Imaging in medicine
Imaging in medicine

This free course is available to start right now. Review the full course description and key learning outcomes and create an account and enrol if you want a free statement of participation.

Free course

Imaging in medicine

6.3.1 Collimator

Without a collimator, gamma rays from all directions would be collected by the crystal and no useful image could be obtained. Gamma rays cannot be focused by a lens but a collimator consisting of a series of holes in a lead plate can be used to select the direction of the rays falling on the crystal. Most collimators in use today are parallel hole collimators. A parallel hole collimator is shown schematically in Figure 16.

Figure 16
Figure 16: Schematic diagram of a parallel hole collimator. Gamma rays are shown in purple. Obliquely incident gamma rays are absorbed in the collimator septa

The resolution and sensitivity of a collimator depend on a number of factors including:

  • hole size (h);

  • the thickness of the septa (s), the lead between the holes;

  • the length of the holes (l);

  • the energy of the gamma rays.

Different collimators are selected for different procedures – e.g. Low Energy High Resolution.

S809_1

Take your learning further

Making the decision to study can be a big step, which is why you'll want a trusted University. The Open University has over 40 years’ experience delivering flexible learning and 170,000 students are studying with us right now. Take a look at all Open University courses.

If you are new to university level study, find out more about the types of qualifications we offer, including our entry level Access courses and Certificates.

Not ready for University study then browse over 900 free courses on OpenLearn and sign up to our newsletter to hear about new free courses as they are released.

Every year, thousands of students decide to study with The Open University. With over 120 qualifications, we’ve got the right course for you.

Request an Open University prospectus