Skip to content
Skip to main content

About this free course

Download this course

Share this free course

What chemical compounds might be present in drinking water?
What chemical compounds might be present in drinking water?

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

3.2.3 Prediction of formulas

For an element in its highest oxidation number (and sometimes others), it is possible to predict the formula of its orthoacid from its coordination number considerations. The condensed oxoacid formulas are then easily derived by subtracting the appropriate number of water molecules.

Third and fourth-row elements prefer four-coordination in their oxoanions. For example, using the oxidation number approach, you can see that when phosphorus(V) coordinates four O2− ions to form a complex ion of stoichiometry PO4, the resultant charge on this oxoanion is (+5 − 8) = −3. Thus, the formula of the corresponding neutral oxoacid is H3PO4.

  • Predict the formula of the oxoacid formed by sulfur(VI).

  • Sulfur(VI) coordinates four O2− ions to form a complex ion of stoichiometry SO4, with the resultant charge (+6 − 8) = −2, so the oxoacid is H2SO4.

The chlorine(VII) oxoanion, with stoichiometry ClO4, has the charge (+7 − 8) = −1, so only one proton is required for the formation of the neutral oxoacid HClO4.

For oxoanions of the second Period three-coordination is the norm, as it allows for the formation of a planar assembly with extensive π bonding, e.g. carbonate, CO32−.

The above arguments often fail to predict the formulas of oxoacids of elements in lower oxidation numbers, because the preferred coordination number is either not achieved, or is achieved only by formation of a direct link between the central atom and hydrogen.