
Introduction and guidance

This item contains selected online content. It is for use alongside, not as a replacement for
the module website, which is the primary study format and contains activities and
resources that cannot be replicated in the printed versions.

07/06/23

About this free course
This version of the content may include video, images and interactive content that may not be optimised
for your device.

You can experience this free course as it was originally designed on OpenLearn, the home of free
learning from The Open University –

There you’ll also be able to track your progress via your activity record, which you can use to
demonstrate your learning.

Copyright © 2017 The Open University

Intellectual property
Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence
v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University
interprets this licence in the following way:
www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and
rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open
University. Please read the full text before using any of the content.

We believe the primary barrier to accessing high-quality educational experiences is cost, which is why
we aim to publish as much free content as possible under an open licence. If it proves difficult to release
content under our preferred Creative Commons licence (e.g. because we can’t afford or gain the
clearances or find suitable alternatives), we will still release the materials for free under a personal end-
user licence.

This is because the learning experience will always be the same high quality offering and that should
always be seen as positive – even if at times the licensing is different to Creative Commons.

When using the content you must attribute us (The Open University) (the OU) and any identified author in
accordance with the terms of the Creative Commons Licence.

The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed
content which is not subject to Creative Commons licensing. Proprietary content must be used (retained)
intact and in context to the content at all times.

The Acknowledgements section is also used to bring to your attention any other Special Restrictions
which may apply to the content. For example there may be times when the Creative Commons Non-
Commercial Sharealike licence does not apply to any of the content even if owned by us (The Open
University). In these instances, unless stated otherwise, the content may be used for personal and non-
commercial use.

We have also identified as Proprietary other material included in the content which is not subject to
Creative Commons Licence. These are OU logos, trading names and may extend to certain
photographic and video images and sound recordings and any other material as may be brought to your
attention.

Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or
intellectual property laws.

We reserve the right to alter, amend or bring to an end any terms and conditions provided here without
notice.

All rights falling outside the terms of the Creative Commons licence are retained or controlled by The
Open University.

Head of Intellectual Property, The Open University

07/06/23

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn

Contents

Week 1: Having a go at it Part 1 7
1 Install the software 7

1.1 Start with a question 8
1.2 Variables and assignments 9
1.3 The art of naming 11
1.4 Downloading the notebook and trying the first exercise 13
1.5 Expressions 14
1.6 Functions 16
1.7 Comments 18
1.8 Values have units 20

2 This week’s quiz 22
3 Summary 23

Week 2: Having a go at it Part 2 25
1 Enter the pandas 25

1.1 This week’s data 27
1.2 Loading the data 28
1.3 Selecting a column 29
1.4 Calculations on a column 31
1.5 Sorting on a column 32
1.6 Calculations over columns 34

2 Writing up the analysis 37
2.1 Practice project 38
2.2 Sharing your project notebook 39

3 This week’s quiz 41
4 Summary 42

4.1 Week 1 and 2 glossary 42

Week 3: Cleaning up our act Part 1 46
Introduction 46
1 Weather data 46

1.1 What is a CSV file? 47
1.2 Dataframes and the ‘dot’ notation 49
1.3 Getting and displaying dataframe rows 50
1.4 Getting and displaying dataframe columns 52
1.5 Comparison operators 55
1.6 Bitwise operators 57

1 Weather data 60
1.1 What is a CSV file? 60
1.2 Dataframes and the ‘dot’ notation 62
1.3 Getting and displaying dataframe rows 63

07/06/23

1.4 Getting and displaying dataframe columns 65
1.5 Comparison operators 68
1.6 Bitwise operators 70

2 This week’s quiz 73
3 Summary 74

Week 4: Cleaning up our act Part 2 76
1 Loading the weather data 76

1.1 Removing rogue spaces 77
1.2 Removing extra characters 79
1.3 Missing values 81
1.4 Changing the value types of columns 82

2 Every picture tells a story 88
2.1 Changing a dataframe’s index 89
2.2 The project 93

3 This week’s quiz 95
4 Summary 96
4.1 Week 4 glossary 97

Week 4: Cleaning up our act Part 2 100
1 Loading the weather data 100

1.1 Removing rogue spaces 101
1.2 Removing extra characters 103
1.3 Missing values 105
1.4 Changing the value types of columns 106

2 Every picture tells a story 112
2.1 Changing a dataframe’s index 113
2.2 The project 117

3 This week’s quiz 119
4 Summary 120
4.1 Week 4 glossary 121

Week 5: Combine and transform data Part 1 124
1 Life expectancy project 124

1.1 Creating the data 125
1.2 Defining functions 127
1.3 What if...? 129
1.4 Applying functions 131

2 This week’s quiz 134
3 Summary 135

Week 6: Combine and transform data Part 2 137
1 Joining left, right and centre 137

1.1 Constant variables 139
1.2 Getting real 141

07/06/23

1.3 Cleaning up 143
1.4 Joining and transforming 146

2 Correlation 150
2.1 Scatterplots 151
2.2 My project 153

3 This week’s quiz 156
4 Summary 157

4.1 Weeks 5 and 6 glossary 157

Week 7: Further techniques Part 1 161
1 I spy with my little eye 161

1.1 Ways of grouping data 163
1.2 Data that describes the world of trade 164
1.3 Exploring the world of export data 165
1.4 Getting data from the Comtrade API 167
1.5 Practice getting data 169

2 This week’s quiz 170
3 Summary 171

Week 8: Further techniques Part 2 173
1 The split-apply-combine pattern 173

1.1 Splitting a dataset by grouping 174
1.2 Looking at apply and combine operations 177
1.3 Summary operations 178
1.4 Filtering groups 181

2 Pivot tables 185
2.1 Pivot tables in pandas 186
2.2 Looking at the milk and cream trade 191
2.3 Your project 192

3 This week’s quiz 194
4 Summary 195

4.1 Week 7 and 8 glossary 195
4.2 What next? 197

Tell us what you think 199
Acknowledgements 199

07/06/23

Week 1: Having a go at it

Part 1
1 Install the software
To code in the course notebooks that Ruth mentioned in the video you’ll need to install
some software.
We’re going use a program called Jupyter that opens in your web browser and allows you
to write notebooks that include Python code. Jupyter and other software you will need to
take part in the course are freely available and you have two options.

Online CoCalc service
The advantages of using CoCalc are that you don’t have to install any software and you
can work on the course exercises from anywhere there is an internet connection. The
disadvantages are that you will need a good internet connection, running the code in your
notebook may take time if there are many simultaneous users on CoCalc and you may
occasionally lose the latest changes you make in your notebook, because the service will
periodically reset.
However, since notebooks are regularly auto-saved, the risk of losing work should be
rather small. CoCalc offers a paid plan that has better performance and stability than the
free plan. The Open University and the authors have no commercial affiliation with
CoCalc.

Install Anaconda package
The other option is to install on your laptop or desktop the free Anaconda package, which
includes all necessary software for this course. If you plan to work on this course from
multiple computers, you will need to install Anaconda on each one. You can use cloud
storage, like Dropbox, to keep your notebooks in sync across machines. Anaconda
doesn’t have the limitations of CoCalc, so we recommend you use Anaconda if you are
going to work on this course always from the same computer.
You should now read the instructions for installing Anaconda or creating a CoCalc project
for this course. Don’t forget to test everything is working, as explained in the instructions.
The installation of Anaconda is different for Windows, Macs and Linux. Please follow the
appropriate instructions.
We advise you to accept the pre-filled defaults suggested during the installation process.

Notebooks
Each week you will use two notebooks (and any necessary data files): an exercise
notebook and a project notebook. The notebooks are this course’s programming
environment, where you will do your own coding.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

http://www.open.edu/openlearn/learn-to-code-installation

The exercise notebook contains all the code shown throughout the week, so that you can
try it out for yourself, any time you wish. The exercise notebook also contains all the
week’s exercises. You will be able to solve several exercises just by slightly modifying our
code.
The project notebook contains the week’s written-up data analysis project, including all
necessary code. If you have the extra time, you’re encouraged to modify the project
notebooks to write up your own data analyses.
You should now download from here the notebooks and data files needed for the whole
course.
You’ll open the notebooks using Jupyter, which is part of Anaconda and CoCalc. You will
learn how to use notebooks later this week, after you’ve seen what Python code looks
like.
Note: please ensure that you abide by any terms and conditions associated with these
pieces of software.

1.1 Start with a question
Data analysis often starts with a question or with some data.

Figure 1

A question leads to data that can answer it, and looking at the available data helps to
make a question precise or may trigger new questions, which, in turn, may require further
data. Data analysis is thus often an iterative process: the questions determine which data
to obtain, and the data influences which questions to ask and what the scope of the
analysis is. How this week’s project came about is an example of such an iterative
process.
I (Michel) was watching a news programme mentioning the fight against tuberculosis (TB)
as part of the United Nations Millenium Development Goals. Wishing to know how serious

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

https://github.com/mwermelinger/Learn-to-code-for-data-analysis

TB is, I browsed the World Health Organization (WHO) website and found a dataset with
the number of TB cases and deaths per country per year, from 2007 to 2013. This in turn
raised the question of whether a high (or low) number could be mainly due to the country
having a large (or small) population. Some more browsing revealed the WHO also has
population data from 1990 to 2013.
That was enough data for the fuzzy question: how serious is TB? It was time to make it
precise. I chose to measure the effect of TB in terms of deaths, which led to the following
questions:

● What is the total, smallest, largest, and average number of deaths due to TB?
● What is the death rate (number of deaths divided by population) of each country?
● Which countries have the smallest and largest number of deaths?
● Which countries have the smallest and largest death rate?

Answering these questions for the whole world and for seven years (2007–2013) would
be a bit too much for this initial project. A subset was needed. I decided to take only the
latest data for 2013 and, being Portuguese, to focus on the Portuguese-speaking
countries. One of them, Brazil, is part of the BRICS group of major emerging economies,
so for more diversity the other four countries would be included too: Russia, India, China
and South Africa. The project was finally defined! I’ve added links to the data below if
you’d like to take a look!

Activity 1 What would you ask?

Before you embark on coding the analysis to get answers, what other questions
could be asked of the datasets described?
What countries would you be interested in? What groups of countries might be
interesting to analyse?
Note down some of your questions so that you can come back to them later.

Provide your answer...

WHO POPULATION - DATA BY COUNTRY (LATEST YEAR)
WHO TB MORTALITY AND PREVALENCE - DATA BY COUNTRY (2007 - PRESENT)
Next, I’ll explain how I started to organise the information.

1.2 Variables and assignments
With the choice of data and questions confirmed, the coding can begin.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

https://github.com/mwermelinger/Learn-to-code-for-data-analysis/raw/master/1_Having_a_go_at_it/WHO%20POP%20TB%20all.xls
https://github.com/mwermelinger/Learn-to-code-for-data-analysis/raw/master/1_Having_a_go_at_it/WHO%20POP%20TB%20some.xls

Figure 2

To introduce the basics of coding, I will show you a very simple approach, only suitable for
the smallest of datasets. Please bear with me. In the second part of the week I will show
you the proper approach. Read through this step and the next – you’re not expected to
write code just yet. In Exercise 1, a bit further on in this week, you’ll be asked to start
writing code.
Ok, let’s start. I want the computer to calculate the total number of deaths in 2013. For the
computer to do that, it must first be told what is the number of deaths in each country in
that year. I’ll start with my home country.
In []:

deathsInPortugal = 100

The ‘In[]’ line is Jupyter’s way of saying that what follows is code I typed in. And there it is:
the first line of code! It is a command to the computer that could be translated to English
as: ‘find in the attic an empty box, put the number 100 in the box, and write
“deathsInPortugal” on the box’. (Aren’t you glad Python is more succinct than English?) In
coding jargon, the attic is the computer’s memory, boxes are called variables (I’ll explain
why shortly), what’s written on a box is the variable’s name , and storing a value in a
variable is called an assignment.
By naming the boxes, I can later ask the computer to show the value in box thingamajig
or take the values in boxes stuff and moreStuff and add them together.
To see what’s inside a box, I can just write the name of the box on a line of its own. Jupyter
will write the variable’s value on the screen, preceded by ‘Out[]’, to clearly mark the output
generated by the code. When you start to use the Jupyter notebooks, you will see
numbers inside the square brackets, i.e. In[1], In[2], etc., to indicate in which order the
various pieces of code are being executed. Here we have omitted the numbers to avoid
confusion between what you see here and what you see in your notebook.
In []:

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

deathsInPortugal

Out[]:

100

Each assignment is written on a line of its own. The computer executes the assignments
line by line, from top to bottom. Thus, the program would continue as follows:
In []:

deathsInPortugal = 100

deathsInAngola = 200

deathsInBrazil = 300

I don’t think I need to continue, you get the gist.
By the way, all numbers so far are fictitious. If I use real data, taken from the World Health
Organization website, you’ll see a difference.
In []:

deathsInPortugal = 140

deathsInAngola = 6900

deathsInBrazil = 4400

deathsInPortugal

Out[]:

140

Notice what happened. When a value is assigned to an already existing variable, the
value stored in that variable is unceremoniously chucked away and replaced by the new
value. In the example, the second group of assignments replaced the values assigned by
the first group and thus the current value of deathsInPortugal is 140 and no longer 100.
That’s why the storage boxes are called variables: their content can vary over time.
To sum up, a variable is a named storage for values and an assignment takes the value
on the right hand side of the equal sign (=) and stores it in the variable on the left-hand
side.
In the next section, you will find out the importance of naming in Python.

1.3 The art of naming
Python is relatively flexible about what you name your variables but rather picky about the
format of names.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

Figure 3

I could have chosen deaths_in_Brazil_in_2013, deathsBrazil,DeathsBrazil, dB or
even stuff for my variables. If a box in your attic were labeled dB or stuff though, would
you know what it contains a year later? So, although you can, it’s better not to use cryptic,
general, or very long names.
You can’t use spaces to separate words in a name, you can’t start a name with a digit and
names are case-sensitive, i.e. deathsBrazil and DeathsBrazil are not the same variable.
Making one of those mistakes will result in a syntax error (when the computer doesn’t
understand the line of code) or a name error (when the computer doesn’t know of any
variable with that name).
Let’s see some examples. (Remember that you’re not expected to write any code for this
step.) The first example has spaces between the words, the second example has a digit at
the start of the name, and the third example changes the case of a letter, resulting in an
unknown name. The kind of error is always at the end of the error message.
In []:

deaths In Portugal = 140

File "<ipython-input-7-ded1a063fe45>", line 1

deaths In Portugal = 140

^

SyntaxError: invalid syntax

In []:

2013deathsInPortugal = 140

File "<ipython-input-8-af085101fcfc>", line 1

2013deathsInPortugal = 140

^

SyntaxError: invalid syntax

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

In []:

deathsinPortugal

—————————————————————————————————————

NameError Traceback (most recent call last)

<ipython-input-9-7d3c81b4fb34> in <module ()

——> 1 deathsinPortugal

NameError: name ‘deathsinPortugal’ is not defined

Note that Jupyter doesn’t write any Out[] because the code is wrong and thus doesn’t
generate any output.
In this course, to make names shorter to help fit lines of code on small screens, we’ll use
capitalisation instead of underscores to separate the different words of a name, as shown
in the code so far. Such practice is called camel case independently of the name having
oneHump (‘dromedary case’ just doesn’t sound good, does it?) or moreThanTwoHumps . The
convention in Python is to start variable names with lower case and we’ll stick to it.
In the next section, download the notebook for this week and work through the first
exercise – your first line of code!

1.4 Downloading the notebook and trying the first
exercise
So far, I’ve done the coding and you’ve read along. Booooring. It’s time to use the Jupyter
notebooks and work on the first exercise in the course.

Exercise 1 Variables and assignments

If you haven’t yet installed the software package or created an account on CoCalc,
do it now using these instructions!
Open the Exercise notebook 1 (from here), and put it in the folder you created.
(You’ll open the data later and learn how to use it in the notebook.)
Once you have installed the file, watch the video to learn how to work with Jupyter
notebooks and complete Exercise 1. Pause the video frequently to repeat the
demonstrated steps in your notebook. Throughout the week you’ll be directed back
to the notebook to complete the other exercises.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

http://www.open.edu/openlearn/learn-to-code-installation
https://github.com/mwermelinger/Learn-to-code-for-data-analysis

Video content is not available in this format.

If you haven’t yet installed Jupyter and Anaconda, do it now using these instructions.

1.5 Expressions
I’ve told the computer the deaths in Angola, Brazil and Portugal. I can now ask it to add
them together to obtain the total deaths.
In []:

deathsInAngola + deathsInBrazil + deathsInPortugal

Out[]:

11440

A fragment of code that has a value is called an expression. Calculating the value of an
expression is called evaluating the expression. If the expression is on a line of its own,
the Jupyter notebook displays its value, as above.
The value of an expression can of course be assigned to a variable.
In []:

totalDeaths = deathsInAngola + deathsInBrazil + deathsInPortugal

Note that no value is displayed because the whole line of code is not an expression, it’s a
statement , a command to the computer. In this case the statement is an assignment. You
will see another kind of statement later this week.
To see the value, you learned that you must write the variable’s name.
In []:

totalDeaths

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

http://www.open.edu/openlearn/learn-to-code-installation

Out[]:

11440

This is really just a special case of the general rule that writing an expression on its own
shows its value. A variable (which stores a value) is just an example of an expression
(which is anything that has a value).
I can now write an expression to compute the average number of deaths: it’s the total
divided by the number of countries.
In []:

totalDeaths / 3

Out[]:

3813.3333333333335

Python has of course all four arithmetic operators : addition (+), division (/), subtraction (-)
and multiplication (*). I’ll use the last two later in the week. Python follows the conventional
operator precedence: multiplication and division before addition and subtraction, unless
parentheses are used to change the order. For example, (3+4)/2 is 3.5 but 3+4/2 is 5.

Figure 4

Now practice writing expressions and complete Exercise 2 in the notebook.

Exercise 2 Expressions

Go back to the Exercise notebook 1 you used in Exercise 1. In Exercise 2 you’ll see
an example of operator precedence and practise writing expressions.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

If you’re using Anaconda, remember that to open the notebook you’ll need to
navigate to it using Jupyter. Whether you’re using Anaconda or CoCalc, once the
notebook is open, run all the code before doing the exercise.
Writing code for the first time can be difficult but stick with it.

In the next section, you will find out about functions.

1.6 Functions
After the total and the average, next on my to-do list is to calculate the largest number of
deaths.

Figure 5

This will be the maximum. It takes another single line of code to calculate it.
In []:

max(deathsInAngola, deathsInBrazil, deathsInPortugal)

Out[]:

6900

In this expression, max() is a function – the parenthesis are a reminder that the name max
doesn’t refer to a variable. A function is a piece of code that calculates (returns) a
value, given zero or more values (the function’s arguments). In this case, max() has
three arguments and returns the greatest of them. Actually, max() can calculate the
maximum of two, three, four or more values.
In []:

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

max(deathsInBrazil, deathsInPortugal)

Out[]:

4400

The expressions above are function calls. I’m calling the max() function with three or two
arguments, and the value of the expression is the value returned by the function. A
function is called by writing its name, followed by the arguments, within parentheses and
separated by commas. Function names follow the same rules as variable names.
As you might expect, Python also has a function to calculate the smallest (minimum) of
two or more values.
In []:

min(deathsInAngola, deathsInBrazil, deathsInPortugal)

Out[]:

140

The value returned by a function call can be assigned to a variable. Here is an example,
which calculates the range of deaths. The range of a set of values is the difference
between the largest and the smallest of them.
In []:

largest = max(deathsInAngola, deathsInBrazil, deathsInPortugal)

smallest = min(deathsInAngola, deathsInBrazil, deathsInPortugal)

range = largest - smallest

range

Out[]:

6760

Exercise 3 Functions

Identify different types of error (some of you may have experienced those
already…) in Exercise 3. You’ll need to use the Week 1 notebook to answer
question three.

1. If the function name is misspelled as Min, what kind of error is it?
¡ A syntax error
Writing Min(…, …) instead of min(…, …) is not a syntax error, because both have the
form of a function call. Names can use uppercase letters.
Take a look at The art of naming.
¡ A name error
The computer will understand than Min(…, …) is a function call but doesn’t know of
any function with that name. Remember that names are case-sensitive.
Take a look at The art of naming.

2. If a parenthesis or comma is forgotten, what kind of error is it?
¡ A name error
A parenthesis or comma is unrelated to how names are written.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

Take a look at The art of naming.
¡ A syntax error
A function call requires two parentheses around the arguments, and one comma
between successive arguments. Forgetting any of them therefore deviates from the
syntax of the Python language.
Take a look at Functions.

3. Use Exercise 3 in the Week 1 exercise notebook to answer this question.
What is the range of deaths among the BRICS countries (Brazil, Russia, India,
China, South Africa)?
¡ 4400
This is the minimum value (for Brazil), not the range.
Take a look at Functions.
¡ 65480
This is the average number of deaths, not the range.
Take a look at Expressions.
¡ 240000
This is the maximum value (for India), not the range.
Take a look at Functions.
¡ 327400
This is the total number of deaths not the range.
Take a look at Functions.
¡ 235600
The range is the maximum value (240 thousand for India) minus the minimum value
(4400 for Brazil).

1.7 Comments
Last on my to-do list is the death rate, which is the number of deaths divided by the
population.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

Figure 6

A quick glance at the WHO website tells me Portugal’s population in 2013.
In []:

populationOfPortugal = 10608

Wait a minute! This can’t be right. I know Portugal isn’t a large country, but ten and a half
thousand people is ridiculous. I look more carefully at the WHO website. Oh, the value is
given in thousands of people; it’s 10 million and 608 thousand people. I could change the
assignment to
In []:

populationOfPortugal = 10608000

but that could give the impression that the population had been counted exactly, whereas
it’s more likely the number is an estimate based on a previous census. It also makes it
easier to check my code against the WHO data if I use the exact same numbers.
I will therefore keep the original assignment but make a note of the unit, using a comment
, a piece of text that documents what the code does.
In []:

population unit: thousands of inhabitants

populationOfPortugal = 10608

deaths unit: inhabitants

deathsInPortugal = 140

A comment starts with a hash sign (#) and goes until the end of the line. Computers ignore
all comments, they just execute the code. Comments are your insurance policy: they help
you understand your own code if you come back to it after a long break.
I can now compute the death rate, making sure I first convert the population into number
of inhabitants, the same unit as deaths.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

In []:

deathsInPortugal / (populationOfPortugal * 1000)

Out[]:

1.3197586726998491e-05

The death rate (roughly 140 people in 10 million) is a very small number, not very practical
to display and reason about. Looking again at the WHO website, I note that other
indicators, like TB prevalence, are given per 100 thousand inhabitants. I will do the same
for the death rate. Since the population is already in thousands, dividing the deaths by the
population gives me the number of deaths per thousand people. Thus, the number of
deaths per 100 thousand people must be 100 times higher than that.
In []:

death rate: deaths per 100 thousand inhabitants

deathsInPortugal * 100 / populationOfPortugal

Out[]:

1.3197586726998491

This finishes the basics of coding needed for this week. It took less than 30 lines of code…
Test this out for yourself in Exercise 4 of the Week 1 exercise notebook.

Exercise 4 Comments

Complete the short exercise on the death rate in Exercise 4 in the Week 1 Exercise
notebook.
Remember that once the notebook is open, run all the code, before doing the
exercise.

1.8 Values have units
Before I move on, let me explain the importance of using comments to record units of
measurement.

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

Figure 7

Values are not just numbers, they have units: degrees Celsius, number of inhabitants,
thousands of gallons, etc. Always make a note of the units the value refers to, using
comments. This makes it easier to check whether the expressions are right. Disregarding
the units will lead to wrong calculations and results.

Activity 2

Have you come across ‘horror stories’ that have happened due to mistakes in the
unit of measurement?
Think through what happened and consider what you have learned from them.

Provide your answer...

Week 1: Having a go at it Part 1
1 Install the software 07/06/23

2 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 1 practice quiz.
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 1: Having a go at it Part 1
2 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78777

3 Summary
The first week of this course covered:

● installing software in course notebooks
● starting data analysis with a question
● the basics of coding
● naming formats
● recording units of measurement.

Next week, you’ll be introduced to pandas. You'll use Jupyter notebooks to write and
execute simple programs with Python and the pandas module.

Week 1: Having a go at it Part 1
3 Summary 07/06/23

Week 1: Having a go at it Part 1
3 Summary 07/06/23

Week 2: Having a go at it

Part 2
1 Enter the pandas
As you probably realised, this way of coding is not practical for large scale data analysis.

Figure 1

Three lines of code were required for each country, to store the number of deaths, store
the population, and calculate the death rate. With roughly 200 countries in the world, my
trivial analysis would require 400 variables and typing almost 600 lines of code! Life’s too
short to be spent that way.
Instead of using a separate variable for each datum, it is better to organise data as a table
of rows and columns.

Table 1

Country Deaths Population

Angola 6900 21472

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

Brazil 4400 200362

Portugal 140 10608

In that way, instead of 400 variables, I only need one that stores the whole table. Instead
of writing a mile long expression that adds 200 variables to obtain the total deaths, I’ll write
a short expression that calculates the total of the ‘Deaths’ column, no matter how many
countries (rows) there are.
To organise data into tables and do calculations on such tables, you and I will use the
pandas module, which is included in Anaconda and CoCalc. A module is a package of
various pieces of code that can be used individually. The pandas module provides very
extensive and advanced data analysis capabilities to compliment Python. This course
only scratches the surface of pandas.
I have to tell the computer that I’m going to use a module.
In []:

from pandas import *

That line of code is an import statement: from the pandas module, import everything. In
plain English: load into memory all pieces of code that are in the pandas module, so that I
can use any of them. In the above statement, the asterisk isn’t the multiplication operator
but instead means ‘everything’.
Each weekly project in this course will start with this import statement, because all
projects need the pandas module.
The words from and import are reserved words : they can’t be used as variable, function
or module names. Otherwise you will get a syntax error.
In []:

from = 100

File "<ipython-input-23-6958f0ebc10d>", line 1

from = 100

^

SyntaxError: invalid syntax

Jupyter notebooks show reserved words in boldface font to make them easier to spot. If
you see a boldface name in an assignment (as you will for the code above), you must
choose a different name.

Exercise 5 pandas

Use Exercise 5 the Exercise notebook 1 to help you answer these questions about
errors you might come across.
1. What kind of error will you get if you misspell 'pandas' as 'Pandas'?
¡ A syntax error
Remember that after the reserved word 'from' comes a module name.
Take a look at The art of naming .
¡ A name error, reported as an import error
The computer is expecting a name but there is no module with the name 'Pandas' in
the Anaconda distribution. Remember that names are case-sensitive.

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

2. What kind of error will you get if you misspell 'import' as 'impart'?
¡ A name error
A name error only occurs when a name is undefined, but import is not a name, it’s a
reserved word.
¡ A syntax error
The computer is expecting a reserved word and anything else will raise a syntax
error.

3. What kind of error will you get if you forget the asterisk?
¡ A name error
An asterisk is not a name so the reported error can’t be this one.
¡ A syntax error
The statement cannot end with the reserved word 'import'; the computer is
expecting an indication of what to import.

1.1 This week’s data
For the next part of the course you’ll need to download a file of data.

Figure 2

I have created a table with all the data necessary for the project and saved it in an Excel
file. Excel is a popular application to create, edit and analyse tabular data. You won’t need
Excel to complete this course, but many datasets are provided as Excel files.

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

Open the data file WHO POP TB some.xls . The file is encoded using UTF-8, a character
encoding that allows for accented letters. Do not open or edit the file, as you may change
how it is encoded, which will lead to errors later on. If you do want to look at its contents,
make a copy of the file and look at the copy.
Put the data file in the same folder (or CoCalc project) where you saved your exercise
notebook. Done? Great, let’s proceed to loading the data – you’ll learn how to do this in
the next section.

1.2 Loading the data
Many applications can read files in Excel format, and pandas can too. Asking the
computer to read the data looks like this:
In []:

data = read_excel('WHO POP TB some.xls')

data

Out[]:

Country Population (1000s) TB deaths

0 Angola 21472 6900

1 Brazil 200362 4400

2 China 1393337 41000

3 Equatorial Guinea 757 67

4 Guinea-Bissau 1704 1200

5 India 1252140 240000

6 Mozambique 25834 18000

7 Portugal 10608 140

8 Russian Federation 142834 17000

9 Sao Tome and Principe 193 18

10 South Africa 52776 25000

11 Timor-Leste 1133 990

The variable name data is not descriptive, but as there is only one dataset in our analysis,
there is no possible confusion with other data, and short names help to keep the lines of
code short.
The function read_excel() takes a file name as an argument and returns the table
contained in the file. In pandas, tables are called dataframes . To load the data, I simply
call the function and store the returned dataframe in a variable.
A file name must be given as a string , a piece of text surrounded by quotes. The quote
marks tell Python that this isn’t a variable, function or module name. Also, the quote marks

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

state that this is a single name, even if it contains spaces, punctuation and other
characters besides letters.
Misspelling the file name, or not having the file in the same folder as the notebook
containing the code, results in a file not found error. In the example below there is an
error in the file name.
In []:

data = read_excel('WHO POP TB same.xls')

data

———

FileNotFoundError Traceback (most recent call last)

<ipython-input-25-c017b2500afa> in <module>()

——> 1 data = read_excel(‘WHO POP TB same.xls’)

2 data

/Users/mw4687/anaconda/lib/python3.4/site-packages/pandas/io/excel.py in read_excel
(io, sheetname, **kwds)

130 engine = kwds.pop(‘engine’, None)

131

–> 132 return ExcelFile(io, engine=engine).parse(sheetname=sheetname, **kwds)

133

134

/Users/mw4687/anaconda/lib/python3.4/site-packages/pandas/io/excel.py in __init__
(self, io, **kwds)

167 self.book = xlrd.open_workbook(file_contents=data)

168 else:

–> 169 self.book = xlrd.open_workbook(io)

170 elif engine == ‘xlrd’ and isinstance(io, xlrd.Book):

171 self.book = io

/Users/mw4687/anaconda/lib/python3.4/site-packages/xlrd/__init__.py in
open_workbook(filename, logfile,
verbosity, use_mmap, file_contents, encoding_override, formatting_info, on_demand,
ragged_rows)

392 peek = file_contents[:peeksz]

393 else:

–> 394 f = open(filename, "rb")

395 peek = f.read(peeksz)

396 f.close()

FileNotFoundError: [Errno 2] No such file or directory: ‘WHO POP TB same.xls’

Jupyter notebooks show strings in red. If you see red characters until the end of the line,
you have forgotten to type the second quote that marks the end of the string.
In the next section, find out how to select a column.

1.3 Selecting a column
Now you have the data, let the analysis begin!

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

Figure 3

Let’s tackle the first part of the first question: ‘What are the total, smallest, largest and
average number of deaths due to TB?’ Obtaining the total number will be done in two
steps: first select the column with the TB deaths, then sum the values in that column.
Selecting a single column of a dataframe is done with an expression in the format:
dataFrame['column name'].

In []:

data['TB deaths']

Out[]:

0 6900

1 4400

2 41000

3 67

4 1200

5 240000

6 18000

7 140

8 17000

9 18

10 25000

11 990

Name: TB deaths, dtype: int64

Strings are verbatim text, which means that the column name must be written exactly as
given in the dataframe, which you saw after loading the data. The slightest deviation leads
to a key error , which can be seen as a kind of name error. You can try out in the Week 2
exercise notebook what happens when misspelling the column name. The error message

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

is horribly long. In such cases, just skip to the last line of the error message to see the type
of error.
Put this learning into practice in Exercise 6.

Exercise 6 selecting a column

In your Exercise notebook 1, select the population column and store it in a variable,
so that you can use it in later exercises.
Remember that to open the notebook you’ll need to launch Anaconda and then
navigate to the notebook using Jupyter. Once it’s open, run all the code.

Next, you’ll learn about making calculations on a column.

1.4 Calculations on a column
Having selected the column with the number of deaths per country, I’ll add them with the
appropriately named sum() method to obtain the overall total deaths.
A method is a function that can only be called in a certain context. In this course, the
context will mostly be a dataframe or a column. A method call looks like a function call,
but adds the context in which to call the method: context.methodName(argument1,
argument2, ...) . In other words, a dataframe method can only be called on dataframes,
a column method only on columns. Because methods are functions, a method call returns
a value and is therefore an expression.
If all that sounded too abstract, here’s how to call the sum() method on the TB deaths
column. Note that sum() doesn’t need any arguments because all the values are in the
column.
In []:

tbColumn = data['TB deaths']

tbColumn.sum()

Out[]:

354715

The estimated total number of deaths due to TB in 2013 in the BRICS and Portuguese-
speaking countries was over 350 thousand. An impressive number, for the wrong
reasons.
Calculating the minimum and maximum number of deaths is done in a similar way.
In []:

tbColumn.min()

Out[]:

18

In []:

tbColumn.max()

Out[]:

240000

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

Like sum() , the column methods min() and max() don’t need arguments, whereas the
Python functions min() and max() did need them, because there was no context (column)
providing the values.
The average number is computed as before, dividing the total by the number of countries.
In []:

tbColumn.sum() / 12

Out[]:

29559.583333333332

This kind of average is called the mean and there’s a method for that.
In []:

tbColumn.mean()

Out[]:

29559.583333333332

Another kind of average measure is the median , which is the number in the middle,
i.e. half of the values are above the median and half below it.
In []:

tbColumn.median()

Out[]:

5650.0

The mean is five times higher than the median. While half the countries had less than
5650 deaths in 2013, some countries had far more, which pushes the mean up.
The median is probably closer to the intuition you have of what ‘average’ should mean
(pun intended). News reports don’t always make clear what average measure is being
used, and using the mean may distort reality. For example, the mean household income in
a country will be influenced by very poor and very rich households, whereas the median
income doesn’t take into account how poor or rich the extremes are: it will always be half
the households below and half above the median.
Put this learning into practice in Exercise 7.

Exercise 7 calculations on a column

Practise the use of column methods by applying them to the population column you
obtained in Exercise 6 in the Exercise notebook 1. Remember to run all code before
doing the exercise.

1.5 Sorting on a column
One of the research questions was: which countries have the smallest and largest number
of deaths?
Being a small table, it is not too difficult to scan the TB deaths column and find those
countries. However, such a process is prone to errors and impractical for large tables. It’s
much better to sort the table by that column, and then look up the countries in the first and
last rows.
As you’ve guessed by now, sorting a table is another single line of code.

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

In []:

data.sort_values('TB deaths')

Out[]:

Country Population (1000s) TB deaths

9 Sao Tome and Principe 193 18

3 Equatorial Guinea 757 67

7 Portugal 10608 140

11 Timor-Leste 1133 990

4 Guinea-Bissau 1704 1200

1 Brazil 200362 4400

0 Angola 21472 6900

8 Russian Federation 142834 17000

6 Mozambique 25834 18000

10 South Africa 52776 25000

2 China 1393337 41000

5 India 1252140 240000

The dataframe method sort_values() takes as argument a column name and returns a
new dataframe where the rows are in ascending order of the values in that column. Note
that sorting doesn’t modify the original dataframe.
In []:

data # rows still in original order

Out[]:

Country Population (1000s) TB deaths

0 Angola 21472 6900

1 Brazil 200362 4400

2 China 1393337 41000

3 Equatorial Guinea 757 67

4 Guinea-Bissau 1704 1200

5 India 1252140 240000

6 Mozambique 25834 18000

7 Portugal 10608 140

8 Russian Federation 142834 17000

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

9 Sao Tome and Principe 193 18

10 South Africa 52776 25000

11 Timor-Leste 1133 990

It’s also possible to sort on a column that has text instead of numbers; the rows will be
sorted in alphabetical order.
In []:

data.sort_values('Country')

Out[]:

Country Population (1000s) TB deaths

0 Angola 21472 6900

1 Brazil 200362 4400

2 China 1393337 41000

3 Equatorial Guinea 757 67

4 Guinea-Bissau 1704 1200

5 India 1252140 240000

6 Mozambique 25834 18000

7 Portugal 10608 140

8 Russian Federation 142834 17000

9 Sao Tome and Principe 193 18

10 South Africa 52776 25000

11 Timor-Leste 1133 990

Exercise 8 sorting on a column

Use the Exercise notebook 1 to sort the table by population so that you can quickly
see which are the least and the most populous countries. Remember to run all code
before doing the exercise.

In the next section you’ll learn about calculations over columns.

1.6 Calculations over columns
The last remaining task is to calculate the death rate of each country.
You may recall that with the simple approach I’d have to write:

rateAngola = deathsInAngola * 100 / populationOfAngola

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

rateBrazil = deathsInBrazil * 100 / populationOfBrazil

and so on, and so on. If you’ve used spreadsheets, it’s the same process: create the
formula for the first row and then copy it down for all the rows. This is laborious and error-
prone, e.g. if rows are added later on. Given that data is organised by columns, wouldn’t it
be nice to simply write the following?
rateColumn = deathsColumn * 100 / populationColumn

Say no more: your wish is pandas’s command.
In []:

deathsColumn = data['TB deaths']

populationColumn = data['Population (1000s)']

rateColumn = deathsColumn * 100 / populationColumn

rateColumn

Out[]:

0 32.134873
1 2.196025
2 2.942576
3 8.850727
4 70.422535
5 19.167186
6 69.675621
7 1.319759
8 11.901928
9 9.326425
10 47.370017
11 87.378641
dtype: float64
Tadaaa! With pandas, the arithmetic operators become much smarter. When adding,
subtracting, multiplying or dividing columns, the computer understands that the operation
is to be done row by row and creates a new column.
All well and nice, but how to put that new column into the dataframe, in order to have
everything in a single table? In an assignment variable = expression , if the variable
hasn’t been mentioned before, the computer creates the variable and stores in it the
expression’s value. Likewise, if I assign to a column that doesn’t exist in the dataframe,
the computer will create it.
In []:

data['TB deaths (per 100,000)'] = rateColumn

data

Out[]:

Country Population (1000s) TB deaths TB deaths (per 100,000)

0 Angola 21472 6900 32.134873

1 Brazil 200362 4400 2.196025

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

2 China 1393337 41000 2.942576

3 Equatorial Guinea 757 67 8.850727

4 Guinea-Bissau 1704 1200 70.422535

5 India 1252140 240000 19.167186

6 Mozambique 25834 18000 69.675621

7 Portugal 10608 140 1.319759

8 Russian Federation 142834 17000 11.901928

9 Sao Tome and Principe 193 18 9.326425

10 South Africa 52776 25000 47.370017

11 Timor-Leste 1133 990 87.378641

That’s it! I’ve written all the code needed to answer the questions I had. Next I’ll write up
the analysis into a succinct and stand-alone notebook that can be shared with friends,
family and colleagues or the whole world. You’ll find that in the next section.

Week 2: Having a go at it Part 2
1 Enter the pandas 07/06/23

2 Writing up the analysis

Figure 4 A map identifying Portuguese speaking countries

Once you’ve done your analysis, you may want to record it or share it with others. The
best way is to write up what you’ve discovered.
There is no right or wrong way to write up data analysis but the important thing is to
present the answers to the questions you had. To keep things simple, I suggest the
following structure:

1. A descriptive title
2. An introduction setting the context and stating what you want to find out with the

data.
3. A section detailing the source(s) of the data, with the code to load it into the

notebook.
4. One or more sections showing the processes (calculating statistics, sorting the data,

etc.) necessary to address the questions.
5. A conclusion summarising your findings, with qualitative analysis of the quantitative

results and critical reflection on any shortcomings in the data or analysis process.

You don’t need to explain your code, but it’s helpful to write the text in such a way that
even readers who know nothing about Python or pandas can follow your analysis.
You can see how I’ve written up the analysis by opening this week’s project notebook,
which you can open in project_1: Deaths by tuberculosis .
In the next section, amend this project to produce your own version.

Week 2: Having a go at it Part 2
2 Writing up the analysis 07/06/23

2.1 Practice project

Figure 5

Here’s a quick project for you, which is about looking at TB deaths in all countries.

Activity 1 The project

1. Open the data file WHO POP TB all.xls . Do not open or edit this file, to avoid
changing its encoding. If you want to see the contents of the file, make a copy
and look at the copy.

2. Open the project notebook.
3. If you’re using CoCalc do the following two steps:

a. Click on the File menu and select ‘Download as’ and then ‘IPython
notebook (.ipynb)’.

b. On your computer, rename the downloaded file so that it includes your
name, e.g. ‘TB deaths all world – Michel Wermelinger.ipynb’. Then upload
the renamed notebook to CoCalc and open it.

4. If you’re using Anaconda do the following two steps:
a. Click on the File menu and select ‘Make a copy’.
b. Click on the title of the new notebook (‘project 1-Copy1’) to rename it.

Make sure to include your name in the file name, e.g. ‘TB deaths all world
– Michel Wermelinger’.

5. In the new notebook, add your name to mine and update the date.
6. Edit the first code cell: change the file name to ‘WHO POP TB all.xls’, in order

to load the data for all countries in the world.
7. Run all cells in the notebook. This might take a little while.

Week 2: Having a go at it Part 2
2 Writing up the analysis 07/06/23

8. Add one line of code at the end to sort the table by the death rate, so that it’s
easy to see the least and most affected countries.

9. Go through the notebook and change any text (in particular the conclusions) to
reflect the new results.

10. Save and then close and halt the notebook.

If you happen to know how to use a spreadsheet application, then you can do a
personal project: open the Excel file, remove all countries you are not interested in,
and then do the analysis only for the remaining subset.
You might like to share your experience of working on this project with friends, family
or colleagues.

2.2 Sharing your project notebook

Figure 6

Sharing work is a great way to solve problems and learn from others.
You are encouraged to share the analysis notebook that you created in the previous
section. There are a few different ways you can do this. I will only mention two, sharing
and publishing, depending on whether you want people to be able to change your
notebook or only read it.
If you don’t mind people editing and extending your notebook, like you have done with
mine, then you’ll need to give them the notebook file (e.g. ‘TB deaths all world – Michel
Wermelinger.ipynb’) and all necessary data files (just the ‘WHO POP TB all.xls’ in this
case). There are many ways you can share files with other people. One of the simplest is
to create a zip archive, upload it to a cloud service like Dropbox or Google Drive, and

Week 2: Having a go at it Part 2
2 Writing up the analysis 07/06/23

publicise the download link. You could also share the link on your social media or via
email.
If the intended recipients don’t have the necessary software (Python, pandas and Jupyter)
or you don’t want anybody to change your notebook, you can still publish the analysis in
read-only mode, i.e. people can read the text and code, see the resulting tables and
numbers, but can’t modify anything.
To do this, open your project notebook, run all the cells, double-check that there are no
error messages and that all values and tables are shown as you want them to be, and
save the notebook (without closing it).
If you use Anaconda, export the notebook by clicking ‘Download as’ in the ‘File’ menu and
selecting the option you prefer. I prefer HTML because it looks much nicer. You can then
share the single PDF or HTML file as before, by email, via Dropbox or Google Drive, on
your blog and via a link.
If you use CoCalc, just click on the ‘Publish’ button on the right side above your notebook,
and you will get after a little while the link that you can share with others. Anyone can then
read your notebook, even if they don’t have a CoCalc account. For example, look at my
Project 1 (it’s best to right-click and open this link in a new tab).
Now choose the sharing or publishing method, and get sharing!

Week 2: Having a go at it Part 2
2 Writing up the analysis 07/06/23

https://cloud.sagemath.com/projects/ff47a32e-e177-4d13-ad9a-625c859cc20b/files/Week_1_project.html

3 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 2 practice quiz
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 2: Having a go at it Part 2
3 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78778

4 Summary

Figure 7

This week you used Jupyter notebooks to write and execute simple programs with Python
and the pandas module. You've learned how to:

● load a table from an Excel file
● select a column, and compute some simple statistics (like the total, minimum and

median) about it.
● create a new column with values calculated from other columns
● sort a table by one of its columns.

Next week you will learn further ways to manipulate dataframes, in particular to clean
data. You will also produce your first data chart, showing variations of values over time.

Futher reading
WHO population – data by country (2013)
WHO mortality and prevalence – data by country (2007 – present)

4.1 Week 1 and 2 glossary
Here are alphabetical lists, for quick look up, of what this week introduced.

Programming and data analysis concepts
An assignment is a statement of the form variable = expression . It evaluates the
expression and stores its value in the variable. The variable is created if it doesn’t exist.
Each assignment is written on its own line.

Week 2: Having a go at it Part 2
4 Summary 07/06/23

http://apps.who.int/gho/data/node.main.POP107?lang=en
http://apps.who.int/gho/data/node.country

CamelCase is a naming style in which names made of various words have each word
capitalized, except possibly the first.
A comment is a note about the code. It starts with the hash sign (#) and goes until the end
of the line.
A dataframe is the pandas representation of a table.
An expression is a fragment of code that can be evaluated , i.e. that has a value, like a
variable name.
A file not found error occurs if the computer can’t find the given file, e.g. because the
name is misspelled or because it’s in another folder.
A function takes zero or more arguments (values) and returns (produces) a value.
A function call is an expression of the form functionName(argument1, argument2, …).

An import statement of the form from module import * loads all the code from the given
module.
The maximum and minimum of a set of values is the largest and smallest value,
respectively.
The mean of a set of numbers is the sum of those numbers divided by how many
there are.
The median of a set of numbers is the number in the middle, i.e. half of the numbers are
below the median and half are above.
A method is a function that can only be called in a certain context, like a dataframe or a
column.
A method call is an expression of the form context.methodName(argument1,
argument2, ...).

A module is a package of various pieces of code that can be used individually.
A name is a case-sensitive sequence of letters, digits and underscores. Names cannot
start with a digit. Function, variable and module names usually start with lowercase.
A name error occurs if the computer doesn’t recognize a name, e.g. if it was misspelled.
An operator is a symbol that represents some operation on one or two expressions,
e.g. the four basic arithmetic operators.
The range of a set of values is the difference between the maximum and the minimum.
A reserved word cannot be used as a name. Jupyter shows reserved words in green
boldface.
A statement is a command for the computer to do something, e.g. to assign a value or to
import some code.
A string is a verbatim piece of text, surrounded by quotes. Jupyter shows strings in red.
A syntax error occurs if the computer can’t understand the code because it is not in the
expected form, e.g. if a reserved word is used instead of a name or some punctuation is
missing.
A variable is a named storage for values.

Reserved words
● from

● import

Week 2: Having a go at it Part 2
4 Summary 07/06/23

Functions and methods
max(value1, value2, …) returns the maximum of the given values.
column.max() returns the maximum value in the column.
min(value1, value2, …) returns the minimum of the given values.
column.min() returns the minimum value in the column.
column.mean() returns the mean of the values in the column.
column.median() returns the median of the values in the column.
column.sum() returns the total of the values in the column.
dataFrame.sort_values(columnName) takes a string with a column’s name and returns a
new dataframe, in which rows are sorted in ascending order according to the values in the
given column.
read_excel(fileName) takes a string with an Excel file name, reads the file, and returns a
dataframe representing the table in the file.

Week 2: Having a go at it Part 2
4 Summary 07/06/23

Week 2: Having a go at it Part 2
4 Summary 07/06/23

Week 3: Cleaning up our act

Part 1
Introduction
Welcome to Week 3.
Please note: in the following video, where reference is made to a study ‘week’, this
corresponds to Weeks 3 and 4 of this course.

Video content is not available in this format.

In Week 1 and 2 you worked on a dataset that combined two different World Health
Organization datasets: population and the number of deaths due to tuberculosis.
They could be combined because they share a common attribute: the countries. This
week you will learn the techniques behind the creation of such a combined dataset.

1 Weather data
This week you will be looking at investigating historic weather data.

Week 3: Cleaning up our act Part 1
Introduction 07/06/23

Figure 1

Of course, such data is hugely important for research into the large-scale, long-term shift
in our planet’s weather patterns and average temperatures – climate change. However,
such data is also incredibly useful for more mundane planning purposes. To demonstrate
the learning this week, I, Rob Griffiths, will be using historic weather data to try and plan a
summer holiday in the UK. You’ll use the data too and get a chance to work on your own
project at the end of the week.
The dataset we’ll use to do this will come from the Weather Underground, which creates
weather forecasts from data sent to them by a worldwide network of over 100,000 weather
enthusiasts who have personal weather stations on their house or in their garden.
In addition to creating weather forecasts from that data, the Weather Underground also
keeps that data as historic weather records allowing members of the public to download
weather datasets for a particular time period and location. These datasets are
downloaded as CSV files, explained in the next step.
Datasets are rarely ‘clean’ and fit for purpose, so it will be necessary to clean up the data
and ‘mould it’ for your purposes. You will then learn how to visualise data by creating
graphs using the plot() function.

1.1 What is a CSV file?
A CSV file is a plain text file that is used to hold tabular data. The acronym CSV is short for
‘comma-separated values’.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

http://www.wunderground.com/

Figure 2

Take a look at the first few lines of a CSV file that holds the same data as the Excel file
‘WHO POP TB all.xls’ that you encountered in Week 2:

Country,Population (1000s),TB deaths

Afghanistan,30552,13000.0

Albania,3173,20.0

Algeria,39208,5100.0

Andorra,79,0.26

Angola,21472,6900.0

Antigua and Barbuda,90,1.2

Argentina,41446,570.0

Armenia,2977,170.0

Notice that the first line is a row of column names. The subsequent lines are rows of actual
data that correspond to the column names. The row of column names is optional, but it is
helpful in understanding the data in the following lines and making sure the right values
fall in the right place. In this example, the first value on every row must be a string
representing a country’s name, the second value is an integer representing that country’s
population (in 1000s) and the third value is a decimal representing the number of deaths
due to TB. Note that the third value is a decimal (like 0.26 deaths for Andorra) and not an
integer because it is an estimate obtained from statistical processing of collected data.
Note that each value or column name is separated by a comma but actually any character
can be used to separate values in a CSV file, including spaces and tabs etc., hence CSV
can also stand for ‘character-separated values’.
Because CSV files are in plain-text it makes the data easy to import into any spreadsheet
program, database or pandas dataframe.
Before anything can be done with a CSV file with pandas, the following import statement
must be executed:

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

In []:

from pandas import *

As you learned in Week 2, the import statement loads into memory all the code in the
pandas module.
To read a CSV file into a dataframe, the pandas function read_csv() needs to be called.
In []:

df = read_csv('WHO POP TB all.csv')

The above code creates a dataframe from the data in the file WHO POP TB all.csv and
assigns it to the variable df. This is the simplest usage of the read_csv() function, just
using a single argument, a string that holds the name of the CSV file.
However the function can take many additional arguments (some of which you’ll use
later), which determine how the file is to be read.
In the next step, find out about dataframes and the ‘dot’ notation.

1.2 Dataframes and the ‘dot’ notation
In Week 2 you learned that dataframes have methods, which are like functions, that can
only be called in the context of a dataframe.
For example, because the TB deaths dataframe df has a column named ‘Country’,
the sort_values() method can be called like this:
In []:

df.sort_values('Country')

Because there is variable name, followed by a dot, followed by the method, this is
called dot notation. Methods are said to be a property of a dataframe. In addition to
methods, dataframes have another property – attributes.

Figure 3

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

Attributes
A dataframe attribute is like a variable that can only be accessed in the context of a
dataframe. One such attribute is columns which holds a dataframe’s column names.
So the expression df.columns evaluates to the value of the columns attribute inside the
dataframe df. The following code will get and display the names of the columns in the
dataframe df:

In []:

df.columns

Out[]:

Index(['Country', 'Population (1000s)', 'TB deaths'],

dtype='object')

1.3 Getting and displaying dataframe rows
Dataframes can have hundreds or thousands of rows, so it is not practical to display a
whole dataframe.
However, there are a number of dataframe attributes and methods that allow you to get
and display either a single row or a number of rows at a time. Three of the most useful
methods are: iloc(), head() and tail(). Note that to distinguish methods and attributes,
we write () after a method’s name.

Figure 4

The iloc attribute
A dataframe has a default integer index for its rows, which starts at 0 (zero). You can get
and display any single row in a dataframe by using theiloc attribute with the index of the

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

row you want to access as its argument. For example, the following code will get and
display the first row of data in the dataframe df, which is at index 0:
In []:

df.iloc[0]

Out[]:

Country Afghanistan

Population (1000s) 30552

TB deaths 13000

Name: 0, dtype: object

Similarly, the following code will get and display the third row of data in the dataframe df,
which is at index 2:
In []:

df.iloc[2]

Out[]:

Country Algeria

Population (1000s) 39208

TB deaths 5100.0

Name: 0, dtype: object

The head() method
The first few rows of a dataframe can be printed out with the head() method.
You can tell head() is a method, rather than an attribute such as columns, because of the
parentheses (round brackets) after the property name.
If you don’t give any argument, i.e. don’t put any number within those parentheses, the
default behaviour is to return the first five rows of the dataframe. If you give an argument,
it will print that number of rows (starting from the row indexed by 0).
For example, executing the following code will get and display the first five rows in the
dataframe df.
In []:

df.head()

Out[]:

Country Population (1000s) TB deaths

0 Afghanistan 30552 13000.00

1 Albania 3173 20.00

2 Algeria 39208 5100.00

3 Andorra 79 0.26

4 Angola 21472 6900.00

And, executing the following code will get and display the first seven rows in the
dataframe df.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

In []:

df.head(7)

Out[]:

Country Population (1000s) TB deaths

0 Afghanistan 30552 13000.00

1 Albania 3173 20.00

2 Algeria 39208 5100.00

3 Andorra 79 0.26

4 Angola 21472 6900.00

5 Antigua and Barbuda 90 1.20

6 Argentina 41446 570.00

The tail() method
The tail() method is similar to the head() method.
If no argument is given, the last five rows of the dataframe are returned, otherwise the
number of rows returned is dependent on the argument, just like for the head() method.
In []:

df.tail()

Out[]:

Country Population (1000s) TB deaths

189 Venezuela (Bolivarian Republic of) 30405 480

190 Viet Nam 91680 17000

191 Yemen 24407 990

192 Zambia 14539 3600

193 Zimbabwe 14150 5700

1.4 Getting and displaying dataframe columns
You learned in Week 2 that you can get and display a single column of a dataframe by
putting the name of the column (in quotes) within square brackets immediately after the
dataframe’s name.
For example, like this:
In []:

df['TB deaths']

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

You then get output like this:
Out[]:

0 13000.00

1 20.00

2 5100.00

3 0.26

4 6900.00

5 1.20

6 570.00

...

Notice that although there is an index, there is no column heading. This is because what is
returned is not a new dataframe with a single column but an example of the Series data
type.

Figure 5

Each column in a dataframe is an example of a series
The Series data type is a collection of values with an integer index that starts from zero. In
addition, the Series data type has many of the same methods and attributes as
the DataFrame data type, so you can still execute code like:
In []:

df['TB deaths'].head()

Out[]:

0 13000.00

1 20.00

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

2 5100.00

3 0.26

4 6900.00

Name: TB deaths, dtype: float64

And
In []:

df['TB deaths'].iloc[2]

Out[]:

5100.00

However, pandas does provide a mechanism for you to get and display one or more
selected columns as a new dataframe in its own right. To do this you need to use a list. A
list in Python consists of one or more items separated by commas and enclosed within
square brackets, for example ['Country'] or ['Country', 'Population (1000s)']. This
list is then put within outer square brackets immediately after the dataframe’s name, like
this:
In []:

df[['Country']].head()

Out[]:

Country

0 Afghanistan

1 Albania

2 Algeria

3 Andorra

4 Angola

Note that the column is now named. The expression df[['Country']](with two square
brackets) evaluates to a new dataframe (which happens to have a single column) rather
than a series.
To get a new dataframe with multiple columns you just need to put more column names in
the list, like this:
In []:

df[['Country', 'Population (1000s)']].head()

Out[]:

Country Population (1000s)

0 Afghanistan 30552

1 Albania 3173

2 Algeria 39208

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

3 Andorra 79

4 Angola 21472

The code has returned a new dataframe with just the 'Country' and 'Population
(1000s)’ columns.

Exercise 1 Dataframes and CSV files

Now that you’ve learned about CSV files and more about pandas you are ready to
complete Exercise 1 in the exercise notebook 2.
Open the exercise 2 notebook and the data file you used last week WHO POP TB
all.csv and save it in the folder you created in Week 1.
If you’re using Anaconda instead of CoCalc, remember that to open the notebook
you’ll need to navigate to the notebook using Jupyter. Once it’s open, run the
existing code in the notebook before you start the exercise. When you’ve completed
the exercise, save the notebook. If you need a quick reminder of how to use Jupyter
watch again the video in Week 1 Exercise 1.

1.5 Comparison operators
In Expressions,you learned that Python has arithmetic operators: +, /, - and * and that
expressions such as 5 + 2 evaluate to a value (in this case the number 7).

Figure 6

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83246&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4

Python also has what are called comparison operators, these are:

== equals

!= not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Expressions involving these operators always evaluate to a Boolean value, that
is True or False. Here are some examples:

2 = = 2 evaluates to True

2 + 2 = = 5 evaluates to False

2 != 1 + 1 evaluates to False

45 < 50 evaluates to True

20 > 30 evaluates to False

100 <= 100 evaluates to True

101 >= 100 evaluates to True

The comparison operators can be used with other types of data, not just numbers. Used
with strings they compare using alphabetical order. For example:
'aardvark' < 'zebra' evaluates to True

In Calculating over columns you saw that when applied to whole columns, the arithmetic
operators did the calculations row by row. Similarly, an expression like df['Country'] >=
'K' will compare the country names, row by row, against the string 'K' and record whether
the result is True or False in a series like this:

0 False

1 False

2 False

3 False

4 False

5 False

...

Name: Country, dtype: bool

If such an expression is put within square brackets immediately after a dataframe’s name,
a new dataframe is obtained with only those rows where the result is True. So:
df[df['Country'] >= 'K']

returns a new dataframe with all the columns of df but with only the rows corresponding to
countries starting with K or a letter later in the alphabet.
As another example, to see the data for countries with over 80 million inhabitants, the
following code will return and display a new dataframe with all the columns of df but with
only the rows where it is True that the value in the 'Population (1000s)' column is greater
than 80000:

In []:

df[df['Population (1000s)'] > 80000]

Out[]:

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83246&targetdoc=Week+2%3A+Having+a+go+at+it+Part+2&targetptr=1.6

Country Population (1000s) TB deaths

13 Bangladesh 156595 80000

23 Brazil 200362 4400

36 China 1393337 41000

53 Egypt 82056 550

58 Ethiopia 94101 30000

65 Germany 82727 300

77 India 1252140 240000

78 Indonesia 249866 64000

85 Japan 127144 2100

109 Mexico 122332 2200

124 Nigeria 173615 160000

128 Pakistan 182143 49000

134 Philippines 98394 27000

141 Russian Federation 142834 17000

185 United States of America 320051 490

190 Viet Nam 91680 17000

Exercise 2 Comparison operators

You are ready to complete Exercise 2 in the Exercise notebook 2.
Remember to run the existing code in the notebook before you start the exercise.
When you’ve completed the exercise, save the notebook.

1.6 Bitwise operators
To build more complicated expressions involving column comparisons, there are two
bitwise operators.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

Figure 7

The & operator means ‘and’ and the | operator (vertical bar, not uppercase letter ‘i’) means
‘or’. So, for example the expression:

(df['Country'] >= 'Latvia') & (df['Country'] <= 'Sweden')

will evaluate to a series containing Boolean values where the values areTrue only if the
equivalent rows in the dataframe contain the countries ‘Latvia’ to ‘Sweden’, inclusive.
However, the following expression which uses | (or) rather than & (and):
(df['Country'] >= 'Latvia') | (df['Country'] <= 'Sweden')

will evaluate to True for all countries, because every country comes alphabetically after
‘Latvia’ (e.g. the ‘UK’) or before 'Sweden' (e.g. ‘Brazil’).
Note the round brackets around each comparison. Without them you will get an error.
The whole expression with multiple comparisons has to be put within df[…] to get a
dataframe with only those rows that match the condition.
As a further example, using different columns, it is relatively easy to find the rows
in df where 'Population (1000s)' is greater than 80000 and where 'TB deaths' are greater
than 10000.
In []:

df[(df['Population (1000s)'] > 80000) & (df['TB deaths'] > 10000)]

Out []:

Country Population (1000s) TB deaths

13 Bangladesh 156595 80000

36 China 1393337 41000

58 Ethiopia 94101 30000

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

77 India 1252140 240000

78 Indonesia 249866 64000

124 Nigeria 173615 160000

128 Pakistan 182143 49000

134 Philippines 98394 27000

141 Russian Federation 142834 17000

190 Viet Nam 91680 17000

These expressions can get long and complicated, making it easy to miss a crucial round
or square bracket. In those cases it is best to break up the expression into small steps.
The previous example could also be written as:
In []:

population = df['Population (1000s)']

deaths = df['TB deaths']

df[(population > 80000) & (deaths > 10000)]

Exercise 3 Bitwise operators

Complete Exercise 3 in the Exercise notebook 2.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

1 Weather data
This week you will be looking at investigating historic weather data.

Figure 1

Of course, such data is hugely important for research into the large-scale, long-term shift
in our planet’s weather patterns and average temperatures – climate change. However,
such data is also incredibly useful for more mundane planning purposes. To demonstrate
the learning this week, I, Rob Griffiths, will be using historic weather data to try and plan a
summer holiday in the UK. You’ll use the data too and get a chance to work on your own
project at the end of the week.
The dataset we’ll use to do this will come from the Weather Underground, which creates
weather forecasts from data sent to them by a worldwide network of over 100,000 weather
enthusiasts who have personal weather stations on their house or in their garden.
In addition to creating weather forecasts from that data, the Weather Underground also
keeps that data as historic weather records allowing members of the public to download
weather datasets for a particular time period and location. These datasets are
downloaded as CSV files, explained in the next step.
Datasets are rarely ‘clean’ and fit for purpose, so it will be necessary to clean up the data
and ‘mould it’ for your purposes. You will then learn how to visualise data by creating
graphs using the plot() function.

1.1 What is a CSV file?
A CSV file is a plain text file that is used to hold tabular data. The acronym CSV is short for
‘comma-separated values’.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

http://www.wunderground.com/

Figure 2

Take a look at the first few lines of a CSV file that holds the same data as the Excel file
‘WHO POP TB all.xls’ that you encountered in Week 2:

Country,Population (1000s),TB deaths

Afghanistan,30552,13000.0

Albania,3173,20.0

Algeria,39208,5100.0

Andorra,79,0.26

Angola,21472,6900.0

Antigua and Barbuda,90,1.2

Argentina,41446,570.0

Armenia,2977,170.0

Notice that the first line is a row of column names. The subsequent lines are rows of actual
data that correspond to the column names. The row of column names is optional, but it is
helpful in understanding the data in the following lines and making sure the right values
fall in the right place. In this example, the first value on every row must be a string
representing a country’s name, the second value is an integer representing that country’s
population (in 1000s) and the third value is a decimal representing the number of deaths
due to TB. Note that the third value is a decimal (like 0.26 deaths for Andorra) and not an
integer because it is an estimate obtained from statistical processing of collected data.
Note that each value or column name is separated by a comma but actually any character
can be used to separate values in a CSV file, including spaces and tabs etc., hence CSV
can also stand for ‘character-separated values’.
Because CSV files are in plain-text it makes the data easy to import into any spreadsheet
program, database or pandas dataframe.
Before anything can be done with a CSV file with pandas, the following import statement
must be executed:

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

In []:

from pandas import *

As you learned in Week 2, the import statement loads into memory all the code in the
pandas module.
To read a CSV file into a dataframe, the pandas function read_csv() needs to be called.
In []:

df = read_csv('WHO POP TB all.csv')

The above code creates a dataframe from the data in the file WHO POP TB all.csv and
assigns it to the variable df. This is the simplest usage of the read_csv() function, just
using a single argument, a string that holds the name of the CSV file.
However the function can take many additional arguments (some of which you’ll use
later), which determine how the file is to be read.
In the next step, find out about dataframes and the ‘dot’ notation.

1.2 Dataframes and the ‘dot’ notation
In Week 2 you learned that dataframes have methods, which are like functions, that can
only be called in the context of a dataframe.
For example, because the TB deaths dataframe df has a column named ‘Country’,
the sort_values() method can be called like this:
In []:

df.sort_values('Country')

Because there is variable name, followed by a dot, followed by the method, this is
called dot notation. Methods are said to be a property of a dataframe. In addition to
methods, dataframes have another property – attributes.

Figure 3

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

Attributes
A dataframe attribute is like a variable that can only be accessed in the context of a
dataframe. One such attribute is columns which holds a dataframe’s column names.
So the expression df.columns evaluates to the value of the columns attribute inside the
dataframe df. The following code will get and display the names of the columns in the
dataframe df:

In []:

df.columns

Out[]:

Index(['Country', 'Population (1000s)', 'TB deaths'],

dtype='object')

1.3 Getting and displaying dataframe rows
Dataframes can have hundreds or thousands of rows, so it is not practical to display a
whole dataframe.
However, there are a number of dataframe attributes and methods that allow you to get
and display either a single row or a number of rows at a time. Three of the most useful
methods are: iloc(), head() and tail(). Note that to distinguish methods and attributes,
we write () after a method’s name.

Figure 4

The iloc attribute
A dataframe has a default integer index for its rows, which starts at 0 (zero). You can get
and display any single row in a dataframe by using theiloc attribute with the index of the

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

row you want to access as its argument. For example, the following code will get and
display the first row of data in the dataframe df, which is at index 0:
In []:

df.iloc[0]

Out[]:

Country Afghanistan

Population (1000s) 30552

TB deaths 13000

Name: 0, dtype: object

Similarly, the following code will get and display the third row of data in the dataframe df,
which is at index 2:
In []:

df.iloc[2]

Out[]:

Country Algeria

Population (1000s) 39208

TB deaths 5100.0

Name: 0, dtype: object

The head() method
The first few rows of a dataframe can be printed out with the head() method.
You can tell head() is a method, rather than an attribute such as columns, because of the
parentheses (round brackets) after the property name.
If you don’t give any argument, i.e. don’t put any number within those parentheses, the
default behaviour is to return the first five rows of the dataframe. If you give an argument,
it will print that number of rows (starting from the row indexed by 0).
For example, executing the following code will get and display the first five rows in the
dataframe df.
In []:

df.head()

Out[]:

Country Population (1000s) TB deaths

0 Afghanistan 30552 13000.00

1 Albania 3173 20.00

2 Algeria 39208 5100.00

3 Andorra 79 0.26

4 Angola 21472 6900.00

And, executing the following code will get and display the first seven rows in the
dataframe df.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

In []:

df.head(7)

Out[]:

Country Population (1000s) TB deaths

0 Afghanistan 30552 13000.00

1 Albania 3173 20.00

2 Algeria 39208 5100.00

3 Andorra 79 0.26

4 Angola 21472 6900.00

5 Antigua and Barbuda 90 1.20

6 Argentina 41446 570.00

The tail() method
The tail() method is similar to the head() method.
If no argument is given, the last five rows of the dataframe are returned, otherwise the
number of rows returned is dependent on the argument, just like for the head() method.
In []:

df.tail()

Out[]:

Country Population (1000s) TB deaths

189 Venezuela (Bolivarian Republic of) 30405 480

190 Viet Nam 91680 17000

191 Yemen 24407 990

192 Zambia 14539 3600

193 Zimbabwe 14150 5700

1.4 Getting and displaying dataframe columns
You learned in Week 2 that you can get and display a single column of a dataframe by
putting the name of the column (in quotes) within square brackets immediately after the
dataframe’s name.
For example, like this:
In []:

df['TB deaths']

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

You then get output like this:
Out[]:

0 13000.00

1 20.00

2 5100.00

3 0.26

4 6900.00

5 1.20

6 570.00

...

Notice that although there is an index, there is no column heading. This is because what is
returned is not a new dataframe with a single column but an example of the Series data
type.

Figure 5

Each column in a dataframe is an example of a series
The Series data type is a collection of values with an integer index that starts from zero. In
addition, the Series data type has many of the same methods and attributes as
the DataFrame data type, so you can still execute code like:
In []:

df['TB deaths'].head()

Out[]:

0 13000.00

1 20.00

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

2 5100.00

3 0.26

4 6900.00

Name: TB deaths, dtype: float64

And
In []:

df['TB deaths'].iloc[2]

Out[]:

5100.00

However, pandas does provide a mechanism for you to get and display one or more
selected columns as a new dataframe in its own right. To do this you need to use a list. A
list in Python consists of one or more items separated by commas and enclosed within
square brackets, for example ['Country'] or ['Country', 'Population (1000s)']. This
list is then put within outer square brackets immediately after the dataframe’s name, like
this:
In []:

df[['Country']].head()

Out[]:

Country

0 Afghanistan

1 Albania

2 Algeria

3 Andorra

4 Angola

Note that the column is now named. The expression df[['Country']](with two square
brackets) evaluates to a new dataframe (which happens to have a single column) rather
than a series.
To get a new dataframe with multiple columns you just need to put more column names in
the list, like this:
In []:

df[['Country', 'Population (1000s)']].head()

Out[]:

Country Population (1000s)

0 Afghanistan 30552

1 Albania 3173

2 Algeria 39208

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

3 Andorra 79

4 Angola 21472

The code has returned a new dataframe with just the 'Country' and 'Population
(1000s)’ columns.

Exercise 1 Dataframes and CSV files

Now that you’ve learned about CSV files and more about pandas you are ready to
complete Exercise 1 in the exercise notebook 2.
Open the exercise 2 notebook and the data file you used last week WHO POP TB
all.csv and save it in the folder you created in Week 1.
If you’re using Anaconda instead of CoCalc, remember that to open the notebook
you’ll need to navigate to the notebook using Jupyter. Once it’s open, run the
existing code in the notebook before you start the exercise. When you’ve completed
the exercise, save the notebook. If you need a quick reminder of how to use Jupyter
watch again the video in Week 1 Exercise 1.

1.5 Comparison operators
In Expressions, you learned that Python has arithmetic operators: +, /, - and * and that
expressions such as 5 + 2 evaluate to a value (in this case the number 7).

Figure 6

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83246&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4
https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83246&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.5

Python also has what are called comparison operators, these are:

== equals

!= not equal

< less than

> greater than

<= less than or equal to

>= greater than or equal to

Expressions involving these operators always evaluate to a Boolean value, that
is True or False. Here are some examples:

2 = = 2 evaluates to True

2 + 2 = = 5 evaluates to False

2 != 1 + 1 evaluates to False

45 < 50 evaluates to True

20 > 30 evaluates to False

100 <= 100 evaluates to True

101 >= 100 evaluates to True

The comparison operators can be used with other types of data, not just numbers. Used
with strings they compare using alphabetical order. For example:
'aardvark' < 'zebra' evaluates to True

In Calculating over columns you saw that when applied to whole columns, the arithmetic
operators did the calculations row by row. Similarly, an expression like df['Country'] >=
'K' will compare the country names, row by row, against the string 'K' and record whether
the result is True or False in a series like this:

0 False

1 False

2 False

3 False

4 False

5 False

...

Name: Country, dtype: bool

If such an expression is put within square brackets immediately after a dataframe’s name,
a new dataframe is obtained with only those rows where the result is True. So:
df[df['Country'] >= 'K']

returns a new dataframe with all the columns of df but with only the rows corresponding to
countries starting with K or a letter later in the alphabet.
As another example, to see the data for countries with over 80 million inhabitants, the
following code will return and display a new dataframe with all the columns of df but with
only the rows where it is True that the value in the 'Population (1000s)' column is greater
than 80000:

In []:

df[df['Population (1000s)'] > 80000]

Out[]:

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83246&targetdoc=Week+2%3A+Having+a+go+at+it+Part+2&targetptr=1.6

Country Population (1000s) TB deaths

13 Bangladesh 156595 80000

23 Brazil 200362 4400

36 China 1393337 41000

53 Egypt 82056 550

58 Ethiopia 94101 30000

65 Germany 82727 300

77 India 1252140 240000

78 Indonesia 249866 64000

85 Japan 127144 2100

109 Mexico 122332 2200

124 Nigeria 173615 160000

128 Pakistan 182143 49000

134 Philippines 98394 27000

141 Russian Federation 142834 17000

185 United States of America 320051 490

190 Viet Nam 91680 17000

Exercise 2 Comparison operators

You are ready to complete Exercise 2 in the Exercise notebook 2.
Remember to run the existing code in the notebook before you start the exercise.
When you’ve completed the exercise, save the notebook.

1.6 Bitwise operators
To build more complicated expressions involving column comparisons, there are two
bitwise operators.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

Figure 7

The & operator means ‘and’ and the | operator (vertical bar, not uppercase letter ‘i’) means
‘or’. So, for example the expression:

(df['Country'] >= 'Latvia') & (df['Country'] <= 'Sweden')

will evaluate to a series containing Boolean values where the values areTrue only if the
equivalent rows in the dataframe contain the countries ‘Latvia’ to ‘Sweden’, inclusive.
However, the following expression which uses | (or) rather than & (and):
(df['Country'] >= 'Latvia') | (df['Country'] <= 'Sweden')

will evaluate to True for all countries, because every country comes alphabetically after
‘Latvia’ (e.g. the ‘UK’) or before 'Sweden' (e.g. ‘Brazil’).
Note the round brackets around each comparison. Without them you will get an error.
The whole expression with multiple comparisons has to be put within df[…] to get a
dataframe with only those rows that match the condition.
As a further example, using different columns, it is relatively easy to find the rows
in df where 'Population (1000s)' is greater than 80000 and where 'TB deaths' are greater
than 10000.
In []:

df[(df['Population (1000s)'] > 80000) & (df['TB deaths'] > 10000)]

Out []:

Country Population (1000s) TB deaths

13 Bangladesh 156595 80000

36 China 1393337 41000

58 Ethiopia 94101 30000

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

77 India 1252140 240000

78 Indonesia 249866 64000

124 Nigeria 173615 160000

128 Pakistan 182143 49000

134 Philippines 98394 27000

141 Russian Federation 142834 17000

190 Viet Nam 91680 17000

These expressions can get long and complicated, making it easy to miss a crucial round
or square bracket. In those cases it is best to break up the expression into small steps.
The previous example could also be written as:
In []:

population = df['Population (1000s)']

deaths = df['TB deaths']

df[(population > 80000) & (deaths > 10000)]

Exercise 3 Bitwise operators

Complete Exercise 3 in the Exercise notebook 2.

Week 3: Cleaning up our act Part 1
1 Weather data 07/06/23

2 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 3 practice quiz
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 3: Cleaning up our act Part 1
2 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78779

3 Summary
This week looked at the importance of dataframes and the ‘dot’ notation, and the various
dataframe methods. It also covered:

● CSV files
● Comparison operators
● Bitwise operators.

Next week looks at weather data and how to use the data to get answers to your
questions.

Week 3: Cleaning up our act Part 1
3 Summary 07/06/23

Week 3: Cleaning up our act Part 1
3 Summary 07/06/23

Week 4: Cleaning up our act

Part 2
1 Loading the weather data
You have learned some more about Python and the pandas module and tried it out on a
fairly small dataset. You are now ready to explore a dataset from the Weather
Underground.

Figure 1

Open the file London_2014.csv and save it in the disk folder or CoCalc project you
created in Week 1.
Do not be tempted to open this file with Excel as this application will attempt to localise
the data in the file, i.e. use your country’s local data formats, which will make much of
what follows rather incomprehensible! You can if you like open the file with a simple text
editor, but do not make any changes.
The CSV file can be loaded into a dataframe by executing the following code:
In []:

from pandas import *

london = read_csv('London_2014.csv')

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

london.head()

Out[]:

Figure 2

Note that the right hand side of the table has been cropped to fit on the page.
In the next section, you’ll find out how to remove rogue spaces.

Important notice for learners outside of the EU
The Weather Underground automatically localises data based on from what country it
detects you are accessing the web site. So, for example, if you are accessing the website
from the USA wind speeds will be in MPH rather than km/h and temperatures in
Fahrenheit rather than Celsius.
In order to change the settings so that the data is in European format you will need to click
on the ‘head and shoulders’ icon on the top right of the Weather Underground web page
and create a free Weather Underground account.
Once you have created an account, click on the ‘cog’ icon on the top right of the web
page. Then:

● click on the C button to select Celsius
● click on ‘More Settings’ and select Units: metric
● click on ‘Save My Preferences’.

Now, when you download the data, temperatures will be in Celsius and wind speeds in
km/h etc.

1.1 Removing rogue spaces
One of the problems often encountered with CSV files is rogue spaces before or after data
values or column names.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 3

You learned earlier, in What is a CSV file? , that each value or column name is separated
by a comma. However, if you opened ‘London_2014.csv’ in a text editor, you would see
that in the row of column names sometimes there are spaces after a comma:

GMT,Max TemperatureC,Mean TemperatureC,Min TemperatureC,Dew PointC,MeanDew
PointC,Min DewpointC,Max Humidity, Mean Humidity, Min Humidity, Max Sea Level
PressurehPa, Mean Sea Level PressurehPa, Min Sea Level PressurehPa, Max
VisibilityKm, Mean VisibilityKm, Min VisibilitykM, Max Wind SpeedKm/h, Mean Wind
SpeedKm/h, Max Gust SpeedKm/h,Precipitationmm, CloudCover, Events,WindDirDe-
grees

For example, there is a space after the comma between Max Humidity and Mean Humidity.
This means that when read_csv() reads the row of column names it will interpret a space
after a comma as part of the next column name. So, for example, the column name after
'Max Humidity' will be interpreted as ' Mean Humidity' rather than what was intended,
which is 'Mean Humidity'. The ramification of this is that code such as:
london[['Mean Humidity']]

will cause a key error (see Selecting a column), as the column name is confusingly ' Mean
Humidity '.
This can easily be rectified by adding another argument to the read_csv() function:
skipinitialspace=True

which will tell read_csv() to ignore any spaces after a comma:
In []:

london = read_csv('London_2014.csv', skipinitialspace=True)

The rogue spaces will no longer be in the dataframe and we can write code such as:
In []:

london[['Mean Humidity']].head()

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83247&targetdoc=Week+2%3A+Having+a+go+at+it+Part+2&targetptr=1.3

Out[]:

Mean Humidity

0 86

1 81

2 76

3 85

4 88

Note that a skipinitialspace=True argument won’t remove a trailing space at the end of
a column name.
Next, find out about extra characters and how to remove them.

1.2 Removing extra characters
If you opened London_2014.csv in a text editor once again and looked at the last column
name you would see that the name is'WindDirDegrees
'.
What has happened here is that when the dataset was exported from the Weather
Underground website an html line break (
) was added after the line of column headers which read_csv() has interpreted as the end
part of the final column’s name.

Figure 4

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

In fact, the problem is worse than this, let’s look at some values in the final column:
In []:

london[['WindDirDegrees
']].head()

Out[]:

WindDirDegrees

0 186

1 214

2 219

3 211

4 199

It’s seems there is an html line break at the end of each line. If I opened ‘London_2014.
csv’ in a text editor and looked at the ends of all lines in the file this would be confirmed.
Once again I’m not going to edit the CSV file but rather fix the problem in the dataframe.
To change 'WindDirDegrees
' to 'WindDirDegrees' all I have to do is use the rename() method as follows:
In []:

london = london.rename(columns={'WindDirDegrees
':'WindDirDegrees'})

Don’t worry about the syntax of the argument for rename() , just use this example as a
template for whenever you need to change the name of a column.
Now I need to get rid of those pesky
html line breaks from the ends of the values in the 'WindDirDegrees' column, so that they
become something sensible. I can do that using the string method rstrip() which is used
to remove characters from the end or ‘rear’ of a string, just like this:
In []:

london['WindDirDegrees'] = london['WindDirDegrees'].str.rstrip('
')

Again don’t worry too much about the syntax of the code and simply use it as a template
for whenever you need to process a whole column of values stripping characters from the
end of each string value.
Let’s display the first few rows of the ' WindDirDegrees ' to confirm the changes:
In []:

london[['WindDirDegrees']].head()

Out[]:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

WindDirDegrees

0 186

1 214

2 219

3 211

4 199

1.3 Missing values
As you heard in the video at the start of the week, missing values (also called null values)
are one of the reasons to clean data.

Figure 5

Finding missing values in a particular column can be done with the column method
isnull() , like this:
In []:

london['Events'].isnull()

The above code returns a series of Boolean values, where True indicates that the
corresponding row in the 'Events' column is missing a value and False indicates the
presence of a value. Here are the last few rows from the series:

...

360 False

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

361 True

362 True

363 True

364 False

Name: Events, dtype: bool

If, as you did with the comparison expressions, you put this code within square brackets
after the dataframe’s name, it will return a new dataframe consisting of all the rows without
recorded events (rain, fog, thunderstorm, etc.):
In []:

london[london['Events'].isnull()]

As you will see in Exercise 4 of the exercise notebook, this will return a new dataframe
with 114 rows, showing that more than one in three days had no particular event recorded.
If you scroll the table to the right, you will see that all values in the 'Events' column are
marked NaN , which stands for ‘Not a Number’, but is also used to mark non-numeric
missing values, like in this case (events are strings, not numbers).
Once you know how much and where data is missing, you have to decide what to do:
ignore those rows? Replace with a fixed value? Replace with a computed value, like the
mean?
In this case, only the first two options are possible. The method call london.dropna() will
drop (remove) all rows that have a missing (non-available) value somewhere, returning a
new dataframe. This will therefore also remove rows that have missing values in other
columns.
The column method fillna() will replace all non-available values with the value given as
argument. For this case, each NaN could be replaced by the empty string.
In []:

london['Events'] = london['Events'].fillna('')

london[london['Events'].isnull()]

The second line above will now show an empty dataframe, because there are no longer
missing values in the events column.
As a final note on missing values, pandas ignores them when computing numeric
statistics, i.e. you don’t have to remove missing values before applying sum(), median()
and other similar methods.
Learn about checking data types of each column in the next section.

1.4 Changing the value types of columns
The function read_csv() may, for many reasons, wrongly interpret the data type of the
values in a column, so when cleaning data it’s important to check the data types of each
column are what is expected, and if necessary change them.
The data type of every column in a dataframe can be determined by looking at the
dataframe’s dtypes attribute, like this:
In []:

london.dtypes

Out[]:

GMT object

Max TemperatureC int64

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Mean TemperatureC int64

Min TemperatureC int64

Dew PointC int64

MeanDew PointC int64

Min DewpointC int64

Max Humidity int64

Mean Humidity int64

Min Humidity int64

Max Sea Level PressurehPa int64

Mean Sea Level PressurehPa int64

Min Sea Level PressurehPa int64

Max VisibilityKm int64

Mean VisibilityKm int64

Min VisibilitykM int64

Max Wind SpeedKm/h int64

Mean Wind SpeedKm/h int64

Max Gust SpeedKm/h float64

Precipitationmm float64

CloudCover float64

Events object

WindDirDegrees object

dtype: object

In the above output, you can see the column names to the left and to the right the data
types of the values in those columns.

● int64 is the pandas data type for whole numbers such as 55 or 2356
● float64 is the pandas data type for decimal numbers such as 55.25 or 2356.00
● object is the pandas data type for strings such as 'hello world' or 'rain'

Most of the column data types seem fine, however two are of concern, 'GMT' and
'WindDirDegrees' , both of which are of type object. Let’s take a look at
'WindDirDegrees' first.

Changing the data type of the 'WindDirDegrees' column
The read_csv() method has interpreted the values in the 'WindDirDegrees' column as
strings (type object). This is because in the CSV file the values in that column had all
been suffixed with that html line break string
so read_csv() had no alternative but to interpret the values as strings.
The values in the 'WindDirDegrees' column are meant to represent wind direction in
terms of degrees from true north (360) and meteorologists always define the wind
direction as the direction the wind is coming from. So if you stand so that the wind is
blowing directly into your face, the direction you are facing names the wind, so a westerly
wind is reported as 270 degrees. The compass rose shown below should make this
clearer:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 6 A compass rose

We need to be able to make queries such as ‘Get and display the rows where the wind
direction is greater than 350 degrees’. To do this we need to change the data type of the
‘WindDirDegrees’ column from object to type int64. We can do that by using the astype()
method like this:
In []:

london['WindDirDegrees'] = london['WindDirDegrees'].astype('int64')

Now all the values in the 'WindDirDegrees' column are of type int64 and we can make
our query:
In []:

london[london['WindDirDegrees'] > 350]

Out[]:

Figure 7

Note that the 'WindDirDegrees' column is on the far right of the table and the right of the
table has been cropped to fit on the page.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Changing the data type of the ‘GMT’ column
Recall that I noted that the 'GMT' column was of type object , the type pandas uses for
strings.
The 'GMT' column is supposed to represent dates. It would be helpful for the date values
not to be strings to make it possible to make queries of the data such as ‘Return the row
where the date is 4 June 2014’.
Pandas has a function called to_datetime() which can convert a column of object
(string) values such as those in the 'GMT' column into values of a proper date type called
datetime64, just like this:
In []:

london['GMT'] = to_datetime(london['GMT'])

#Then display the types of all the columns again so we

#can check the changes have been made.

london.dtypes

Out[]:

GMT datetime64[ns]

Max TemperatureC int64

Mean TemperatureC int64

Min TemperatureC int64

Dew PointC int64

MeanDew PointC int64

Min DewpointC int64

Max Humidity int64

Mean Humidity int64

Min Humidity int64

Max Sea Level PressurehPa int64

Mean Sea Level PressurehPa int64

Min Sea Level PressurehPa int64

Max VisibilityKm int64

Mean VisibilityKm int64

Min VisibilitykM int64

Max Wind SpeedKm/h int64

Mean Wind SpeedKm/h int64

Max Gust SpeedKm/h float64

Precipitationmm float64

CloudCover float64

Events object

WindDirDegrees int64

dtype: object

From the above output, we can confirm that the 'WindDirDegrees' column type has been
changed from object to int64 and that the 'GMT' column type has been changed from
object to datetime64.
To make queries such as ‘Return the row where the date is 4 June 2014’ you’ll need to be
able to create a datetime64 value to represent June 4 2014. It cannot be:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

london[london['GMT'] == '2014-1-3']

because ‘2014-1-3’ is a string and the values in the ‘GMT’ column are of type datetime64.
Instead you must create a datetime64 value using thedatetime() function like this:
datetime(2014, 6, 4)

In the function call above, the first integer argument is the year, the second the month and
the third the day.
First import the `datetime()` function from the similarly named `datetime` package by
running the following line of code:
In []:

from datetime import datetime

Let’s try the function out by executing the code to ‘Return the row where the date is 4
June 2014’:
In []:

london[london['GMT'] == datetime(2014, 6, 4)]

Out[]:

Figure 8

Note that the right side of the table has been cropped to fit on the page.
You can also now make more complex queries involving dates such as ‘Return all the
rows where the date is between 8 December 2014 and 12 December 2014’, like this:
In []:

c

london[(london['GMT'] >= datetime(2014, 12, 8))

& (london['GMT'] <= datetime(2014, 12, 12))]

Out[]:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 9

Note that the right side of the table has been cropped to fit on the page.

Exercise 4 Display rows from dataframe

Now try Exercise 4 in the Exercise notebook 2.
If you’re using Anaconda instead of CoCalc, remember that to open the notebook
you’ll need to navigate to the notebook using Jupyter.
Once the notebook is open, run the existing code in the notebook before you start
the exercise. When you’ve completed the exercise, save the notebook. If you need
a quick reminder of how to use Jupyter, watch again the video in Week 1 Exercise 1.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83247&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4

2 Every picture tells a story
It can be difficult and confusing to look at a table of rows of numbers and make any
meaningful interpretation especially if there are many rows and columns.
Handily, pandas has a method called plot() which will visualise data for us by producing
a chart.
Before using the plot()method, the following line of code must be executed (once) which
tells Jupyter to display all charts inside this notebook, immediately after each call to
plot():

In []:

%matplotlib inline

To plot ‘Max Wind SpeedKm/h ’, it’s as simple as this code:
In []:

london['Max Wind SpeedKm/h'].plot(grid=True)

Out[]:

Figure 10

The grid=True argument makes the gridlines (the dotted lines in the image above)
appear, which make values easier to read on the chart. The chart comes out a bit small,
so you can make it bigger by giving the plot() method some extra information. The
figsize units are inches.
In []:

london['Max Wind SpeedKm/h'].plot(grid=True, figsize=(10,5))

Out[]:

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 11

That’s better! The argument given to the plot() method, figsize=(10,5) simply tells
plot() that the x-axis should be 10 units wide and the y-axis should be 5 units high. In the
above graph the x-axis (the numbers at the bottom) shows the dataframe’s index, so 0 is 1
January and 50 is 18 February.
The y-axis (the numbers on the side) shows the range of wind speed in kilometres per
hour. It is clear that the windiest day in 2014 was somewhere in mid-February and the
wind reached about 66 kilometers per hour.
By default, the plot() method will try to generate a line, although as you’ll see in a later
week, it can produce other chart types too.

Exercise 5 Every picture tells a story

Now try Exercise 5 in the Exercise notebook 2.
If you’re using Anaconda, remember that to open the notebook you’ll need to
navigate to the notebook using Jupyter.

2.1 Changing a dataframe’s index
We have seen that by default every dataframe has an integer index for its rows which
starts from 0.
The dataframe we’ve been using, london , has an index that goes from 0 to 364. The row
indexed by 0 holds data for the first day of the year and the row indexed by 364 holds data
for the last day of the year. However, the column 'GMT' holds datetime64 values which
would make a more intuitive index.
Changing the index to datetime64 values is as easy as assigning to the dataframe’s index
attribute the contents of the 'GMT' column, like this:
In []:

london.index = london['GMT']

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

#Display the first 2 rows

london.head(2)

Out[]:

Figure 12

Note that the right of the table has been cropped to fit on the page.
Notice that the 'GMT' column still remains and that the index has been labelled to show
that it has been derived from the 'GMT' column.
You can still access a row using the iloc attribute, so to get the first line in the dataframe
you can simply execute:
In []:

london.iloc[0]

Out[]:

GMT 2014-01-01 00:00:00

Max TemperatureC 11

Mean TemperatureC 8

Min TemperatureC 6

Dew PointC 9

MeanDew PointC 7

Min DewpointC 4

Max Humidity 94

Mean Humidity 86

Min Humidity 73

Max Sea Level PressurehPa 1002

Mean Sea Level PressurehPa 993

Min Sea Level PressurehPa 984

Max VisibilityKm 31

Mean VisibilityKm 11

Min VisibilitykM 2

Max Wind SpeedKm/h 40

Mean Wind SpeedKm/h 26

Max Gust SpeedKm/h 66

Precipitationmm 9.91

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

CloudCover 4

Events Rain

WindDirDegrees 186

Name: 2014-01-01 00:00:00, dtype: object

But now you can now also use the datetime64 index to get a row using the dataframe’s
loc attribute, like this:
In []:

london.loc[datetime(2014, 1, 1)]

Out[]:

GMT 2014-01-01 00:00:00

Max TemperatureC 11

Mean TemperatureC 8

Min TemperatureC 6

Dew PointC 9

MeanDew PointC 7

Min DewpointC 4

Max Humidity 94

Mean Humidity 86

Min Humidity 73

Max Sea Level PressurehPa 1002

Mean Sea Level PressurehPa 993

Min Sea Level PressurehPa 984

Max VisibilityKm 31

Mean VisibilityKm 11

Min VisibilitykM 2

Max Wind SpeedKm/h 40

Mean Wind SpeedKm/h 26

Max Gust SpeedKm/h 66

Precipitationmm 9.91

CloudCover 4

Events Rain

WindDirDegrees 186

Name: 2014-01-01 00:00:00, dtype: object

A query such as ‘Return all the rows where the date is between 8 December and 12
December’ which you did before (and can still do) with:
In []:

london[(london['GMT'] >= datetime(2014, 12, 8))

& (london['GMT'] <= datetime(2014, 12, 12))]

can now be done more succinctly like this:
In []:

london.loc[datetime(2014,12,8) : datetime(2014,12,12)]

#The meaning of the above code is get the rows between

#and including the indices datetime(2014,12,8) and

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

#datetime(2014,12,12)

Out[]:

Figure 13

Note that the right of the table has been cropped to fit on the page.
Because the table is in date order, we can be confident that only the rows with dates
between 8 December 2014 and 12 December 2014 (inclusive) will be returned. However if
the table had not been in date order, we would have needed to sort it first, like this:
london = london.sort_index()

Now there is a datetime64 index, let’s plot ' Max Wind SpeedKm/h 'again:
In []:

london['Max Wind SpeedKm/h'].plot(grid=True, figsize=(10,5))

Out[]:

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 14

Now it is much clearer that the worst winds were in mid-February.

Exercise 6 Changing a dataframe’s index

Now try Exercise 6 in the Exercise notebook 2.

2.2 The project
Your project this week is to find out what would have been the best two weeks of weather
for a 2014 vacation in a capital of a BRICS country.

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 15

I’ve written up my analysis of the best two weeks of weather in London, UK, which you can
open in project: 2: Holiday weather.
The structure is very simple: besides the introduction and the conclusions, there is one
section for each step of the analysis – obtaining, cleaning and visualising the data.
Once you’ve worked through my analysis you should open a dataset for just one of the
BRICS capitals: Brasilia, Moscow, Delhi, Beijing or Cape Town. The choice of capital is up
to you. You should then work out the best two weeks, according to the weather, to choose
for a two-week holiday in your chosen capital city.
Download the dataset for your chosen location as follows:

● Right click on the name of your chosen capital city above
● Choose to save the file via ‘Download Linked File As...’ Save the file with its default

name to your downloads folder.
● If necessary, rename the file so that it has a .csv extension.
● Finally, move or copy te file to the disk folder or SageMathCloud by Cocalc project

you created in Week 1.

Once again, do not open the file with Excel , but you could take a look using a text
editor.
In my project, because I’m in London, which is often cold and rainy, I was looking for a two
week period that had relatively high temperatures and little rain. If you choose a capital in
a particularly hot and dry country you will probably be looking for relatively cool weather
and low humidity.
Note that the London file has the dates in a column named ‘GMT’ whereas in the BRICS
files they are in a column named ‘Date’. You will need to change the Python code
accordingly. You should also change the name of the variable, London, according to the
capital you choose.

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

3 This week’s quiz
Now it’s time to complete the Week 4 badge quiz. It is similar to previous quizzes, but this
time instead of answering five questions there will be fifteen.
Week 4 compulsory badge quiz
Remember, this quiz counts towards your badge. If you’re not successful the first time,
you can attempt the quiz again in 24 hours.

Week 4: Cleaning up our act Part 2
3 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78780

4 Summary

Figure 16

This week you have learned how to:

● load a dataset into a dataframe from a CSV file
● clean data
● use the data to get answers to your questions.

Next week you will learn about the techniques behind the creation of a combined dataset.
You are now halfway through the course. The Open University would really appreciate
your feedback and suggestions for future improvement in our optional
end-of-course survey, which you will also have an opportunity to complete at the end of
Week 8. Participation will be completely confidential and we will not pass on your details
to others.

Week 4: Cleaning up our act Part 2
4 Summary 07/06/23

https://www.surveymonkey.co.uk/r/BOCENDlearntocode

4.1 Week 4 glossary
Here is an alphabetical list of the terms introduced this week, for quick look-up.

Programming and data analysis concepts
The bitwise operators & (and) and | (or) are used in pandas to build more complicated
expressions from two comparison expressions (typically involving column comparisons).
A Boolean has one of two possible values: True or False.
A Comma Separated Values (CSV) file is a plain text file that is used to hold tabular data.
A list is a sequence of values, separated by commas, and written within square brackets.
There are six comparison operators that can be used to compare number, string and
date values. Expressions composed of these operators evaluate to True or False. These
operators can also be used to compare every value in a column, row by row, against some
number, string or date value. When used in this manner the operators return a series of
Boolean values.
The ‘dot’ notation is used to access a dataframe’s methods and attributes.
The Series data type is a collection of values with an integer index that starts from zero.
Each column in a dataframe is an example of the Series data type. The Series data type
has many of the same methods as the DataFrame data type.
The object data type is how pandas represents strings.
The datetime64 data type is how pandas represents dates.
The int64 data type is how pandas represents integers (whole numbers).
The float64 data type is how pandas represents floating point numbers (decimals).

Functions and methods
asType(aType) when applied to a dataframe column, the method changes the data type of
each value in that column to the type given by the string aType.
datetime(yyyy, mm, dd) the function takes three arguments, yyyy a four digit integer
representing a year, mm a two digit integer representing a month and dd a two digit integer
representing a day. From these arguments the function creates and returns a value of
datetime64.
dropna() when applied to a dataframe returns a new dataframe without the rows that have
at least one missing value.
head() gets and displays the first five rows of a dataframe. Optionally the method can take
an integer argument to specify how many rows (from and including row 0) to get and
display.
iloc[index] gets and displays the row in the dataframe indicated by the integer argument
index.
isnull() is a series method that checks which rows in that series have a missing value.
fillna(value) is a series method that returns a new series in which all missing values
have been filled with the given value.
plot() when applied to a dataframe column of numeric values, the method displays a
graph of those values. The x-axis shows the dataframe’s index and the y-axis the range of
the column’s values. Before the method is called you first need to execute %matplotlib
inline.
read_csv(csvFile) creates a dataframe from the dataset in the CSV file.
rename(columns={oldName : newName}) renames the column oldName to newName.

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

str.rstrip(suffix) when applied to a dataframe column of string values, the method
removes the argument suffix from the end of each string value in the column.
tail() gets and displays the last five rows of a dataframe. Optionally the method can take
an integer argument to specify how many rows (until and including the last row) to get and
display.
to_datetime(aSeries) when applied to a series, typically a column from a dataframe, this
function returns a new series in which each value in aSeries has been changed to type
datetime64.

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

Week 4: Cleaning up our act

Part 2
1 Loading the weather data
You have learned some more about Python and the pandas module and tried it out on a
fairly small dataset. You are now ready to explore a dataset from the Weather
Underground.

Figure 1

Open the file London_2014.csv and save it in the disk folder or CoCalc project you
created in Week 1.
Do not be tempted to open this file with Excel as this application will attempt to localise
the data in the file, i.e. use your country’s local data formats, which will make much of
what follows rather incomprehensible! You can if you like open the file with a simple text
editor, but do not make any changes.
The CSV file can be loaded into a dataframe by executing the following code:
In []:

from pandas import *

london = read_csv('London_2014.csv')

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

london.head()

Out[]:

Figure 2

Note that the right hand side of the table has been cropped to fit on the page.
In the next section, you’ll find out how to remove rogue spaces.

Important notice for learners outside of the EU
The Weather Underground automatically localises data based on from what country it
detects you are accessing the web site. So, for example, if you are accessing the website
from the USA wind speeds will be in MPH rather than km/h and temperatures in
Fahrenheit rather than Celsius.
In order to change the settings so that the data is in European format you will need to click
on the ‘head and shoulders’ icon on the top right of the Weather Underground web page
and create a free Weather Underground account.
Once you have created an account, click on the ‘cog’ icon on the top right of the web
page. Then:

● click on the C button to select Celsius
● click on ‘More Settings’ and select Units: metric
● click on ‘Save My Preferences’.

Now, when you download the data, temperatures will be in Celsius and wind speeds in
km/h etc.

1.1 Removing rogue spaces
One of the problems often encountered with CSV files is rogue spaces before or after data
values or column names.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 3

You learned earlier, in What is a CSV file? , that each value or column name is separated
by a comma. However, if you opened ‘London_2014.csv’ in a text editor, you would see
that in the row of column names sometimes there are spaces after a comma:

GMT,Max TemperatureC,Mean TemperatureC,Min TemperatureC,Dew PointC,MeanDew
PointC,Min DewpointC,Max Humidity, Mean Humidity, Min Humidity, Max Sea Level
PressurehPa, Mean Sea Level PressurehPa, Min Sea Level PressurehPa, Max
VisibilityKm, Mean VisibilityKm, Min VisibilitykM, Max Wind SpeedKm/h, Mean Wind
SpeedKm/h, Max Gust SpeedKm/h,Precipitationmm, CloudCover, Events,WindDirDe-
grees

For example, there is a space after the comma between Max Humidity and Mean Humidity.
This means that when read_csv() reads the row of column names it will interpret a space
after a comma as part of the next column name. So, for example, the column name after
'Max Humidity' will be interpreted as ' Mean Humidity' rather than what was intended,
which is 'Mean Humidity'. The ramification of this is that code such as:
london[['Mean Humidity']]

will cause a key error (see Selecting a column), as the column name is confusingly ' Mean
Humidity '.
This can easily be rectified by adding another argument to the read_csv() function:
skipinitialspace=True

which will tell read_csv() to ignore any spaces after a comma:
In []:

london = read_csv('London_2014.csv', skipinitialspace=True)

The rogue spaces will no longer be in the dataframe and we can write code such as:
In []:

london[['Mean Humidity']].head()

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83247&targetdoc=Week+2%3A+Having+a+go+at+it+Part+2&targetptr=1.3

Out[]:

Mean Humidity

0 86

1 81

2 76

3 85

4 88

Note that a skipinitialspace=True argument won’t remove a trailing space at the end of
a column name.
Next, find out about extra characters and how to remove them.

1.2 Removing extra characters
If you opened London_2014.csv in a text editor once again and looked at the last column
name you would see that the name is'WindDirDegrees
'.
What has happened here is that when the dataset was exported from the Weather
Underground website an html line break (
) was added after the line of column headers which read_csv() has interpreted as the end
part of the final column’s name.

Figure 4

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

In fact, the problem is worse than this, let’s look at some values in the final column:
In []:

london[['WindDirDegrees
']].head()

Out[]:

WindDirDegrees

0 186

1 214

2 219

3 211

4 199

It’s seems there is an html line break at the end of each line. If I opened ‘London_2014.
csv’ in a text editor and looked at the ends of all lines in the file this would be confirmed.
Once again I’m not going to edit the CSV file but rather fix the problem in the dataframe.
To change 'WindDirDegrees
' to 'WindDirDegrees' all I have to do is use the rename() method as follows:
In []:

london = london.rename(columns={'WindDirDegrees
':'WindDirDegrees'})

Don’t worry about the syntax of the argument for rename() , just use this example as a
template for whenever you need to change the name of a column.
Now I need to get rid of those pesky
html line breaks from the ends of the values in the 'WindDirDegrees' column, so that they
become something sensible. I can do that using the string method rstrip() which is used
to remove characters from the end or ‘rear’ of a string, just like this:
In []:

london['WindDirDegrees'] = london['WindDirDegrees'].str.rstrip('
')

Again don’t worry too much about the syntax of the code and simply use it as a template
for whenever you need to process a whole column of values stripping characters from the
end of each string value.
Let’s display the first few rows of the ' WindDirDegrees ' to confirm the changes:
In []:

london[['WindDirDegrees']].head()

Out[]:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

WindDirDegrees

0 186

1 214

2 219

3 211

4 199

1.3 Missing values
As you heard in the video at the start of the week, missing values (also called null values)
are one of the reasons to clean data.

Figure 5

Finding missing values in a particular column can be done with the column method
isnull() , like this:
In []:

london['Events'].isnull()

The above code returns a series of Boolean values, where True indicates that the
corresponding row in the 'Events' column is missing a value and False indicates the
presence of a value. Here are the last few rows from the series:

...

360 False

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

361 True

362 True

363 True

364 False

Name: Events, dtype: bool

If, as you did with the comparison expressions, you put this code within square brackets
after the dataframe’s name, it will return a new dataframe consisting of all the rows without
recorded events (rain, fog, thunderstorm, etc.):
In []:

london[london['Events'].isnull()]

As you will see in Exercise 4 of the exercise notebook, this will return a new dataframe
with 114 rows, showing that more than one in three days had no particular event recorded.
If you scroll the table to the right, you will see that all values in the 'Events' column are
marked NaN , which stands for ‘Not a Number’, but is also used to mark non-numeric
missing values, like in this case (events are strings, not numbers).
Once you know how much and where data is missing, you have to decide what to do:
ignore those rows? Replace with a fixed value? Replace with a computed value, like the
mean?
In this case, only the first two options are possible. The method call london.dropna() will
drop (remove) all rows that have a missing (non-available) value somewhere, returning a
new dataframe. This will therefore also remove rows that have missing values in other
columns.
The column method fillna() will replace all non-available values with the value given as
argument. For this case, each NaN could be replaced by the empty string.
In []:

london['Events'] = london['Events'].fillna('')

london[london['Events'].isnull()]

The second line above will now show an empty dataframe, because there are no longer
missing values in the events column.
As a final note on missing values, pandas ignores them when computing numeric
statistics, i.e. you don’t have to remove missing values before applying sum(), median()
and other similar methods.
Learn about checking data types of each column in the next section.

1.4 Changing the value types of columns
The function read_csv() may, for many reasons, wrongly interpret the data type of the
values in a column, so when cleaning data it’s important to check the data types of each
column are what is expected, and if necessary change them.
The data type of every column in a dataframe can be determined by looking at the
dataframe’s dtypes attribute, like this:
In []:

london.dtypes

Out[]:

GMT object

Max TemperatureC int64

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Mean TemperatureC int64

Min TemperatureC int64

Dew PointC int64

MeanDew PointC int64

Min DewpointC int64

Max Humidity int64

Mean Humidity int64

Min Humidity int64

Max Sea Level PressurehPa int64

Mean Sea Level PressurehPa int64

Min Sea Level PressurehPa int64

Max VisibilityKm int64

Mean VisibilityKm int64

Min VisibilitykM int64

Max Wind SpeedKm/h int64

Mean Wind SpeedKm/h int64

Max Gust SpeedKm/h float64

Precipitationmm float64

CloudCover float64

Events object

WindDirDegrees object

dtype: object

In the above output, you can see the column names to the left and to the right the data
types of the values in those columns.

● int64 is the pandas data type for whole numbers such as 55 or 2356
● float64 is the pandas data type for decimal numbers such as 55.25 or 2356.00
● object is the pandas data type for strings such as 'hello world' or 'rain'

Most of the column data types seem fine, however two are of concern, 'GMT' and
'WindDirDegrees' , both of which are of type object. Let’s take a look at
'WindDirDegrees' first.

Changing the data type of the 'WindDirDegrees' column
The read_csv() method has interpreted the values in the 'WindDirDegrees' column as
strings (type object). This is because in the CSV file the values in that column had all
been suffixed with that html line break string
so read_csv() had no alternative but to interpret the values as strings.
The values in the 'WindDirDegrees' column are meant to represent wind direction in
terms of degrees from true north (360) and meteorologists always define the wind
direction as the direction the wind is coming from. So if you stand so that the wind is
blowing directly into your face, the direction you are facing names the wind, so a westerly
wind is reported as 270 degrees. The compass rose shown below should make this
clearer:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 6 A compass rose

We need to be able to make queries such as ‘Get and display the rows where the wind
direction is greater than 350 degrees’. To do this we need to change the data type of the
‘WindDirDegrees’ column from object to type int64. We can do that by using the astype()
method like this:
In []:

london['WindDirDegrees'] = london['WindDirDegrees'].astype('int64')

Now all the values in the 'WindDirDegrees' column are of type int64 and we can make
our query:
In []:

london[london['WindDirDegrees'] > 350]

Out[]:

Figure 7

Note that the 'WindDirDegrees' column is on the far right of the table and the right of the
table has been cropped to fit on the page.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Changing the data type of the ‘GMT’ column
Recall that I noted that the 'GMT' column was of type object , the type pandas uses for
strings.
The 'GMT' column is supposed to represent dates. It would be helpful for the date values
not to be strings to make it possible to make queries of the data such as ‘Return the row
where the date is 4 June 2014’.
Pandas has a function called to_datetime() which can convert a column of object
(string) values such as those in the 'GMT' column into values of a proper date type called
datetime64, just like this:
In []:

london['GMT'] = to_datetime(london['GMT'])

#Then display the types of all the columns again so we

#can check the changes have been made.

london.dtypes

Out[]:

GMT datetime64[ns]

Max TemperatureC int64

Mean TemperatureC int64

Min TemperatureC int64

Dew PointC int64

MeanDew PointC int64

Min DewpointC int64

Max Humidity int64

Mean Humidity int64

Min Humidity int64

Max Sea Level PressurehPa int64

Mean Sea Level PressurehPa int64

Min Sea Level PressurehPa int64

Max VisibilityKm int64

Mean VisibilityKm int64

Min VisibilitykM int64

Max Wind SpeedKm/h int64

Mean Wind SpeedKm/h int64

Max Gust SpeedKm/h float64

Precipitationmm float64

CloudCover float64

Events object

WindDirDegrees int64

dtype: object

From the above output, we can confirm that the 'WindDirDegrees' column type has been
changed from object to int64 and that the 'GMT' column type has been changed from
object to datetime64.
To make queries such as ‘Return the row where the date is 4 June 2014’ you’ll need to be
able to create a datetime64 value to represent June 4 2014. It cannot be:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

london[london['GMT'] == '2014-1-3']

because ‘2014-1-3’ is a string and the values in the ‘GMT’ column are of type datetime64.
Instead you must create a datetime64 value using thedatetime() function like this:
datetime(2014, 6, 4)

In the function call above, the first integer argument is the year, the second the month and
the third the day.
First import the `datetime()` function from the similarly named `datetime` package by
running the following line of code:
In []:

from datetime import datetime

Let’s try the function out by executing the code to ‘Return the row where the date is 4
June 2014’:
In []:

london[london['GMT'] == datetime(2014, 6, 4)]

Out[]:

Figure 8

Note that the right side of the table has been cropped to fit on the page.
You can also now make more complex queries involving dates such as ‘Return all the
rows where the date is between 8 December 2014 and 12 December 2014’, like this:
In []:

c

london[(london['GMT'] >= datetime(2014, 12, 8))

& (london['GMT'] <= datetime(2014, 12, 12))]

Out[]:

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

Figure 9

Note that the right side of the table has been cropped to fit on the page.

Exercise 4 Display rows from dataframe

Now try Exercise 4 in the Exercise notebook 2.
If you’re using Anaconda instead of CoCalc, remember that to open the notebook
you’ll need to navigate to the notebook using Jupyter.
Once the notebook is open, run the existing code in the notebook before you start
the exercise. When you’ve completed the exercise, save the notebook. If you need
a quick reminder of how to use Jupyter, watch again the video in Week 1 Exercise 1.

Week 4: Cleaning up our act Part 2
1 Loading the weather data 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83247&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4

2 Every picture tells a story
It can be difficult and confusing to look at a table of rows of numbers and make any
meaningful interpretation especially if there are many rows and columns.
Handily, pandas has a method called plot() which will visualise data for us by producing
a chart.
Before using the plot()method, the following line of code must be executed (once) which
tells Jupyter to display all charts inside this notebook, immediately after each call to
plot():

In []:

%matplotlib inline

To plot ‘Max Wind SpeedKm/h ’, it’s as simple as this code:
In []:

london['Max Wind SpeedKm/h'].plot(grid=True)

Out[]:

Figure 10

The grid=True argument makes the gridlines (the dotted lines in the image above)
appear, which make values easier to read on the chart. The chart comes out a bit small,
so you can make it bigger by giving the plot() method some extra information. The
figsize units are inches.
In []:

london['Max Wind SpeedKm/h'].plot(grid=True, figsize=(10,5))

Out[]:

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 11

That’s better! The argument given to the plot() method, figsize=(10,5) simply tells
plot() that the x-axis should be 10 units wide and the y-axis should be 5 units high. In the
above graph the x-axis (the numbers at the bottom) shows the dataframe’s index, so 0 is 1
January and 50 is 18 February.
The y-axis (the numbers on the side) shows the range of wind speed in kilometres per
hour. It is clear that the windiest day in 2014 was somewhere in mid-February and the
wind reached about 66 kilometers per hour.
By default, the plot() method will try to generate a line, although as you’ll see in a later
week, it can produce other chart types too.

Exercise 5 Every picture tells a story

Now try Exercise 5 in the Exercise notebook 2.
If you’re using Anaconda, remember that to open the notebook you’ll need to
navigate to the notebook using Jupyter.

2.1 Changing a dataframe’s index
We have seen that by default every dataframe has an integer index for its rows which
starts from 0.
The dataframe we’ve been using, london , has an index that goes from 0 to 364. The row
indexed by 0 holds data for the first day of the year and the row indexed by 364 holds data
for the last day of the year. However, the column 'GMT' holds datetime64 values which
would make a more intuitive index.
Changing the index to datetime64 values is as easy as assigning to the dataframe’s index
attribute the contents of the 'GMT' column, like this:
In []:

london.index = london['GMT']

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

#Display the first 2 rows

london.head(2)

Out[]:

Figure 12

Note that the right of the table has been cropped to fit on the page.
Notice that the 'GMT' column still remains and that the index has been labelled to show
that it has been derived from the 'GMT' column.
You can still access a row using the iloc attribute, so to get the first line in the dataframe
you can simply execute:
In []:

london.iloc[0]

Out[]:

GMT 2014-01-01 00:00:00

Max TemperatureC 11

Mean TemperatureC 8

Min TemperatureC 6

Dew PointC 9

MeanDew PointC 7

Min DewpointC 4

Max Humidity 94

Mean Humidity 86

Min Humidity 73

Max Sea Level PressurehPa 1002

Mean Sea Level PressurehPa 993

Min Sea Level PressurehPa 984

Max VisibilityKm 31

Mean VisibilityKm 11

Min VisibilitykM 2

Max Wind SpeedKm/h 40

Mean Wind SpeedKm/h 26

Max Gust SpeedKm/h 66

Precipitationmm 9.91

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

CloudCover 4

Events Rain

WindDirDegrees 186

Name: 2014-01-01 00:00:00, dtype: object

But now you can now also use the datetime64 index to get a row using the dataframe’s
loc attribute, like this:
In []:

london.loc[datetime(2014, 1, 1)]

Out[]:

GMT 2014-01-01 00:00:00

Max TemperatureC 11

Mean TemperatureC 8

Min TemperatureC 6

Dew PointC 9

MeanDew PointC 7

Min DewpointC 4

Max Humidity 94

Mean Humidity 86

Min Humidity 73

Max Sea Level PressurehPa 1002

Mean Sea Level PressurehPa 993

Min Sea Level PressurehPa 984

Max VisibilityKm 31

Mean VisibilityKm 11

Min VisibilitykM 2

Max Wind SpeedKm/h 40

Mean Wind SpeedKm/h 26

Max Gust SpeedKm/h 66

Precipitationmm 9.91

CloudCover 4

Events Rain

WindDirDegrees 186

Name: 2014-01-01 00:00:00, dtype: object

A query such as ‘Return all the rows where the date is between 8 December and 12
December’ which you did before (and can still do) with:
In []:

london[(london['GMT'] >= datetime(2014, 12, 8))

& (london['GMT'] <= datetime(2014, 12, 12))]

can now be done more succinctly like this:
In []:

london.loc[datetime(2014,12,8) : datetime(2014,12,12)]

#The meaning of the above code is get the rows between

#and including the indices datetime(2014,12,8) and

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

#datetime(2014,12,12)

Out[]:

Figure 13

Note that the right of the table has been cropped to fit on the page.
Because the table is in date order, we can be confident that only the rows with dates
between 8 December 2014 and 12 December 2014 (inclusive) will be returned. However if
the table had not been in date order, we would have needed to sort it first, like this:
london = london.sort_index()

Now there is a datetime64 index, let’s plot ' Max Wind SpeedKm/h 'again:
In []:

london['Max Wind SpeedKm/h'].plot(grid=True, figsize=(10,5))

Out[]:

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 14

Now it is much clearer that the worst winds were in mid-February.

Exercise 6 Changing a dataframe’s index

Now try Exercise 6 in the Exercise notebook 2.

2.2 The project
Your project this week is to find out what would have been the best two weeks of weather
for a 2014 vacation in a capital of a BRICS country.

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

Figure 15

I’ve written up my analysis of the best two weeks of weather in London, UK, which you can
open in project: 2: Holiday weather.
The structure is very simple: besides the introduction and the conclusions, there is one
section for each step of the analysis – obtaining, cleaning and visualising the data.
Once you’ve worked through my analysis you should open a dataset for just one of the
BRICS capitals: Brasilia, Moscow, Delhi, Beijing or Cape Town. The choice of capital is up
to you. You should then work out the best two weeks, according to the weather, to choose
for a two-week holiday in your chosen capital city.
Download the dataset for your chosen location as follows:

● Right click on the name of your chosen capital city above
● Choose to save the file via ‘Download Linked File As...’ Save the file with its default

name to your downloads folder.
● If necessary, rename the file so that it has a .csv extension.
● Finally, move or copy te file to the disk folder or SageMathCloud by Cocalc project

you created in Week 1.

Once again, do not open the file with Excel , but you could take a look using a text
editor.
In my project, because I’m in London, which is often cold and rainy, I was looking for a two
week period that had relatively high temperatures and little rain. If you choose a capital in
a particularly hot and dry country you will probably be looking for relatively cool weather
and low humidity.
Note that the London file has the dates in a column named ‘GMT’ whereas in the BRICS
files they are in a column named ‘Date’. You will need to change the Python code
accordingly. You should also change the name of the variable, London, according to the
capital you choose.

Week 4: Cleaning up our act Part 2
2 Every picture tells a story 07/06/23

3 This week’s quiz
Now it’s time to complete the Week 4 badge quiz. It is similar to previous quizzes, but this
time instead of answering five questions there will be fifteen.
Week 4 compulsory badge quiz
Remember, this quiz counts towards your badge. If you’re not successful the first time,
you can attempt the quiz again in 24 hours.

Week 4: Cleaning up our act Part 2
3 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78780

4 Summary

Figure 16

This week you have learned how to:

● load a dataset into a dataframe from a CSV file
● clean data
● use the data to get answers to your questions.

Next week you will learn about the techniques behind the creation of a combined dataset.
You are now halfway through the course. The Open University would really appreciate
your feedback and suggestions for future improvement in our optional
end-of-course survey, which you will also have an opportunity to complete at the end of
Week 8. Participation will be completely confidential and we will not pass on your details
to others.

Week 4: Cleaning up our act Part 2
4 Summary 07/06/23

https://www.surveymonkey.co.uk/r/BOCENDlearntocode

4.1 Week 4 glossary
Here is an alphabetical list of the terms introduced this week, for quick look-up.

Programming and data analysis concepts
The bitwise operators & (and) and | (or) are used in pandas to build more complicated
expressions from two comparison expressions (typically involving column comparisons).
A Boolean has one of two possible values: True or False.
A Comma Separated Values (CSV) file is a plain text file that is used to hold tabular data.
A list is a sequence of values, separated by commas, and written within square brackets.
There are six comparison operators that can be used to compare number, string and
date values. Expressions composed of these operators evaluate to True or False. These
operators can also be used to compare every value in a column, row by row, against some
number, string or date value. When used in this manner the operators return a series of
Boolean values.
The ‘dot’ notation is used to access a dataframe’s methods and attributes.
The Series data type is a collection of values with an integer index that starts from zero.
Each column in a dataframe is an example of the Series data type. The Series data type
has many of the same methods as the DataFrame data type.
The object data type is how pandas represents strings.
The datetime64 data type is how pandas represents dates.
The int64 data type is how pandas represents integers (whole numbers).
The float64 data type is how pandas represents floating point numbers (decimals).

Functions and methods
asType(aType) when applied to a dataframe column, the method changes the data type of
each value in that column to the type given by the string aType.
datetime(yyyy, mm, dd) the function takes three arguments, yyyy a four digit integer
representing a year, mm a two digit integer representing a month and dd a two digit integer
representing a day. From these arguments the function creates and returns a value of
datetime64.
dropna() when applied to a dataframe returns a new dataframe without the rows that have
at least one missing value.
head() gets and displays the first five rows of a dataframe. Optionally the method can take
an integer argument to specify how many rows (from and including row 0) to get and
display.
iloc[index] gets and displays the row in the dataframe indicated by the integer argument
index.
isnull() is a series method that checks which rows in that series have a missing value.
fillna(value) is a series method that returns a new series in which all missing values
have been filled with the given value.
plot() when applied to a dataframe column of numeric values, the method displays a
graph of those values. The x-axis shows the dataframe’s index and the y-axis the range of
the column’s values. Before the method is called you first need to execute %matplotlib
inline.
read_csv(csvFile) creates a dataframe from the dataset in the CSV file.
rename(columns={oldName : newName}) renames the column oldName to newName.

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

str.rstrip(suffix) when applied to a dataframe column of string values, the method
removes the argument suffix from the end of each string value in the column.
tail() gets and displays the last five rows of a dataframe. Optionally the method can take
an integer argument to specify how many rows (until and including the last row) to get and
display.
to_datetime(aSeries) when applied to a series, typically a column from a dataframe, this
function returns a new series in which each value in aSeries has been changed to type
datetime64.

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

Week 4: Cleaning up our act Part 2
4.1 Week 4 glossary 07/06/23

Week 5: Combine and
transform data Part 1
1 Life expectancy project
This week I wish to see (literally, via a chart) if the life expectancy in richer countries tends
to be longer.

Figure 1

Richer countries can afford to spend more on healthcare and on road safety, for example,
to reduce mortality. On the other hand, richer countries may have less healthy lifestyles.
The World Bank provides loans and grants to governments of middle and low-income
countries to help reduce poverty. As part of their work, the World Bank has put together
hundreds of datasets on a range of issues, such as health, education, economy, energy
and the effectiveness of aid in different countries. I will use two of their datasets, which
you can see online by following the links below. You do not need to download the
datasets.
One dataset lists the gross domestic product (GDP) for each country, in United States
dollars and cents; the other lists the life expectancy, in years, for each country. The latest
life expectancy data I can access is for 2013, so that will be the year I take for the GDP.
The disadvantage of using the GDP and the life expectancy values for the same year is

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

that they do not account for the time it takes for a country’s wealth to have an effect on
lifestyle, healthcare and other factors influencing life expectancy.
While it is useful to have all GDPs in a common currency to compare different countries, it
doesn’t make much sense to report the GDP of a whole country to a supposed precision
of a US cent. I noted that the value for the USA is a round number, but it is not for other
countries. This is likely due in part to the conversion of local currencies to US dollars. It
makes more sense to report the GDP values in a larger unit, e.g. millions of dollars.
Moreover, for those who don’t live in a country using the US dollar as the official currency,
it’s probably easier to understand GDP values in their own local currency.
To sum up, this week’s project will transform currency values and combine GDP and life
expectancy data.
Note that the combination is made simple by the common country names in the two
datasets, but in general care has to be taken that the common attribute really means the
same thing. For example, if you were combining two datasets on a common
unemployment attribute, you must be sure that it was obtained in the same way as there
are various ways of measuring unemployment.
I’m aware that the GDP is a crude way of comparing wealth across nations. For example,
it doesn’t take population or the cost of living into account. Some of this week’s exercises
will ask you to add the population data. Think of other ways to improve the analysis
method, of other conversions that might be needed, and of other ways to investigate life
expectancy factors.

Links:
GDP in current US dollars
Life expectancy at birth

1.1 Creating the data
I won’t yet work with the full data. Instead I will create small tables, to better illustrate this
week’s concepts and techniques.
Small tables make it easier to see what is going on and to create specific data
combination and transformation scenarios that test the code.
There are many ways of creating tables in pandas. One of the simplest is to define the
rows as a list, with the first element of the list being the first row, the second element being
the second row, etc.
Each row of a table has multiple cells, one for each column. The obvious way is to
represent each row as a list too, the first element of the list being the cell in the first
column, the second element corresponding to the second column, etc. To sum up, the
table is represented as a list of lists.
Here is a table of the 2013 GDP of some countries, in US dollars:
In []:

table = [

['UK', 2678454886796.7], # 1st row

['USA', 16768100000000.0], # 2nd row

['China', 9240270452047.0], # and so on...

['Brazil', 2245673032353.8],

['South Africa', 366057913367.1]

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

http://data.worldbank.org/indicator/NY.GDP.MKTP.CD
http://data.worldbank.org/indicator/SP.DYN.LE00.IN

]

To create a dataframe, I use a pandas function appropriately called DataFrame(). I have to
give it two arguments: the names of the columns and the data itself. The column names
are given as a list of strings, the first string being the first column name, etc.
In []:

headings = ['Country', 'GDP (US$)']

gdp = DataFrame(columns=headings, data=table)

gdp

Out[]:

Country GDP (US$)

0 UK 2.678455e+12

1 USA 1.676810e+13

2 China 9.240270e+12

3 Brazil 2.245673e+12

4 South Africa 3.660579e+11

Note that pandas shows large numbers in scientific notation, where, for example, 3e+12
means 3×10 12 , i.e. a 3 followed by 12 zeros.
I define a similar table for the life expectancy, based on the 2013 World Bank data.
In []:

headings = ['Country name', 'Life expectancy (years)']

table = [

['China', 75],

['Russia', 71],

['United States', 79],

['India', 66],

['United Kingdom', 81]

]

life = DataFrame(columns=headings, data=table)

life

Out[]:

Country name Life expectancy (years)

0 China 75

1 Russia 71

2 United States 79

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

3 India 66

4 United Kingdom 81

To illustrate potential issues when combining multiple datasets, I’ve taken a different set of
countries, with common countries in a different order. Moreover, to illustrate a non-
numeric conversion, I’ve abbreviated country names in one table but not the other.

Exercise 1 Creating the data

Open the exercise notebook 3 and save it in the disk folder or upload it to the
CoCalc project you created in Week 1. Then practise creating dataframes in
Exercise 1.
If you’re using Anaconda, remember that to open the notebook you’ll need to
navigate to it using Jupyter. Whether you’re using Anaconda or CoCalc, once the
notebook is open, run the existing code before you start the exercise. When you’ve
completed the exercise, save the notebook. If you need a quick reminder of how to
use Jupyter, watch again the video in Week 1 Exercise 1

1.2 Defining functions
To make the GDP values easier to read, I wish to convert US dollars to millions of US
dollars.

Figure 2

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83249&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4

I have to be precise about what I mean. For example, if the GDP is 4,567,890.1 (using
commas to separate the thousands, millions, etc.), what do I want to obtain? Do I want
always to round down to the nearest million, making it 4 million, round to the nearest
million, making it 5, or round to one decimal place, making it 4.6 million? Since the aim is
to simplify the numbers and not introduce a false sense of precision, let’s round to the
nearest million.
I will define my own function to do such a conversion. It’s a generic function that takes any
number and rounds it to the nearest million. I will later apply the function to each value in
the GDP column. It’s easier to first show the code and then explain it.
In []:

def roundToMillions (value):

result = round(value / 1000000)

return result

A function definition always starts with def , which is a reserved word in Python.
After it comes the function’s name and arguments, surrounded by parenthesis, and finally
a colon (:). This function just takes one argument. If there’s more than one argument, use
commas to separate them.
Next comes the function’s body, where the calculations are done, using the arguments
like any other variables. The body must be indented, conventionally by four spaces.
For this function, the calculation is simple. I take the value, divide it by one million, and call
the built-in Python function round() to convert that number to the nearest integer. If the
number is exactly mid-way between two integers, round() will pick the even integer,
i.e. round(2.5) is 2 but round(3.5) is 4.Finally, I write a return statement to pass the
result back to the code that called the function. The return word is also reserved in
Python.
The result variable just stores the rounded value temporarily and has no other purpose.
It‘s better to write the body as a single line of code:
return round(value / 1000000)

Finally I need to test the function, by calling it with various argument values and checking
whether the returned value is equal to what I expect.
In []:

roundToMillions(4567890.1) == 5

Out[]:

True

The art of testing is to find as few test cases as possible that cover all bases. And I mean
all, especially those you think ‘Naaah, it’ll never happen’. It will, because data can be
incorrect. Prepare for the worst and hope for the best.
So here are some more tests, even for the unlikely cases of the GDP being zero or
negative, and you can probably think of others.
In []:

roundToMillions(0) == 0 # always test with zero...

Out[]:

True

In []:

roundToMillions(-1) == 0 #...and negative numbers

Out[]:

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

True

In []:

roundToMillions(1499999) == 1 # test rounding to the nearest

Out[]:

True

Now for the next conversion, from US dollars to a local currency, for example British
pounds. I searched the internet for ‘average yearly USD to GBP rate’, chose a conversion
service and took the value for 2013. Here’s the code and some tests.
In []:

def usdToGbp (usd):

return usd / 1.564768 # average rate during 2013

usdToGbp(0) == 0

Out[]:

True

In []:

usdToGbp(1.564768) == 1

Out[]:

True

In []:

usdToGbp(-1) < 0

Out[]:

True

Defining functions is such an important part of coding, that you should not skip the next
exercise where you will define your own functions.

Exercise 2 Defining functions

Complete Exercise 2 in the Exercise notebook 3 to practise defining your own
functions.

1.3 What if...?
The third conversion, from abbreviated country names to full names, can’t be written as a
simple formula, because each abbreviation is expanded differently.

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

Figure 3

What I need is the Python code equivalent of:

● if the name is ‘UK’, return ‘United Kingdom’,
● otherwise if the name is ‘USA’, return ‘United States’,
● otherwise return the name.

The last part basically says that if the name is none of the known abbreviations, return it
unchanged. Translating the English sentence to Python is straightforward.
In []:

def expandCountry (name):

if name == 'UK': # if the name is 'UK'

return 'United Kingdom'

elif name == 'USA': # otherwise if the name is 'USA'

return 'United States'

else: # otherwise

return name

expandCountry('India') == 'India'

Out[]:

True

Note that ‘otherwise if’ is written 'elif' in Python, not 'else if'. As you might expect, ‘if’,
‘elif’ and ‘else’ are reserved words.
The computer will evaluate one condition at a time, from top to bottom, and execute only
the instructions of the first condition that is true. Note that there is no condition after
'else' , it is a ‘catch all’ in case all previous conditions fail.
Note again the colons at the end of lines and that code after the colon must be indented.
That is how Python distinguishes which lines of code belong to which condition.

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

There are almost always many ways to write the same function. A conditional statement
does not need to have an 'elif' or 'else' part. In that case, if the condition is false,
nothing happens. Here is the same function, written differently.
In []:

def expandCountry (name):

if name == 'UK':

name = 'United Kingdom'

if name == 'USA':

name = 'United States'

return name

You will see later this week an example of an ‘if-else’ statement, i.e. without the 'elif'
part.

Exercise 3 What if…?

Complete Exercise 3 in the Exercise notebook 3 to practise writing functions with
conditional statements.

1.4 Applying functions
Having coded the three data conversion functions, they can be applied to the GDP table.
I first select the relevant column:
In []:

column = gdp['Country']

column

Out[]:

0 UK

1 USA

2 China

3 Brazil

4 South Africa

Name: Country, dtype: object

Next, I use the column method apply() , which applies a given function to each cell in the
column, returning a new column, in which each cell is the conversion of the corresponding
original cell:
In []:

column.apply(expandCountry)

Out[]:

0 United Kingdom

1 United States

2 China

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

3 Brazil

4 South Africa

Name: Country, dtype: object

Finally, I add that new column to the dataframe, using a new column heading:
In [] :

gdp['Country name'] = column.apply(expandCountry)

gdp

Out[]:

Country GDP (US$) Country name

0 UK 2.678455e+12 United Kingdom

1 USA 1.676810e+13 United States

2 China 9.240270e+12 China

3 Brazil 2.245673e+12 Brazil

4 South Africa 3.660579e+11 South Africa

In a similar way, I can convert the US dollars to British pounds, then round to the nearest
million, and store the result in a new column. I could apply the conversion and rounding
functions in two separate statements, but using method chaining , I can apply both
functions in a single line of code. This is possible because the column returned by the first
call of apply() is the context for the second call of apply(). Here’s how it’s written:
In []:

column = gdp['GDP (US$)']

result = column.apply(usdToGbp).apply(roundToMillions)

gdp['GDP (£m)'] = result

gdp

Out[]:

Country GDP (US$) Country name GDP (£m)

0 UK 2.678455e+12 United Kingdom 1711727

1 USA 1.676810e+13 United States 10716029

2 China 9.240270e+12 China 5905202

3 Brazil 2.245673e+12 Brazil 1435148

4 South Africa 3.660579e+11 South Africa 233937

Now it’s just a matter of selecting the two new columns, as the original ones are no longer
needed.
In []:

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

headings = ['Country name', 'GDP (£m)']

gdp = gdp[headings]

gdp

Out[]:

Country name GDP (£m)

0 United Kingdom 1711727

1 United States 10716029

2 China 5905202

3 Brazil 1435148

4 South Africa 233937

Note that method chaining only works if the methods chained return the same type of
value as their context, in the same way that you can chain multiple arithmetic operators
(e.g. 3+4-5) because each one takes two numbers and returns a number that is used by
the next operator in the chain. In this course, methods only have two possible contexts,
columns and dataframes, so you can either chain column methods that return a single
column (that is a Series), like apply() , or dataframe methods that return dataframes. For
example, gdp.head(4).tail(2) is a dataframe just with China and Brazil, i.e. the last two
of the first four rows of the dataframe shown above. You’ll see further examples of
chaining (and an easier way to select multiple rows) later this week.
This concludes the data transformation part. After applying functions in the next exercise,
you’ll learn how to combine two tables.

Exercise 4 Applying functions

You can practise applying functions in Exercise 4 of your Exercise notebook 3.

Week 5: Combine and transform data Part 1
1 Life expectancy project 07/06/23

2 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 5 practice quiz
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 5: Combine and transform data Part 1
2 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78781

3 Summary
This week you learned how to transform currency values and combine GDP and life
expectancy data by:

● creating the data
● defining the functions of data conversion
● applying the functions of data conversion.

Next week you will learn more about combining, merging and transforming tables.

Week 5: Combine and transform data Part 1
3 Summary 07/06/23

Week 5: Combine and transform data Part 1
3 Summary 07/06/23

Week 6: Combine and
transform data Part 2
1 Joining left, right and centre
Let’s take stock for a moment. There’s the original, unchanged table (with full country
names) about the life expectancy:
In []:

life

Out[]:

Country name Life expectancy (years)

0 China 75

1 Russia 71

2 United States 79

3 India 66

4 United Kingdom 81

… and a table with the GDP in millions of pounds and also full country names.
In []:

gdp

Out[]:

Country name GDP (£m)

0 United Kingdom 1711727

1 United States 10716029

2 China 5905202

3 Brazil 1435148

4 South Africa 233937

Both tables have a common column with a common name (‘Country name’). I can join the
two tables on that common column, using the merge() function. Merging basically puts all

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

columns of the two tables together, without duplicating the common column, and joins any
rows that have the same value in the common column.
There are four possible ways of joining, depending on which rows I want to include in the
resulting table. If I want to include only those countries appearing in the GDP table, I call
the merge() function like so:
In []:

merge(gdp, life, on='Country name', how='left')

Out[]:

Country name GDP (£m) Life expectancy (years)

0 United Kingdom 1711727 81

1 United States 10716029 79

2 China 5905202 75

3 Brazil 1435148 NaN

4 South Africa 233937 NaN

The first two arguments are the tables to be merged, with the first table being called the
‘left’ table and the second being the ‘right’ table. The on argument is the name of the
common column, i.e. both tables must have a column with that name. The how argument
states I want a left join , i.e. the resulting rows are dictated by the left (GDP) table. You
can easily see that India and Russia, which appear only in the right (expectancy) table,
don’t show up in the result. You can also see that Brazil and South Africa, which appear
only in the left table, have an undefined life expectancy. (Remember that ‘NaN’ stands for
‘not a number.)
A right join will instead take the rows from the right table, and add the columns of the left
table. Therefore, countries not appearing in the left table will have undefined values for the
left table’s columns:
In []:

merge(gdp, life, on='Country name', how='right')

Out[]:

Country name GDP (£m) Life expectancy (years)

0 United Kingdom 1711727 81

1 United States 10716029 79

2 China 5905202 75

3 Russia NaN 71

4 India NaN 66

The third possibility is an outer join which takes all countries, i.e. whether they are in the
left or right table. The result has all the rows of the left and right joins:
In []:

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

merge(gdp, life, on='Country name', how='outer')

Out[]:

Country name GDP (£m) Life expectancy (years)

0 United Kingdom 1711727 81

1 United States 10716029 79

2 China 5905202 75

3 Brazil 1435148 NaN

4 South Africa 233937 NaN

5 Russia NaN 71

6 India NaN 66

The last possibility is an inner join which takes only those countries common to both
tables, i.e. for which I know the GDP and the life expectancy. That’s the join I want, to
avoid any undefined values:
In []:

gdpVsLife = merge(gdp, life, on='Country name', how='inner')

Out[]:

Country name GDP (£m) Life expectancy (years)

0 United Kingdom 1711727 81

1 United States 10716029 79

2 China 5905202 75

Now it’s just a matter of applying the data transformation and combination techniques
seen so far to the real data from the World Bank.

Exercise 5 Joining left, right and centre

Put your learning into practice by completing Exercise 5 in the Exercise notebook 3.
Remember to run the existing code in the notebook before you start the exercise.
When you’ve completed the exercise, save the notebook.

1.1 Constant variables
You may have noticed that the same column names appear over and over in the code.

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

If, someday, I decide one of the new columns should be called ‘GDP (million GBP)’
instead of ‘GDP (£m)’ to make clear which currency is meant (because various countries
use the pound symbol), I need to change the string in every line of code it occurs.

Figure 1

Laziness is the mother of invention. If I assign the string to a variable and then use the
variable everywhere instead of the string, whenever I wish to change the string, I only
have to edit one line of code, where it’s assigned to the variable. A second advantage of
using names instead of values is that I can use the name completion facility of Jupyter
notebooks by pressing ‘TAB’. Writing code becomes much faster…
In[]:

gdpInGbp = 'GDP (million GBP)'

gdpInUsd = 'GDP (US$)'

country = 'Country name'

gdp[gdpInGbp] = gdp[gdpInUsd].apply(usdToGbp)

headings = [country, gdpInGbp]

gdp = gdp[headings]

Such variables are meant to be assigned once. They are called constants , because their
value never changes. However, if someone else takes my code and wishes to adapt and
extend it, they may not realise those variables are supposed to remain constant. Even I
may forget it and try to assign a new value further down in the code! To help prevent such
slip-ups the Python convention is to write names of constants in uppercase letters, with
words separated by underscores. Thus, any further assignment to a variable in uppercase
will ring an alarm bell (in your head, the computer remains silent).
In[]:

GDP_GBP = 'GDP (million GBP)'

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

GDP_USD = 'GDP (US$)'

COUNTRY = 'Country name'

gdp[GDP_GBP] = gdp[GDP_USD].apply(usdToGbp)

headings = [COUNTRY, GDP_GBP]

gdp = gdp[headings]

Using constants is not just a matter of laziness. There are various advantages. First,
constants stand out in the code.
Second, when making changes to the repeated values throughout the code, it’s easy to
miss an occurrence. Using constants means the code is always consistent throughout.
Third, the name of the constant can help clarify what the value means. For example,
instead of using the number 1995 throughout the code, define a constant that makes clear
whether it’s a year, the cubic centimetres of a car engine or something else.
To sum up, using constants makes the code clearer, easier to change, and less prone to
silly (but hard to find) mistakes due to inconsistent values.
Any value can be defined as a constant, whether it’s a string, a number or even a
dataframe. For example, you could store the data you have loaded from the file into a
constant, as a reminder to not change the original data. In the rest of the week, I’ll use
constants mainly for the column names.

Exercise 6 Constants

To practise using constants, rewrite your exercises in the Exercise notebook 3 using
them.

1.2 Getting real
Having tried out the data transformations and combination on small tables, I feel confident
about using the full data from the World Bank, which I pointed you to in Life expectancy
project.
Open a new browser window and go to the World Bank’s data page. Type ‘GDP’ (without
the quote marks) in the ‘Find an indicator’ box in the centre of the page and select ‘GDP
current US$’. Click ‘Go’. This will take you to the data page you looked at earlier. Look at
the top of your browser window. You will notice the URL is
http://data.worldbank.org/indicator/NY.GDP.MKTP.CD. Every World Bank dataset is for an
indicator (in this case GDP in current dollars) with a unique name (in this case NY.GDP.
MKTP.CD).
Knowing the indicator name, it’s a doddle to get the data directly into a dataframe, by
using the download() function of the wb (World Bank) module, instead of first downloading
a CSV or Excel file and then loading it into a dataframe. (Note that CoCalc’s free plan
doesn’t allow connecting to other sites, so if you are using CoCalc you’ll need to download
the data as a CSV or Excel file from the World Bank and upload it to CoCalc.)
Here’s the code to get the 2013 GDP values for all countries. It may take a little while for
the code to fetch the data.
In []:

from pandas.io.wb import download

YEAR = 2013

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

http://data.worldbank.org/
http://data.worldbank.org/indicator/NY.GDP.MKTP.CD

GDP_INDICATOR = 'NY.GDP.MKTP.CD'

data = download(indicator=GDP_INDICATOR, country='all',

start=YEAR, end=YEAR)

data.head()

Out[]:

NY.GDP.MKTP.CD

country year

Arab World 2013 2.843483e+12

Caribbean small states 2013 6.680344e+10

Central Europe and the Baltics 2013 1.418166e+12

East Asia & Pacific (all income levels) 2013 2.080794e+13

East Asia & Pacific (developing only) 2013 1.168563e+13

This table definitely has an odd shape. The three columns don’t have their headings side
by side, and the row numbering (0, 1, 2, etc) is missing. That’s because the first two
‘columns’ are in fact the dataframe index. You saw a similar table in
Changing a dataframe’s index, when the index of the weather dataframe was set to be the
‘GMT’ column, with values of type datetime64. There’s a dataframe method to do the
inverse, i.e. to transform the row names into column values and thereby reinstate the
default dataframe index.
In []:

gdp = data.reset_index()

gdp.head()

Out[]:

country year NY.GDP.MKTP.CD

0 Arab World 2013 2.843483e+12

1 Caribbean small states 2013 6.680344e+10

2 Central Europe and the Baltics 2013 1.418166e+12

3 East Asia & Pacific (all income levels) 2013 2.080794e+13

4 East Asia & Pacific (developing only) 2013 1.168563e+13

I repeat the whole process for the life expectancy:

● search for ‘life expectancy’ on the World Bank site
● choose the ‘total’ dataset, which includes both female and male inhabitants
● note down its indicator (SP.DYN.LE00.IN)
● use it to get the data

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83250&targetdoc=Week+4%3A+Cleaning+up+our+act+Part+2&targetptr=2.1

● reset the dataframe index.

In []:

LIFE_INDICATOR = 'SP.DYN.LE00.IN'

data = download(indicator=LIFE_INDICATOR, country='all',

start=YEAR, end=YEAR)

life = data.reset_index()

life.head()

Out[]:

country year SP.DYN.LE00.IN

0 Arab World 2013 70.086392

1 Caribbean small states 2013 71.966306

2 Central Europe and the Baltics 2013 76.127583

3 East Asia & Pacific (all income levels) 2013 74.893439

4 East Asia & Pacific (developing only) 2013 73.981255

By defining the year as a constant, it’s very quick to change the code to load both datasets
for any other year. If you wish to get GDP data for an earlier year than for life expectancy,
then you need to define a second constant.

Exercise 7 Getting real

The approach described above requires an internet connection to download the
data directly from the World Bank. That may require some time, or sometimes not
even work if the connection fails. Moreover, the World Bank sometimes changes its
data format, which could break the code in the rest of this week.
Therefore, the Exercise notebook 3 loads instead the GDP and life expectancy data
from files WB GDP 2013.csv and WB LE 2013.csv and Exercise 7 uses the file WB
POP 2013.csv , which you should add to your disk folder or CoCalc project. All files
are in the normal tabular format and need no resetting of the indices.

1.3 Cleaning up
You may have noticed that the initial rows are not about countries, but groups of countries.
Such aggregated values need to be removed, because we’re only interested in individual
countries.
The expression frame[m:n], with n an integer bigger than m , represents the ‘sub-table’
from row m to row n-1. In other words, it is a slice of frame with exactly nminus m rows. The
expression is equivalent to the more convoluted expression frame.head(n).tail(n-m).
In []:

gdp[0:3]

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

Out[]:

country year NY.GDP.MKTP.CD

0 Arab World 2013 2.843483e+12

1 Caribbean small states 2013 6.680344e+10

2 Central Europe and the Baltics 2013 1.418166e+12

To slice all rows from m onwards, you don’t have to count how many rows there are
beforehand, just omit n.
In []:

gdp[240:]

Out[]:

country year NY.GDP.MKTP.CD

240 Uzbekistan 2013 5.679566e+10

241 Vanuatu 2013 8.017876e+08

242 Venezuela, RB 2013 3.713366e+11

243 Vietnam 2013 1.712220e+11

244 Virgin Islands (U.S.) 2013 NaN

245 West Bank and Gaza 2013 1.247600e+10

246 Yemen, Rep. 2013 3.595450e+10

247 Zambia 2013 2.682081e+10

248 Zimbabwe 2013 1.349023e+10

By trying out head(m) for different values of m , I find that the list of individual countries
starts in row number 34, with Afghanistan. Hence, I slice from row 34 onwards, and that’s
my new dataframe.
In []:

gdp = gdp[34:]

gdp.head()

Out[]:

country year NY.GDP.MKTP.CD

34 Afghanistan 2013 2.031088e+10

35 Albania 2013 1.291667e+10

36 Algeria 2013 2.101834e+11

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

37 American Samoa 2013 NaN

38 Andorra 2013 3.249101e+09

Unsurprisingly, there is missing data, so I remove those rows, as shown in Missing values
in Week 4.
In []:

gdp = gdp.dropna()

gdp.head()

Out[]:

country year NY.GDP.MKTP.CD

34 Afghanistan 2013 2.031088e+10

35 Albania 2013 1.291667e+10

36 Algeria 2013 2.101834e+11

38 Andorra 2013 3.249101e+09

39 Angola 2013 1.241632e+11

Finally, I drop the irrelevant year column.
In []:

COUNTRY = 'country'

headings = [COUNTRY, GDP_INDICATOR]

gdp = gdp[headings]

gdp.head()

Out[]:

country NY.GDP.MKTP.CD

34 Afghanistan 2.031088e+10

35 Albania 1.291667e+10

36 Algeria 2.101834e+11

38 Andorra 3.249101e+09

39 Angola 1.241632e+11

And now I repeat the whole cleaning process for the life expectancy table.
In []:

headings = [COUNTRY, LIFE_INDICATOR]

life = life[34:].dropna()[headings]

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83250&targetdoc=Week+4%3A+Cleaning+up+our+act+Part+2&targetptr=1.3

life.head()

Out[]:

country SP.DYN.LE00.IN

34 Afghanistan 60.931415

35 Albania 77.537244

36 Algeria 71.009659

39 Angola 51.866171

40 Antigua and Barbuda 75.829293

Note how a single line of code can chain a row slice, a method call and a column slice,
because each takes a dataframe and returns a dataframe.

Exercise 8 Cleaning up

Clean up the population data from Exercise 7, in Exercise 8 in the exercise
notebook 3.

1.4 Joining and transforming
With the little tables, I first transformed the columns and then joined the tables.

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

Figure 2

As you may be starting to realise, there’s often more than one way to do it. Just for
illustration, I’ll do the other way round for the big tables. Here are the tables, as a
reminder.
In []:

life.head()

Out[]:

country SP.DYN.LE00.IN

34 Afghanistan 60.931415

35 Albania 77.537244

36 Algeria 71.009659

39 Angola 51.866171

40 Antigua and Barbuda 75.829293

In []:

gdp.head()

Out[]:

country NY.GDP.MKTP.CD

34 Afghanistan 2.031088e+10

35 Albania 1.291667e+10

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

36 Algeria 2.101834e+11

38 Andorra 3.249101e+09

39 Angola 1.241632e+11

First, an inner join on the common column to combine rows where the common column
value appears in both tables.
In []:

gdpVsLife = merge(gdp, life, on='country', how='inner')

gdpVsLife.head()

Out []:

country NY.GDP.MKTP.CD SP.DYN.LE00.IN

0 Afghanistan 2.031088e+10 60.931415

1 Albania 1.291667e+10 77.537244

2 Algeria 2.101834e+11 71.009659

3 Angola 1.241632e+11 51.866171

4 Antigua and Barbuda 1.200588e+09 75.829293

Second, the dollars are converted to millions of pounds.
In []:

GDP = 'GDP (£m)'

column = gdpVsLife[GDP_INDICATOR]

gdpVsLife[GDP] = column.apply(usdToGbp).apply(roundToMillions)

gdpVsLife.head()

Out[]:

country NY.GDP.MKTP.CD SP.DYN.LE00.IN GDP (£m)

0 Afghanistan 2.031088e+10 60.931415 12980

1 Albania 1.291667e+10 77.537244 8255

2 Algeria 2.101834e+11 71.009659 134322

3 Angola 1.241632e+11 51.866171 79349

4 Antigua and Barbuda 1.200588e+09 75.829293 767

Third, the life expectancy is rounded to the nearest integer, with a by now familiar function.
In []:

LIFE = 'Life expectancy (years)'

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

gdpVsLife[LIFE] = gdpVsLife[LIFE_INDICATOR].apply(round)

gdpVsLife.head()

Out[]:

country NY.GDP.
MKTP.CD

SP.DYN.
LE00.IN

GDP
(£m)

Life expectancy
(years)

0 Afghanistan 2.031088e+10 60.931415 12980 61

1 Albania 1.291667e+10 77.537244 8255 78

2 Algeria 2.101834e+11 71.009659 134322 71

3 Angola 1.241632e+11 51.866171 79349 52

4 Antigua and
Barbuda 1.200588e+09 75.829293 767 76

Lastly, the original columns are discarded.
In []:

headings = [COUNTRY, GDP, LIFE]

gdpVsLife = gdpVsLife[headings]

gdpVsLife.head()

Out[]:

country GDP (£m) Life expectancy (years)

0 Afghanistan 12980 61

1 Albania 8255 78

2 Algeria 134322 71

3 Angola 79349 52

4 Antigua and Barbuda 767 76

For the first five countries there doesn’t seem to be any relation between wealth and life
expectancy, but that might be just for those countries.

Exercise 9 Joining and transforming

Have a go at merging dataframes with an inner join in Exercise 9 in the Exercise
notebook 3.

Week 6: Combine and transform data Part 2
1 Joining left, right and centre 07/06/23

2 Correlation
To see if life expectancy grows when the GDP increases I will use a statistical measure
known as the Spearman rank correlation coefficient.

Figure 3

It’s a number between -1 and 1 that describes how well two indicators correlate, in the
following sense.

● A value of 1 means that if I rank (sort) the data from smallest to largest value in one
indicator, it will also be in ascending order according to the other indicator. In other
words, if one indicator grows, so does the other.

● A value of -1 means a perfect inverse rank relation: if I sort the data from smallest to
largest according to one indicator, I will see it is sorted from largest to smallest in the
other indicator. When one indicator goes up, the other goes down.

● A value of 0 means there is no rank relation between the two indicators.

A positive value smaller than 1 (or a negative value larger than -1) means there is some
direct (or inverse) correlation, but it is not systematic across the whole dataset.
The p-value indicates how significant the result is, in a particular technical sense. To say
a correlation is statistically significant doesn’t necessarily mean it is important or strong in
the real world, but only that there is reasonable statistical evidence that there is some kind
of relationship. Typically, the obtained correlation coefficient is considered statistically
significant if the p-value is below 0.05.
The pandas module doesn’t calculate complex statistics. There are other modules in the
Anaconda distribution for that. In particular, scipy (Scientific Python) has a stats module
that provides the spearmanr() function. The function takes as arguments the two columns
of data to correlate. Contrary to the functions you’ve seen so far, it returns two values
instead of one: the correlation and the p-value. To store both values, simply use a pair of
variables, written in parenthesis.

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

To show the results in a nicer way, I will use the Python print() function, which displays
its arguments in a single line.
In []:

from scipy.stats import spearmanr

gdpColumn = gdpVsLife[GDP]

lifeColumn = gdpVsLife[LIFE]

(correlation, pValue) = spearmanr(gdpColumn, lifeColumn)

print('The correlation is', correlation)

if pValue < 0.05:

print('It is statistically significant.')

else:

print('It is not statistically significant.')

Out[]:

The correlation is 0.493179132478.

It is statistically significant.

Although there is a statistically significant direct correlation (life expectancy grows as GDP
grows), it isn’t strong.
A perfect (direct or inverse) correlation doesn’t mean there is any cause-effect between
the two indicators. A perfect direct correlation between life expectancy and GDP would
only state that the higher the GDP, the higher the life expectancy. It would not state that
the higher expectancy is due to the GDP. Correlation is not causation.

Exercise 10 Correlation

Calculate the correlation between GDP and population in Exercise 10 in the
Exercise notebook 3.
Remember to run the existing code in the notebook before you start the exercise.
When you’ve completed the exercise, save the notebook.

2.1 Scatterplots
Statistics can be misleading. A coefficient of zero only states there is no ranking relation
between the indicators, but there might be some other relationship.
In the next example, the correlation between x and y is zero, but they are clearly related (y
is the square of x).
In []:

table = [[-2,4], [-1,1], [0,0], [1,1], [2,4]]

data = DataFrame(columns=['x', 'y'], data=table)

(correlation, pValue) = spearmanr(data['x'], data['y'])

print('The correlation is', correlation)

data

Out[]:

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

The correlation is 0.0

x y

0 -2 4

1 -1 1

2 0 0

3 1 1

4 2 4

It’s therefore best to complement the quantitative analysis with a more qualitative view
provided by a chart. In the case of correlations, scatterplots will do very nicely. Each
country is a dot plotted at the x and y coordinates corresponding to the GDP and life
expectancy values.
In []:

%matplotlib inline

gdpVsLife.plot(x=GDP, y=LIFE, kind='scatter', grid=True)

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x10e2e6eb8>

Figure 4

This graph is not very useful. The GDP difference between the poorest and richest
countries is so vast that the whole chart is squashed to fit all GDP values on the x-axis. It
is best to use a logarithmic scale , where the axis values don’t increase by a constant
interval (10, 20, 30, for example), but by a multiplicative factor (10, 100, 1000, 10000,
etc.). The parameter logx has to be set to True to get a logarithmic scale on the x-axis.
Moreover, let’s make the chart a bit wider, by using the figsize parameter you saw last
week.
In []:

gdpVsLife.plot(x=GDP, y=LIFE, kind='scatter', grid=True,

logx=True, figsize = (10, 4))

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

Out[]:

>matplotlib.axes._subplots.AxesSubplot at 0x10e400588>

Figure 5

The major tick marks in the x-axis go from 10 2 (that’s a one followed by two zeros, hence
100) to 10 8 (that’s a one followed by eight zeros, hence 100,000,000) million pounds, with
the minor ticks marking the numbers in between. For example, the eight minor ticks
between 10 2 and 10 3 represent the values 200 (2 × 10 2), 300 (3 × 10 2), and so on until
900 (9 × 10 2). As a further example, the country with the lowest life expectancy is on the
second minor tick to the right of 10 3 , which means its GDP is about 3 × 10 3 (three
thousand) million pounds.
Countries with a GDP around 10 thousand (10 4) millions of pounds have a wide range of
life expectancies, from under 50 to over 80, but the range tends to shrink both for poorer
and for richer countries. Countries with the lowest life expectancy are neither the poorest
nor the richest, but those with highest expectancy are among the richer countries.

Exercise 11 Scatterplots

Practise using Scatterplots in Exercise11 in the Exercise notebook 3.

2.2 My project
I’ve written up my analysis of this week’s project in the notebook you can open this in your
downloaded files.

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

Figure 6

The structure is very simple: besides the introduction and the conclusions, there is one
section for each step of the analysis – downloading, cleaning, transforming, and merging
the data, then calculating and visualising the correlation.
Open Project 4: Life expectancy
If you have time, extend my project to answer different questions or create your own
project in the activity below.

Activity 1

Extend the project
Make a copy of the Project 3: GDP and Life expectancy and change it to answer one
or more of the following questions:

● To what extent do the ten countries with the highest GDP coincide with the ten
countries with the longest life expectancy?

● Which are the two countries in the right half of the plot (higher GDP) with life
expectancy below 60 years? What factors could explain their lower life
expectancy compared to countries with similar GDP?
Hint: use the filtering techniques you learned in Week 2 to find the two
countries.

● Redo the analysis using the countries’ GDP per capita (i.e. per inhabitant)
instead of their total GDP. If you’ve done the workbook exercises, you already
have a column with the population data.
Hint: write an expression involving the GDP and population columns, as you
learned in Calculating over columns in Week 1.

● Think about the units in which you display GDP per capita.

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83250&targetdoc=Week+2%3A+Having+a+go+at+it+Part+2&targetptr=1.6

● Redo the analysis using the indicator suggested at the end of the project
notebook.

Create your own project
If you have more time, create a completely new project and choose another two of
the hundreds of World Bank indicators and see if there is any correlation between
them. If there is a choice of similar indicators, choose one that leads to meaningful
comparisons between countries.
Look at the results you obtained and take a few moments to assess how they differ
from mine.

Week 6: Combine and transform data Part 2
2 Correlation 07/06/23

3 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 6 practice quiz
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 6: Combine and transform data Part 2
3 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78782

4 Summary

Figure 7

This week you transformed and combined databy:

● computing a correlation coefficient between two series of values and checking
whether the correlation is statistically significant

● generating scatterplots to ook for other relationships
● using a logarithmic scale when an indicator had a wide range of values.

Next week you'll learn how to group, export and import data to generate pivot table style
reports.

4.1 Weeks 5 and 6 glossary
Here are alphabetical lists, for quick look up, of what this week introduced.

Concepts
A conditional statement is of the form

if condition1:

statements1

elif condition2:

statements2

...

else:

statements

Week 6: Combine and transform data Part 2
4 Summary 07/06/23

The computer evaluates the conditions from top to bottom and executes only the
statements for the first condition that is true. If all conditions are false, it executes the else
statements. If there is no else part nothing happens. The elif parts are optional too.
Each block of statements must be indented, usually by four spaces.
A constant is a variable that is assigned only once, i.e. its initial value never changes.
Constant names are conventionally written in uppercase, with underscores to separate
multiple words.
A function definition is typically of the form

def functionName (argumentName1, argumentName2,...):

statements using arguments to compute the result

return result

All statements in the body of the function must have the same indentation, usually four
spaces. The statements use the arguments like normal variables. The execution of the
function ends when a return statement is encountered.
A join is the merging of two tables on a common column. The resulting table has all
columns of both tables (the common column isn’t duplicated), and the rows are
determined by the type of join. Rows in the two tables that have the same value in the
common column become a joined row in the resulting table.
In a logarithmic scale , each major tick represents a value that is the multiplication by
some constant (usually 10) of the value of the previous major tick.
Amethod chain is an expression like context.method1(args1).method2(args2).method3
(args3) where each method has and returns the same type of context, except possibly
the last method, which can return any type of value.
The p-value is an indication of the significance of the result. Usually a p-value below 0.05
is taken to mean the result is statistically significant.
A return statement is of the form return expression and passes the value of the
expression back to the code that called the function to which the return statement
belongs.
The Spearman rank correlation coefficient of two series of values (e.g. two columns) is
a number from -1 (perfect inverse correlation) to 1 (perfect direct correlation), with 0
meaning there is no rank correlation. Correlation doesn’t imply causation. A rank
correlation of 1 merely states that both values increase and decrease together, while a
correlation of -1 states that if one value increases, the other decreases.
A test is some code that checks whether some other code works as expected, e.g. a
boolean expression that compares the return value of a function call with the expected
value.

Reserved Words
def, elif, else, if and return cannot be used as names.

Functions and methods
col.apply(functionName) returns a new column, obtained by applying the given one-
argument function to each cell in column col.
DataFrame(columns=listOfStrings, data=listOfLists) returns a new dataframe, given
the data as a list of rows, each row being a list of values in column order.

Week 6: Combine and transform data Part 2
4 Summary 07/06/23

download(indicator=string, country='all', start=number, end=number) is a function in
the pandas.io.wb module that downloads the World Bank data for the given indicator and
all countries and country groups from the given start year to the given end year.
merge(left=frame1, right=frame2, on=columnName, how=string) returns a new data-
frame, obtained by joining the two frames on the columns with the given common name.
The how argument can be one of ‘left’, ‘right’, ‘inner’ and 'outer’.

print() is a Python function that takes one or more expressions and prints their values on
the screen in a single line.
frame.reset_index() returns a new dataframe in which rows are labelled from 0 onwards.
spearmanr() is a function in the scipy.stats module that takes two columns and returns a
pair of numbers: the Spearman rank correlation coefficient of the two series of values, and
its p-value.

Week 6: Combine and transform data Part 2
4 Summary 07/06/23

Week 6: Combine and transform data Part 2
4 Summary 07/06/23

Week 7: Further techniques

Part 1
1 I spy with my little eye
One of the ways you are shown for loading World Bank data into the notebook in Week 7,
was to use the download () function.

Figure 1

One way to find out for yourself what sorts of argument a function expects is to ask it.
Running a code cell containing a question mark (?) followed by a function name should
pop up a help area in the bottom of the notebook window. (Close it using the x in the top
right hand corner of the panel.)
In []:

from pandas.io.wb import download

?download

The function documentation tells you that you can enter a list of one or more country
names using standard country codes as well as a date range. You can also calculate a
date range from a single date to show the N years of data leading up to a particular year.

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

Note that if you are using the CoCalc free plan, you will not be able to use the download ()
function to download the data directly from the World Bank API, although you will still be
able to inspect the documentation associated with the function.
In []:

YEAR = 2013

GDP_INDICATOR = 'NY.GDP.MKTP.CD'

gdp = download(indicator=GDP_INDICATOR, country=['GB','CN'], start=YEAR-5, end=YEAR)

gdp = gdp.reset_index()

gdp

Out[]:

country year NY.GDP.MKTP.CD

0 China 2013 9.490603e+12

1 China 2012 8.461623e+12

2 China 2011 7.492432e+12

3 China 2010 6.039659e+12

4 China 2009 5.059420e+12

5 China 2008 4.558431e+12

6 United Kingdom 2013 2.678173e+12

7 United Kingdom 2012 2.614946e+12

8 United Kingdom 2011 2.592016e+12

9 United Kingdom 2010 2.407857e+12

10 United Kingdom 2009 2.308995e+12

11 United Kingdom 2008 2.791682e+12

Although many datasets that you are likely to work with are published in the form of a
single data table, such as a single CSV file or spreadsheet worksheet, it is often possible
to regard the dataset as being made up from several distinct subsets of data.
In the above example, you will probably notice that each country name appears in several
rows, as does each year. This suggests that we can make different sorts of comparisons
between different groupings of data using just this dataset. For example, compare the
total GDP of each country calculated over the six years 2008 to 2013 using just a single
line of code:
In []:

gdp.groupby('country')['NY.GDP.MKTP.CD'].aggregate(sum)

Out[]:

country

China 4.110217e+13

United Kingdom 1.539367e+13

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

Name: NY.GDP.MKTP.CD, dtype: float64

Essentially what this does is to say ‘for each country, find the total GDP’.
The total combined GDP for those two countries in each year could be found by making
just one slight tweak to our code (can you see below where I made the change?):
In []:

gdp.groupby('year')['NY.GDP.MKTP.CD'].aggregate(sum)

Out[]:

year

2008 7.350113e+12

2009 7.368415e+12

2010 8.447515e+12

2011 1.008445e+13

2012 1.107657e+13

2013 1.216878e+13

Name: NY.GDP.MKTP.CD, dtype: float64

That second calculation probably doesn’t make much sense in this particular case, but
what if there was another column saying which region of the world each country was in?
Then, by taking the data for all the countries in the world, the total GDP could be found for
each region by grouping on both the year and the region.
Next, you will consider ways of grouping data.

1.1 Ways of grouping data
Think back to the weather dataset you used in Week 3 , how might you group that data
into several distinct groups? What sorts of comparisons could you make by grouping just
the elements of that dataset? Or how might you group and compare the GDP data?

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

Figure 2

One thing the newspapers love to report are weather ‘records’, such as the ‘hottest June
ever’ or the wettest location in a particular year as measured by total annual rainfall, or
highest average monthly rainfall. How easy is it to find that information out from the data?
Or with the GDP data, if countries were assigned to economic groupings such as the
European Union, or regional groupings such as Africa, or South America, how would you
generate information such as lowest GDP in the EU or highest GDP in South America?
This week you will learn how to split data into groups based on particular features of the
data, and then generate information about each separate group, across all of the groups,
at the same time.

Activity 1 Grouping data

Based on the data you have seen so far, or some other datasets you may be aware
of, what other ways of grouping data can you think of, and why might grouping data
that way be useful?

Provide your answer...

1.2 Data that describes the world of trade
A news article from the Guardian announcing a gloomy export outlook for UK
manufacturers (see the link below), got me wondering about what sorts of thing different
countries actually export.

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

For example, it might surprise you that India was the world’s largest exporter by value of
unset diamonds in 2014 (24 billion US dollars worth), or that Germany was the biggest
importer of chocolate (over $2.5 billion worth) in that same year.
National governments all tend to publish their own trade figures, but the UN also collect
data from across the world. In particular, the UN’s global trade database, Comtrade,
contains data about import and export trade flows between countries for a wide range of
goods and services.

Figure 3

So if you’ve ever wondered where your country imports most of its T-shirts from, or
exports most of its municipal waste to, Comtrade is likely to have the data.
In the next section, you will find out about the Comtrade data.

1.3 Exploring the world of export data
The Comtrade Data Extraction interface provides a user interface for selecting,
previewing and exporting data from the Comtrade database.

Activity 2 Exploring export data

Open the Comtrade Data Extraction interface and keep it open alongside this page.
You’ll explore the options and preview some data.

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

http://comtrade.un.org/data/

Figure 4:Comtrade Data Extraction interface

In the text area marked HS (as reported) commodity codes , start to enter the
name of various goods and services. You should see suggestions regarding
different goods and services that Comtrade records trade flow data for.
If you don’t select too much data, you should be able to get a preview of the data by
clicking the green ‘Preview’ button. Notice that the interface allows you to sort the
data by a particular column, which provides a quick way of finding the countries that
export most, or least, goods by value.
If you selected ‘All’ reporters, you will probably notice that a decreasing sort on the
‘Trade Value’ column always has ‘World’ at the top: in the ‘All’ reports dataset,
individual country reports and reports from ‘areas not elsewhere specified’ (‘nes’)
are complemented by the ‘World’ report which represents a sum total of those other
values.
The user interface is rather complicated at first glance, but with a bit of trial and error
you should be able to work out:

● how to display trade flows between a particular country (the ‘Reporter’) and a
particular country or region of the world (the ‘Partners’)

● how to limit the display to show just imports, or exports, between ‘Reporter(s)’
and ‘Partner(s)’

● how to display data for different years
● how to display data for different months in a particular year, or all the months in

a particular year.

You might notice that the commodities codes are organised hierarchically, i.e. a
code breaks down into further sub-codes. For example:

● 3825 – Residual products of the chemical or allied industries
○ 382510 – Municipal waste
○ 382520 – Sewage sludge
○ 382530 – Clinical waste
○ …

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

Adding up the results from the next level down on a particular code should generate
trade value totals that correspond to the higher level totals, rounding errors aside.
This means that if you want to focus on the subcategories of a particular commodity
type, you may well be able to do so.
For a particular category of goods, and a reporting period of a single month or year,
select your country as the reporter and ‘All’ as the partner.
Does the range of goods and services listed within the database surprise you?

Keep the Comtrade webpage open as you’ll use it again in the next section.

1.4 Getting data from the Comtrade API
Hopefully, you have a few ideas about data you’d like to explore from the Comtrade
database.
In the previous section, I managed to identify a set of data that describes the amount of
unset diamonds (commodity code 7102) imported into the UK from the Russian
Federation, Angola and South Africa in 2013 and 2014.

Figure 5Comtrade Data Extraction interface

You can export the data you have selected as a CSV file that will be downloaded to your
own computer by clicking on the Download CSV button. You may find it useful to change
the filename of the downloaded file to something more meaningful than the comtrade.csv
default name.
If you moved the downloaded CSV file into the same folder as your Exercise notebook 4
(that you’ll download later), you could use the following command to load the data into a
pandas dataframe:
In []:

filename='comtrade.csv

' df=read_csv(filename, dtype={'Commodity Code':str, 'Reporter Code':str })

The ‘Commodity Code’ and ‘Reporter Code’ values are explicitly read in as a string (str)
otherwise codes like 0401 will be returned as the number 401.

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

One of the problems of working with real data like this is that it may not be just the data
you want. The data returned from Comtrade includes several columns that are essentially
surplus to requirements for the reports you will produce. I suggest that you clean the
dataframes so that they contain at most the following key columns: ‘Year’, ‘Period’, ‘Trade
Flow’, ‘Reporter’, ‘Partner’, ‘Commodity’, ‘Commodity Code’, ‘Trade Value (US$)’.
In []:

COLUMNS = ['Year', 'Period','Trade Flow','Reporter','Partner', 'Commodity','Commodity
Code','Trade Value (US$)']

df=df[COLUMNS]

To avoid conflating data relating to all countries (the ‘World’ partner), and each separate
country, create separate dataframes for each, using the comparison operators introduced
in Week 3.
In []:

world = df[df['Partner'] == 'World']

countries = df[df['Partner'] != 'World']

A More Direct Way of Getting the Data
Just as there was a method for downloading data directly from the World Bank, there is
also a more direct way of getting the Comtrade data into a dataframe – directly from the
Comtrade website. You might have noticed that when you downloaded the file from the
Comtrade website, a link appeared on the site labelled ‘View API Call’.
An API is an ‘application programming interface’ that provides a means for one computer
to talk to another ‘in machine terms’. When you extracted data from the World Bank, you
were calling the World Bank API using a set of functions provided by the pandas library.
Behind the scenes, these functions create URLs (that is, web addresses) that call the
World Bank API and allow requests to be made directly from it, putting the response into a
pandas dataframe.
In the case of Comtrade, clicking the View API Link reveals a URL that requests the data
you selected in the search form as a data file, though not, by default, as a CSV data file.
This link can be used to download data directly into a pandas dataframe from Comtrade,
although you will need to make a couple of modifications to the URL first. In particular,
change the max value to 5000 (to increase the amount of data returned by each request)
and add &fmt=csv to the end of the URL to ensure that the data is returned in a CSV
format.
For example, if you copied the URL:
http://comtrade.un.org/api/get?max=500&type=C&freq=M&px=HS&ps=2015&r=826&-
p=all&rg=1%2C2&cc=0401%2C0402
you would need to modify it as follows:
http://comtrade.un.org/api/get?max= 5000 &type=C&freq=M&px=HS&ps=2015&r=826&-
p=all&rg=1%2C2&cc=0401%2C0402 &fmt=csv
You can then load the data in using the panda read_csv() function.
Note that if you are using the CoCalc free plan, you will not be able to download data
directly from the Comtrade API into a pandas dataframe.
Set the datatypes as shown using the dtype argument to ensure that the codes are read in
correctly.
In []:

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

URL='http://comtrade.un.org/api/get?max=5000&type=C&freq=A&px=HS&ps=2014%2C2013%
2C2012&r=826&p=all&rg=all&cc
=0401%2C0402&fmt=csv'

df=read_csv(URL, dtype={'Commodity Code':str, 'Reporter Code':str})

Having downloaded the data, you should then separate out the World data as before.
If you want to save a copy of data downloaded into pandas directly from the Comtrade
API, call the to_csv()method on your dataframe, pasting in the filename you want to save
the file under, and setting index=False so that the dataframe’s automatically introduced
index column is not included. For example:
countries.to_csv('saved_country_data_example.csv', index=False)

The file will be saved in the same folder as the notebook.

1.5 Practice getting data

Exercise 1 Getting data from API

In Exercise 1, identify a dataset from the Comtrade Data Extraction interface
selecting one or more commodity codes and a single reporter that are of interest to
you and import the data into pandas.
Open the exercise notebook 4 and save it in the disk folder or the CoCalc project
you created in Week 1. You should also open the comtrade_pivot.html
comtrade_milk_uk_monthly_14.csv files and save them into the same folder or
project.
Remember to run the existing code in the notebook before you start the exercise.
When you’ve completed the exercise, save the notebook. If you need a quick
reminder of how to use Jupyter watch again the video in Week 1 Exercise 1.
For the commodities and reporter you chose, find out which countries are the
biggest partners in recent years in terms of import and export trade flows.

Week 7: Further techniques Part 1
1 I spy with my little eye 07/06/23

http://comtrade.un.org/data/
https://www.open.edu/openlearn/mod/oucontent/olink.php?id=83251&targetdoc=Week+1%3A+Having+a+go+at+it+Part+1&targetptr=1.4

2 This week’s quiz
Check what you’ve learned this week by taking the end-of-week quiz.
Week 7 practice quiz
Open the quiz in a new window or tab then come back here when you’ve finished.

Week 7: Further techniques Part 1
2 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78783

3 Summary
This week you’ve learned how to take a dataset that contains multiple possible groupings,
or subsets of data, and work with those groups to perform a variety of transformations.
You’ve explored:

● ways of grouping data
● Comtrade data
● the world of export data
● how to get data.

Next week looks at how to split the data contained in a dataframe into multiple groups
based on the unique ‘key’ values in a single column, or unique combinations of values that
appear across two or more columns.

Week 7: Further techniques Part 1
3 Summary 07/06/23

Week 7: Further techniques Part 1
3 Summary 07/06/23

Week 8: Further techniques

Part 2
1 The split-apply-combine pattern
In the exercise in Week 7, you downloaded data from Comtrade that could be described
as ‘heterogenous’ or mixed in some way. For example, the same dataset contained
information relating to both imports and exports.
To find the partner countries with the largest trade value in terms of exports means filtering
the dataset to obtain just the rows containing export data and then ranking those. Finding
the largest import partner requires a sort on just the import data.

Figure 1

But what if you wanted to find out even more refined information? For example:

● the total value of exports of product X from the UK to those countries on a year by
year basis (group the information by year and then find the total for each year)

● the total value of exports of product X from the UK to each of the partner countries by
year (group the information by country and year and then find the total for each
country/year pairing)

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

● the average value of exports across all the countries on a month by month basis
(group by month, then find the average value per month)

● the average value of exports across each country on a month by month basis (group
by month and country, then find the average value over each country/month pairing)

● the difference month on month between the value of imports from, or exports to, each
particular country over the five year period (group by country, order by month and
year, then find the difference between consecutive months).

In each case, the original dataset needs to be separated into several subsets, or groups of
data rows, and then some operation performed on those rows. To generate a single, final
report would then require combining the results of those operations in a new or extended
dataframe.
This sequence of operations is common enough for it to have been described as the ‘split-
apply-combine’ pattern. The sequence is to:

● ‘split’ an appropriately shaped dataset into several components
● ‘apply’ an operator to the rows contained within a component
● ‘combine’ the results of applying to operator to each component to return a single

combined result.

You will see how to make use of this pattern using pandas next.

1.1 Splitting a dataset by grouping
‘Grouping’ refers to the process of splitting a dataset into sets of rows, or ‘groups’, on the
basis of one or more criteria associated with each data row.
Grouping is often used to split a dataset into one or more distinct groups. Each row in the
dataset being grouped around can be assigned to one, and only one, of the derived
groups. The rows associated with a particular group may be accessed by reference to the
group or the same processing or reporting operation may be applied to the rows contained
in each group on a group by group basis.

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

Figure 2

The rows do not have to be ‘grouped’ together in the original dataset – they could appear
in any order in the original dataset (for example, a commodity A row, followed by a two
commodity B rows, then another commodity A row, and so on). However, the order in
which each row appears in the original dataset will typically be reflected by the order in
which the rows appear in each subgroup.
Let’s see how to do that in pandas. Create a simple dataframe that looks like the full table
in the image above:
In []:

data=[['A',10],['A',15],['A',5],['A',20],

['B',10],['B',10],['B',5],

['C',20],['C',30]]

df=DataFrame(data=data, columns=["Commodity","Amount"])

df

Out[]:

Commodity Amount

0 A 10

1 A 15

2 A 5

3 A 20

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

4 B 10

5 B 10

6 B 5

7 C 20

8 C 30

Next, use the groupby() method to group the dataframe into separate groups of rows
based on the values contained within one or more specified ‘key’ columns. For example,
group the rows according to what sort of commodity each row corresponds to as specified
by the value taken in the ‘Commodity’ column.
In []:

grouped = df.groupby('Commodity')

The number and ‘names’ of the groups that are identified correspond to the unique values
that can be found within the column or columns (which will be referred to as the ‘key
columns’) used to identify the groups.
You can see what groups are available with the following method call:
In []:

grouped.groups.keys()

Out []:

['A', 'C', 'B']

The get_group() method can be used to grab just the rows associated with a particular
group.
In []:

grouped.get_group('B')

Out []:

Commodity Amount

4 B 10

5 B 10

6 B 5

Datasets can also be grouped against multiple columns. For example, if there was an
extra ‘Year’ column in the above table, you could group against just the commodity,
exactly as above, to provide access to rows by commodity; just the year, setting grouped =
df.groupby('Year'); or by both commodity and year, passing in the two grouping key
columns as a list:
grouped = df.groupby(['Commodity','Year'])

The list of keys associated with the groups might then look like [(‘A’, 2015), (‘A’, 2014),
(‘B’, 2015), (‘B’, 2014)]. The rows associated with the group corresponding to commodity
A in 2014 could then be retrieved using the command:
grouped.get_group(('A',2014))

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

This may seem to you like a roundabout way of filtering the dataframe as you did in
Week 2; but you’ll see that the ability to automatically group rows sets up the possibility of
then processing those rows as separate ‘mini-dataframes’ and then combining the results
back together.

Exercise 2 Grouping data

Work through Exercise 2 in the Week 4 notebook.
As you complete the tasks, think about these questions:

● For your particular dataset, how did you group the data and what questions did
you ask of it? Which countries were the major partners of your reporter country
for the different groupings?

● With the ability to group data so easily, what other sorts of questions would you
like to be able to ask?

1.2 Looking at apply and combine operations
Having split a dataset by grouping, an operation is ‘applied’ to each group.

Figure 3

The operation often takes one of two forms:

● a ‘summary’ operation, in which a summary statistic based on the rows contained
within each group is generated. A single value is returned for each group, for
example, the group median or mean, the number of rows in the group, or the

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

maximum or minimum value in the group. The final result will have M rows, one for
each of the M groups created by the split (that is, . groupby()) operation.

● a ‘filtering’ or ‘filtration’ operation, in which groups of rows are retained or discarded
based on a particular property of the group as a whole. For example, only groups of
rows where the sum of all the values in the group is above some threshold are
retained. The effect is that each group keeps the same number of rows, but the
resulting dataset (after combination, see below) may contain fewer groups than the
original.

The results of applying the summary or filtration operation are then combined to provide a
single output dataframe.
In the next section, you will see how to apply a variety of summary operations, and in a
later step examples of filtration operations.

1.3 Summary operations
Summary, or aggregation, operations are used to produce a single summary value or
statistic, such as the group average, for each separate group.
Find the ‘total’ amount within each group using a summary operation:

Figure 4

To apply a summary operator to each group, such as a function to find the mean value of
each group, and then automatically combine the results into a single output dataframe,
pass the name of the function in to the aggregate() method. Note that pandas will try to
use this operator to summarise each column in the grouped rows separately if there is

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

more than one column that can be summarised. So for example, if there was a ‘Volume’
column, it would also return total volumes.
Let’s use again the example dataframe defined earlier:
In []:

df

Out[]:

Commodity Amount

0 A 10

1 A 15

2 A 5

3 A 20

4 B 10

5 B 10

6 B 5

7 C 20

8 C 30

Group the data by commodity type and then apply the sum operation and combine the
results in an output dataframe. The grouping elements are used to create index values in
the output dataframe.
In []:

grouped=df.groupby('Commodity')

grouped.aggregate(sum)

Out[]:

Amount

Commodity

A 50

B 25

C 50

In this case, the aggregate() method applies the sum summary operation to each group
and then automatically combines the results. For a summary operation such as this, the
resulting combined dataframe contains as many rows as there were groups created by
the splitting .groupby() operation.

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

Figure 5

The slightly more general apply() method can also be substituted for the aggregate()
method and will similarly take the rows associated with each group, apply a function to
them, and return a combined result.
The apply() method can be really handy if you have defined a function of your own that
you want to apply to just the rows associated with each group. Simply pass the name of
the function to the apply() method and it will then call your function, once per group, on
the sets of rows associated with each group.
For example, find the top two items by ‘Amount’ in each group:
In []:

def top2byAmount(g):

return g.sort_values('Amount', ascending=False).head(2)

grouped.apply(top2byAmount)

Out[]:

Amount

Commodity

A 3 20

1 15

B 4 10

5 10

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

C 8 30

7 20

The second index column containing the numbers 3, 1, 4 etc., contains the original index
value of each row.
In Week 3 the apply()method was called on a column, to apply the given function to each
cell. Here it was called on a grouped dataframe, to apply the given function to each group.

Exercise 3 Experimenting with split-apply-combine

Work through Exercise 3 in your Exercise notebook 4 to practise the summary
operations.
As you complete the tasks, think about these questions:

● For your dataset, which months saw the highest and lowest levels of trade
activity? Did there appear to be any seasonal behaviour?

● When graphically comparing total trade flows from the leading partner
countries to the World total, did it look as if any partners particularly dominated
that area of trade? If you have time, find news reports discussing why this
should be the case.

1.4 Filtering groups
Being able to group rows according to some criterion and then apply various operations to
those groups is a very powerful technique.
However, there may be occasions when you only want to work with a subset of the groups
that can be extracted from a single dataset based on a particular group property. For
example, it might require that:

● groups that contain a minimum number of rows, such as countries that engage in
trade around a particular commodity with a minimum number of partner countries

● groups for whom a summary statistic meets certain conditions (for example, the total
value of exports for a particular commodity exceeds a particular threshold value, or
whose minimum or maximum value are below a certain value)

● a ranking of the groups based on a particular summary statistic, such as the total
trade value, that returns only the top five or bottom three groups according to that
ranking.

In the following example, where groups are selected based on group size, a filtering
operation is applied to limit an original dataset so that it includes just those groups
containing at least three rows, combining the rows from the selected groups back together
again to produce the output dataset:

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

Figure 6

In pandas, groups can be filtered based on their group properties using the filter()
method. Using the example dataframe again:
In []:

df

Out[]:

Commodity Amount

0 A 10

1 A 15

2 A 5

3 A 20

4 B 10

5 B 10

6 B 5

7 C 20

8 C 30

For example, the dataframe can be filtered to return just the rows from groups where there
is a maximum number of rows in the group.
As a reference point, count how many rows are associated with each group.
In []:

grouped = df.groupby('Commodity')

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

grouped.aggregate(len)

Out[]:

Amount

Commodity

A 4

B 3

C 2

The filter() method uses a function that returns a boolean (True or False) value to
decide whether or not to filter through the rows associated with a particular group.
As with the apply() method, provide the filter() method with just a function name in
order to pass each group to that function. For example, define a function that says
whether or not a group contains three or fewer rows and use that as a basis for filtering the
original dataset.
In []:

def groupsOfAtMostThreeRows(g):

return len(g) <= 3

grouped.filter(groupsOfAtMostThreeRows)

Out[]:

Commodity Amount

4 B 10

5 B 10

6 B 5

7 C 20

8 C 30

Alternatively, all the rows in a group can be filtered on an aggregate property of the group
such as the sum total, or maximum, minimum or mean value, from one of the columns.
In []:

#Consider the following total amounts by group

grouped.aggregate(sum)

Out[]:

Amount

Commodity

A 50

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

B 25

C 50

In []:

pivot_table(df,

index=['Commodity','Partner'],

values='Amount',

aggfunc=sum)

Out[]:

Commodity Amount

0 A 10

1 A 15

2 A 5

3 A 20

7 C 20

8 C 30

The ability to filter datasets based on group properties means that large datasets can
more easily be limited to just those rows associated with groups of rows that are deemed
to be relevant in some way.

Exercise 4 Filtering groups

Use the Exercise notebook 4 to practise filtering in Exercise 4.
As you complete the tasks, think about other questions you could ask of your data
using the filter command.

Week 8: Further techniques Part 2
1 The split-apply-combine pattern 07/06/23

2 Pivot tables
One of the most useful, if poorly understood, features offered by many spreadsheet
applications is the ‘pivot table’.
Pivot tables provide a way of creating summary reports over particular parts of a dataset,
reshaping the data into grouped rows, itemised columns, and summary values within
each group and item.
The screenshot of the interactive pivot table shown below, based on a widget originally
created by Nicolas Krutchen at Datacritic, contains a small fragment of the Comtrade data
describing milk imports to the UK.
The pivot table is organised as follows:

Figure 7

You can see how the ‘Trade Flow’ and ‘Reporter’ columns are used to group the data, with
each row representing a separate group. In addition, the values in the ‘Year’ column are
broken out to create separate columns (although in this example there is only data for one
year, and hence one ‘Year’ column, 2014). The function that is applied to the grouped data
is a sum operation, and it is applied to the selected ‘Trade Value (US$)’ column in the
original dataset. A marginal total value is calculated by summing across all the columns.
The ‘Commodity’ and ‘Trade Value (US$)’ columns, while part of the original dataset, are
not directly used to define the pivot table’s structure; that is, they are not used to set the
row or column index header labels in the displayed pivot table.
In terms of the split-apply-combine pattern, the pivot table operates as follows:

● the column names from the original dataframe that are listed in the rows panel on the
left hand side of the interactive pivot table split the data into a set of groups, with
each row specifying a group

● the pivot table’s columns are set according to the unique values associated with the
specified columns from the orignal dataframe; these break the data down into yet
smaller groups that are associated with each cell.

The selected operator is then applied to each cell level group, the results combined and
an appropriately structured output table is displayed.
To create a pivot table report for a dataset, typically three actions will be needed:

● identify what elements will appear as the row index values – that is, how the rows will
be grouped. Typically, groups will be created based on the unique values within a
single column or a combination of values, one from each of multiple grouping
columns.

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

● identify what elements will appear as column headings. Again, the column heading
may just be the unique values of a single variable, or combined values across
multiple grouping columns.

● identify what numbers will be reported on. This step may often break down into two
smaller steps:
○ to count the number of rows associated with a particular combination of row and

column index values, select the count operation
○ to perform an operation on the value of cells in another column, select that

column and then identify what operation to apply to it. For example, find the sum
or mean values of a numerical quantity associated with rows keyed by the row
and column index values, or count the number of unique values of a particular
variable in rows identified by those key values.

In addition, one or more ‘filters’ can be added to the selection of row and column index
values, either limiting which unique values in each key column to report on, or, by default,
selecting them all.
It is often easier to understand how a pivot table is organised by using it interactively.
You’ll get a chance to do this in the next exercise.

Exercise 5 Interactive pivot table

If you haven’t already, open the comtrade_pivot.html and save it into the same
folder as the Exercise notebook 4. Then either re-run all the notebook cells, or just
run the cell that contains the interactive pivot table.
Configuring a pivot table requires paying careful attention to the selection of row
(grouping) values, columns (reported values) and summary (aggregating) function.
How easy did you find it to use the interactive pivot table? Could you work out how
to select the row and column labels in order to ask particular questions of the data?
What sorts of questions did you try to ask?

2.1 Pivot tables in pandas
The interactive pivot table provides a convenient way of exploring a relatively small
dataset directly within a web browser. (A python package is also available that allows
interactive pivot tables to be created directly from a pandas dataframe.)

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

Figure 8

You can also achieve a similar effect using code, one-line-at-a-time. In this step, you will
learn how to ask – and answer – questions of a similar form to the ones you raised using
the interactive pivot table, but this time using programming code.
There are several reasons why you might want to automate pivot table operations you
might previously have done by hand. These include:

● having a record of all the steps used to perform a particular task, or analysis, which
can be useful if you need to check or provide evidence about what you have done
(transparency)

● being able to repeat the task automatically; this is particularly useful if you need to
perform the same task repeatedly – for example, generating a new summary report
each time a dataset is updated with new weekly or daily figures

● being able to apply one analysis to another dataset. For example, you might want to
produce the same sort of pivot table reports to similarly organised datasets but
differently populated datasets (for example, Comtrade datasets that refer to different
groups of countries and/or different commodity types).

In order to use the interactive pivot table, you had to identify:

● what column(s) in the dataset to use to define the row groupings in the pivot table
● what column(s) in the dataset to use to define the column groupings in the pivot table
● what column in the dataset to use as the basis for the pivot table summary function
● what summary function to use.

The process is similar when it comes to using pivot tables in pandas. Indeed, you might
find it useful to use the interactive pivot table to help you identify just what needs to go
where in order to generate a particular report using the pandas pivot table.

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

Working with pandas pivot tables
Let’s start by creating a sample dataset that includes several different columns that can be
grouped around. The code below defines the dataframe column by column, instead of row
by row as you have learned before.
In []:

df = DataFrame({"Commodity":["A","A","A","A","B","B","B","C","C"],

"Amount":[10,15,5,20,10,10,5,20,30],

"Partner":["P","P","Q","Q","P","P","Q","P","Q"],

"Flow":["X","Y","X","Y","X","Y","X","X","Y"]})

df

Out[]:

Commodity Partner Flow Amount

0 A P X 10

1 A P Y 15

2 A Q X 5

3 A Q Y 20

4 B P X 10

5 B P Y 10

6 B Q X 5

7 C P X 20

8 C Q Y 30

Suppose, for example, that you have data for a particular reporter country, and that you
want to find the total value of trade that country has for each commodity and each partner
country. A pivot table can be used to split the data by ‘commodity’, and within that
‘partner’, and then apply some sort of aggregation function to each (‘commodity’,
‘partner’) group.
In the interactive pivot table, this would have meant ordering the ‘Commodity’ and
‘Partner’ labels in the rows area, setting the aggregation function to sum and applying it to
the ‘Amount’ (that is, the ‘Trade Value’), and leaving the columns area free of any
selections.
In turn, the pandas pivot_table() function uses:

● the index parameter set as a list containing the ‘Commodity’ and ‘Reporter’ data
elements, to define the row categories

● the values parameter set to ‘Amount’
● the aggfunc (aggregating function) set to sum .

In []:

pivot_table(df,

index=['Commodity','Partner'],

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

values='Amount',

aggfunc=sum)

Out[]:

Flow X Y

Commodity Partner

A P 10 15

Q 5 20

B P 10 10

Q 5 NaN

C P 20 NaN

Q NaN 30

To further subdivide the data, an additional ‘Flow’ grouping element could be added in. (In
this case, the resulting pivot table just corresponds to the original dataset.)
In []:

pivot_table(df,

index=['Commodity','Partner','Flow'],

values='Amount',

aggfunc=sum)

Out[]:

Commodity Partner Flow

A P X 10

Y 15

Q X 5

Y 20

B P X 10

Y 10

Q X 5

C P X 20

Q Y 30

Alternatively, you might decide that you want to pull out the ‘Flow’ items into separate
columns for each of the original (‘commodity’, ‘partner’) groupings. To do this, add in a
columns parameter:

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

pivot_table(df,

index=['Commodity','Partner'],

columns=['Flow'],

values='Amount',

aggfunc=sum)

Flow X Y

Commodity Partner

A P 10 15

Q 5 20

B P 10 10

Q 5 NaN

C P 20 NaN

Q NaN 30

In this case, some missing values arise for cases where there was no original row item.
For example, there were no rows in the original dataset for Commodity/Partner/Flow
values of B/Q/Y, C/P/Y or C/Q/X.
The pandas produced pivot table can be further extended to report ‘marginal’ items, that
is, row and column based total amounts, by setting margins=True.

pivot_table(df,

index=['Commodity','Partner'],

columns=['Flow'],

values='Amount',

aggfunc=sum,

margins=True)

Flow X Y All

Commodity Partner

A P 10 15 25

Q 5 20 25

B P 10 10 20

Q 5 NaN 5

C P 20 NaN 20

Q NaN 30 30

All 50 75 125

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

In terms of the ‘split-apply-combine’ pattern, the pandas pivot table operates in much the
same way as the interactive pivot table:

● the list of original data columns assigned to the index parameter splits the data into a
set of groups

● the groups are further split into smaller cell level groupings by optionally setting the
columns parameter.

The selected operator is then applied to each group and the results combined in an
appropriately structured output display table.

Exercise 6 pivot tables with pandas

Use the Exercise notebook 4 to explore the creation of pivot tables using pandas in
Exercise 6.
Did you manage to ask any new questions of your data using the pandas pivot table
function? You could try using them in combination with other pandas functions, such
as filter() , to limit the rows you generated the pivot table against. What did the
pivot tables tell you about the levels of trade around the trade item and reporter
country you selected?
One reason that pivot tables are often thought of as difficult to use is that there is a
lot of data manipulation going on inside them. The data is grouped across rows, split
across columns and may be aggregated in various ways. It can sometimes be hard
to work out how to structure the output report you want, even before worrying about
the programming code syntax. Given that, consider what you think the benefits of
using code are as opposed to interactive pivot tables. Think about how you could
use them to complement each other.

2.2 Looking at the milk and cream trade
This week’s project looks at the milk and cream trade between the UK and other countries
in the first five months of 2015.

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

Figure 9

The written up analysis is in the project notebook. You will also need to open the file
comtrade_milk_uk_jan_jul_15.csv and save it to your Anaconda folder or CoCalc project.
The structure is very simple: besides the introduction and the conclusions, there is one
section for each research question.
Extend or create your own project next.

2.3 Your project
If you have time, extend my project to answer different questions or create your own
project.

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

Figure 10

Activity 1 Extend the project

Make a copy of the project notebook and change it to answer one or all of the
following questions:

● Which are the regular exporters, i.e. which countries sell every month both
unprocessed and processed milk and cream to the UK?

● Where could the export market be further developed, i.e. which countries
import the least? Do the figures look realistic?

● What is total amount of exports to and imports from the bi-lateral trade
countries? Hint: pivot tables can have ‘marginal’ values.

● Repeat the whole analysis for January–May 2014 and compare the results.

Activity 2 Create a project (optional)

If you have more time, create a completely new project. You could choose
completely different commodities, a different reporter (e.g. your country), a different
period (e.g. two or more full years), and only a few select partners (e.g. just the
‘World’ partner for a global analysis).

Week 8: Further techniques Part 2
2 Pivot tables 07/06/23

3 This week’s quiz
Now it’s time to complete the Week 4 badge quiz. It is similar to previous quizzes, but this
time instead of answering five questions there will be fifteen.
Week 8 compulsory badge quiz
Remember, this quiz counts towards your badge. If you’re not successful the first time,
you can attempt the quiz again in 24 hours.

Week 8: Further techniques Part 2
3 This week’s quiz 07/06/23

https://www.open.edu/openlearn/ocw/mod/quiz/view.php?id=78784

4 Summary
Phew – you made it! Well done!

Figure 11

During this week you’ve learned how to take a dataset that contains multiple possible
groupings or subsets of data, and work with those groups to perform a variety of
transformations.
In particular, you have learned how to:

● split the data contained in a dataframe into multiple groups based on the unique ‘key’
values in a single column, or unique combinations of values that appear across two
or more columns

● apply an aggregate (summary) function to generate a single summary result for the
group, and then combine these results to generate a summary report with as many
rows as there were groups, one summary report row per group -apply a filter
function that would use the rows contained in each group as the basis for a filtering
operation, returning rows from each group who’s group properties matched the filter
conditions

● use a pivot table to generate a variety of summary reports.

You may not have thought of performing gymnastics with data before, but as you’ve seen,
we can start to work our data quite hard if we need to get it into shape!

4.1 Week 7 and 8 glossary
Here are alphabetical lists, for quick look up, of what this week introduced.

Week 8: Further techniques Part 2
4 Summary 07/06/23

Concepts
An API , or application programming interface provides a way for computer
programmes to make function or resource requests from a software application. Many
online applications provide a web API that allows requests to be made over the internet
using web addresses or URLs (uniform resource locator). A URL may include several
parameters that act as arguments used to pass information into a function provided by the
API. To prevent ambiguity, simple punctuation is avoided in URLs. Instead, ‘websafe’
encodings using the ASCII encoding scheme are typically used to describe punctuation
characters.
The notion of grouping refers to the collecting together of sets of rows based on some
defining characteristic. Grouping on one or more key columns splits the dataset into
separate groups, one group for each unique combination of values that appears in the
dataset across the key columns. Note that not all possible combinations of cross-column
key values will necessarily exist in a dataset.
The split-apply-combine pattern describes a process in which a dataset is split into
separate groups, some function is applied to the members of each separate group, and
the results then combined to form an output dataset.

Functions and methods
df.to_csv(filename,index=False) writes the contents of the dataframe df to a CSV file
with the specified filename in the current folder. The index parameter controls whether the
dataframe index is included in the output file.
read_csv(URL,dtype={}) can be used to read a CSV file in from a web location given the
web address or URL of the file. We also made use of an additional parameter, dtype to
specify the data type of specified columns in a dataframe created from a CSV file.
df.groupby(columnName) or df.groupby(listOfColumnNames) is used to split a dataframe
into separate groups indexed by the unique values of columnName or unique combinations
of the column values specified in the listOfColumnNames.

grouped.get_group(groupName) is used to retrieve a particular group of rows by group
name from a set of grouped items.
grouped.groups.keys() is used to retrieve the names of groups that exist within a set of
grouped items.
grouped.aggregate(operation) applies a specified operation to a group (such as sum)
and then combines the results into a single dataframe indexed by group.
grouped.apply(myFunction) will apply a user defined function to the rows associated with
each group in a set of grouped items and return a dataframe containing the combined
rows returned from the user defined function.
grouped.filter(myFilterFunction) will apply a user defined filtration function to each
group in a set of grouped items that tests each group and returns a Boolean True or False
value to say whether each group has passed the filter test. The .filter() function then
returns a single dataframe that contains the combined rows from groups that the user
defined filter function let through.
pivot_table(df, index=indexColumnNames, columns=columnsColumnNames,
values=valueColumnName, aggfunc=aggregationFunction) generates a pivot table from a
dataframe using unique combinations of values from one or more columns specified by
the indexColumnNames list to define the row index and unique combinations of values from
one or more columns specified by the columnsColumnNames list to define the columns. The
pivot table cells are calculated by applying the aggfunc function to the valueColumnName
column in the group of rows associated with each cell.

Week 8: Further techniques Part 2
4 Summary 07/06/23

4.2 What next?

Video content is not available in this format.

As the course comes to an end, what’s next in your learning journey? The
National Careers Service can help you decide your next steps with your new skills. Ruth
also mentions extending your learning by investigating more open data.

Exploring open data further
The last few years has seen a wide variety of local and national governments and
agencies publishing data as ‘open data’ that can be freely re-used by anyone. Explore
some of this data yourself, at the following links:

● UK government open data site – a directory of UK public datasets
● US government open data site – the home of the US Government’s open data
● Open Knowledge Global Open Data Index – a comprehensive directory of national

open data initiatives
● Open Data Inception – a geographic list of over 1500 data portals around the world
● Google Public Data Explorer – a further list of data providers, with charts for some

datasets
● Many towns and cities also have their own data sites: search for the name of your

town and the keywords ‘open data store’
● Open data published by government departments and agencies such as

performance of UK schools or prices paid for house sales in the UK
● The pandas library supports a growing number of external data sources such as

Google Analytics.

Get careers guidance
The National Careers Service can help you decide your next steps with your new skills.

Week 8: Further techniques Part 2
4 Summary 07/06/23

https://nationalcareers.service.gov.uk/?utm_source=Learn%20to%20Code%20for%20Data%20Analysis&utm_medium=website&utm_campaign=skillstoolkit
http://data.gov.uk/
http://data.gov/
http://index.okfn.org/dataset/
http://opendatainception.io
https://www.google.com/publicdata/directory
http://www.education.gov.uk/schools/performance/
http://landregistry.data.gov.uk/app/ppd
http://pandas.pydata.org/pandas-docs/stable/remote_data.html
https://nationalcareers.service.gov.uk/find-a-course/the-skills-toolkit?utm_source=openlearn&utm_medium=referral&utm_campaign=skillstoolkit_completed

Complete our survey
We would love to know what you thought of the course and what you plan to do next.
Whether you studied the course all in one go or dipped in and out, please take our
end-of-course survey. Your feedback is anonymous but will help us to improve what we
deliver.

Week 8: Further techniques Part 2
4 Summary 07/06/23

https://www.surveymonkey.co.uk/r/BOCENDlearntocode

Tell us what you think
Now you’ve come to the end of the course, we would appreciate a few minutes of your
time to complete this short end-of-course survey (you may have already completed this
survey at the end of Week 4).
Additionally, if you found this course through the Skills Toolkit launched by the UK
government in April 2020 and would be willing to provide feedback on how this course has
helped you, please get in touch by emailing us.

Acknowledgements
This free course was written by Michel Wermelinger.
Except for third party materials and otherwise stated (see terms and conditions), this
content is made available under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence .
The material acknowledged below is Proprietary and used under licence (not subject to
Creative Commons Licence). Grateful acknowledgement is made to the following sources
for permission to reproduce material in this free course:

Images
Course image © peterhowell/iStockphoto.com
Figure 1 © AFP/Getty Images
Figure 2 © Savushkin/istockphoto.com
Figure 3 © Kameleon007/istockphoto.com
Figure 4 © Picardo/Getty Images.co.uk
Figure 5 © kerriekerr/istockphoto.com
Figure 6 © Rawpixel Ltd/istockphoto.com
Figure 7 © merc67/istockphoto.com
Figure 8 © Katherine Feng/Globio/Getty Images
Figure 9 © AFP/Getty Images
Figure 10 © Nicolas Raymond in Flickr https://creativecommons.org/licenses/by/2.0
Figure 11 created by Jonatan argento in Wikipedia, https://creativecommons.org/
licenses/by-sa/2.5/deed.en
Figure 12 © Fuse/Getty Images
Figure 13 © Predrag Vuckovic/Getty Images
Figure 1 © David Sucsy/istockphoto.com
Figure 2 © santiphotois/istockphoto.com
Figure 3 © Fuse/Getty Images
Figure 4 © Biddiboo/Getty Images
Figure 5 © maximkabb/istockphoto.com
Figure 6 © D-BASE/Getty Images
Figures 1 and 2 © Igor Zhuravlov/via istockphoto.com
Figure 3 © MartinCParker/istockphoto.com
Figure 4 © Adri Berger/Getty Images
Figure 5 © Donald Iain Smith/Getty Images

Week 8: Further techniques Part 2
Tell us what you think 07/06/23

https://www.surveymonkey.co.uk/r/BOCENDlearntocode
mailto:openlearn@open.ac.uk?subject=Learn to code course feedback
http://www.open.ac.uk/conditions
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB

Figure 6 Public Domain by US Federal Government https://commons.wikimedia.org/wiki/
File:Compass_rose.png
Figure 7 © Jim Reed/Getty Images
Figure 1 © David Sucsy/istockphoto.com
Figure 2 © santiphotois/istockphoto.com
Figure 3 © Fuse/Getty Images

Text
Exercise notebook 3 and Exercise 1: and other identifiable exercises and tables compiled
using The World Bank data (2013).
Figure 1 © Biddiboo/Getty Images
Figure 2 © maximkabb/istockphoto.com
Figure 3 © D-BASE/Getty Images
Figure 6 © Uwe Kreijci/Getty Images
Figure 7 © Ariel Skelley/Getty Images
Figure 1 © cgouin/istockphoto.com
Figure 2 © Sam Camp/istockphoto.com
Figure 3 © Terribil-T/istockphoto.com
Figures 4 and 5 adapted from Comtrade data extraction interface: https://comtrade.un.
org/data/
Figure 6 © ronstik.istockphoto.com
Figure 8 © webking/istockphoto.com
Figure 13 pivot table originally created by Nicolas Krutchen at Datacritic containing some
Comtrade data describing milk imports to the UK
Figure 14 © Hung_Chung_Chih/istockphoto.com
Figure 15 © Jack Andersen/Getty Images
Figure 16 © PeopleImages/istockphoto.com
Figure 17 © oleg66/istockphoto.com

Text
Activity 3 Project: compiled from World Health Organisation (WHO) information)

Video
Exercise 1 video: © The Open University
Every effort has been made to contact copyright owners. If any have been inadvertently
overlooked, the publishers will be pleased to make the necessary arrangements at the
first opportunity.
Don't miss out
If reading this text has inspired you to learn more, you may be interested in joining the
millions of people who discover our free learning resources and qualifications by visiting
The Open University – www.open.edu/openlearn/free-courses.

Week 8: Further techniques Part 2
Acknowledgements 07/06/23

http://www.open.edu/openlearn/free-courses?LKCAMPAIGN=ebook_&MEDIA=ol

