
Software development for enterprise

systems



2 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


About this free course

This free course provides a sample of postgraduate study in Computing and ICT:
www.open.ac.uk/postgraduate/find/computing-and-ict.

This version of the content may include video, images and interactive content that may not be optimised
for your device.

You can experience this free course as it was originally designed on OpenLearn, the home of free
learning from The Open University:
www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enter-
prise-systems/content-section-0.

There you’ll also be able to track your progress via your activity record, which you can use to
demonstrate your learning.

The Open University Walton Hall, Milton Keynes, MK7 6AA

Copyright © 2016 The Open University

Intellectual property

Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence
v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University
interprets this licence in the following way:
www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and
rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open
University. Please read the full text before using any of the content.

We believe the primary barrier to accessing high-quality educational experiences is cost, which is why
we aim to publish as much free content as possible under an open licence. If it proves difficult to release
content under our preferred Creative Commons licence (e.g. because we can’t afford or gain the
clearances or find suitable alternatives), we will still release the materials for free under a personal end-
user licence.

This is because the learning experience will always be the same high quality offering and that should
always be seen as positive – even if at times the licensing is different to Creative Commons.

When using the content you must attribute us (The Open University) (the OU) and any identified author in
accordance with the terms of the Creative Commons Licence.

The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed
content which is not subject to Creative Commons licensing. Proprietary content must be used (retained)
intact and in context to the content at all times.

The Acknowledgements section is also used to bring to your attention any other Special Restrictions
which may apply to the content. For example there may be times when the Creative Commons Non-
Commercial Sharealike licence does not apply to any of the content even if owned by us (The Open
University). In these instances, unless stated otherwise, the content may be used for personal and non-
commercial use.

We have also identified as Proprietary other material included in the content which is not subject to
Creative Commons Licence. These are OU logos, trading names and may extend to certain
photographic and video images and sound recordings and any other material as may be brought to your
attention.

Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or
intellectual property laws.

We reserve the right to alter, amend or bring to an end any terms and conditions provided here without
notice.

All rights falling outside the terms of the Creative Commons licence are retained or controlled by The
Open University.

3 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.ac.uk/postgraduate/find/computing-and-ict?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Head of Intellectual Property, The Open University

The Open University

United Kingdom by The Charlesworth Group, Wakefield.

Contents
Introduction 5
Learning Outcomes 6
1. Introducing the terminology 7
2 Software development processes 9

2.1 Stakeholders and activities 9
2.2 From waterfall to iterative development 10
2.3 Risk management 12

3 The Unified Process 14
4 Emergent approaches to software development 17
5 Modelling and the UML 18

5.1 Domain, specification and design modelling 18
5.2 Modelling techniques and language 19

6 The object-oriented approach 21
6.1 Modularity and the object-oriented approach 21
6.2 Objects 21
6.3 Networks of objects 23
6.4 Collaborating objects 24
6.5 Classes 27
6.6 Inheritance 29
6.7 Modelling with objects 32

7 Reuse 35
7.1 The advantages of reuseability 35
7.2 Frameworks 35
7.3 Components 36
7.4 Patterns 37

8 CASE tools 40
Conclusion 42
Keep on learning 43
References 43
Acknowledgements 45

4 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Introduction
Enterprise systems are software applications that automate and integrate all many of the
key business processes of an organisation. With some understanding of software
development, you will learn about current development practices for this type of system
and develop relevant skills to apply them to real-world problems. You will develop core
skills in object-oriented analysis and design, allowing you to develop software that is fit for
purpose, reusable and amenable to change.
This OpenLearn course provides a sample of postgraduate study in Computing and ICT.

Introduction

5 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.ac.uk/postgraduate/find/computing-and-ict?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Learning Outcomes
After studying this course, you should be able to:
● describe a software development process used in an object-oriented approach to software
● describe the activities that take place during software development
● understand the different modelling perspectives used in the course, and what is important in each of them
● understand the terminology of objects
● understand the terms framework, component and pattern, and discuss their relevance to the development of

more flexible software.



1. Introducing the terminology
Constructing enterprise systems is a complex engineering endeavour. As with other types
of engineering, e.g. the construction of aircraft or suspension bridges, a lot of effort has to
be put into planning and modelling, so that the final product is what is required and is
achieved on time and within budget.
Ben Kovitz (1999) makes a distinction between orderly and exploratory. Orderly
engineering is characterised primarily by the application and slight variation of time-
tested techniques, design patterns and solutions but this does not mean that existing
design and solutions can be routinely applied to solve new problems. Combining existing
designs is a highly skilled activity that will always require some degree of imagination and
ingenuity. Exploratory engineering is characterised primarily by the unstructured
exploration of new kinds of techniques and design.
This course focuses on orderly engineering for enterprise systems. In particular, you will
learn about current development practices for this type of system and develop relevant
skills to apply them to real-world problems.
First of all, you will learn about the software development process, and its role in
mitigating development risks. We use the term ‘development process’ to refer to the set
of activities, methods, practices and transformations used to develop a piece of software
(and associated products such as project plans and design documents).
The course also introduces you to the object-oriented approach to software. In particular,
it will help you understand the concept of an object and related object technology
concepts, such as encapsulation and inheritance.
Building models is an important activity throughout software development whatever
approach is taken; models represent different aspects of the system and are built from
different points of view. You will learn about the Unified Modeling Language (UML), a
(primarily) diagrammatic language, to express models in an object-oriented approach.
This course only contains a brief introduction to UML.
An important part of modelling is the ability to produce precise descriptions. No matter
how abstract or expressive your models are, it is important that they describe precisely
some facts of interest. At times, the need for precision will require the use of a more
precise language. The Object Constraint Language (OCL) is a textual modelling
language that is part of the UML. We will introduce it as needed to support UML models.
Realistic software development cannot be achieved without some tool support. In this
course you will learn about a category of software tools, Computer Assisted Software
Engineering (CASE) tools, which may help software developers to construct, document
and track the evolution of artefacts during the development process.
Software is now a major factor in any business. Delivering software that meets your
customer's need is of paramount importance. However, changes in business occur
frequently, so software has to adapt to these frequent changes in order to keep a business
competitive. Software development does not always mean development from scratch.
Timely delivery of new software may mean that existing software has to be reused. You
will learn about reuse of expertise, design and even existing systems or parts of them
within new developed software.

1. Introducing the terminology

7 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


The goal of this course is to introduce core skills in object-oriented analysis and design.
Mastering such skills will enable you to develop software that is fit for purpose reusable
and amenable to change.
Naturally, the course does not address the whole range of activities and skills that are
required for successful software development. Many more skills are involved in, say
eliciting requirements or designing usable interfaces or databases. This course only
provides one piece in a much larger picture.
While this course is of an introductory nature, it will also expose you to current thinking in
software development. It assumes you have some understanding of software develop-
ment, but not necessarily any prior knowledge of the object-oriented approach, its
principles and techniques.
Section 2 of this course describes some well-known software development processes.
Models are used to represent the essential features of a situation and Section 3
introduces you to the different types of models you will encounter on the course, and to
the languages used to express these models, UML and OCL. Section 4 describes the
main concepts of an object-oriented approach. Reuse is described in Section 5 and the
course ends with an introduction to CASE tools in Section 6.

1. Introducing the terminology

8 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


2 Software development processes

2.1 Stakeholders and activities
Current enterprise systems are large and complex, and their construction involves many
stakeholders, including customers, developers and users. Software development
processes have emerged over the years to harness the complexity of software
construction. A software development process describes an approach to building,
deploying and maintaining software (Larman, 2002).
The advantages of following a well-understood process are many. From a manager's
viewpoint, it is crucial to have well-defined activities that make it possible to estimate when
a final product will be completed and the effort required to achieve it. From developer's
viewpoint it is important to have well-defined tasks and clear outcomes, and to know
which documents and artefacts should be produced by each of the activities undertaken.
From a customer's viewpoint it is fundamental to be reassured that the required product is
the one being built and that it will be delivered on time and within budget.
Software development processes vary in the details of the activities they prescribe, the
related artefacts, and the software life cycle, i.e. how the activities should be carried out
in relation to one another, and how often each activity should be revisited. There are some
fundamental development activities that are common to most processes. These are:
analysis, design, implementation, and testing.
In very general terms, analysis deals with understanding the problem and what is
required of the system to be developed (the requirements); design deals with describing
conceptually a software solution that meets the requirements of the problem;
implementation builds such a solution; and testing helps to verify and validate it.
Verification is the set of activities that ensures that the software correctly implements a
specific function (‘Are we building the product right?’) while validation is the set of
activities that ensures that the software developed is traceable to the customer's
requirements (‘Are we building the right product’).

Exercise 1
Which of the activities of analysis, design, implementation, and testing involve the
participation of customers?

Answer

2 Software development processes

9 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Solution

Customers will have to be involved mainly during analysis, to discuss the requirement
for the system; they should also be involved later in validating and testing the software.
However, in a process with short development cycles and frequent iterations, as you
will see later, customers have a closer involvement with the whole of the development
process.

2.2 From waterfall to iterative development
Historically, the first widely adopted software development process was the waterfall
development process (or simply, waterfall).
The waterfall process relies on the definition of sequential phases, as shown in Figure 1.
Each phase starts only after the previous one has finished; all the analysis is done first,
followed by all the design, then the implementation, and finally the testing.
The waterfall process has been widely used and has produced many successful software
products. However, it makes several assumptions that have been criticised.
For example, it relies on the existence of a set of requirements that is defined beforehand
and remains unchanged during development; it also assumes that all code is designed
from scratch, making no allowance for the reuse of existing software. Because the
development is carried out as a linear process, the waterfall process does not allow
previous phases of the development to be repeated without repeating the whole
sequence of steps.

Figure 1 The waterfall development process

Exercise 2

1. What are the disadvantages of developing software in strict sequence through all
its development phases?

2 Software development processes

10 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


2. Can you think of an advantage, from a management point of view, of developing
the software in strict sequence?

Answer

Solution

1. The results of implementation and testing may lead to refinements in the
requirements specification that are difficult to accommodate in a strictly sequentia
development. The period of development is long, any feedback on the
requirement comes too late, and the requirements may then no longer be valid.

2. The development process can be easily controlled, and it is easy to know when
each phase has been completed, and to estimate the total length of the project.

The waterfall process is an important approach which has been widely applied in the past.
However, its rigidity in the face of changes and its lack of support for reuse make it
unsuitable for modern enterprise systems development, where coping with continuous
business changes and short time-to-market is paramount. The inevitability of revisiting
requirements to address problems identified earlier rather than later has led to processes
that allow for a repetition of early phases before the end of development.
Iterative and incremental processes represent best practice that has been identified
from the limitations of the waterfall process. The term ‘iterative’ indicates the repetition of
one or more activities; the term ‘incremental’ indicates that development proceeds from
an initial subset of the requirements to more and more complete subsets, until the whole
system is addressed. Incremental development involves an initial partition of the intended
functionality; some or all of the subsequent development activities can be carried out
independently and in parallel. The final product results from the total integration of the
partitions.
In iterative and incremental processes there is still a need for analysis, design,
implementation and testing activities, but these activities are carried out in a more flexible
way than in the waterfall process. An iterative and incremental process consists of several
cycles of analysis, design, implementation and testing. Each cycle is short and provides
feedback for the next cycle, in which a more refined and enhanced development is
achieved. With an incremental model, development starts from small subsets of the
requirements, reducing the complexity and scope of each analysis, design and coding
cycle. Each increment is carried through the development activities to produce a working
subset of the system, and is developed through several iterations. The integration of the
increments results in the final system. However, this integration can be progressively
achieved by successive releases of the software, each release achieving more
functionality. Figure 2 illustrates an iterative and incremental model The increments
represent development that can be carried out independently and in parallel. It should be
stressed that the activities within each iteration are not necessarily sequential. Testing, for
example, is no longer an activity that takes place only after implementation has
terminated; tests start being developed as early as the analysis stage.

2 Software development processes

11 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Figure 2 Iterative and incremental development process

As each cycle deals with a small set of requirements, the complexity of each increment is
managed; the complexity of the whole system needs to be managed by progressive
integration of increments. Early feedback is obtained from a partial implementation. This
implementation can be assessed early and may lead to alterations to some requirements
or the completion of others. Reuse is also encouraged by partitioning the initial set of
requirements, because it will be easier to identify reusable components that match
requirements within each such partitioning.

Exercise 3

1. Why is early feedback, provided by each iteration, an advantage?
2. Can you think of any disadvantages that may be associated with an iterative and

incremental development cycle?

Answer

Solution

1. It allows development effort that is going down a blind alley to be detected and
halted.

2. It is difficult to know when to stop iterating; the integration of the partitions
requires very careful definition of the interaction between these partitions.

2.3 Risk management
No software development is free from risk, and one crucial activity of development is
identifying and managing it. Managing risks requires an early identification of any threats
to the development or operation of a system, and then monitoring these threats during
development. In an iterative and incremental development, risks in the development stage
can be tightly monitored and controlled. The emphasis on short cycles that lead to early
implementation helps to address technological problems from the start. The planning and
prioritising of increments is done taking into account the risks that may occur
(Fowler, 1997). Unforeseen problems can also be avoided by starting the integration of
increments early.
Risks are mainly associated with making decisions that may be wrong and with
misunderstanding requirements. There are different ways of classifying risks, according to

2 Software development processes

12 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


different authors. Fowler, for example, classifies risks as requirements risks, technological
risks, skills risks and political risks.

Exercise 4
Think of examples of each category of risk given by Fowler.

Answer

Solution

● Requirements risks: building the wrong system, or one that does not satisfy the
customer.

● Technological risks: using the wrong tools to solve the problem.
● Skills risks: not being able to gather the required expertise to develop the system.
● Political risks: not recognising influential forces that may affect the development

of the system.

The techniques you will learn in this course will help you deal with requirements and
technological risks. Requirements risks may be minimised if the development cycles are
short and restricted to a partition of the system. This allows decisions to be reconsidered
and requirements to be improved and more clearly defined. The order in which increments
are developed depends on their importance and on risk factors associated with them.
Technological risks may be minimised by the use of the right tools; teaching you how to
select and use these tools is one of the aims of this course.

2 Software development processes

13 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


3 The Unified Process
The Unified Process (UP) (Jacobson et al., 1999) has emerged as a popular iterative
and incremental development process for building enterprise systems based on an
object-oriented approach. It promotes a set of best practices, namely that development
should be organised in short time-boxed iterations, and that it should be adaptive to
accommodate inevitable change.
Time boxingmeans that a (usually) short fixed period of time is devoted to each iteration,
e.g. three to four weeks. Consequently, only a small set of requirements is considered at
each iteration and progressed to the implementation and testing stages Each iteration
results in an executable, but incomplete system. Typically, many iterations and
progressive integration of increments are required before the product can be delivered.
Adaptive means that adjustments are allowed at each iteration. The motivation for this is
the recognition that requirements may change throughout development, and that such
changes should be dealt with rather than resisted. By involving customers and users at
each iteration, feedback can be gained quickly, and the required adjustments made within
the next iteration. Hence, each iteration may provide an increment over, or simply revisit
the output of, the previous one.
Other best practices promoted by UP are:

● dealing with high-risk issues in early iterations;
● giving the users' perspective great importance in the process and involving them in

the definition of requirements, evaluation and feedback;
● building a view of the system's architecture in early iterations.

A UP project is organised into four major phases:

1. Inception – this is where the business case is developed, together with an idea of
the scope of the system and a rough estimate of the effort required.

2. Elaboration – this is where the core of the system is developed in an iterative
fashion. In this phase, all major risks are addressed and resolved; most of the
requirements are identified and dealt with; and a more realistic estimate of the effort
required is made.

3. Construction – this is where the remaining lower risk and easier elements of the
system are constructed, again in an iterative fashion.

4. Transition – this includes beta testing and deploying the system.

Within the UP phases, development work is organised within many disciplines.
‘Discipline’ is the UP term for development activities such as requirements analysis and
testing. An example of disciplines and their relation to UP phases is given in Figure 3. (A
detailed analysis of all of the disciplines here is outside the scope of this course.)

3 The Unified Process

14 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Figure 3 UP phases and disciplines

The figure is only illustrative of what a UP project would look like. The columns represent
iterations. For each discipline, the relative effort is represented throughout the UP phases
and their iterations. For instance, most of the domain modelling occurs in the early
iterations of the inception and elaboration phases, while most of the implementation
occurs within the construction phase.
This course is loosely based on the UP, with a focus on the elaboration phase and the
disciplines of domain modelling (often referred to as business modelling), requirements
analysis and design, and to some extent implementation and testing.
The techniques you will learn are not specific to the UP, though. In fact, they can be used
in many iterative and incremental processes based on an object-oriented approach to
software.

Exercise 5
Explain why the UP is not just a waterfall process in disguise.

Answer

3 The Unified Process

15 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Solution

Superficially, it would be possible to superimpose the waterfall life cycle onto the UP by
identifying inception with requirements analysis, elaboration with design, and
construction with implementation and testing.
This would be a misrepresentation of the UP for many reasons. In the UP you do not
try to define most of the requirements before starting design, or to define most of the
design before starting implementation. Instead, a small set of requirements is
considered at each iteration and this small set is the focus of analysis, design and
implementation. Thus, the system is developed incrementally, over many short
iterations.
Also, the full project is not planned in detail from start to finish. An initial estimate is
made and refined throughout the elaboration phase. This allows for the flexibility
required in coping with requirements changes. This does not mean, however, that
arbitrary changes can occur at any time in the project. The development plan must
allow for all major risks to be addressed in early iterations in order to construct a stable
system core for the remaining development.

3 The Unified Process

16 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


4 Emergent approaches to software
development
Iterative and incremental methods have been widely adopted in software development.
Nowadays, high competitiveness, reduced time-to-market and pressure to develop
flexible enterprise software together with the rapid change of technology have led to the
emergence of new approaches to building, deploying and maintaining software. At the
time of writing (2005), several new approaches to software development have been
established that may become significant during the lifetime of this course. These include
Model Driven Architecture (MDA) (see http://www.omg.org/mda/) and agile development
(see http://agilemanifesto.org/).
MDA defines an approach whereby business-oriented decisions and specifications can
be separated from implementation and platform (technology) decisions. The idea is to
distinguish between platform independent models (PIMs) specified using UML, and
platform specific models (PSMs) which carry relevant information for the generation of
platform-specific code. Standard mappings between PIMs and PSMs should allow tools to
be developed to automate some of the implementation. This approach is based on strong
emphasis on:

● models specified in a well-defined notation;
● transformations between models;
● formal underpinning of models and transformations;
● industry adopted standards and tools.

Agile development (Cockburn and Highsmith, 2001; Fowler and Highsmith, 2001) is an
umbrella term used to describe a variety of (agile) methods that encourage continual
realignment of development goals with the needs and expectations of the customer. It
represents a compromise between no process and too much process; a lighter weight,
faster and nimbler software development process that can adapt to the inevitable changes
in customer requirements.
The Agile Manifesto lists the following four principles:

Individuals and interactions over processes and tool
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

(http://www.agilemanifesto.org, accessed 9 March 2005)

Extreme Programming (XP) (Beck, 2000) is one of the best known agile methods; it is
very lightweight method, based on intensive testing and incremental development. It
defines a series of practices such as small releases, simple design, testing, programming
in pairs, collective ownership, continuous integration, 40-hour week, on-site customer,
and coding standards.

4 Emergent approaches to software development

17 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


5 Modelling and the UML

5.1 Domain, specification and design modelling
Building quality software is often a complex and lengthy task. Software developers build
models that represent what is important, devoid of unnecessary detail. These models
help them to deal with the complexity and to understand what is being developed.
This is not unlike other forms of design. For instance, when an architect develops model
of a house as a set of drawings they will probably show where the walls and windows are
and their relative sizes, but not any details about the materials used. The same happens
when modelling software; with software, a model is an abstract representation of some
view of a system. The view of a system changes with the stage of the development
process. So, we have models with different perspectives according to the stage of
development; we call them domain, specification and design models.
Domain modelling is concerned with understanding and modelling a situation
independently of a decision to use a software system to deal with it. A domain model is a
representation of the main concepts in the real-world problem, i.e. the business under
consideration. A domain model does not assume that software is to be used to deal with
the situation.
Specification modelling assumes that a software system will deal with a situation; a
specification model represents software elements used in the software solution to
problem, and is mainly concerned with the definition, at a high level of abstraction, of the
services provided by the software.
Design modelling describes the software system, the allocation of responsibilities and
the internal sequencing and control flow.
The distinction between domain and design models was introduced by Cook and
Daniels (1994). They called the domain model the essentialmodel, and the design model,
the implementation model. Business model is also often used in the literature with a
meaning similar to domain model.
You may wonder why we need to consider domain modelling at all. It is important to
understand the domain fully, including the business, its resources and processes before
suggesting any software product for that domain. The term ‘business’ is used in a wide
sense to mean the situation in the enterprise that is relevant to the customer; it might be a
commercial business, such as retailing, or a security alarm system. In any case, the
important elements, whether they are people, products, departments, sensors, alarms or
operators, need to be identified. Only by understanding the situation, and how, why and
with what consequences it changes, can a software solution that is suitable for the
enterprise be specified.
Domain and specification modelling may produce very similar models, but the
interpretations of the models are different; the former are about real-world entities, the
latter are about software representations of those entities. Modelling the domain will not
always be necessary – for instance, when there is an accepted need for a well-defined
software system to solve a well-understood situation. In this case, modelling the domain
would not bring much advantage.

5 Modelling and the UML

18 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


You may also wonder what the relation is between these three perspectives and the
traditional split between analysis and design. In a simple way we could consider domain
modelling and specification modelling as the analysis activities – that is, concerned with
understanding what a problem is, and specifying what is required of the software system
to be developed. In this course, however, we keep the distinction between domain
modelling and specification modelling and use the term analysis for the latter As you might
expect, design modelling corresponds to the design activity.

Exercise 6

1. Briefly describe when each of the three modelling perspectives (domain,
specification and design) is relevant.

2. Can you think of a situation in which modelling the domain may not be
necessary?

Answer

Solution

1. Domain modelling is relevant when we want to understand the business before
any software development starts. Specification modelling is relevant when we
have defined set of requirements and want to model what the system is going to
do. Design modelling is relevant when we want to describe in detail how the
software is to achieve the required behaviour; this involves, for example,
representing the flow of control for the required functionality.

2. When the domain is well understood and the scope and boundary of a software
system are well defined, modelling the domain may not be necessary, and
development may start by specifying the software system. This is the case when
the requirements are clear and unambiguous (such as building a text processor),
but regrettably this is not often the case.

5.2 Modelling techniques and language
Models are built using techniques. A technique is a tool to describe a particular way of
viewing and understanding a system. It guides the creation of a model and defines the
notation used to create it. This can be narrative or diagrams or even mathematics.
Techniques deal with the complexity of a system, abstracting essential aspects and
representing them as models.
A modelling language defines the notations used for many different techniques. The
Unified Modeling Language (UML) is the modelling language we will use in this course. It
is one of the most popular and successful standards currently adopted by the software
industry.
UML is the result of the merging of several object-oriented notations that appeared during
the 1980s and early 1990s. As such, it is a big language, including many techniques, and
even a mechanism to extend the notation. Here you will not learn UML in its entirety, but
concentrate on a subset of the most commonly adopted techniques.

5 Modelling and the UML

19 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


UML, being predominantly a diagrammatic language, cannot always precisely specify the
complete semantics of a system and at times must be complemented by the use of
natural language, say English, or by a textual modelling language, the Object Constraint
Language (OCL). In this course, you will learn to express constraints on UML model
precisely using English and OCL.
One thing that should be clear is that UML is a modelling language, not a development
process; it gives you a set of notations, but it does not prescribe how these notations are
to be used. In fact, because UML is the result of an exercise of unification, it can be used
with many different processes: it is up to the development process to define how it should
be used.

Some UML history
Many object-oriented methods appeared in the early 1990s and with them proliferation of
techniques and notations. By the mid-1990s two authors of well-known methods (James
Rumbaugh, one of the authors of OMT (object modelling technique, a predecessor of
UML), and Grady Booch, author of the Booch method) (Rumbaugh et al., 1991;
Booch, 1994) joined forces in an attempt to unify their methods; they named this effort the
Unified Method. They were soon joined by Ivar Jacobson et al. (1992) (authors of OOSE) in
the development of what became known as the Unified Modeling Language (UML). UML
has evolved incorporating feedback from the object community, and it has received the
support of many people and organisations which considered the idea of a unified modelling
language a valuable one. UML was then submitted for standardisation to the Object
Management Group (OMG), a consortium of several large software companies that
produces and maintains computer industry specifications. UML was formally adopted
in 1997. At the time of writing (2004), UML 2.0 specification is near completion and it is the
basis of the notation we use in this course.

5 Modelling and the UML

20 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


6 The object-oriented approach

6.1 Modularity and the object-oriented approach
In the previous sections we discussed software development processes and the role of
modelling. In this section you will meet the main object concepts. Object-oriented
programming preceded object-oriented development by many years, and it is where the
object concepts originate. Once we have explained these concepts, we shall revisit
software development and modelling in object terms.
One of the great successes of software engineering over the past 50 years has been the
introduction of modularity in programming languages. The idea of breaking a sequential
program into named pieces was developed in the late 1940s. Eventually whole design
methods came to be based on structuring large pieces of software around their intended
actions. Each action was broken into smaller actions, repeatedly, down to unit small
enough to understand, write and test independently.
One advantage of structuring software around its basic actions is that it gives good
traceability from the actions to the code. In a payroll system, the code associated with
end-of-year reporting will be in a module with that name. Within that module, the code
associated with the action of printing a report heading will be in a procedure with a name
related to printing headings.
It is less easy to do the reverse. If, say, a system needs to be changed so that every time a
date is printed it is shown with four digits for the year instead of two, there is no easy way
to locate all the relevant bits of code, and, once they are located, thousands of lines may
need to be modified.
It has been observed that as businesses change, the things their computer system
manipulate stay fairly stable, although the ways they are used change rapidly.
Commercial systems will always need to represent taxes, goods, payments, prices and
deliveries, even though the business rules determining who is creditworthy, how orders
are taken, and whether payment is required before delivery may all change frequently.
This observation led to a desire to structure software around the things that were
manipulated, rather than around the actions that manipulated them. There might be one
unit of software that handled all operations on a ledger, another that did everything for
payment, and another for an order. If a business were to change the way it works, it would
probably still need these units but the way they are coupled would change. There might
be greater reuse of software in other projects. All commercial projects include customers
and ledgers, so these components may be reusable without change.
An object-oriented system is a software system whose basic structuring is around
things rather than around actions.

6.2 Objects
To represent a thing such as an account or a payment from an object perspective, the
software developers need to say how it can be used. An account is something that can be
credited or debited with amounts of money and that remembers the total balance between

6 The object-oriented approach

21 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


operations. As users of an account, we do not care whether the balance is represented by
electrons or by numbers on a slate, or whether the numbers are represented in binary or
decimal. As long as we can withdraw money at some time after we have deposited it, it
has all the behaviour of an account. An account must remember the current balance in
some way, so it makes sense to talk about its state. Does it currently contain £100? How
much would it have if we withdrew £27?
The usual way computers represent state is by storing values in variables. Behaviour is
represented by operations of some sort. An object is a set of variables (data), with group
of operations that can act on the data. But all programs contain operations and data, so
what is the difference? The difference is the tight syntactic coupling between data and
operations in an object-oriented language. In non-object systems, data tends to be
globally accessible. Any part of a large program might access the main data store, such
as a database or a data structure. There may be conventions and programming rules to
suggest that accessing should be done in only a few places, but these are not
enforceable. In an object system, the only operations that are allowed to access the data
in an object are the operations attached to that object. Thus it is guaranteed that no other
part of the system can touch the data.
To take a concrete example, think of how to represent dates. There are many candidate
representations, such as:

● a string with a month name and a two-digit year; for example, 2 March 97;
● a string with slash-separated double-digit parts, with the month first; for example, 03/

02/97;
● three integers, with the year in the range 0–99; for example, 2, 3, 99;
● an integer count of the number of days since 1 January 1901.

All these have advantages and disadvantages. Some are easier to print, others easier to
parse, and others easier to compare to see which of two dates is the earlier.
If data is globally visible, a decision is usually made about the format, and that decision is
published to the writers of every module that may need to use dates. Code is written
according to the representation selected. For example, if the second representation is
chosen, any code that needs the year will directly access the last two characters.
Suppose it is necessary to change the format of dates, perhaps to speed up some
operation that is done frequently, such as comparing, or to extend the range of
representable dates. If the representation has been explicitly published, lots of code will
depend on it, and changing it will be non-trivial. Every piece of code using a date will need
to be altered.
If, instead, a date had been made into an object, no code outside the Date object could
have manipulated the particular representation it used. All operations would be done by
invoking operations of the Date object. When data are entirely hidden behind operations
which alone can manipulate them, they are said to be encapsulated. Encapsulation is
one of the central concepts of object-oriented technology.
Encapsulation provides an explicit boundary which separates information about which
operations are available from information on how they are implemented. Outside the Date
object, available operations are advertised via their signatures only (the signature of an
operation is the specification of the type of the arguments and of the result of the
operation); a signature specifies how an operation can be invoked. The implementation of
the operations, i.e. how they access and modify data, is not visible outside the object. The
visible operation signatures are said to be public while the encapsulated data and
operation implementation are said to be private.

6 The object-oriented approach

22 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


The operations provide all the information that anyone using a date would need. There is
never a need to access the underlying representation of the date. If the representation
needs to change, only the implementation of the operations on date need to be rewritten.
All clients are totally unaffected, because they manipulate dates only through the
operations provided. They need only to know the operation names – not their
implementations – and the operation names stay the same whatever the representation.

Exercise 7
Explain encapsulation from an object-oriented perspective.

Answer

Solution

Encapsulation is the mechanism that allows objects to hide private implementation
details while advertising their public interface. Typically, the public interface is
collection of operations that can be invoked by other objects, while the private
implementation is made up of data and code, which are used to carry out those
operations.

6.3 Networks of objects
No serious program consists of a single object. Instead there will be a network of objects,
which collaborate to achieve the functionality of the whole system. Figure 4 shows a
network of objects representing a hotel, some guests and some rooms. This sort of
diagram is called an object diagram or a snapshot diagram. It shows one particular
possible configuration of the system. This particular diagram shows the state of the
system when it contains a single hotel, two guests and two rooms. The guest with name
‘Jack’ is linked to the room with name ‘blue suite’, and the guest with name ‘Jill’ is linked to
the room with name ‘r234’.

6 The object-oriented approach

23 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Figure 4 A network of objects

The notation used in Figure 4 is the UML notation for object diagrams. Each box
represents an object and the data it encapsulates, and that objects can be linked to other
objects.
A link is a connection between two objects that is significant for the application area. To
establish a connection between two objects we need to identify, and distinguish between,
each object. An identity is an unchanging property of an object that distinguishes it from
all other objects. Software distinguishes between objects using an internal identity that is
intelligible only to the software system; objects are not distinguished by the data they
store.
How people distinguish between real-world objects is different from how software
distinguishes between objects which may represent those real-world objects. People
distinguish between real-world objects using identifiers with values that are understood by
other people, e.g. a property such as a person's name. This conflict of identities has to be
resolved by the interface between a system and its users.

6.4 Collaborating objects
The objects that comprise a program collaborate with one another to fulfill the functions of
the system that the program represents. Collaboration occurs when one object requests
a service from another object in order to perform some task. To fulfill a particular
collaboration, each object takes on a different role. The object that makes the request is
called the client, and the object that receives the request (and provides the service in
response) is called the server. The request is communicated to the server from the client
by message passing. The client sends a message to the server which on receipt

6 The object-oriented approach

24 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


executes the operation with the same name and signature as the message. When the
server has completed the execution of its operation it returns a message answer to the
client. Both the message and message answer may convey data between the objects The
signature of the operation is the specification of the type of the arguments and of the result
of the operation, e.g. create (name: String, rate: Money, ensuited: Boolean): Room. For
brevity, parameter names can be omitted, e.g. create (String, Money, Boolean): Room.
Figure 5 shows the collaboration between Room and Person objects (from the hotel
example in Figure 4) where the Room object requests that the Person object linked to it
provides the value associated with its name attribute. The Room object, as the client,
sends the getName message to the Person object which, as the server, executes the
getName operation on receipt of the message. When the Person object has completed
the execution of the getName operation it returns the value associated with its name
attribute to the client as the message answer.

6 The object-oriented approach

25 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Figure 5 A collaboration between Room and Person objects

The notation used in Figure 5 is the UML notation for sequence diagrams. Each box
represents an object.
For a client object to collaborate successfully with a server object, two conditions must
be met:

1. the client must know the identity of the server (to be able to send messages to it);
2. the server must understand the message, i.e. it must have an operation with the

same name and signature as the message.

6 The object-oriented approach

26 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Exercise 8
Consider a situation where an Account object provides a debit service by executing the
operation debit with the signature debit(amount: Money), and a Bank object wants to
debit an amount of 50 from that Account object. Identify the client, the server and the
message in this collaboration.

Solution

The Account object is the server, the Bank object is the client, the message is debit
(50); there is no message answer as the debit operation does not return a value.
(However, it will return the flow of control on completion of the operation.)

The public operations that are made available to clients are what matters in the use of an
object, rather than any private data it may happen to store internally to represent its state.
The set of public operations that can be executed by an object is called its protocol or
interface. We shall use the terms interface and protocol interchangeably to refer to the
set of behaviours or operations an object offers. An Account object is likely to have the
following operations in its protocol: getBalance, debit, and credit.
By convention, when the name of an operation is made up of more than one word, the
second and subsequent words have initial upper-case letters, e.g. getBalance.

6.5 Classes
In the hotel system, each room is different and may have a different occupant. However all
rooms are the same in that each has a room name and a rate, for example, and each may
have an occupant. If something did not have a room name and a rate, it would not count
as a hotel room. Thus we generally talk about objects in terms of general classifications.
Instead of repeatedly saying that the objects representing rooms 201 and 302 have
names, can be ensuite or not and have a rate, we define the general properties of the
Room class. In object terms, we say that rooms 201 and 302 are both instances of the
class Room. We define a class called Room, saying what properties it has. Then by
saying that rooms 201 and 302 are both instances of Room, we automatically understand
that each has all the properties of the class.
System designers do not want to have to specify each room individually because all the
rooms share a similar structure and behaviour; these shared properties can be captured
once rather than repeatedly. So it is necessary to capture what all the rooms have in
common, rather than the particulars of each separate room. Designing and programming
in an object-oriented language consists mostly of writing definitions of classes, rather than
of individual objects. One of the main challenges is to identify the properties that must be
represented for any system.
It is useful to have a notation more abstract than program code to help us think about
classes. A class diagram is one of the UML techniques previously mentioned, and we will
be using it for this purpose. In a class diagram, each class is represented by a box called a
class icon, divided into three areas, called compartments. The top compartment contains
the class name, and the bottom one all the operations that are defined for that class. The
name and the list of operations are all that clients of the class need to know. However, to
implement the class, designers also need to know the structure of the class, so the middle

6 The object-oriented approach

27 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


compartment contains all the variables that constitute the current representation of the
class; such variables are called attributes.
Figure 6 shows two class definitions. These represent all possible employees and all
possible user interface windows within a system, respectively. The left-hand diagram
shows the common structure of the Employee objects, indicating which operations can be
applied to an Employee object and which data an Employee object stores. Each
Employee object has exactly the same set of operations, but obviously each instance of
Employee will have its own data. The data for the employee Jack are distinct from the
data for employee Jill.

Figure 6 Some classes

The class Employee has the operations setAddress and getAddress, setName and
getName, setDateOfBirth and age. Only the name, address and date of birth are stored,
so determining an age will require some computation. The representation might be
changed later to store the age explicitly, but that would not affect any of the object's
clients, because they use only the public operations, which would not have changed.

Exercise 9
What is the relationship between a class and an object?

Solution

A class is a generalisation of all its instances, saying what structure and operations
they have in common. Objects are the instances of a class.

6 The object-oriented approach

28 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


6.6 Inheritance
When several different classes that support the same protocol are implemented, there
could be a lot of repetitive coding. Rather than duplicate code in different classes, most
object-oriented systems allow for the sharing of the implementation of operations, by
mechanism called inheritance. Using inheritance, one class can be defined as basically
similar to another, and just the ways in which they differ can be implemented. Indeed, in
the early days of object-oriented design, the use of inheritance was called programming
by difference.
Consider the classes and their respective operations, shown in Table 1.

Table 1
Account SavingsAccount

credit(Money) credit(Money)

debit(Money) debit(Money)

balance(): Money balance(): Money

addInterestTo(Date)

dateOfLastInterest(): Date

dateOfLastWithdrawal(): Date

Clearly, there is some overlap between the two lists. Each class provides an operation
called balance, which returns the current balance. It probably makes sense for both
classes to implement this in the same way – say to store some private data representing
the balance and return the current value. The code for the credit operations is probably
identical, but the code for the debit operation is probably not identical, because
SavingsAccount may have different restrictions for withdrawal. SavingsAccount also
provides many operations that are special to saving accounts which ordinary account do
not have.
Thus SavingsAccount is similar to Account but with a different implementation of debit and
some extra operations. This is expressed in object-oriented languages by saying that
SavingsAccount is A subclass of Account. A subclass (here SavingsAccount) inherits all
the operations of the superclass (here Account), but it may add some extra ones, and it
may override some of the inherited ones by providing definitions of its own.
SavingsAccount has all the operations of Account, but it also has some extra ones, and it
overrides the debit operation with a different implementation of its own. A subclass always
has the whole protocol of its superclass.
The subclass is allowed to add extra operations, and to override existing operations of the
superclass, but it is not allowed to remove operations. CurrentAccount could not be
defined as SavingsAccount without the operations to do with handling interest. The
reason for this becomes apparent if protocols are considered. The protocol of Account is
(credit debit, balance). If subclasses are allowed to add operations, and redefine
operations, the subclasses of Account will still support the same protocol. (They may also
support other protocols, but that is not the issue here.) If both Account and
SavingsAccount support a shared protocol, they can be used in the same way by other
classes. For example, there might be a club which keeps its assets in an instance of
Account. It could change to using SavingsAccount without needing to modify the club at
all, because the club will be written to use the protocol of Account, and all subclasses of

6 The object-oriented approach

29 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Account necessarily support the same protocol as Account. Figure 7 shows an
inheritance tree for Account and SavingsAccount.

Figure 7 An inheritance tree of classes

The open arrowheads between classes represent the inheritance relation, going from
subclass to superclass. They could be verbalised as ‘is a kind of’ (or ‘is-a’).
One purpose of inheritance is to allow two different classes to share code. Sometimes this
results in the creation of classes that do not represent anything in the problem. They are
there simply to enable code to be shared. For example, in a word-processing application,
there might be the classes Paragraph and Picture, in which several operations were

6 The object-oriented approach

30 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


identical. The cut, paste and copy operations might be identical, and so to save repetitive
coding, both Paragraph and Picture could be made subclasses of new class,
DocumentElement, and the shared operations put in that class. Such a class is called an
abstract class. It is created solely for the purposes of sharing code between subclasses
and there should never be any instances of DocumentElement.
Some object languages allow for multiple inheritance, in which a class is allowed to
inherit from several superclasses. For instance, Car class might inherit both from Vehicle
and from FinancialAsset. The merits and problems of multiple inheritance are much
discussed among designers. Some languages, like Smalltalk or Java, do not implement
multiple inheritance; they allow only a single superclass for any class.

Exercise 10

1. The components that make up a graphical user interface (GUI) are often called
widgets. Arrange the classes VerticalScrollBar, Widget, Button, IconButton,
ScrollBar, HorizontalScrollBar into an inheritance tree.

2. The class Transporter represents anything that transports people. Design two
different inheritance trees to hold the classes Ferry, Dinghy, Car and Bus – one in
which the most important distinction is between public and private transport, the
other in which the primary division is between water and land transport. You will
have to create some extra classes.

3. Arrange the classes Person, Doctor, Patient, Surgeon, Anaesthetist, InPatient
and OutPatient into an inheritance tree.

Solution

The following figures show some candidate trees.

6 The object-oriented approach

31 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Observe that an object, once created, belongs to only one class and cannot change
classes. In the medical example, if a world in which doctors may become patients, or
out-patients may become in-patients were to be modelled, this would not be an
appropriate representation. Whether or not an inheritance structure is appropriate
depends entirely on what is to be done with the objects.

6.7 Modelling with objects
Object-oriented software development is very much focused on representing the world of
the problem domain as a set of interacting objects. If the classes of the objects are chosen
to correspond to natural categories of things in the world, such as customer invoice,
payment, bill, there will be a structural similarity between the world and the software. This
can lead to good traceability from requirements through to code.
Domain, analysis and design are the three modelling perspectives that will guide us from
a real-world situation to a final software product to address the real-world situation or part
of it.
In domain modelling we represent the main concepts of the real-world problem. In terms
of object-oriented development, domain modelling corresponds to identifying the
important objects in the situation and building models in terms of these objects and their
interactions. Its purpose is to get a better understanding of the domain; this can be done
as part of the elicitation of requirements or even when the requirements have been

6 The object-oriented approach

32 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


gathered but it is important from a developer's point of view to understand the business
situation that those requirements address.
In analysis (we use this term for the specification modelling activities), we assume that
software system is needed to address a situation. Here we model software elements used
in a software solution to the problem but avoid too many implementation details. Object-
oriented analysis models are built in terms of the software representation of the real-world
objects. The main emphasis is on the services provided by the software solution and not
on how these services are provided.
Design modelling describes the software system, the allocation of responsibilities, and the
internal sequencing and control flow. In object terms, a design model represents the
software classes and objects and the messages exchanged between them and in which
order. The functionality of the entire system is distributed among the classes. For
instance, in a hotel system, a decision must be taken on whether the code that does the
check-in of a guest into the hotel and allocates a room should be part of the Hotel class or
the Person class, or whether a special class called CheckerIn is needed. Depending on
the decisions made, the end product will be flexible comprehensible software that is easy
to change or a rigid mess which is as intractable as the worst of coded designs. Object
technology (that is, software that is built following an object-oriented approach) is an
enabler of good software structures, but does not of itself guarantee them.
In software development it is difficult to say where analysis stops and design starts. In
object-oriented development this is particularly true, as the techniques used are virtually
the same and, therefore, the transition from analysis to design is less pronounced.
Although we do not want to impose a strict division between analysis and design, we will
be using these terms with the following meanings:

● Analysis is concerned with identifying the objects in the problem domain, their
relationships and behaviour, and specifying their software representation only in
terms of what a software system will have to achieve (and not how it will achieve it).

● Design is concerned with design modelling; that is, the responsibilities of each class,
the services the classes provide and their object collaborations to achieve the
desired behaviour.

Exercise 11
You have seen what objects, classes, operations and attributes are in object-oriented
terms. Imagine now that you are starting from an agreed statement of your customer's
requirements. Which steps do you think would get you from this statement to working
code?

Solution

We would expect you to have come up with a list containing some of the following
steps.

● Consider the data requirements for a class.
● Identify the classes, together with their attributes and operations.
● Define a class hierarchy.
● Design and program the operations.
● Code the program in an object-oriented language.

6 The object-oriented approach

33 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


6 The object-oriented approach

34 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


7 Reuse

7.1 The advantages of reuseability
Reuse is the process of building new software from existing software assets, rather than
starting from scratch. Reuse is an important factor in building flexible products that can be
changed quickly in response to changes in requirements.
One of the advantages claimed of object technology is that it encourages a disciplined
approach that facilitates reuse. Encapsulation encourages better designs that can be
reused in a more reliable way, as there is exact knowledge of which operations access
which data. It restricts the assumptions made of an object to a well-defined protocol.
Inheritance allows a developer to reuse a class whose behaviour provides some of the
behaviour required of the new class, so that only the different parts need to be designed.
Large-scale reuse, however, requires more than just discipline. It also demands
mechanisms to describe the behaviour and interfaces of each replaceable part, and easy
ways to connect such parts together. Originally, reuse in an object-oriented context was
centred around the concept of class. In time, however, this perspective has widened, and
other units of reuse have been defined. In the remainder of this section we will review
some of them, including the concepts of framework, component and pattern.

Exercise 12
Which artefacts of a software development process can you identify as reusable?

Answer

Solution

Reuse in software development can happen at different levels: requirements,
specifications, designs, code, tests, and documents are all examples of reusable
artefacts.

7.2 Frameworks
A framework is a set of classes with well-defined interactions which are designed to solve
specific problems. Frameworks are usually developed for a specific domain of application,
say financial management or document preparation. They go some way towards a
complete solution, but require some degree of customisation, usually through the creation
of subclasses within the framework or by overriding operations. Coplien suggests:

A framework defines a subsystem or mechanism that is customizable. The
subsystem design is encapsulated by a set of classes, though the
implementation may only be partially defined. Framework abstract base
classes leave some member function definitions to the application

(Coplien, 1995)

7 Reuse

35 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Many frameworks have been developed, and some are commercially available. For
instance, the Smalltalk Model-View-Controller (MVC) is a well-known user interface
framework, originally developed by Xerox PARC in the 1970s within the Smalltalk system.
It was designed to support the creation of object-based, direct manipulation interfaces
whose graphic interface widgets, such as windows, buttons and so on, could be reused in
different applications. Many object-oriented languages today include libraries of reusable
assets based on the same design principles of the Smalltalk MVC The Java Swing, a
graphical user interface (GUI) library, is one such example.
One commonly encountered framework is called J2EE. J2EE is a trademark of Sun
Microsystems Inc. In the literature it is also referred to as a component architecture, a
reference architecture or a platform. It is a large collection of Java technologies and
components that can be used to produce a wide variety of distributed information
systems. J2EE has proved very successful and has become one of the most widely used
frameworks for the development of client server applications. These are applications
characterised by two distinct pieces of software: the client, which receives requests from
the users of the systems, and the server, which processes such requests. Client and
server are not usually co-located within the same computer, but distributed across a
network. Web applications are well-known examples of client-server systems.

7.3 Components
The term component has been used since software engineering emerged as a discipline
in 1968, and it reflects the analogy with other engineering disciplines. Like electronic
devices that have pins and are connected with wires, software components are seen as
independent software artefacts that can be used unchanged to build larger systems.
In most systems, it is usually easy to identify parts that are common to a number of
applications. Each system may itself be considered a set of components collaborating to
achieve the overall functionality. Ideally, systems could be built from components selected
from a wide range, and connected or plugged together. The term Component-Based
Development (CBD) (D'Souza and Wills, 1998) has been used for software developed by
assembling existing components. CBD relies on the existence of libraries of components
and on the publication of information about new components that can be used in other
applications. It does not necessarily require object-oriented development, but the
characteristics of object technology facilitate the development.
Mostly, it is not enough simply to connect components together; some extra code needs to
be written to adapt their interfaces and guarantee that they can work together; this is
usually called glue code. It is also accepted now that components, rather than being
developed in isolation, should be developed within a framework for their application. The
concept of product line (Clements and Northrop, 2002) is based on the idea that within a
specific domain many different products can be developed with a similar structure and
with well-identified variation points; these variations usually correspond to alternative
components that can be plugged into the defined architecture.

Exercise 13

1. Explain the differences between a component and a framework. How can they be
used? Give an example of each.

7 Reuse

36 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


2. The development of a framework is a difficult task that should take into account
the different ways it may be used. Describe what is involved in developing a
framework from an existing set of similar applications.

Answer

Solution

1. A component is used unchanged; a framework has to be customised by creating
subclasses of classes of the framework and/or writing specific operations for the
specific application of the framework. A product line well exemplifies the
distinction between a framework and a component. A product line architecture
defines a framework and a set of components that can be used within this
framework, but it also has modification and extension points that make it
applicable to a wide range of applications.

2. When a framework is being developed, it is necessary to consider what may be
common across different applications in the same domain and abstract (factor
out) the commonality in the framework. This involves defining abstract classes
that can be specialised and writing operations specifically for each application.

7.4 Patterns
While frameworks and components focus on the reuse of previously developed software,
patterns focus on the reuse of expertise. A pattern is a general solution to problem; it is
the result of abstracting what is common practice in solving a set of similar problems.
Patterns became a significant topic during the 1990s within an object community
disappointed with the low level of reuse being achieved. Instead of concentrating on yet
more new methods, the patterns movement looked at ways of building on the collective
experience of solving frequent problems. There are many common and recurrent design
problems for which good solutions exist and can be repeatedly applied. Design patterns
capture such solutions in a way that can be applied generally. Moreover, by cataloguing
problems and their solutions, patterns are a means to transfer expertise from the
experienced to the novice software developer.
The patterns movement in software was inspired by a building architect, Christopher
Alexander, who has written extensively on the use of design patterns for living and
working spaces – homes, buildings, communal areas and towns (Alexander et al., 1977).
According to Alexander, ‘each pattern describes a problem which occurs over and over
again, in such a way that you can use this solution a million times over, without ever doing
it the same way twice’.
Patterns became very popular following the publication of a catalogue of design patterns
by a group of authors commonly known as the ‘Gang of Four’ (Gamma et al., 1995). Many
more pattern catalogues have now been published, widening their original scope from
design to most aspects of software development, including analysis and implementation.
Patterns from the literature have many different styles and serve many different purposes.
Here is a brief overview of well-known pattern types.
Process patterns describe rules that can be followed when software systems are built,
e.g. how to re-engineer an existing system with a pattern. In such a case the patter

7 Reuse

37 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


describes a strategy to follow. In 1997, Martin Fowler published a book on analysis
patterns offering solutions to problems faced during business modelling, and in this case
patterns describe general modelling issues. One analysis pattern presented by Fowler,
for example, is called the Accountability Knowledge Level, and it indicates solution to deal
with complexity in models by separating two types: a knowledge mode and an operational
model. The Catalysis book (D'Souza et al., 1998) uses patterns to describe how the
method proposed can be applied; each pattern presents a strategy for development.
Fowler has also published (2002) another book on patterns for the design of enterprise
systems architectures.
A design pattern is a set of classes and objects that solves a general design problem,
and needs be customised for each specific context. A well-known design pattern from the
‘Gang of Four’ catalogue is the Observer pattern. It defines how to establish dependency
between objects which guarantees that when one object changes state all its dependents
are notified of that change. This pattern is implemented in many MVC-based interfaces
and systems, in which a dependency mechanism exists between a set of domain objects
(the model) and their visual representation (the views).
With most programming languages there is an accumulated knowledge of the experience
of many programmers. Language patterns represent solutions to recurring programming
problems within specific languages. Many language pattern catalogues exist; for instance,
Kent Beck (1997) has written one on Smalltalk patterns, while Mark Grand (1998, 1999)
has published two volumes on Java patterns. Such catalogues include patterns on how to
access the variables of an object, how to name operations how to initialise objects. At the
programming language level, language-specific patterns are usually known as idioms.

7.4.1 Architectural patterns
A software architecture is the broad structure of a software system. It describes its parts
and how they are put together, and also captures an underlying rationale and associated
concepts, such as professionalism (liability) and constraints (such as standards and
economics). The term architecture is, again, reminiscent of its use in buildings.
Architectural patterns (also known as architectural styles) codify recurrent software
architectures by describing the key elements of the architecture and how they fit together
(Buschmann et al., 1996). They also describe the qualities of systems that are assembled
following the pattern (Shaw and Garlan, 1996; Bass et al., 1998). For instance, the Pipe-
and-Filter architectural pattern prescribes two types of components, the pipes and the
filters, which are used to transfer and transform data, respectively Their connection must
be such that filters can only be linked through pipes. The patter is suitable for systems
whose main aim is to transform data from one format to another through incremental
transformations. The resulting systems are simple to understand and maintain, and their
components are highly reusable.
Patterns are not just descriptions of solutions; they also indicate how to identify problem
and its context, which strategy should be followed, and the consequences of applying the
pattern. There are many different templates to describe patterns which have been used by
different authors; we will adopt the following, adapted from Fowler (2002).

● Name: This is the name by which the pattern is referred to; it should be evocative of
what the pattern is about in order to create a pattern language that encourages
meaningful communication between developers.

● Intent: This is a brief description of the purpose of the pattern.

7 Reuse

38 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


● How it works: This is a description of the solution; it should be implementation
neutral, and may include some UML notation.

● When to use it: This is a description of when the pattern should be used, possible
relations to other patterns, and possible trade-offs.

● Example: This may include examples of application of the pattern.

During the course you will have an opportunity to study several patterns, within various
phases of software development.

Exercise 14

1. What makes the use of patterns different from applying a new development
method?

2. What is the difference between a framework and a pattern?

Answer

Solution

1. Patterns concentrate on actual designs and on existing practical experience of
solving problems; they represent previous experience. A pattern is not accepted if
there are no existing examples of its use.

2. While a pattern is a general solution (a rule) to a specific problem, a framework is
more concrete and part of the solution. A framework comes with code to be
reused as it is, or to be extended for specific customisations. Frameworks are
also usually for a specific application domain, while patterns can be used with
many domains. Frameworks are usually larger, while patterns solve small
problems and can be used within frameworks, but not the other way round. For
instance, the Observer pattern deals with dependencies between a model and its
presentation. The MVC user interface framework uses the Observer pattern as
well as other patterns (from the ‘Gang of Four’ book). Patterns are used by
following the suggested structure in the implementation; the framework classes
are subclassed and application-specific methods implemented. Patterns are
small architectural elements, while frameworks are partial or total solutions in an
application domain.

7 Reuse

39 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


8 CASE tools
Computer Assisted Software Engineering (CASE) tools were developed to support the
professional system developer and improve their productivity in the complex task of
developing large information systems.
The benefits that may accrue from the use of such tools are many. From a developer’s
viewpoint, they provide support for modelling aspects of the system using a variety of
notations and techniques: from diagrams to mathematics and text, producing prototype
code, and even verifying the correctness of the system design. They also automate the
sometimes tedious process of writing system documentation and keeping it up to date.
They often allow the creation and management of a central repository of documents and
other artefacts. This is useful both for communication within a development team, and for
project management and decision tracking. Importantly, they improve the quality of the
development processes by supporting, and to a large extent enforcing, a standard
methodology and sound design principles.
Despite these potential benefits, there are often obstacles to their adoption. The
introduction of a CASE tool within an organisation comes at a high cost: an upfront
investment is required to acquire the technology and to train personnel accordingly, while
the benefits of using the tool manifest themselves only in the long term. CASE tools are
only effective if standard methodologies and processes are adopted across the
organisation; the definition of standard procedures and practices also has to be
established at the beginning. At times the obstacles are cultural: there may be some
resistance from analysts and developers who perceive the rigidity of an enforced
methodology as a threat to their autonomy and creativity. The initial learning curve is quite
steep and they may not consider the effort worthwhile in terms of improvement in
productivity and quality. Another major drawback is that the available tools tend to be
narrow in their focus and concentrate on small subset of activities within the development
process. For instance, most tools support modelling, while hardly any provide facilities for
communication between customers and developers. This may result in a variety of tools to
be used within a process, with all the difficulties arising from integration and interchange
of information.

Exercise 15
Which factors may contribute to the successful adoption of CASE tools within a
organisation?

Answer

8 CASE tools

40 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Solution

There should be established methods and procedures across the organisation that
can be supported by the tools.
Adequate investment should be put into training managers and developers.
Deployment should occur over a long period of time, as the benefits of CASE tools are
not short term.
Clear procedures should be established for the use of different tools within
development and standards should be followed for information exchange among tools.
To overcome some of the deficiencies of current tools, they should be integrated within
practices that support project management and customer/developer communication.

A great variety of tools are available today, supporting many different functions within
software development. Table 2 gives a brief taxonomy of tools based on their function; the
list is not meant to be exhaustive. Also, many current CASE systems integrate many such
functions within the same application environment.

Table 2 Brief taxonomy of CASE tools

Tool Function

Process management tools To capture and model development processes

Project management tools To plan and schedule projects, and track progress

Risk analysis tools To record, categorise and analyse risks

Requirements management
tools

To capture, analyse and trace requirements throughout
development

Metrics tools To capture specific software metrics and provide overall measures
of quality

Modelling tools To support modelling within analysis and design activities

Programming tools To support code development

Interface design tools To support the design of graphical use interfaces (GUI)

Test management tools To manage and coordinate testing

Particularly relevant to this course are UML modelling tools, which support the creation of
models based on UML techniques. Many such tools are available, from simple
diagrammatic tools to fully blown integrated environments with project management,
document repository and code generation capabilities. You will have an opportunity to
explore the capability of one such tool during the course.

8 CASE tools

41 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Conclusion
This course has introduced the main concepts used in this course, has given an overview
of software development with an object-oriented approach and has discussed some of the
issues that are relevant to developing software that can be reused. Here are the main
points addressed in the course.

● An iterative and incremental model for the development process is more appropriate
to object-oriented development than a traditional sequential waterfall model. Iteration
cycles allow for the reviewing of previous steps, and partitioning into increments
addresses complexity.

● Modelling is carried out from three different perspectives. First, by modelling the
domain to understand what a business does, independently of a software solution;
modelling at this stage identifies the objects in the domain of the problem, their
relations and their behaviours. Second, if a software solution is appropriate,
modelling specifies the software objects, their relations and their behaviours; this is
the software specification perspective. Third, design modelling is concerned with the
distribution of responsibilities and the software control flow to achieve the required
behaviour.

● The concepts of object and class have been introduced, as well as the principal
concepts in object technology: encapsulation and inheritance.

● Reuse is a crucial factor in the adoption of object technology. The use of
components, patterns and frameworks has become an important step in developing
software that is more flexible and therefore more easily reused.

● CASE tools are an important asset in software development that can support many
different tasks; however, they also demand a high investment that needs to be
considered in the decision to adopt them.

Conclusion

42 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Keep on learning

Study another free course
There are more than 800 courses on OpenLearn for you to choose from on a range of
subjects.
Find out more about all our free courses.

Take your studies further
Find out more about studying with The Open University by visiting our online prospectus.
If you are new to university study, you may be interested in our Access Courses or
Certificates.

What’s new from OpenLearn?
Sign up to our newsletter or view a sample.

For reference, full URLs to pages listed above:

OpenLearn – www.open.edu/openlearn/free-courses

Visiting our online prospectus – www.open.ac.uk/courses

Access Courses – www.open.ac.uk/courses/do-it/access

Certificates – www.open.ac.uk/courses/certificates-he

Newsletter –
www.open.edu/openlearn/about-openlearn/subscribe-the-openlearn-newsletter

References
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S.
(1977) A Pattern Language, Oxford University Press.

Keep on learning

43 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/free-courses?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses/do-it/access?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses/certificates-he?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/about-openlearn/subscribe-the-openlearn-newsletter?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/free-courses?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses/do-it/access?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.ac.uk/courses/certificates-he?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/about-openlearn/subscribe-the-openlearn-newsletter?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Bass, L., Clements, P. and Kazman, R. (1998) Software Architecture in Practice Prentice-
Hall.
Beck, K. (1997) Smalltalk Best Practice Patterns, Prentice Hall.
Beck, K. (2000) Extreme Programming Explained, Addison-Wesley.
Booch, G. (1994) Object-Oriented Analysis and Design, Addison-Wesley.
Buschmann, F. , Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996) Pattern-
Oriented Software Architecture: A System of Patterns, Wiley.
Clements, P. and Northrop, L. (2002’ Software Product Lines, Practices and Patterns,
Addison-Wesley.
Cockburn, A. and Highsmith, J. (2001) ‘Agile software development: the people factor’
Computer, Nov. 2001, pp. 131 3.
Cook, S. and Daniels, J. (1994) Designing Object Systems: Object-Oriented Modeling
with Syntropy, Prentice-Hall.
Coplien, J. (1995) Advanced C: Programming Styles and Idioms, Addison-Wesley
D'Souza, D. and Wills, A. (1998) Objects, Components, and Frameworks with UML: The
Catalysis Approach, Addison-Wesley
Davenport, T. (2000) Mission Critical: Realizing the Promise of Enterprise Systems,
Harvard Business School Press.
Fowler, M. (1997) Analysis Patterns: Reusable Object Models, Addison-Wesley.
Fowler, M. (2002) Patterns of Enterprise Application Architecture, Addison-Wesley.
Fowler, M. and Highsmith, J. (2001) ‘The Agile manifesto’, Software Development, Aug.
2001, pp. 28–32.
Fowler, M. with Scott, K. (1997) UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley.
Gamma, E., Johnson, R., Vlissides, J. and Helm, R. (1995) Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley.
Grand, M. (1998) Patterns in Java, Volume 1, Wiley.
Grand, M. (1999) Patterns in Java, Volume 2, Wiley.
Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development
Process, Addison-Wesley.
Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992) Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley.
Kovitz, B.L. (1999) Practical Software Requirements: A Manual of Content and Style,
Manning Publications Co.
Larman, C. (2002) Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design (second edition), Prentice Hall.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991) Object-
Oriented Modeling and Design, Prentice Hall.
Shaw, M. and Garlan, D. (1996), Software Architecture: Perspectives on an Emerging
Discipline, Addison-Wesley.

References

44 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook


Acknowledgements
Except for third party materials and otherwise stated (see terms and conditions), this
content is made available under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence
Course image: Paul L Dineen in Flickr made available under
Creative Commons Attribution 2.0 Licence.
All materials in this course are derived from content originated at the Open University.
Don't miss out:
If reading this text has inspired you to learn more, you may be interested in joining the
millions of people who discover our free learning resources and qualifications by visiting
The Open University - www.open.edu/openlearn/free-courses

Acknowledgements

45 of 45 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-
enterprise-systems/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Friday 3 May 2019

http://www.open.ac.uk/conditions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.flickr.com/photos/pauldineen/
https://creativecommons.org/licenses/by/2.0/
http://www.open.edu/openlearn/free-courses?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/software-development-enterprise-systems/content-section-0?utm_source=openlearn&amp;utm_campaign=ol&amp;utm_medium=ebook

