread is the standard deviation. It is, however, beyond the scope
of this course.)

3.1 The range
The range is defined below.

The range

The range is the distance between the lower and the upper extremes. It can be
calculated from the formula:

where is the upper extreme and is the lower extreme.

Given an ordered batch of data, for example in a stemplot, the range can easily be
calculated. However, the range tells us very little about how the values in the main body of
the data are spread. It is also very sensitive to changes in the extreme values, like those
considered in Subsection 1.4. It would be better to have a measure of spread that
conveys more information about the spread of values in the main body of the data. One
such measure is based upon the difference between two particular values in the batch,
known as the quartiles. As the name suggests, the two quartiles lie one quarter of the
way into the batch from either end. The major part of the next subsection describes how to
find them.

3.2 Quartiles and the interquartile range
Finding the quartiles of a batch is very similar to finding the median.
In Subsection 1.2, we represented a batch as a V-shaped formation, with the median at
the ‘hinge’ where the two arms of the V meet. The median splits the batch into two equal
parts. Similarly, we can put another hinge in each side of the V and get four roughly equal
parts, shaped like this: . For a batch of size 15, it looks like Figure 12.
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Low er quartile Upp er quartile

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

Median

Figure 12 Median and quartiles

The points at the side hinges, in this case and , are the quartiles. There are two

quartiles which, as with the extremes, we call the lower quartile and the upper quartile.
The lower quartile separates off the bottom quarter, or lowest 25%. The upper quartile
separates off the top quarter, or highest 25%. They are denoted and respectively.

(Sometimes they are referred to as the first quartile and the third quartile.)
You might be wondering, if these are and , what happened to ? Well, have a think

about that for a moment.
separates the bottom quarter of the data (from the top three quarters), and separates

the bottom three quarters (from the top quarter). So it would make sense to say that

separates the bottom two quarters (from the top two quarters). But two quarters make a
half, so would denote the median, and since there is already a separate word for that, it’s

not usual to call it the second quartile.
Usually we cannot divide the batch exactly into quarters. Indeed, this is illustrated in
Figure 12 where the two central parts of the are larger than the outer ones. As with
calculating the median for an even-sized batch, some rule is needed to tell us how many
places we need to count along from the smallest value to find the quartiles. However,
there are several alternatives that we could adopt and the particular rule described below
is somewhat arbitrary. Different authors and different software may use slightly different
rules. If your calculator can find quartiles, note that it may use a different rule.
As you might have expected, the rule involves dividing by 4, where is the batch size

(as opposed to dividing by 2 to find the median). However, the rule is slightly more
complicated for the quartiles and it depends on whether is exactly divisible by 4.

The quartiles

The lower quartile is at position in the ordered batch.

The upper quartile is at position in the ordered batch.
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If is exactly divisible by 4, these positions correspond to a single value in the

batch.

If is not exactly divisible by 4, then the positions are to be interpreted as follows.

● A position which is a whole number followed by means ‘halfway between the

two positions either side’ (as was the case for finding the median).
● A position which is a whole number followed by means ‘one quarter of the way

from the position below to the position above’. So for instance if a position is ,

the quartile is the number one quarter of the way from to .

● A position which is a whole number followed by means ‘three quarters of the

way from the position below to the position above’. So for instance if a position
is , the quartile is the number three quarters of the way from to .

Before we actually use these rules to find quartiles, let us look at some more examples of
-shaped diagrams for different batch sizes . The case where is exactly divisible by 4,

so that is a whole number, was shown in Figure 12. The following three figures show

the three other possible scenarios, where is not exactly divisible by 4.

For , and . So is halfway between and , and is halfway between

and .

Low er quartile Upp er quartile

x(1)

x(2)

x(3)

x(4) x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13) x(14)

x(15)

x(16)

x(17)

Median

Figure 13 Quartiles for sample size

For , and . So is three quarters of the way from to , and is one

quarter of the way from to .
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x(2)
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Figure 14 Quartiles for sample size

For , and . So is one quarter of the way from to , and is three

quarters of the way from to .

Low er quartile Upp er quartile

x(1)

x(2)

x(3)

x(4)

x(5) x(6)

x(7)

x(8)

x(9)

x(10) x(11)

x(12)

x(13)

x(14)

x(15) x(16)

x(17)

x(18)

x(19)

x(20)

Median

Figure 15 Quartiles for sample size

Example 14 Quartiles for the prices of small televisions

Figure 15 showed you where the quartiles are for a batch of size 20. Let us now use
the stemplot of the 20 television prices in Figure 16, which you first met in Figure 5
(Subsection 1.2), to find the lower and upper quartiles, and , of this batch.
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Figure 16 Prices of flat-screen televisions with a screen size of 24 inches or less

To calculate the lower quartile you need to find the number that is one quarter of

the way from to . These values are both 130, so is 130. To calculate the upper

quartile you need to find the number three quarters of the way from to . These

values are both 180, so is 180.

That example was easier than it might have been, because for each quartile the two
numbers we had to consider turned out to be equal!

Example 15 Quartiles for the camera prices

Table 2 (Subsection 1.2) gave ten prices for a particular model of digital camera (in
pounds). In order, the prices are as follows.

To find the lower and upper quartiles, and , of this batch, first find and .

The lower quartile is the number three quarters of the way from to . These

values are 60 and 65. The difference between them is , and three quarters of
that difference is . Therefore is 3.75 larger than 60, so it is 63.75. As with the

median, in this course we will generally round the quartiles to the accuracy of the
original data, so in this case we round to the nearest whole number, 64. In
symbols, .

The upper quartile is the number one quarter of the way from to . These values

are 81 and 85. The difference between them is , and one quarter of that
difference is . Therefore is 1 larger than 81, so it is 82. (No rounding necessary

this time.) In symbols, .
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Example 15 is the subject of the following screencast. [Note that references to ‘the unit’
should be interpreted as ‘this course’. The original wording refers to the Open University
course from which this material is adapted.]

Video content is not available in this format.
Screencast 3 Calculating quartiles

Activity 10 Finding more quartiles

(a) Find the lower and upper quartiles of the batch of 15 coffee prices in Figure 17.
(This batch of coffee prices was first introduced in Table 1 of Subsection 1.1.)

26
27
28
29
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31
32
33
34
35
36
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8 8 8 8

9

9
9

5
5
5

5 5 5 9

n = 15 26 8 represents 268 pence

Figure 17 Stemplot of 15 coffee prices

Discussion

Here, because , an appropriate picture of the data would be Figure 12
(Subsection 3.2). To find the lower and upper quartiles, and , of this batch, first

find and . Therefore and .
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(b) Find the lower and upper quartiles of the batch of 14 gas prices in Figure 18.
(This batch of gas prices was first introduced in Table 3 of Subsection 1.2.)
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n = 14 374 0

0

represents 3.740p per kWh

Figure 18 Stemplot of 14 gas prices

Discussion

For this batch, so and .

and

So the lower quartile is 3.756 p per kWh and the upper quartile is 3.802p per kWh.

A measure of spread
Now we can define a new measure of spread based entirely on the lower and upper
quartiles.

The interquartile range

The interquartile range (sometimes abbreviated to IQR) is the distance between the
lower and upper quartiles:

Note that this value is independent of the sizes of and .
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Example 16 The prices of small televisions, yet again!

For the batch of 20 television prices in Example 14 (Subsection 3.2),

So the interquartile range is £50.

Activity 11 Coffee prices again

Calculate both the range and the interquartile range of the batch of 15 coffee prices,
last seen in Figure 17 (Subsection 3.2).

Discussion

The range is the distance between the extremes:

The interquartile range is the distance between the quartiles:

Activity 12 Interquartile range of gas prices

In Activity 10(b) (Subsection 3.2) you found the quartiles of the 14 gas prices from
Activity 2 (Subsection 1.2). Find the interquartile range.

Discussion

The quartiles, before rounding, are and . So

and the interquartile range is 0.046p per kWh.

You may be wondering why you are being asked to learn a new measure of spread when
you already know the range. As a measure of spread, the range is not very

satisfactory because it is not resistant to the effects of unrepresentative extreme values.
(Resistant measures were explained in Subsection 1.4.) The interquartile range, by
contrast, is a highly resistant measure of spread (because it is not sensitive to the effects
of values lying outside the middle 50% of the batch) and it is generally the preferred
choice.
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Example 17 Comparing the resistance of the range and the IQR

Suppose the price of the most expensive jar of coffee is reduced from 369p to 325p.
How does this affect the range and the interquartile range of the batch of coffee
prices in Figure 17 (Subsection 3.2)?

The new range is

a lot less than the original value of 101p (found in Activity 11). The interquartile range
is unchanged.

3.3 The five-figure summary and boxplots
As well as giving us a new measure of spread – the interquartile range – the quartiles are
important figures in themselves. Our -shaped diagram, Figure 19, gives five important
points which help to summarise the shape of a distribution: themedian, the two quartiles
and the two extremes.

EL

Q 1

M

Q 3

EU

Figure 19 Values in a five-figure summary

These are conveniently displayed in the following form, called the five-figure summary of
the batch.

Five-figure summary

n
Q 1

M

Q 3

EL

EU

n

M

Q 1 Q 3

EL EU

batch size

median

low er quartile

upper quartile

low er extreme

upper extreme

Figure 20
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Example 18 Five-figure summary for television price data

For the television price data, we have , , , , and . (You last saw

these data in Figure 16, Subsection 3.2.)

Therefore, the five-figure summary of this batch is

n = 20

150

130

90

180

270

Figure 21

This diagram contains the following information about the batch of prices.

● The general level of prices, as measured by the median, is £150.
● The individual prices vary from £90 to £270.
● About 25% of the prices were less than £130.
● About 25% of the prices were more than £180.
● About 50% of the prices were between £130 and £180.

We hope you agree that the five-figure summary is quite an efficient way of presenting a
summary of a batch of data.
The five values in a five-figure summary can be very effectively presented in a special
diagram called a boxplot. For the 14 gas prices (Figure 15, Subsection 3.2) the diagram
looks like Figure 22.

3.74 3.76 3.78 3.80 3.82

p/kWh

Figure 22 Boxplot of batch of 14 gas prices

The central feature of this diagram is a box – hence the name boxplot. The box extends
from the lower quartile (at the left-hand edge of the box) to the upper quartile (the right-
hand edge). This part of the diagram contains 50% of the values in the batch. The length
of this box is thus the interquartile range.
Outside the box are two whiskers. (Boxplots are sometimes called box-and-whisker
diagrams.) In many cases, such as in Figure 22, the whiskers extend all the way out to the
extremes. Each whisker then covers the end 25% of the batch and the distance between
the two whisker-ends is then the range. (You will see examples later where the whiskers
do not go right out to the extremes.)
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So far we have dealt with four figures from the five-figure summary: the two quartiles and
the two extremes. The remaining figure is perhaps the most important: it is the median,
whose position is shown by putting a vertical line through the box.
Thus a boxplot shows clearly the division of the data into four parts: the two whiskers and
the two sections of the box; these are the four parts of the -shaped diagram and each
contains (approximately) 25% of values in the batch (see Figure 21).

John W. Tukey (1915–2000), inventor of the five-figure summary and
boxplot

John Tukey was a prominent and prolific US statistician, based at Princeton
University and Bell Laboratories. As well as working in some very technical areas, he
was a great promoter of simple ways of picturing and summarising data, and invented
both the five-figure summary and the boxplot (except that he called them the ‘five-
number summary’ and the ‘box-and-whisker plot’).

He had what has been described as an ‘unusual’ lecturing style. The statistician Peter
McCullagh describes a lecture he gave at Imperial College, London in 1977:

Tukey ambled to the podium, a great bear of a man dressed in baggy pants and
a black knitted shirt. These might once have been a matching pair, but the
vintage was such that it was hard to tell. …The words came …, not many, like
overweight parcels, delivered at a slow unfaltering pace. …Tukey turned to face
the audience …. ‘Comments, queries, suggestions?’ he asked …. As he waited
for a response, he clambered onto the podium and manoeuvred until he was
sitting cross-legged facing the audience. …We in the audience sat like
spectators at the zoo waiting for the great bear to move or say something. But
the great bear appeared to be doing the same thing, and the feeling was not
comfortable. …After a long while, …he extracted from his pocket a bag of dried
prunes and proceeded to eat them in silence, one by one. The war of nerves
continued …four prunes, five prunes. …How many prunes would it take to end
the silence?
(Source: McCullagh, P. (2003) ‘John Wilder Tukey’, Biographical Memoirs of Fellows of the
Royal Society, vol. 49, pp. 537–55.)

EL

Q 1 M Q 3

EU

25%25%25%25%

Figure 23 A standard boxplot with annotation

A typical boxplot looks something like Figure 23 because in most batches of data the
values are more densely packed in the middle of the batch and are less densely packed in
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the extremes. This means that each whisker is usually longer than half the length of the
box. This is illustrated again in the next example.

Example 19 Boxplot for the prices of small televisions

The boxplot for the batch of 20 television prices (last worked with in Example 18) is
shown in Figure 24.

100 125 150 175 200 225 250 275
£

*

Figure 24 Boxplot of batch of 20 television prices

You can see that each whisker is longer than half the length of the box.

However, this boxplot has a new feature. The whisker on the left goes right down to
the lower extreme. But the whisker on the right does not go right to the upper
extreme. The highest extreme data value, 270, which might potentially be regarded
as an outlier, is marked separately with a star. Then the whisker extends only to
cover the data values that are not extreme enough to be regarded as potential
outliers. The highest of these values is 250.

(This course does not describe the rule to decide which data values (if any) can be
regarded as potential outliers that are plotted separately on the diagram. This is
another issue that may be dealt with differently by different authors and different
software.)

Example 19 is the subject of the following screencast. [Note that the reference to ‘Unit 2’
should be ‘this course’ and ‘Figure 18’ should be ‘Figure 23’. Unit 2 and Figure 18 are
references to the Open University course from which this material is adapted.]

Video content is not available in this format.
Screencast 4 Interpreting a boxplot

One important use of boxplots is to picture and describe the overall shape of a batch of
data.
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Example 20 Skew televisions

The stemplot of small television prices, last seen in Figure 16 (Subsection 3.2),
shows a lack of symmetry. Since the higher values are more spread out than the
lower values, the data are right-skew.

The boxplot of these data, given in Figure 22, also shows this right-skew fairly
clearly. In the box, the right-hand part (corresponding to higher prices) is rather
longer than the left-hand part, and the right-hand whisker is longer than the left-hand
whisker.

Activity 13 Skew gas prices?

A stemplot of the gas price data from Activity 2 (Subsection 1.2) is shown, yet again,
in Figure 25.
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n = 14 374 0 represents 3.740p per kWh

Figure 25 Stemplot of 14 gas prices

(a) Prepare a five-figure summary of the batch.

Discussion

All the necessary figures have already been calculated. You found the median
(3.790) in Activity 2 and the quartiles ( , ) in Activity 10. The extremes ( ,

) and the batch size ( ) are clearly shown in the stemplot.

So the five-figure summary is as follows:

n = 14 3.756

3.740

3.790

3.802

3.818

Figure 26
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(b) Figure 27 shows the boxplot of these data that you have already seen in
Figure 22. What do the stemplot and boxplot tell us about the symmetry and/or
skewness of the batch?

3.74 3.76 3.78 3.80 3.82

p/kWh

Figure 27 Boxplot of batch of 14 gas prices

Discussion

Looking at the stemplot, on the whole the lower values are more spread out,
indicating that the data are not symmetric and are left-skew.
The central box of the boxplot again shows left skewness, with the left-hand part of
the box being clearly longer than the right-hand part. However, this skewness does
not show up in the lengths of the whiskers in this batch – they are both the same
length.

Example 21 Camera prices: skew or not?

In Example 20 and Activity 13 you saw how boxplots look for batches of data that are
right-skew or left-skew. What happens in a batch that is more symmetrical?

For the small batch of camera prices from Table 2 (Subsection 1.2), a (stretched)
stemplot is shown in Figure 28.
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Figure 28 Stemplot of ten camera prices

The stemplot looks reasonably symmetric.
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A boxplot of the data, Figure 29, confirms the impression of symmetry. The two parts
of the box are roughly equal in length, and the two whiskers are also roughly equal in
length.

50 60 70 80 90
£

Figure 29 Boxplot of batch of ten camera prices

You have now spent quite a lot of time looking at various ways of investigating prices and,
in particular, at methods of measuring the location and spread of the prices of particular
commodities.
In order to begin to answer our question, Are people getting better or worse off?, we need
to know not just location (and spread) of prices but also how these prices are changing
from year to year. That is the subject of the rest of this course.

Exercises on Section 3
The following exercises provide extra practice on the topics covered in Section 3.

Exercise 6 Finding quartiles and the interquartile range

(a) For the arithmetic scores in Exercise 1 (Section 1), find the quartiles and
calculate the interquartile range. The stemplot of the scores is given below.
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Figure 30 Stemplot of arithmetic stores
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Discussion

For the arithmetic scores, so and .

The lower quartile is therefore

The upper quartile is

The interquartile range is

(b) For the television prices in Exercise 1, find the quartiles and calculate the
interquartile range. The table of prices is given below.

170 180 190 200 220 229 230 230 230

230 250 269 269 270 279 299 300 300

315 320 349 350 400 429 649 699

Discussion

For the television prices, so and .

The lower quartile is therefore

The upper quartile is

The interquartile range is

Exercise 7 Some five-figure summaries

Prepare a five-figure summary for each of the two batches from Exercise 1.

(a) For the arithmetic scores, the median is 79% (found in Exercise 1), and you
found the quartiles and interquartile range in Exercise 6.
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Discussion

Arithmetic scores:
From the stemplot, , and .

n = 33 57

79

88

7 100

Figure 31 Five-figure summary of arithmetic scores

(b) For the television prices, the median is £270 (found in Exercise 1), and you
found the quartiles and interquartile range in Exercise 6.

Discussion

Television prices:
From the data table, , and .

n = 26

270

327

170 699

230

Figure 32 Five-figure summary of television prices

Exercise 8 Boxplots and the shape of distributions

Boxplots of the two batches used in Exercises 1, 6 and 7 are shown in Figures 33
and 34. On the basis of these diagrams, comment on the symmetry and/or
skewness of these data.

*

0 20 40 60 80 100
%

Figure 33 Boxplot of batch of 33 arithmetic scores
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* *
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Figure 34 Boxplot of batch of 26 television prices

Discussion

For the boxplot of arithmetic scores, the left part of the box is longer than the right
part, and the left whisker is also considerably longer than the right. This batch is left-
skew.

For the boxplot of television prices, the right part of the box is rather longer than the
left part. The right whisker is also rather longer than the left, and if one also takes
into account the fact that two potential outliers have been marked, the top 25% of
the data are clearly much more spread out than the bottom 25%. This batch is right-
skew.
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4 A simple chained price index
You have already seen that it is not a simple task to measure the price of even a single
commodity at a fixed time and place. Measuring the change in price of a single commodity
from one year to the next will be even more complicated but, as was said in
Subsection 1.1, to answer our question it is necessary to measure the changes in the
prices of the whole range of goods and services which people use. Moreover, since we
wish to know how all the different changes in the prices of these goods and services affect
people, we need to take into account those people’s consumption patterns. For example,
a large increase in the price of high-quality caviar will not affect most people’s budgets
since most households’ shopping lists do not include this commodity!
This makes the task of measuring price changes and examining how they affect us seem
exceedingly difficult; but such a task is carried out in the UK regularly each month,
organised by the Office for National Statistics. (Most of the prices are actually collected by
a market research company under contract to the Office for National Statistics.) The
results of their data collection and subsequent calculations are summarised in two
measures called the Consumer Prices Index (CPI) and the Retail Prices Index (RPI).
These indices do not measure prices. (‘Indices’ is the plural of ‘index’.) Each is an index of
price changes over time, and one or both of these indices are commonly used when
people make comparisons about the cost of living. They are highly relevant measures for
those engaged in wage bargaining.
The RPI and the CPI are both ‘chained’ in the sense that the index value for each year is
linked to the year before. The very first link in the chain is called the base year and it is
given an index value of 100.

2007 isthe
base year

Index value

Y ear

100

2007 2008 2009 2010 2011 2012 2013

Figure 35 A chained index

4.1 A two-commodity price index
Section 5 includes an outline of how the information used to calculate the official UK price
indices is collected, and describes how the indices are calculated. To introduce ideas, in
this section we describe a very much simpler example of a price index calculation. It uses
exactly the same basic method of calculation as the actual Retail Prices Index. (Not every
index is calculated in this way.)
The context is a mythical computing company, Gradgrind Ltd.
Gradgrind Ltd uses both gas and electricity in its operations. Table 7 shows the price they
paid for each fuel in 2007 and 2008. The prices are shown in £ per megawatt hour (MWh).
(It is more usual, in the UK, for prices to be quoted in pence per kilowatt hour (p/kWh).
Here, £/MWh have been used simply to make some of the later calculations a little more
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straightforward. Because there are 100 pence in £1 and 1000 kilowatts in a megawatt,
£10/MWh is exactly the same price as 1p/kWh – so Gradgrind’s gas price in 2007, for
instance, was 2.4p/kWh.)

Table 7 Gradgrind’s energy
prices in 2007 and 2008

Energy type 2007 2008

Gas (£/MWh) 24 29

Electricity
(£/MWh) 76 87

If we were interested in looking at the change in price of just one of these fuels, say gas,
things would be relatively straightforward. For instance, it might well be appropriate to look
at the increase in price as a percentage of the price in 2007.

Activity 14 Gradgrind’s gas price increase

Work out the increase in Gradgrind’s gas price between 2007 and 2008 as a
percentage of the 2007 price.

Discussion

The increase (in £/MWh) is . This is as a proportion of the 2007 price. That

is, of the 2007 price. Or you might have worked this out by finding that the

2008 price is of the 2007 price, so that again the increase is 20.8% of the

2007 price.

So we could say that, for this company at least, gas has gone up by 20.8%. In other
words, for every £1 they spent on gas in 2007, they would have spent £1.208 in 2008 if
they had bought the same amount of gas in each year. Or putting it another way, for every
100 units of money (pence, pounds, whatever) they spent in 2007, they would have spent
120.8 units of money in 2008 if they had bought the same amount. So a way of
representing this price change would have been to define an index for the gas price such
that it takes the value 100 for 2007, and 120.8 for 2008.
Notice that the value of the gas price index for 2008 could be calculated as

That is, the value of the index in one year is the value of the index in the previous year
multiplied by a price ratio, in this case the gas price ratio for 2008 relative to 2007. This
ratio, as a number, is 1.208.
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But Gradgrind did not only use gas, they used electricity as well, and the aim here is to
find a representation of their overall fuel price change, not just the change in gas prices.
An electricity price ratio for 2008 relative to 2007 can be worked out, like the gas price
ratio. It is .

Activity 15 Gradgrind’s electricity price index

Use the electricity price ratio above to find the increase in Gradgrind’s electricity
price between 2007 and 2008 as a percentage of the 2007 price. What would the
2008 value be for a price index of Gradgrind’s electricity price alone, calculated in
the same way as the gas price index (with 2007 as the base year)?

Discussion

The 2008 electricity price is of the 2007 price, so that the increase is
14.5% of the 2007 price.
The 2008 value of the electricity price index is

But this has got us no further in finding a price index that simultaneously covers both fuels.
One possibility might be to look at how Gradgrind’s total expenditure on these two fuels
changed from 2007 to 2008. The expenditures are given in Table 8.

Table 8 Gradgrind’s energy
expenditure (£) in
2007 and 2008

Energy type 2007 2008

Gas 9 298 8 145

Electricity 3 205 2 991

Total 12 503 11136

This seems not to have helped. The total expenditure went down, but you have already
seen that the prices of both gas and electricity went up.

Activity 16 How much fuel did Gradgrind use?

Use the data in Tables 7 and 8 to find the quantity of each fuel that Gradgrind used
in 2007 and 2008 (in MWh). Hence explain why the energy expenditure fell.
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Discussion

The expenditure on a particular fuel in a particular year can be calculated as
. Therefore, if the expenditure and price are known, the quantity used

can be calculated as

In 2007, Gradgrind’s gas cost £24 per MWh, and they spent £9298 on gas, so the
amount of gas they used in MWh was

The other amounts, in MWh, are found in a similar way, and all are shown in the
following table.

Energy
type

2007 2008

Gas 387.4 280.9

Electricity 42.2 34.4

The reason that the expenditures went down is simply that Gradgrind used less of
each fuel in 2008 than in 2007.

Remember the aim is to produce a measure of price changes. So looking at expenditure
changes does not do the right thing, since expenditure depends on the amount of fuel
consumed as well as the price.
One possibility might be as follows. We could work out how much Gradgrind would have
spent on fuel in 2008 if the consumptions of both fuels had not changed from 2007. That
would remove the effect of any changes in consumption. Then we could calculate an
overall energy price ratio for 2008 relative to 2007 by dividing the total expenditure on
energy for 2008 (using the 2007 consumption figures) by the total expenditure on energy
for 2007 (again using the 2007 consumption figures).
You should have found, in Activity 16, that the quantities of gas and electricity consumed
in 2007 were, respectively, 387.4 MWh and 42.2 MWh. To buy those quantities at 2008
prices would have cost (in £): for the gas and for the electricity, giving a
total expenditure of

So a reasonable overall energy price ratio for 2008 relative to 2007 can be found by
dividing this total by the 2007 total expenditure, again calculated using the 2007
consumptions. The appropriate figure for 2007 is just the actual total expenditure, which
(in £) was (see Table 8). This gives an overall energy price ratio for 2008 relative
to 2007 as
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Now we have an appropriate price ratio, the Gradgrind energy price index can be set as
100 for the base year, 2007, and the value of the 2008 index is found by multiplying the
2007 index value by the price ratio:

This is indeed how a chained index of this kind is calculated – but the calculations are
rather messy. You might be wondering whether it would be simpler to calculate the overall
energy price ratio as a weighted mean of the two price ratios for the two fuels, in much the
same way that weighted means were used to combine prices in Section 2. If you did think
this, you would be right – and furthermore, the resulting overall energy price ratio is
exactly the same as has just been found, if we make the right choice of weights. The
overall energy price ratio for 2008 relative to 2007 is just a weighted mean of the two price
ratios for gas and electricity, with the 2007 expenditures as weights.
Just to show it really does come to the same thing, let us see how it works with the
numbers, using the formula for weighted means in Subsection 2.3.

Energy type Price ratio (2008 relative to 2007): Weight(2007 expenditure):

Gas 1.208 9298

Electricity 1.145 3205

The weighted average of these price ratios is

giving the same value for the overall energy price ratio for 2008 relative to 2007 as we
found earlier. (And this is not some sort of fluke that applies only to these particular
numbers; it can be shown mathematically that it always works.)

Activity 17 Gradgrind’s energy price ratio for 2009 relative to 2008

Table 9 Gradgrind’s energy prices and
expenditures for 2008 and 2009

Energy type: price and expenditure 2008 2009

Gas price (£/MWh) 29 30

Gas expenditure (£) 8 145 23
733

Electricity price (£/MWh) 87 98

Electricity expenditure (£) 2 991 2 275
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(a) Using the data in Table 9, calculate the price ratios for gas and for electricity, in
each case for 2009 relative to 2008.

Discussion

The gas price ratio for 2009 relative to 2008 is

The electricity price ratio for 2009 relative to 2008 is

(Over this year, electricity prices rose a lot more than gas prices.)

(b) With the 2008 expenditures as weights, use your answers to part (a) to
calculate the overall energy price ratio for 2009 relative to 2008.

Discussion

The overall energy price ratio for 2009 relative to 2008 is

(c) Now see what happens if you use the 2009 expenditures as weights to
calculate the overall energy price ratio for 2009 relative to 2008. How do the results
of the calculation differ from what you got in part (b)?

Discussion

Using the 2009 expenditures for weights instead of the 2008 expenditures, the
overall energy price ratio for 2009 relative to 2008 is

This price ratio is considerably less than the one found in part (b).
(Note that if full calculator accuracy is retained throughout the calculations, the price
ratio is 1.043 to three decimal places.)

The reason that the price ratios you calculated in parts (b) and (c) in Activity 17 were so
different is that Gradgrind’s ‘energy mix’ changed a lot over the year. Compared with
2008, in 2009 they spent a great deal more on gas but less on electricity. The weighted
mean of the gas and electricity price ratios is, in both cases, nearer the price ratio for gas
than that for electricity – this is Rule 2 for weighted means – but it is even nearer the gas
weighted mean when the 2009 expenditures are used. This is because the weight for gas
is proportionally much greater than it is when the 2008 expenditures are used as weights.
This all shows that it does make a difference which expenditures are used as weights. In
practice, it is much more common to use the expenditures from the earlier year – 2008 in
this case – as weights. In some circumstances, though, there are good reasons for using
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the later year, or indeed some more complicated set of weights that depend on both
expenditures. However, in this course we shall use the expenditures from the earlier year
to provide the weights, partly because that matches more closely what is done in
calculating the official UK price indices.
Another possibility for weights would have been to continue to use the 2007 expenditures.
These were used to find the overall energy price ratio for 2008 relative to 2007 and could
be used for later years as well. Again, in some circumstances this would make sense, but
here the pattern of Gradgrind’s fuel expenditure has changed a lot over time, and weights
should change in consequence. To continue to use the 2007 expenditures for all later
years would mean that this change in the relative importance to Gradgrind of the two fuels
would never be taken into account. Instead, to obtain the overall energy price ratio from
one year to the next, we use the fuel expenditures in the earlier year as weights, so each
year the weights change.
That determines the choice of weights in forming an overall price ratio. Now, how is that
used to find the energy price index? Here we simply continue the ‘chaining’ that started
when finding the 2008 index: the 2009 index is found by multiplying the value of the index
for the previous year, 2008, by the overall energy price ratio for 2009 relative to 2008. The
value of the index for 2008 was calculated earlier as 119.2, and (using the weights from
the previous year) the overall energy price ratio for 2009 relative to 2008 was found in
Activity 17(b) as 1.059. So the value of Gradgrind’s energy price index for 2009 is

(So, in a particular kind of average way, Gradgrind’s energy prices for 2009 have risen by
26.2% since the base year, 2007.)
In general, the value index for a particular year is found by multiplying the value of the
index for the previous year by the overall energy price ratio for that year relative to the
previous year. This is illustrated in Figure 36.

Price ratios

Index 100

×1.192 ×1.059

119.2 126.2

2007 2008 2009Base year

Figure 36 Determining a chained price index

In the process of chaining, the overall price ratio is calculated anew each year, looking
back only at the previous year. The ratio is used to ‘chain’ to earlier years and hence
determine the value of the index. This method of calculating a chained price index is
summarised below. Although there were only two commodities (gas and electricity) in
Gradgrind’s index, this summary is not restricted to two commodities.

Procedure used to calculate a chained price index

1. For each year calculate the following.
○ The price ratio for each commodity covered by the index:
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○ The weighted mean of all these price ratios, using as weights the
expenditure on each commodity in the previous year. This weighted mean
is called the all-commodities price ratio.

2. For each year, the value of the index is

The value of the index in the first year is set at 100; this date is the base date of
the index.

Activity 18 Gradgrind’s energy price index for 2010

Use the data in Table 10, and other necessary numbers from previous calculations,
to calculate the value of Gradgrind’s energy price index for 2010.

Table 10 Gradgrind’s energy prices and
expenditures for 2009 and 2010

Energy type: price and expenditure 2008 2009

Gas price (£/MWh) 30 28

Gas expenditure (£) 23 733 23 969

Electricity price (£/MWh) 98 88

Electricity expenditure (£) 2 275 2 920

Discussion

The gas price ratio for 2010 relative to 2009 is

The electricity price ratio for 2010 relative to 2009 is

(Both price ratios are less than 1 because, over this year, Gradgrind’s gas and
electricity prices both fell.)
The overall energy price ratio for 2010 relative to 2009 is

Then the value of the index for 2010 is found by multiplying the 2009 value of the
index by this overall price ratio, giving
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The Retail Prices Index (RPI), published by the UK Office for National Statistics, is
calculated once a month rather than once a year, but the method used is basically that
outlined above, though with far more than two commodities. The process of finding the
weights in the Retail Prices Index is also more complicated, because it involves taking into
account the expenditures of millions of people as measured in a major survey. However,
the principles are the same as for Gradgrind. The calculation each January follows exactly
this method. In the other 11 months of the year, the calculation is very similar but uses
only the increases in prices since the previous January. (See Subsection 5.2 for the
details of these calculations.) In the next section, you will learn more about how all this
works.

Exercise on Section 4
The following exercise provides extra practice on the Section 4 material.

Exercise 9 Gradgrind’s energy price index for 2011

Use the data in Table 11, and the fact that Gradgrind’s energy price index for 2010
was 117.4 (as found in Activity 18), to calculate the value of Gradgrind’s energy
price index for 2011.

Table 11 Gradgrind’s energy prices and
expenditures for 2010 and 2011

Energy type: price and expenditure 2010 2011

Gas price (£/MWh) 28 30

Gas expenditure (£) 23 969 24 282

Electricity price (£/MWh) 88 86

Electricity expenditure (£) 2 920 3 117

Discussion

The gas price ratio for 2011 relative to 2010 is

The electricity price ratio for 2011 relative to 2010 is

The overall energy price ratio for 2011 relative to 2010 is

Then the value of the index for 2011 is found by multiplying the 2010 value of the
index by this overall price ratio, giving
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5 The UK government price indices
‘The huge squeeze on Brits was laid bare today as figures showed inflation has
soared to a 20-year high.’ (The Sun, 18 October 2011)

‘Overall, prices in the economy rose 0.6% on the month from August.’ (Guardian,
18 October 2011)

‘Inflation in the UK continued to fall in February, thanks largely to lower gas and
electricity bills.’ (BBC News website, 20 March 2012)

‘UK inflation rises more than expected.’ (Daily Telegraph, 16 August 2011)

How often have you read or heard statements like these in the media? Have you ever
wondered how ‘inflation’ is measured, or precisely what is meant by a statement such as
‘prices rose by 0.6%’? In Subsection 5.3, you will see that ‘rates of inflation’ are often
calculated in the UK using an index of prices paid by consumers, the Consumer Prices
Index (CPI), or another slightly different index, the Retail Prices Index (RPI). These
indices may be used to calculate the percentage by which prices in general have risen
over any given period, and (roughly speaking) this is what is meant by inflation. But what
exactly do these price indices measure, and how are they calculated? These are the
questions that are addressed in this section.

5.1 What are the CPI and RPI?
The CPI and the RPI are the main measures used in the UK to record changes in the level
of the prices most people pay for the goods and services they buy. The RPI is intended to
reflect the average spending pattern of the great majority of private households. Only two
classes of private households are excluded, on the grounds that their spending patterns
differ greatly from those of the others: pensioner households and high-income house-
holds. The CPI, however, has a wider remit – it is intended to reflect the spending of all UK
residents, and also covers some costs incurred by foreign visitors to the UK.
The CPI and RPI are calculated in a similar way to the price index for Gradgrind Ltd’s
energy in Section 4. However, they are calculated once a month rather than just once a
year, and are based on a very large ‘basket of goods’. The contents of the basket and
the weights assigned to the items in the basket are updated annually to reflect changes in
spending patterns (as was the case with Gradgrind’s index for energy prices), and the
index is ‘chained’ to previous values. However, once decided on at the beginning of the
year, the contents of the basket and their weights remain fixed throughout the year.
For the RPI, the price ratio for the basket each month is calculated relative to the previous
January. Then the value of the index is obtained by multiplying the value of the index for
the previous January by this price ratio. For example,

The CPI works in much the same way, except that price ratios are calculated relative to
the previous December. So, for example,
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Since these price indices are calculated from price ratios, they measure price changes in
terms of the ratio of the overall level of prices in a given month to the overall level of prices
at an earlier date. In practice, data on most prices are collected on a particular day near
the middle of the month; the values of the RPI and CPI calculated using these data are
referred to simply as the values of the RPI and CPI for the month. For example, the RPI
took the value 239.9 in February 2012. This value measures the ratio of the overall level of
prices in February 2012 to the overall level of prices on a date at which the index was fixed
at its starting value of 100. This date, called a base date, is 13 January 1987 (at the time of
writing). Thus the general level of prices in February 2012, as measured by the RPI, was

times the general level of prices in January 1987. The base date has no

significance other than to act as a reference point. (The CPI base date is 2005 and this
refers to the average level of prices throughout 2005, not to a specific date in 2005.)
The RPI and CPI are each based on a very large ‘basket’ of goods and services. (The two
baskets are similar, but not exactly the same.) Each contains around 700 items including
most of the usual things people buy: food, clothes, fuel, household goods, housing,
transport, services, and so on. Each basket is an ‘average’ basket for a broad range of
households. The items in the baskets are often grouped into broader categories. For the
RPI, the five fundamental groups are: ‘Food and catering’, ‘Alcohol and tobacco’, ‘Housing
and household expenditure’, ‘Personal expenditure’ and ‘Travel and leisure’. These
groups are divided into 14 more detailed subgroups (which are further divided into
sections), as shown in Figure 37. The items in the CPI basket are divided into 12 broad
groupings called divisions, which are further subdivided.
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Figure 37 Structure of the RPI in 2012 (based on data from the Office for National
Statistics)

The inner circle shows the five groups, and the outer ring shows the 14 subgroups. Notice
that in the inner circle the sector labelled ‘Food and catering’ has been drawn almost twice
as large (as measured by area) as that labelled ‘Alcohol and tobacco’. This reflects the
fact that the typical household spends nearly twice as much on food and catering as on
alcohol and tobacco. The weight of an item or group reflects how much money is spent on
it. So the weight of the ‘Food and catering’ group is almost twice that of ‘Alcohol and
tobacco’.
The outer ring represents the same total expenditure as the inner circle, but in more detail.
For example, in the outer ring the area labelled ‘Food’ (which mostly consists of food
bought for use in the home) is more than twice as large as that labelled ‘Catering’ (which
includes meals in restaurants and canteens, and take-away meals and snacks), reflecting
the fact that the typical household spends more than twice as much on food as on
catering; the weight of the subgroup ‘Food’ is more than double the weight of the
subgroup ‘Catering’. The chart gives a good indication of average spending patterns in the
UK in the early 21st century.
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Activity 19 The expenditure of a typical household

(a) Using Figure 37, estimate roughly what fraction of the expenditure of a typical
household is on each of the following groups and subgroups:

● Personal expenditure
● Housing and household expenditure
● Housing

Discussion

What you need to remember here is that the size of an area represents the
proportion of expenditure on that class of goods or services. (Also, it is admittedly
not very easy to estimate these areas ‘by eye’! Your estimates might quite
reasonably differ from those given here.)

● The sector for ‘Personal expenditure’ looks as if it is approximately a tenth of
the whole inner circle – so approximately a tenth of total expenditure is
personal expenditure.

● ‘Housing and household expenditure’ looks as if it is somewhere between a
third and a half of the inner circle – perhaps approximately two fifths – so
approximately two fifths of expenditure is on housing and household
expenditure.

● The area for ‘Housing’ takes up about a quarter of the outer ring, so about a
quarter of expenditure is on housing.

(b) Suppose that a household spends a total of £540 per week on goods and
services that are covered by the RPI. Use your answers to part (a) to estimate very
approximately how much is spent each week on each of the groups and subgroups
in part (a).

Discussion

The amount spent each week on ‘Personal expenditure’ is approximately

The amount spent each week on ‘Housing and household expenditure’ is
approximately

The amount spent each week on ‘Housing’ is approximately

Recall, however, that the weights represent average proportions of expenditure, and
the spending patterns of the selected household may differ from those of the ‘typical’
household.
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To ensure that the basket of goods for the index reflects the proportion of average
spending devoted to different types of goods and services, it is necessary to find out how
people actually spend their money. The Living Costs and Food Survey (LCF) records the
spending reported by a sample of 5000 households spread throughout the UK. Data from
the LCF are used to calculate the weights of most of the items included in the RPI basket.
Since 1962, the weights have been revised each year, so that the index is always based
on a basket of goods and services that is as up to date as possible. Because of this
regular weight revision, the index is chained (as was the Gradgrind Ltd index).
(Most of the weights for the CPI come from a different source, the UK National Accounts,
though in turn this source is partly based on data from the LCF. Again, the weights are
revised each year.)
The weight of a group or subgroup directly depends on the average expenditure of
households on that item. In Subsection 2.1, you saw that it is only the relative size of the
weights that affects the value of the weighted mean – this is Rule 1 for weighted means.
So instead of using the average expenditure of an item as its weight, the expenditure
figures for the items can all be multiplied by the same factor to produce a new, more
convenient, set of weights. For the RPI, this factor is chosen so that the sum of the
weights is 1000. Table 12 shows the 2012 weights used in the RPI for the groups and
subgroups. Notice that each group weight is obtained by summing the weights for its
subgroups.

Table 12 2012 RPI weights

Group Subgroup Weight Group weight

Food and catering Food 114

Catering 47 161

Alcohol and tobacco Alcoholic drink 56

Tobacco 29 85

Housing and household expenditure Housing 237

Fuel and light 46

Household goods 62

Household services 67 412

Personal expenditure Clothing and footwear 45

Personal goods and services 39 84

Travel and leisure Motoring expenditure 131

Fares and other travel costs 23

Leisure goods 33

Leisure services 71 258

All items (i.e. the sum of the weights) 1000
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The following checklist provided contains the major categories of goods and services
included in the RPI. In the next activity, you will be asked to complete the last three
columns of this checklist to make rough estimates of your household’s group weights.

Food and catering
– at home
– canteens, snacks and take-aways
– restaurant meals

Alcohol and tobacco
– alcoholic drink
– cigarettes and tobacco

Housing and household expenditure
– mortgage interest/rent
– council tax
– water charges
– house insurance
– repairs/maintenance/DIY
– gas/electricity/coal/oil bills
– household goods (furniture
appliances, consumables, etc.)

– telephone and internet bills
– school and university fees
– pet care

P ersonal expenditure
– clothing and footwear
– other (hairdressing,
chemists’goods, etc.)

30
100

470

8

593

55

638

1764

266

5

336

31

362

1000

Exp enditure and weights Y our expenditure and weights

Exp enditure
2012
(£)

Group
totals
(£)

Group
weights

Exp enditure
2012
(£)

Group
totals
(£)

Group
weights

370

80

20

8
0

82
95
47
29
40

210

70
20

0

0

45

10

210

200

80

15

3

0

A checklist for one household’s average monthly expenditure

Travel and leisure
– motoring (purchase, maintenance,
petrol, tax, insurance)

– fares
– books, newspapers, magazines
– audio-visual equipment, CDs, etc.
– toys, photographic and
sports goods

– TV purchase/rental, licence
– cinema, theatre, etc.
– holidays

Figure 38 A checklist for one household’s average monthly expenditure

The figures already in the checklist were completed for a two-person household. Some of
the figures were accurate, others were necessarily very rough estimates. Nevertheless,
the household’s weights give a reasonable indication of the proportion of the household’s
expenditure (in 2012) on the five main groups used in the RPI.
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The total expenditure was £1764. So the group weights were calculated by multiplying all
the group total expenditures by a constant factor of 1000/1764, to ensure the weights sum
to 1000. The weight for ‘Food and catering’, for example, is

Another way to calculate this is to multiply the proportion of monthly expenditure spent on
food and catering by 1000. The proportion is

Since the total weight is 1000, the weight for ‘Food and catering’ is

Notice that the group weights for this particular household differ quite considerably from
those used in the RPI in 2012 (see Table 12). For instance, a much greater proportion of
expenditure is on ‘Food and catering’ and a much smaller proportion is spent on ‘Alcohol
and tobacco’.

Activity 20 Your own household’s expenditure

Make rough estimates of your own household’s expenditure last year and complete
the final columns of the checklist in Figure 38 (Word version provided). For some
categories, you may find it easier just to make a rough estimate of, say, your annual
expenditure and then divide by 12. If you have no idea at all for a category, then use
the corresponding figure in the checklist as a starting point for your own expenditure
and adjust it up or down depending on how you think you spend your money. One
way of checking that your figures are sensible is to consider how the sum of the
expenditures relates to your household’s monthly income. Do not spend more than
15 minutes on estimating your expenditure; accurate figures are not needed.
Divide each group expenditure by your monthly expenditure total and then multiply
by 1000 to calculate your household’s group weights.
How do your household’s weights compare with those used in the RPI in 2012?

Discussion

Every household will be different, but think about the reasons for any large
differences between your weights and those for the RPI.

5.2 Calculating the price indices
This subsection concentrates on how the RPI is calculated. Generally the CPI is
calculated in a similar way, though some of the details differ. To measure price changes in
general, it is sufficient to select a limited number of representative items to indicate the
price movements of a broad range of similar items. For each section of the RPI, a number
of representative items are selected for pricing. The selection is made at the beginning of
the year and remains the same throughout the year. It is designed in such a way that the
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price movements of the representative items, when combined using a weighted mean,
provide a good estimate of price movements in the section as a whole.
For example, in 2012 the representative items in the ‘Bread’ section (which is contained in
the ‘Food and catering’ group) were: large white sliced loaf, large white unsliced loaf, large
wholemeal loaf, bread rolls, garlic bread. Changes in the prices of these types of bread
are assumed to be representative of changes in bread prices as a whole. Note that
although the price ratio for bread is based on this sample of five types of bread, the
calculation of the appropriate weight for bread is based on all kinds of bread. This weight
is calculated using data collected in the Living Costs and Food Survey.

Collecting the data

The bulk of the data on price changes required to calculate the RPI is collected by
staff of a market research company and forwarded to the Office for National
Statistics for processing. Collecting the prices is a major operation: well over 100
000 prices are collected each month for around 560 different items. The prices being
charged at a large range of shops and other outlets throughout the UK are mostly
recorded on a predetermined Tuesday near the middle of the month. Prices for the
remaining items, about 140 of them, are obtained from central sources because, for
example, the prices of some items do not vary from one place to another.

One aim of the RPI is to make it possible to compare prices in any two months, and this
involves calculating a value of the price index itself for every month.

Changing the representative items

The Office for National Statistics (ONS) updates the basket of goods every year,
reflecting advancing technology, changing tastes and consumers’ spending habits.
The media often have fun writing about the way the list of representative items
changes each year.

In the 1950s, the mangle, crisps and dance hall admissions were added to the
basket, with soap flakes among the items taken out.

Two decades later, the cassette recorder and dried mashed potato made it in,
with prunes being excluded.

Then after the turn of the century, mobile phone handsets and fruit smoothies
were included. The old fashioned staples of an evening at home – gin and
slippers – were removed from the basket.

So now, in 2012, it is the turn of tablet computers to be added to mark the
growing popularity of this type of technology.

That received the most coverage when it was added to the basket of goods, with
the ONS highlighting this digital-age addition in its media releases.

But those seafaring captains who once used the then unusual fruit as a symbol
to show they were home and hosting might be astonished to find that centuries
on, the pineapple has also been added to the inflation basket.

5 The UK government price indices 03/11/23



Technically, the pineapple has been added to give more varied coverage in the
basket of fruit and vegetables, the prices of which can be volatile.
(Source: BBC News website, 14 March 2012)

So, calculating the RPI involves two kinds of data:

● the price data, collected every month
● the weights, representing expenditure patterns, updated once a year.

Once the price data have been collected each month, various checks, such as looking for
unbelievable prices, are applied and corrections made if necessary. Checking data for
obvious errors is an important part of any data analysis.
Then an averaging process is used to obtain a price ratio for each item that fairly reflects
how the price of the item has changed across the country. The exact details are quite
complicated and are not described here. (If you want more details, they are given in the
Consumer Price Indices Technical Manual, available from the ONS website. Consumer
Price Indices: A brief guide is also available from the same website.)
For each item, a price ratio is calculated that compares its price with the previous January.
For instance, for November 2011, the resulting price ratio for an item is an average
value of

The next steps in the process combine these price ratios, using weighted means, to obtain
14 subgroup price ratios, and then the group price ratios for the five groups. Finally, the
group price ratios are combined to give the all-item price ratio. This is the price ratio,
relative to the previous January, for the ‘basket’ of goods and services as a whole that
make up the RPI.
The all-item price ratio tells us how, on average, the RPI ‘basket’ compares in price with
the previous January. The value of the RPI for a given month is found by the method
described in Section 4, that is, by multiplying the value of the RPI for the previous January
by the all-item price ratio for that month (relative to the previous January):

Thus, to calculate the RPI for November 2011, the final step is to multiply the value of the
RPI in January 2011 by the all-item price ratio for November 2011.

Example 22 Calculating the RPI for November 2011

Here are the details of the last two stages of calculation of the RPI for
November 2011, after the group price ratios have been calculated, relative to
January 2011. The appropriate data are in Table 13.

Table 13 Calculating the all-item price ratio for November 2011

Group Price ratio: Weight: Ratio weight:

Food and catering 1.030 165 169.950
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Alcohol and tobacco 1.050 88 92.400

Housing and household expenditure 1.037 408 423.096

Personal expenditure 1.128 82 92.496

Travel and leisure 1.026 257 263.682

Sum 1000 1041.624

You may have noticed that the weights here do not exactly match those in Table 12.
That is because the weights here are the 2011 weights, and those in Table 12 are the
2012 weights, and as has been explained, the weights are revised each year.

The all-item price ratio is a weighted average of the group price ratios given in the
table. If the price ratios are denoted by the letter r, and the weights by w, then the
weighted mean of the price ratios is the sum of the five values of rw divided by the
sum of the five values of w. The formula, from Subsection 2.3, is

The sums are given in Table 13. (The sum of the weights is 1000, because the RPI
weights are chosen to add up to 1000.) Although Table 13 gives the individual
values, there is no need for you to write down these individual products when finding
a weighted mean (unless you are asked to do so). As mentioned previously, your
calculator may enable you to calculate the weighted mean directly, or you may use
its memory to store a running total of .

Now the all-item price ratio for November 2011 (relative to January 2011) can be
calculated as

This tells us that, on average, the RPI basket of goods cost 1.041 624 times as much
in November 2011 as in January 2011.

The published value of the RPI for January 2011 was 229.0. So, using the formula,

The final result has been rounded to one decimal place, because actual published
RPI figures are rounded to one decimal place.

Example 22 is the subject of the following screencast. [Note that references to ‘the unit’
should be interpreted as ‘this course’. The original wording refers to the Open University
course from which this material is adapted.]

Video content is not available in this format.
Screencast 5 Calculating an RPI
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The same 2011 weights were used to calculate the RPI for every month from
February 2011 to January 2012 inclusive. For each of these months, the price ratios were
calculated relative to January 2011, and the RPI was finally calculated by multiplying the
RPI for January 2011 by the all-item price ratio for the month in question. In
February 2012, however, the process began again (as it does every February). A new set
of weights, the 2012 weights, came into use. Price ratios were calculated relative to
January 2012, and the RPI was found by multiplying the RPI value for January 2012 by
the all-item price ratio. This procedure was used until January 2013, and so on.
The process of calculating the RPI can be summarised as follows.

Calculating the RPI

1. The data used are prices, collected monthly, and weights, based on the Living
Costs and Food Survey, updated annually.

2. Each month, for each item, a price ratio is calculated, which gives the price of
the item that month divided by its price the previous January.

3. Group price ratios are calculated from the price ratios using weighted means.
4. Weighted means are then used to calculate the all-item price ratio. Denoting

the group price ratios by and the group weights by , the all-item price ratio is

5. The value of the RPI for that month is found by multiplying the value of the RPI
for the previous January by the all-item price ratio:

The weights for a particular year are used in calculating the RPI for every month
from February of that year to January of the following year.

Activity 21 Calculating the RPI for July 2011

Find the value of the RPI in July 2011 by completing the following table and the
formulas below. The value of the RPI in January 2011 was 229.0. (The base date
was January 1987.)
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Table 14 Calculating the RPI for July 2011

Group Price ratio for July 2011 relative
to January 2011:

2011
weights:

Price ratio
weight:

Food and catering 1.024 165

Alcohol and tobacco 1.042 88

Housing and household
expenditure 1.012 408

Personal expenditure 1.053 82

Travel and leisure 1.030 257

Sum

(Source: Office for National Statistics)

Discussion

Group Price ratio for July 2011 relative
to January 2011:

2011
weights:

Price ratio
weight:

Food and catering 1.024 165 168.960

Alcohol and tobacco 1.042 88 91.696

Housing and household
expenditure 1.012 408 412.896

Personal expenditure 1.053 82 86.346

Travel and leisure 1.030 257 264.710

Sum 1000 1024.608
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The published value for the RPI in July 2011 was 234.7, slightly different from the value
you should have obtained in Activity 21 (that is, 234.6). The discrepancy arises because
the government statisticians use more accuracy during their RPI calculations, and round
only at the end before publishing the results.
The following activity is intended to help you draw together many of the ideas you have
met in this section, both about what the RPI is and how it is calculated.

Activity 22 The effects of particular price changes on the RPI

Between February 2011 and February 2012, the price of leisure goods fell on
average by 2.3%, while the price of canteen meals rose by 2.8%. Answer the
following questions about the likely effects of these changes on the value of the RPI.
(No calculations are required.)

(a) Looked at in isolation (that is, supposing that no other prices changed), would
the change in the price of leisure goods lead to an increase or a decrease in the
value of the RPI?
Would the change in the price of canteen meals (looked at in isolation) lead to an
increase or a decrease in the value of the RPI?

Discussion

The RPI is calculated using the price ratio and weight of each item. Since the
weights of items change very little from one year to the next, the price ratio alone will
normally tell you whether a change in price is likely to lead to an increase or a
decrease in the value of the RPI. If a price rises, then the price ratio is greater than
one, so the RPI is likely to increase as a result. If a price falls, then the price ratio is
less than one, so the RPI is likely to decrease. Therefore, since the price of leisure
goods fell, this is likely to lead to a decrease in the value of the RPI. For a similar
reason, the increase in the price of canteen meals is likely to lead to an increase in
the value of the RPI.

(b) In each case, is the size of the increase or decrease likely to be large or small?

Discussion

Both changes are likely to be small for two reasons. First, the price changes are
themselves fairly small. Second, leisure goods and canteen meals form only part of
a household’s expenditure: no single group, subgroup or section will have a large
effect on the RPI on its own, unless there is a very large change in its price.

(c) Using what you know about the structure of the RPI, decide which of ‘Leisure
goods’ and ‘Canteen meals’ has the larger weight.

Discussion

The weight of ‘Leisure goods’ was 33 in 2012 (see Table 12). Since ‘Canteen meals’
is only one section in the subgroup ‘Catering’, which had weight 47 in 2012, the
weight of ‘Canteen meals’ will be much smaller than 47. (In fact it was 3.) So the
weight of ‘Leisure goods’ is much larger than the weight of ‘Canteen meals’.
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(d) Which of the price changes mentioned in the question will have a larger effect
on the value of the RPI? Briefly explain your answer.

Discussion

Since the weight of ‘Leisure goods’ is much larger than the weight of ‘Canteen
meals’, and the percentage change in the prices are not too different in size, the
change in the price of leisure goods is likely to have a much larger effect on the
value of the RPI as a whole.

5.3 Using the price indices
The RPI and CPI are intended to help measure price changes, so we shall start this
section by describing how to use them for this purpose.

Example 23 A news report on inflation

The BBC News website reported (20 March 2012) ‘UK inflation rate falls to 3.4% in
February’. What does that actually mean?

The rest of the BBC article makes it clear that this ‘inflation’ figure was based on the
CPI rather than the RPI, but its meaning is still not obvious. What is usually meant in
situations like this is the following.

The annual rate of inflation

In the UK, the (annual) rate of inflation is the percentage increase in the value
of the CPI (or the RPI) compared to one year earlier.

(In this course, it will always be made clear whether you should use the CPI or
the RPI in contexts like this.)

The annual rate of inflation is sometimes called the year-on-year rate of inflation.

In February 2012, the CPI was 121.8. Exactly a year earlier, in February 2011, the
CPI was 117.8. The ratio of these two values is

So the value of the CPI in February 2012 was 3.4% higher than in the previous
February. That is the source of the number in the BBC headline.
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Activity 23 The annual inflation rate in February 2012

In February 2012, the RPI was 239.9. Exactly a year earlier, in February 2011, the
RPI was 231.3. Calculate the annual inflation rate for February 2012, based on
the RPI.

Discussion

The ratio of the two RPI values is

or 103.7%. Therefore the annual inflation rate, based on the RPI was 3.7%. (Note
that this is slightly higher than the annual inflation rate measured using the CPI.)

The fact that the inflation rates that are generally reported in the media relate to price
increases (as measured in a price index) over a whole year means that one has to be
careful in interpreting the figures, in several ways.

● Media reports might say that ‘inflation is falling’, but this does not mean that prices
are falling. It simply means that the annual inflation rate is less than it was the
previous month. So when the BBC headline said that the (annual) inflation rate had
fallen to 3.4% in February 2012, it meant that the February 2012 rate was smaller
than the January 2012 rate (which was 3.6%). Prices were still rising, but not quite so
quickly.

● The change in price levels over one month may be, and indeed usually is,
considerably different from the annual inflation rate. For instance, prices actually fell
between December 2011 and January 2012: the CPI was 121.7 in December 2011
and 121.1 in January 2012. (Prices in the UK usually fall between December and
January in the UK, as Christmas shopping ends and the January sales begin.) But
the annual inflation rate for January 2012, measured by the CPI, was 3.6%.

● The effect of a single major cause of increased prices can persist in the annual
inflation rates long after the prices originally increased. For instance, the standard
rate of value added tax (VAT) in the UK went up from 17.5% to 20% at the start of
January 2011, causing a one-off increase in the price (to consumers) of many goods
and services. This showed up in the annual inflation rate for January 2011, where
prices were 4.0% higher than a year earlier. Moreover, the annual inflation rate for
every other month in 2011 was also affected by the VAT increase, because in each
case the CPI was being compared to the CPI in the corresponding month in 2010,
before the VAT increase.

Another important use of price indices like the RPI and CPI is for index-linking. This is
used for such things as savings and pensions, as a means of safeguarding the value of
money held or received in these forms.

Index-linking an amount

To index-link any amount of money, the amount in question is multiplied by the same
ratio as the change in the value of the price index. Another term for this process is
indexation.
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It is important to stress the notion of ratio in index-linking, because it is only by calculating
the ratio of two indices that you can get an accurate measure of how prices have
increased. For example, an increase in the RPI from 100 to 200 represents a 100%
increase in price, whereas a further RPI increase from 200 to 300 represents only a
further 50% increase in price.

Example 24 Index-linking a pension

The value of the RPI for February 2012 was 239.9 whereas the corresponding figure
for February 2011 was 231.3. So an index-linked pension that was, say, £450 per
month in February 2011, would be increased to

for February 2012. The reason for index-linking the pension in this way is that the
increased pension would buy the same amount of goods or services in
February 2012 as the original pension bought in February 2011 – that is, it should
have the same purchasing power.

Pensions can be, and indeed increasingly are, index-linked using the CPI rather than
the RPI.

Activity 24 Index-linking a pension using the CPI

An index-linked pension was £120 per week in November 2010. It is index-linked
using the CPI. How much should the pension be per week in November 2011? The
value of the CPI was 115.6 in November 2010 and 121.2 in November 2011.

Discussion

The weekly amount in November 2011 should be

This principle leads to another much-quoted figure which can be calculated directly from
the RPI: the purchasing power of the pound. (This is the purchasing power of the
pound within this country, not its purchasing power abroad; the latter is a distinct and far
more complicated concept.) The purchasing power of the pound measures how much a
consumer can buy with a fixed amount of money at one point of time compared with
another point of time.
The word compared here is again important; it makes sense only to talk about the
purchasing power of the pound at one time compared with another. For example, if £1
worth of goods would have cost only 60p four years ago, then we say that the purchasing
power of the pound is only 60p compared with four years earlier.
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Purchasing power of the pound

The purchasing power (in pence) of the pound at date compared with date is

The purchasing power of the pound could be calculated using the CPI instead, though the
figures published by the Office for National Statistics do happen to use the RPI.

Example 25 Calculating the purchasing power of the pound

(a)

The purchasing power of the pound in February 2012 compared with Febru-
ary 2011 was

(231.3 and 239.9 are the two RPI values given in Activity 23.)

We round this to give 96p.

(b)

The purchasing power of the pound in February 2012 compared with the base date,
January 1987, was

(At the base date, the value of the RPI is 100 by definition.)

This is, after rounding, 42p.

Activity 25 Annual inflation and the purchasing power of the pound

Table 15 Values of the RPI from
January 2009 to December 2011

Month 2009 2010 2011

January 210.1 217.9 229.0

February 211.4 219.2 231.3

March 211.3 220.7 232.5

April 211.5 222.8 234.4

May 212.8 223.6 235.2
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June 213.4 224.1 235.2

July 213.4 223.6 234.7

August 214.4 224.5 236.1

September 215.3 225.3 237.9

October 216.0 225.8 238.0

November 216.6 226.8 238.5

December 218.0 228.4 239.4

(Source: Office for National Statistics)

For each of the following months, use the values of the RPI in Table 15 to calculate
the annual inflation rate (based on the RPI) and to calculate the purchasing power of
the pound (in pence) compared to one year previously.

(a) May 2010

Discussion

For May 2010, the ratio of the value of the RPI to its value one year earlier is

so the annual inflation rate is 5.1%.
The purchasing power of the pound compared to one year previously is

(b) October 2011

Discussion

For October 2011, the ratio of the value of the RPI to its value one year earlier is

so the annual inflation rate is 5.4%.
The purchasing power of the pound compared to one year previously is

(c) March 2011

Discussion

For March 2011, the ratio of the value of the RPI to its value one year earlier is
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so the annual inflation rate is 5.3%.
The purchasing power of the pound compared to one year previously is

You have seen that the RPI can be used as a way of updating the value of a pension to
take account of general increases in prices (index-linking). The RPI is used in other similar
ways, for instance to update the levels of some other state benefits and investments. But
the CPI could be used for these purposes.
Why are there two different indices? Let’s look at how this arose. As well as its use for
index-linking, which is basically to compensate for price changes, the RPI previously
played an important role in the management of the UK economy generally. The
government sets targets for the rate of inflation, and the Bank of England Monetary Policy
Committee adjusts interest rates to try to achieve these targets. Until the end of 2003,
these inflation targets were based on the RPI, or to be precise, on another price index
called RPIX which is similar to the RPI but omits owner-occupiers’ mortgage interest
payments from the calculations. (There are good economic reasons for this omission, to
do with the fact that in many ways the purchase of a house has the character of a long-
term investment, unlike the purchase of, say, a bag of potatoes.) From 2004, the inflation
targets have instead been set in terms of the CPI. The CPI is calculated in a way that
matches similar inflation measures in other countries of the European Union. (So it can be
used for international comparisons.)
In terms of general principles, though, and also in terms of most of the details of how the
indices are calculated, the differences between the RPI and CPI are not actually very
great. As mentioned in Subsection 5.1, the CPI reflects the spending of a wider population
than the RPI. Partly because of this, there are certain items (e.g. university
accommodation fees) that are included in the CPI but not the RPI. There are also certain
items that are included in the RPI but not the CPI, notably some owner-occupiers’ housing
costs such as mortgage interest payments and house-building insurance. Finally, the CPI
uses a different method to the RPI for combining individual price measurements.
Because of these differences, inflation as measured by the CPI tends usually to be rather
lower than that measured by the RPI. In Example 23, you saw that the annual inflation
rate in February 2012 as measured by the CPI was 3.4%. The annual inflation rate in the
same month, as measured by the RPI, was 3.7%, as you saw in Activity 23. The RPI
continues to be calculated and published, and to be used to index-link payments such as
savings rates and some pensions. (Arguably it is rather strange to use the RPI to index
pensions, given that (as was said at the beginning of Subsection 5.1) the RPI omits the
expenditure of pensioner households.) However, there are reasons why the RPI is more
appropriate than the CPI for some such purposes, and it seems likely to continue in use
for a long time. Furthermore, changes in how index-linking is done can be politically very
controversial. For instance, in 2010, the UK government announced that in future, public
sector pensions would be index-linked to the CPI rather than the RPI, which caused major
complaints from those affected (because inflation as measured by the CPI is usually lower
than that measured using the RPI, so pensions will not increase so much in money
terms).
You might be asking yourself which is the ‘correct’ measure of inflation – RPI, CPI, or
something else entirely. There is no such thing as a single ‘correct’ measure. Different
measures are appropriate for different purposes. That’s why it is important to understand
just what is being measured and how.
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Exercises on Section 5
The following exercises provide extra practice on the topics covered in Section 5.

Exercise 10 Calculating the RPI for February 2012

Find the value of the RPI in February 2012, using the data in the table below. The
value of the RPI in January 2012 was 238.0.

Table 16 Calculating the RPI for February 2012

Group Price ratio for February 2012
relative to January 2012:

2012
weights:

Price ratio
weight:

Food and catering 1.009 161

Alcohol and tobacco 1.005 85

Housing and
household
expenditure

1.003 412

Personal expenditure 1.040 84

Travel and leisure 1.005 258

Total

(Source: Office for National Statistics)

Discussion

(The published index was 239.9. Again, the difference between this and your
calculated value is because the ONS statisticians used more accuracy in their
intermediate calculations.)
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Exercise 11 Annual inflation rates and the purchasing power of the
pound

For each of the following months, use Table 15 (in Subsection 5.3) to calculate the
annual inflation rate given by the RPI and to calculate the purchasing power of the
pound (in pence) compared to one year previously.

(a) October 2010

Discussion

For October 2010, the ratio of the value of the RPI to its value one year earlier is

so the annual inflation rate is 4.5%.
The purchasing power of the pound compared to one year previously is

(b) January 2011

Discussion

For January 2011, the ratio of the value of the RPI to its value one year earlier is

so the annual inflation rate is 5.1%.
The purchasing power of the pound compared to one year previously is

Exercise 12 Index-linking another pension

An index-linked pension (linked to the RPI) was £800 per month in April 2010. How
much should it be in April 2011? (Again, use the RPI values in Table 15.)

Discussion

The RPI for April 2011 was 234.4 and the RPI for April 2010 was 222.8. So in
April 2011, the pension should be
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Conclusion
In this free course, Prices, location and spread, you have been discovering how statistics
can be used to answer questions about prices. You have learned:

● how to find a single number to summarise the price of an item at a particular point in
time, even though the item might be available from a number of sources

● how to combine information on prices across a range of goods and services
● how, through the use of price ratios, changes in price over time can be quantified
● how chained price indices such as the RPI and CPI measure changes in prices over

time.

In particular, you have learned how the RPI and CPI are calculated by the Office for
National Statistics from a ‘basket’ of goods using weighted means to give price ratios,
group price ratios and all-commodities price ratios. These all-commodity price ratios are
then chained to give the value of the index relative to a base date. The RPI and CPI can
be used to calculate inflation, to index-link amounts of money and to calculate the
purchasing power of the pound at one time compared with another.
This course has focused on the ‘prices’ element of the question, Are people getting better
or worse off?. If prices are rising, then, other things being equal, we are worse off.
Another crucial element is ‘earnings’. If our earnings are increasing, then, other things
being equal, we are better off.
However, other things are usually not equal – prices and earnings are generally changing
at the same time. The question of how to deal with both sorts of changes at once is
beyond the scope of this particular course (although it is dealt with in the Open University
course from which this free course is drawn).
Test your understanding of this OpenLearn course by working through the
end-of-course quiz.
This OpenLearn course is an adapted extract from the Open University course
M140 Introducing statistics. To see if you are ready to study M140 and/or to refresh you
knowledge of related topics, see the Maths Help website. All of the modules here, except
for the Geometry one, are relevant to M140.
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