
Document	 name:	 Cisco	 Coffee	 JavaScript	 Application	 	
	 	
Copyright	 information:	 Content	 is	 made	 available	 under	 a	 Creative	 Commons	

Attribution-‐NonCommercial-‐ShareAlike	 4.0	 Licence	
OpenLearn	 course	 Internet	 of	 everything	
OpenLearn	 url:	 http://www.open.edu/openlearn/science-‐maths-‐

technology/internet-‐everything/content-‐section-‐overview	
	

	 	 	
	
www.open.edu/openlearn	 	 	 	 	 	 	 	 	 Page	 1	 of	 1	

	

	

	

	

	

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 4

Lab – Cisco Coffee JavaScript Application (Optional)

Objectives

Part 1: Exploring a Web Application

Part 2: Viewing the Code of a JavaScript Web Application

Background

This activity focuses on a web application designed to monitor coffee fields. The Cisco Coffee JavaScript
application is a simple example of programming code that can be used to report sensor status and provide
alerts. Connected to simulated temperature, moisture, and light sensors, this web application monitors and
displays information about the values read by the sensors.

Note: This application does not communicate with real sensors. It is designed to be a simulation and to
provide a glimpse into using JavaScript for web programming. You will need to download the Cisco Coffee
JavaScript Files.zip file in order to complete Part 2 of the lab.

Part 1: Exploring a Web Application

The choice to deliver this application across the web was due to the flexibility of the vast majority of network-
ready devices that have a web browser installed. Computers, phones, and tablets should have no problems
loading and running this web application on their respective web browsers.

When the application is loaded on a web browser, it begins to display the simulated readings captured by field
sensors. You should be able to see temperature, light, and moisture values. The application also has a
logging area (towards the bottom of the screen), which is used to display unusual events, such as storms. If
the values captured by the sensors fall out of the predefined limits, this event is also tracked in the logging
area.

Three buttons display (from left to right): Previous day Average, Next Day Average, and Show Real Data. The
first and second buttons allow the farmer to look at the average temperature, light, and moisture levels from
previous days. The application stores averages of up to seven days. The last button allows the farmer to
toggle between simulated and real data.

Note: No real sensors are connected to this application. That is why when you click Show Real Data the
display shows No sensor data available. Click Show Simulated Data to display the current day’s values.

Part 2: Viewing the Code of a JavaScript Web Application

The application in this activity was written in JavaScript language because it is easy to learn. If you are
interested in learning more about coding, the next steps should be useful to you.

Step 1: Open the code in a web browser window and in a text editor.

Web applications are (essentially) web pages and, therefore, it is always possible to look at the code used to
create the page displayed on the browser window. You can view the source by right-clicking anywhere in the
figure and choosing an option similar to View Source or View Frame Source, depending on the browser.
Scroll down to the section in the code that starts with Script. Lines that began with a double forward slash (//)
denote comments. The comments provide a brief explanation of the code. Alternatively, complete the
following steps to download and open the web application in a text editor:

a. If you have not already done so, downloaded the Cisco Coffee JavaScript Files.zip file for the page
where you downloaded these instructions.

b. Unzip the file, locate the folder, and open it. You should see two files: Cisco_Coffee_JavaScript.html and
pouring_coffee_grd.png. The first file contains the code itself while the second file is the background

Lab – Cisco Coffee JavaScript Application

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 4

image used in the application. The file containing the code can be opened using any text editor. Feel free
to use your favorite text editor to open this file, but this activity uses Microsoft Notepad because it is
already included in the Windows package.

Note: Avoid using Microsoft Word when creating or editing web pages. The formatting including in Word
is known to create unwanted placement of images and text on the web page.

c. Select and right-click the Cisco_Coffee_JavaScript.html file. Select Open With > Notepad. You should
now see a Notepad window displaying the web application code.

Note: Notepad is limited to only showing the code. If you would like to see additional features, such as
different colors for different parts of the code as well as line numbers, download a free text editor like
Notepad++.

Step 2: View the HTML section of code in the web application.

As you may have noticed, the file under examination has an .html extension, indicating that it is an HTML file.
HTML is the main language used to build web pages. It allows the developer to organize the information to be
displayed on the web page. While web browsers are somewhat forgiving regarding HTML syntax, HTML files
have a well-defined structure, divided into sections. Common HTML sections are HTML, HEAD, and BODY.
To mark these sections, HTML standards define HTML tags. HTML tags usually mark the beginning and end
of a section, making anything in between part of the section. The standard also dictates that the greater than,
less than (<>) characters are used to indicate a tag. For example, consider the HTML code below:

<HTML>

 <HEAD>

 <TITLE>HTML Example Page</TITLE>

 </HEAD>

 <BODY>

 <P>This text is to be formatted as a paragraph on the page.</P>

 <P>And here is another paragraph</P>

 </BODY>

</HTML>

The first line of the example marks the beginning of the HTML document. The second line opens the HEAD

section. The page title is the text shown as the window name and the third line defines what the page title is.

HTML standards say that the title should be placed under the HEAD section. Notice the </TITLE> tag at the

end of the third line: the slash character (/), preceding the tag name, marks the end of a section. Because the

HTML Example Page text is placed inside the TITLE section, web browsers display that text as the window

name.

The BODY section is where the body of the page is placed. The example above creates a very simple page

with only two paragraphs. Text placed inside a paragraph tag is displayed as paragraphs by web browsers.

<P> and </P> mark a paragraph section. The BODY section is then closed by the addition of </BODY> in the

fifth line.

Lastly, the </HTML> marks the end of the HTML section. Because the HTML section should contain the

entire HTML page, this tag also marks the end of the HTML file.

Step 3: View the SCRIPT section of the code in the web application.

The HTML standard also defines many other tags. To use the web application efficiently, other tags are used.

Another important tag is the <SCRIPT> tag. <SCRIPT> tags host client-side scripts, such as JavaScript. It is

called the client-side script, because it is executed at the client’s computer, not in the server. A script is
required because HTML tags (alone) cannot be programmed to make decisions; their purpose is only to

organize information. All of the application logic is placed in the SCRIPT section.

Lab – Cisco Coffee JavaScript Application

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 4

Web applications are usually based on functions. A function is a block of code written to perform a specific
task. When it is defined, a function can be invoked from another part of the code when the task it performs is
required. In a JavaScript application, functions are defined by following format:

function function_name (optional_variables_to_be_passed_into_function) {

 function code block (may span over several lines)

 function code block (may span over several lines)

 function code block (may span over several lines)

}

Look for the following functions in the application:

init(); prepareToggle(); resetExtremes(); fakeValues(); dayOfWeek(d);

showPastDaysAvgs();

Step 4: Describe each of the major functions in the code.

The application has its own workflow that gives the order in which its functions are invoked. Below is a
summary of the application flow:

a. The onload="init();" parameter added to the BODY HTML tag towards the end of the code instructs the
web browser to invoke the init() function as soon as it finishes loading the page. The init() function is
located toward the top of the code right after the block of code that declares variables.

b. init() sets up some environment parameters, such as display size. It also specifies that the fakeValues()
function executes every three seconds, and resetExtremes() function executes every 60 seconds.

c. resetExtremes() calculates random maximum and minimum values for temperature, moisture, and light.
This is necessary to simulate the values during a normal day (no storms). After three seconds,
fakeValues() is invoked (as defined inside init() above) to randomly choose a number between these
extreme values. This technique is used to simulate the values moving within a very narrow range, thus,
recreating the normal operation of real sensors.

d. By the time fakeValues() is invoked, the extreme values are already calculated. fakeValues() uses these
values as the ceiling and floor for randomly choosing values.

e. Lines 338, 339, and 340 define the previous day, next day, and real/simulated data toggle buttons,
respectively. These buttons are displayed on the web page and the JavaScript code calls these buttons
by their ID: pDay, nDay, and toggleBTN.

f. Note: The code defines that the showPastDaysAvgs(this.id) function should be invoked when the
previous day or next day buttons are clicked. The this.id parameter passes the identifier of the clicked
button to the function, allowing it to take a different action depending on what button was clicked. When
the Show Simulated/Show Real Data button is toggled, prepareToggle() is invoked.

g. prepareToggle() is invoked when the user wants to toggle between real and simulated data. To stop
displaying simulated data and switch to real data, prepareToggle() stops invoking fakeValues(). Because
this application is a simulation and no real sensors exist, prepareToggle() also replaces the simulated
data shown on the screen by the No sensor data available. message. If the user wants to view simulated
data again, prepareToggle() re-instates the periodic execution of fakeValues() and removes the No
sensor data available message from the screen. fakeValues() once again populates that area with the
results of its calculations.

h. dayOfWeek() is a support function used to calculate the last seven weekdays. This is important because
the application must display the last seven days, independent of the day the user runs the application.

i. Lastly, fakeValues() is also responsible for populating the log area at the bottom of the application. Every
time fakeValues() displays a value that falls off a predefined limit, it logs that event in the log area.

j. resetExtremes() also has an extra task: it simulates a storm every three minutes. It does so by setting
extreme values far off the normal range of values. Because the extreme values are now too high and too

Lab – Cisco Coffee JavaScript Application

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 4

low (ceilings and floors, respectively), the results calculated by fakeValues()invariably falls off the
predefined limits. This will look like a storm just rolled in.

Step 5: Explore and manipulate the code on your own.

a. Using the previous description of the functions, examine the code and see if you can find additional
places where the logic is used to generate the web application.

b. Feel free to make changes to the code and see the results. If you break the code and cannot correct it,
use the code in the course to find and correct your errors.

	OL_document_template _IOE_coffee
	3.3.2.2 Lab - Cisco Coffee JavaScript Application (Optional)

