Skip to content
Science, Maths & Technology

What's so exciting about gravitational waves being discovered?

Updated Thursday 11th February 2016

Scientists are thrilled by the discovery of gravitational waves, in part because it proves one of Einstein's theories - but also because what it means we might do next...

Scientists working at the LIGO experiment in the US have for the first time detected elusive ripples in the fabric of space and time known as gravitational waves. There is no doubt that the finding is one of the most groundbreaking physics discoveries of the past 100 years. But what are they?

Computer simulation of two merging black holes producing gravitational waves Creative commons image Icon Werner Benger under Creative Commons BY-SA 4.0 license Computer simulation of black holes colliding

To best understand the phenomenon, let’s go back in time a few hundred years. In 1687 when Isaac Newton published his Philosophiæ Naturalis Principia Mathematica, he thought of the gravitational force as an attractive force between two masses – be it the Earth and the Moon or two peas on a table top. However the nature of how this force was transmitted was less well understood at the time. Indeed the law of gravitation itself was not tested until British scientist Henry Cavendish did so in 1798, while measuring the density of the Earth.

Fast forward to 1916, when Einstein presented physicists with a new way of thinking about space, time and gravity. Building on work published in 1905, the theory of general relativity tied together that what we commonly consider to be separate entities – space and time – into what is now called “space-time”.

Space-time can be considered to be the fabric of the universe. That means everything that moves, moves through it. In this model, anything with mass distorts the space-time fabric. The larger the mass, the larger the distortion. And since every moving object moves through space-time, it will also follow the distortions caused by objects with big mass.

One way of thinking about this is to consider two children, one heavier than the other, playing on a trampoline. If we treat the surface of the trampoline as the fabric then the more massive child distorts the fabric more than the other. If one child places a ball near the feet of the other then the ball will roll towards, or follow the distortion, towards their feet. Similarly, when the Earth goes around the sun, the huge mass of the sun distorts the space around it, leaving our comparatively tiny planet following as “straight” a path as it can, but in a curved space. This is why it ends up orbiting the sun.

If we accept this simple analogy, then we have the basics of gravity. Moving on to gravitational waves is a small, but very important, step. Let one of the children on the trampoline pull a heavy object across the surface. This creates a ripple on the surface that can be observed. Another way to visualise it is to consider moving your hand through water. The ripples or waves spread out from their origin but quickly decay.

Any object moving through the space-time fabric causes waves or ripples in that fabric. Unfortunately, these ripples also disappear fairly quickly and only the most violent events produce distortions big enough to be detected on Earth. To put this into perspective, two colliding black holes each with a mass of ten times that of our sun would result in a wave causing a distortion of 1% of the diameter of an atom when it reaches the Earth. On this scale, the distortion is of the order of a 0.0000000000001m change in the diameter of the Earth compared to the 1m change due to a tidal bulge.

What can gravitational waves be used for?

Given that these ripples are so small and so difficult to detect, why have we made such an effort to find them – and why should we care about spotting them? Two immediate reasons come to mind (I’ll leave aside my own interest in simply wanting to know). One is that they were predicted by Einstein 100 years ago. Confirming the existence of gravitational waves therefore provides further strong observational support for his general theory of relativity.

In addition, the confirmation could open up new areas of physics such as gravitational-wave astronomy. By studying gravitational waves from the processes that emitted them – in this case two merging black holes – we could see intimate details of violent events in the cosmos.

However, to make the most of such astronomy, it is best to place the detector in space. The Earth-based LIGO managed to catch gravitational waves using laser interferometry. This technique works by splitting a laser beam in two perpendicular directions and sending each down a long vacuum tunnel. The two paths are then reflected back by mirrors to the point they started at, where a detector is placed. If the waves are disturbed by gravitational waves on their way, the recombined beams would be different from the original. However, space-based interferometers planned for the next decade will use laser arms spanning up to a million kilometres.

Now that we know that they exist, the hope is that gravitational waves could open up the door to answering some of the biggest mysteries in science, such as what the majority of the universe is made of. Only 5% of the universe is ordinary matter with 27% being dark matter and the remaining 65% being dark energy, with the latter two being called “dark” as we don’t understand what they are. Gravitational waves may now provide a tool with which to probe these mysteries in a similar way that X-rays and MRI have allowed us to probe the human body.

This article was originally published on The Conversation. Read the original article.


For further information, take a look at our frequently asked questions which may give you the support you need.

Have a question?

Other content you may like

OpenLearn Live: 11th February 2016 Creative commons image Icon David Evans under Creative Commons BY 4.0 license article icon


OpenLearn Live: 11th February 2016

The first king to unite Wales into a single kingdom; working with Richard Nixon; making love last - and gravitational waves. Free learning from across the day.

How we found gravitational waves Copyright free image Icon Copyright free: NASA/JPL-Caltech/DSS - Full description of image video icon

Science, Maths & Technology 

How we found gravitational waves

Martin Hendry, part of the team that discovered gravitational waves, explains how they made their historic discovery.

10 mins
Infographic: 12 things to know about Einstein's Theory of Relativity Copyrighted image Icon Copyright: Karl Tate, article icon

Science, Maths & Technology 

Infographic: 12 things to know about Einstein's Theory of Relativity

What you need to know about Einstein's theories of relativity and how they revolutionized how the world thinks about space, time, mass, energy and gravity.

Explainer: Einstein's Theory of General Relativity Copyright free image Icon Copyright free: article icon

Science, Maths & Technology 

Explainer: Einstein's Theory of General Relativity

What exactly is Einstein's Theory of General Relativity all about? And why does it matter?


Science, Maths & Technology 

Space, Time and Consciousness

Is space just another name for nothing? What is time and how does it relate to space? Will we ever understand the relationship between consciousness and the physical brain? Welcome to the world of The Open University’s Professor Russell Stannard where the big mysteries of the universe are made comprehensible and any possibility is considered in the name of science. This material is supported by a grant from the John Templeton Foundation.

1 hr 45 mins
Is time the same for everyone? Copyrighted image Icon Copyright: Production team article icon

Science, Maths & Technology 

Is time the same for everyone?

We all start off thinking there is just the one time – the same for everyone. Professor Russell Stannard illustrates how relativity theory shows this not to be the case.

OU Lecture 2007: Yuri and me Copyrighted image Icon Copyright: Getty Images audio icon

TV, Radio & Events 

OU Lecture 2007: Yuri and me

When the Soviet cosmonaut Yuri Gagarin came to visit Karl Marx's tomb in Highgate, local schoolchildren turned out to see him, among them young John Zarnecki, who was particularly inspired.

5 mins
Anti-Matter Copyrighted image Icon Copyright: Used with permission article icon

Science, Maths & Technology 


An introduction to the science of anti-matter

How to build a real lightsaber Creative commons image Icon JD Hancock under CC-BY-SA licence under Creative Commons BY-SA 4.0 license article icon

Science, Maths & Technology 

How to build a real lightsaber

Creating a light yet powerful tool that uses a blade of energy to defeat the Dark Side and also act as an effective shield against laser blasts is tricky. Here's a start: