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1 Direct products

1 Direct products

This section describes how to construct a group called the direct product of
two given groups, and then describes certain conditions under which a
group can be regarded as the direct product of its subgroups.

1.1 The external direct product of two groups

In this subsection, we introduce a method of constructing a new group
from two existing ones: their external direct product. This method of
construction will enable us to use existing groups as building blocks for
larger ones. In turn, this will enable us to describe some groups in terms of
smaller and possibly less complicated groups. This construction is,
therefore, a key tool in our progress towards classifying groups.

First we need the notion of the Cartesian product of two sets: if X and
Y are two sets, then the Cartesian product X × Y is the set of all ordered
pairs (x, y) with x ∈ X and y ∈ Y . For example, if X = {1, 2, 3} and
Y = {a, b} then

X × Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

When X = Y , the Cartesian product X × Y = X ×X is also denoted by
X2. More generally, the Cartesian product of n sets X1,X2, . . . ,Xn is the
set of all ordered n-tuples (x1, x2, . . . , xn) with xi ∈ Xi for all i = 1, . . . , n.

In order to define the direct product of two groups, we need to specify the
underlying set and a suitable binary operation. To understand how this is
done, it will be useful to examine the familiar example of addition of
vectors in the real plane R×R represented by the usual coordinate system.

Example 1.1 Addition of vectors in R× R

We know that the real numbers with addition are a group, which we
denoted by (R,+) in Chapter 5.

Each point in the plane is represented by an ordered pair (x, y) of real
numbers. In other words, the coordinates of points in the plane are
elements of the Cartesian product

R× R = {(x, y) : x ∈ R, y ∈ R} .

The familiar operation of vector addition on R× R is defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

Thus, vector addition is defined component by component in terms of
addition in R.

It turns out that R× R with addition defined as in Example 1.1 above is a
group.

5



Towards classification

Exercise 1.1

Prove that the set R× R with the operation of vector addition is a group.

We can generalise the definitions of both the real plane as a Cartesian
product and component-wise addition of real numbers.

Given two groups (G, ◦) and (H, ∗), we define the underlying set of a new
group to be the Cartesian product of the sets G and H; that is, the setIn Example 1.1, G = H = R.

G×H = {(g, h) : g ∈ G, h ∈ H}.

As with R× R, we can define an operation on this set by applying the
original operations to the separate components. Generalising requires a
little care because the operations for the two component groups may be
different. As the first components come from G, with operation ◦, and the
second components come from H, with operation ∗, the general definition
of the new operation (which we call •) isIn Example 1.1, • = ◦ = ∗ = +.

(g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2).

Definition 1.2 Direct product of two groups

Let (G, ◦) and (H, ∗) be two groups. Their direct product

(G×H, •) is the group defined as follows.

Set The underlying set of the group is G×H, the Cartesian
product of the underlying sets G and H; that is,

G×H = {(g, h) : g ∈ G, h ∈ H} .

Operation If (g1, h1) and (g2, h2) are elements of G×H then

(g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2).

This definition does indeed produce a group. Before we prove this, the
following exercise will give you some ‘hands-on’ experience of direct
products of groups.

Exercise 1.2

Write out the Cayley table of the group Z2 × Z3. Use + for the new
operation.
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1 Direct products

We are now ready to prove that the direct product of any two groups is
indeed a group. The proof for the general case is similar to the solution to
Exercise 1.1.

To verify that (G×H, •) is a group, we must check the four group axioms.

To check that the above definition of • produces a closed binary operation
on G×H (that is, it satisfies the closure axiom), we observe the following.

Let (g1, h1) and (g2, h2) be any two elements of G×H. By the definition
of G×H, we know that g1 and g2 are elements of G and that h1 and h2
are elements of H.

Since G is a group, it is closed under the operation ◦, therefore g1 ◦ g2 is
in G. Since H is a group, it is closed under the operation ∗, so h1 ∗ h2 is
in H. Therefore, by the definition of •, we have

(g1, h1) • (g2, h2) = (g1 ◦ g2, h1 ∗ h2) ∈ G×H.

The following exercise asks you to check the remaining group axioms
for (G×H, •).

Exercise 1.3

(a) Prove that • is associative (that is, check the associativity axiom).

(b) Let the identity of G be eG and the identity of H be eH . Prove that
(eG, eH) is the identity of G×H (that is, check the identity axiom).

(c) Let (g, h) be an element of G×H, where g has inverse g−1 in G and h
has inverse h−1 in H. Prove that (g−1, h−1) is the inverse of (g, h) in
G×H (that is, check the inverses axiom).

So far we have carefully distinguished the binary operations of the groups
involved in the direct product construction. Now that we have shown that
the direct product of two groups is a group, we revert to using either
juxtaposition for the operations, or + when both the operations are
addition. Some texts refer to the direct sum of two groups, rather than
direct product, when the groups are abelian and additive notation is used.

Exercise 1.4

Let G and H be abelian groups. Show that their direct product G×H is
abelian.
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Towards classification

1.2 Internal direct products

In some cases, a group is isomorphic to the direct product of two more of
its subgroups. This is not always obvious, and in this subsection we
investigate how to find out whether this is the case.

Consider the group of symmetries of the rectangle, V = {e, r, h, v}, where r
is the half-turn about the centre and h and v are the reflections in the
horizontal and vertical axes of symmetry. Recall also that v = rh. The
Cayley table of V is as follows.

e r h v
e e r h v
r r e v h
h h v e r
v v h r e

We will show how V can be represented as a direct product of two smaller
groups. More specifically, we will show that V is isomorphic to the direct
product of two of its subgroups.

By Lagrange’s Theorem the only possible orders for subgroups of V are 1,
2 and 4. We aim to express V in the form V = A×B, where A and B are
subgroups of V . Now, by the definition of direct products of any two
groups A and B,

|A×B| = |A||B|.

Therefore if either A or B has order 1, then the other must have order 4
and is the whole group. However, this would not be expressing V as a
product of smaller groups. Thus, it only makes sense to try to express V
as the direct product of two subgroups of order 2. There are three
subgroups of order 2, namely

H1 = {e, r}, H2 = {e, h} and H3 = {e, v}.

We pick H1 and H2, although any two of the three subgroups would do
just as well. The Cayley table for H1 ×H2 is as follows.

(e, e) (r, e) (e, h) (r, h)

(e, e) (e, e) (r, e) (e, h) (r, h)
(r, e) (r, e) (e, e) (r, h) (e, h)
(e, h) (e, h) (r, h) (e, e) (r, e)
(r, h) (r, h) (e, h) (r, e) (e, e)

Since rh = v in V , the Cayley table for V can be rewritten in the following
way.

e r h rh

e e r h rh
r r e rh h
h h rh e r
rh rh h r e
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1 Direct products

You may have observed that these two tables have an entirely similar
pattern. It follows that the function φ :H1 ×H2 defined by

φ : (x, y) 7→ xy

is an isomorphism. Thus V can be represented as – that is, it is isomorphic
to – the direct product of two of its subgroups. Since each of these
subgroups is cyclic and of order 2, we can also say V ∼= Z2 × Z2. Not all
attempts to decompose a group as a direct product of subgroups will work,
as the following example shows.

Example 1.3 A group that is not a non-trivial direct product

The symmetric group S3 has six elements:

S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

This group is not abelian: consider, for example, the products (1 2)(1 3)
and (1 3)(1 2).

If S3 could be written as a non-trivial direct product – that is, as a direct
product in which neither subgroup has order 1 – it would have to be as the
direct product of subgroups of orders 2 and 3.

The group S3 does possess subgroups of orders 2 and 3. For example,
H1 = {e, (1 2)} has order 2 and H2 = {e, (1 2 3), (1 3 2)} has order 3.

However, any subgroup of order 2 is cyclic and is isomorphic to Z2.
Equally, any subgroup of order 3 is cyclic and is isomorphic to Z3.
It follows, therefore, that any attempt to form a direct product of such
subgroups leads to a group isomorphic to Z2 × Z3, which is abelian by
Exercise 1.4 and so not isomorphic to S3.

Example 1.3 shows that, even if subgroups of suitable orders exist, a group
may not be isomorphic to a direct product of these subgroups.

In fact, there are precise conditions under which a group is isomorphic to a
direct product of two of its subgroups. These conditions form the content
of Theorem 1.5 below.

We determine these conditions in two stages: first we establish necessary
conditions on the subgroups and then we show that these conditions are
also sufficient.

We start by showing that if a group G is the direct product of two of its This discussion will be the proof
of the first half of Theorem 1.5.subgroups, then there are certain restrictions on the subgroups.

So assume that H1 and H2 are subgroups of a group G and that
φ :H1 ×H2 → G defined by

φ : (h1, h2) 7→ h1h2

is an isomorphism. We consider, in turn, the consequences of φ being onto,
one–one and satisfying the morphism property.

The image set of φ consists of all products h1h2 of an element of H1 and
an element of H2. Hence, as φ is onto, every element of G is expressible in
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Towards classification

this form. Using the notation H1H2 = {h1h2 : h1 ∈ H1, h2 ∈ H2}, this
says that we must have G = H1H2. In other words, every element of G is
the product of an element of H1 with an element of H2. Summing up, we
have the following result.

If φ is an isomorphism, then G = H1H2.

Let us now look at the consequences of φ being one–one. Assume that
φ(h1, h2) = φ(k1, k2). Then we know thatStrictly, the correct notation for

expressions like φ(h1, h2) is
φ((h1, h2)). However, for ease of
notation we will avoid double
brackets where no ambiguity
arises and simply write
φ(h1, h2).

(h1, h2) = (k1, k2),

which, by the definition of an ordered pair, implies that h1 = k1 and
h2 = k2.

So φ(h1, h2) = φ(k1, k2) means that h1h2 = k1k2. In other words, the fact
that φ is one–one means that

h1h2 = k1k2 implies h1 = k1 and h2 = k2.

Thus, because φ is one–one, each element of G can be expressed as a
unique product of the form h1h2 with h1 ∈ H1 and h2 ∈ H2.

Exercise 1.5

Show that the fact that φ is one–one implies that H1 ∩H2 = {e}.

Hint: use the fact that h = he = eh for any h ∈ G.

The result of the previous exercise tells us the following.

If φ is an isomorphism, then H1 ∩H2 = {e}.

For any two elements (h1, h2) and (k1, k2) of the direct product, the
morphism property of φ gives

φ((h1, h2)(k1, k2)) = φ(h1, h2)φ(k1, k2)

⇒ φ(h1k1, h2k2) = (h1h2)(k1k2)

⇒ h1k1h2k2 = h1h2k1k2

⇒ k1h2 = h2k1, using the left and right cancellation rules.

What this means is that every element of H1 commutes with every element
of H2.

We now show that we can deduce that H1 is a normal subgroup of G.
To do so, we show that aH1a

−1 ⊆ H1 for each a ∈ G.

So suppose that a ∈ G. Since we now know that G = H1H2, we can write
a = h1h2, where h1 ∈ H1 and h2 ∈ H2.
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1 Direct products

Now, any element of aH1a
−1 is of the form aha−1, where h ∈ H1. So

aha−1 = (h1h2)h(h1h2)
−1

= h1h2hh
−1
2
h−1
1

= h1hh2h
−1
2
h−1
1

(since h ∈ H1 and h2 ∈ H2 commute)

= h1hh
−1

1
∈ H1 (since h, h1, h

−1

1
∈ H1).

Thus aH1a
−1 ⊆ H1 as required.

The following exercise asks you to show that H2 is also a normal subgroup
of G.

Exercise 1.6

Prove that, for any a ∈ G,

aH2a
−1 ⊆ H2.

Exercise 1.6 and the discussion preceding it give the following result.

If φ is an isomorphism, then both H1 and H2 are normal subgroups
of G.

Summing up, if φ :H1 ×H2 → G defined by

φ : (h1, h2) 7→ h1h2

is an isomorphism, then all three of the following conditions are satisfied:

(a) G = H1H2

(b) H1 ∩H2 = {e}

(c) H1 and H2 are normal subgroups of G.

This completes the proof of the first half of Theorem 1.5 below. Before we
state the theorem and complete its proof, we introduce the standard
terminology that is used when a group can be expressed as a direct
product of subgroups.

Definition 1.4 Internal direct product

Let G be a group and let H1 and H2 be subgroups of G. Then G is
the internal direct product of H1 and H2 if the map

φ :H1 ×H2 → G
φ : (h1, h2) 7→ h1h2

is an isomorphism.

The direct product H1 ×H2 in Definition 1.4 is ‘internal’ in that H1 and
H2 are subgroups of G. The next theorem gives necessary and sufficient
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Towards classification

conditions for a group to be the internal direct product of two given
subgroups.

Theorem 1.5 Internal Direct Product Theorem

If H1 and H2 are subgroups of a group G, then

φ :H1 ×H2 → G
φ : (h1, h2) 7→ h1h2

is an isomorphism if, and only if, all three of the following conditions
hold:

(a) G = H1H2

(b) H1 ∩H2 = {e}

(c) H1 and H2 are normal subgroups of G.

In particular, when these three conditions are satisfied, G is the
internal direct product of H1 and H2.

Proof As remarked above, we have proved that the conditions are
necessary; that is, we have proved that if φ is an isomorphism, then the
three conditions hold. For sufficiency, we need to prove that, if the three
conditions hold, then φ is an isomorphism.

The three conditions, in turn, give that φ is onto, one–one and has the
morphism property.

To see that φ is onto, recall that G = H1H2. Then every g ∈ G can be
written as g = h1h2 with h1 ∈ H1 and h2 ∈ H2. Hence g = φ(h1, h2) and φ
is onto.

We now check that φ is one–one. Suppose that

φ(h1, h2) = φ(k1, k2).

Then h1h2 = k1k2 for h1, k1 ∈ H1 and h2, k2 ∈ H2. So

k−1
1
h1 = k2h

−1
2
.

But the left-hand side is an element of H1 and the right-hand side is an
element of H2. Since both sides are equal, they belong to both H1 and H2

and, hence, to the intersection H1 ∩H2.

However, H1 ∩H2 = {e}.

Thus k−1

1
h1 = k2h

−1

2
= e.

It follows that h1 = k1 and h2 = k2, and so (h1, h2) = (k1, k2). Thus φ is
one–one.

Checking the morphism property is slightly more involved. Let (h1, h2)
and (k1, k2) be elements of H1 ×H2. We want to show that

φ((h1, h2)(k1, k2)) = φ(h1, h2)φ(k1, k2).

But φ((h1, h2)(k1, k2)) = φ(h1k1, h2k2) = h1k1h2k2, and
φ(h1, h2)φ(k1, k2) = h1h2k1k2,
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1 Direct products

so the morphism property in this case is equivalent to

h1k1h2k2 = h1h2k1k2;

that is, after using the cancellation laws, to

k1h2 = h2k1.

Now consider the product

k1h2k
−1
1
h−1
2

∈ G.

Since h2 is in H2, so is h−1
2

. Since H2 is normal in G, we have that

k1h2k
−1

1
is in H2. Therefore k1h2k

−1

1
h−1

2
is in H2.

Similarly, h2k
−1
1
h−1
2

∈ H1, so k1h2k
−1
1
h−1
2

∈ H1.

Therefore k1h2k
−1
1
h−1
2

∈ H1 ∩H2. But since H1 ∩H2 = {e}, we have

k1h2k
−1
1
h−1
2

= e,

which is equivalent to k1h2 = h2k1, and therefore also to the morphism
property.

This concludes the proof that if conditions (a), (b) and (c) hold, then φ is
an isomorphism.

Theorem 1.5 gives another reason why S3 is not the direct product of two
subgroups isomorphic to Z2 and Z3: while H2 = {e, (1 2 3), (1 3 2)} is a
normal subgroup of order 3, we know that S3 has no normal subgroup of
order 2.

Exercise 1.7

Consider the cyclic group Z6 and denote its underlying set by
{e, a, a2, a3, a4, a5}. Show that Z6 has normal subgroups of orders 2 and 3
that satisfy the conditions of Theorem 1.5. Deduce that Z6

∼= Z2 × Z3.

The result you are asked to prove in the following exercise is implicit in the
proof of the morphism property for φ in Theorem 1.5: in any internal
direct product G ∼= H ×K, the subgroups H and K satisfy a
commutativity condition, in the sense that every element of H commutes
with every element of K.

Exercise 1.8

Let G ∼= H ×K be the internal direct product of subgroups H and K of
G. Show that hk = kh for all h ∈ H and k ∈ K.
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Towards classification

Let G and H be two groups with identities eG and eH respectively. Then
the set

Ĝ = {(g, eH ) : g ∈ G}

is the subset of the direct product G×H that contains all pairs where the
second element is the identity in H. It is not difficult to show – though we

will not do so here – that Ĝ is a subgroup of G×H that is isomorphic to
G. Similarly, the set

Ĥ = {(eG, h) : h ∈ H}

forms a subgroup of G×H that is isomorphic to H.

Then the direct product G×H is also the internal direct product of its

subgroups Ĝ and Ĥ. Thus, the distinction between the external and
internal direct products of two groups is simply an indication of whether
we regard the factor groups as subgroups of the product group. In the rest
of Book B we will usually drop this distinction and simply refer to a direct

product even when we work with an internal direct product.

Before we move on, it will be useful to consider direct products of more
than two groups.

Theorem 1.6

If A,B and C are groups, then:

(a) A×B ∼= B ×A

(b) A× (B × C) ∼= (A×B)× C.

Proof

(a) Consider the function φ : A×B → B ×A defined by

φ : (a, b) 7→ (b, a).

We claim that φ is an isomorphism.

To show that φ is one–one, suppose that φ(a1, b1) = φ(a2, b2).
Then (b1, a1) = (b2, a2) by the definition of φ. Hence b1 = b2 and
a1 = a2 by the definition of ordered pairs, and so

(a1, b1) = (a2, b2),

which shows that φ is one–one.

If (b, a) is any element of the codomain B ×A, then b ∈ B and a ∈ A,
so (a, b) ∈ A×B and φ(a, b) = (b, a). Hence φ is onto.

To check the morphism property, let (a1, b1) and (a2, b2) be any two
elements of A×B. Then

φ((a1, b1)(a2, b2)) = φ(a1a2, b1b2)
= (b1b2, a1a2)
= (b1, a1)(b2, a2)
= φ(a1, b1)φ(a2, b2).

14



1 Direct products

This completes the proof that A×B ∼= B ×A.

(b) You are asked to prove the second part of the theorem in the following
exercise.

Exercise 1.9

Show that the function

ψ : A× (B × C) → (A×B)× C
ψ : (a, (b, c)) 7→ ((a, b), c)

is an isomorphism.

The first part of Theorem 1.6 says that if we alter the order of the factor
groups in a direct product, we obtain an isomorphic group.

The second part of Theorem 1.6 says that the bracketing of terms in a
direct product of three (or more) groups is unnecessary.

So, just as for, say, the multiplication of integers, these ‘commutative’ and
‘associative’ laws mean that a direct product of two or more groups may
be written in any order, without the need for brackets, since all such
expressions produce isomorphic groups. Theorems 1.5 and 1.6 give us the
following result concerning the direct product of a finite number of
subgroups of a group G. The full proof is omitted.

Corollary 1.7

If Hi are subgroups of a group G for i = 1, . . . , n ∈ N, n ≥ 2, then

φ: H1 ×H2 × · · · ×Hn → G

φ : (h1, h2, . . . , hn) 7→ h1h2 · · · hn

is an isomorphism if, and only if, all three of the following conditions
hold:

(a) G = H1H2 · · ·Hn

(b) Hi ∩H1H2 · · ·Hi−1Hi+1 · · ·Hn = {e} for 1 ≤ i ≤ n

(c) H1,H2, . . . ,Hn are normal subgroups of G.

In particular, when these three conditions are satisfied, G is the
internal direct product of H1,H2, . . . ,Hn.

Notice that condition (b) is stronger than requiring that Hi ∩Hj = {e} for
i 6= j. The next example shows that this extra strength is needed.
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Towards classification

Example 1.8 The Klein group

Let G be the Klein group,

G = Γ( ) = {e, r, h, v}.

Let H1 = {e, r},H2 = {e, h} and H3 = {e, v}. Then:

• e = eee, r = ree, h = ehe and v = eev and so condition (a) from
Corollary 1.7 holds

• H1 ∩H2 = H1 ∩H3 = H2 ∩H3 = {e}

• since G is abelian, H1,H2,H3 are all normal in G.

However G 6∼= H1 ×H2 ×H3, since the order of G is 4, whereas the order of
H1 ×H2 ×H3 is 8.

Note that condition (b) in Corollary 1.7 does not hold here, since

H1 ∩H2H3 = H1 ∩ {e, h, v, r} = {e, r}.

When a group G has two subgroups H and K with trivial intersection, weRecall that
HK = {hk : h ∈ H and k ∈ K}. can say quite a lot about the product HK and its relation to the direct

product H ×K.

Proposition 1.9

Let G be a group with subgroups H and K such that H ∩K = {e}.
Then:

(a) If H and K have finite orders r and s respectively, then HK has
rs distinct elements. In particular, if rs = |G| then G = HK.

(b) If kh = hk for all h ∈ H and k ∈ K, then HK is a subgroup of G
with HK ∼= H ×K.

Proof

(a) Suppose that h1k1 = h2k2 for some h1, h2 ∈ H and k1, k2 ∈ K. Then

h−1
2
h1 = k2k

−1
1

= e

since H ∩K = {e}. Thus h2 = h1 and k2 = k1. This means that HK
must have |H| × |K| = rs distinct elements.

(b) We first apply the subgroup criterion in Chapter 5 to show that HK is
a subgroup of G. It is clear that HK is non-empty, so we only need to
check that for any elements x, y ∈ HK the product x−1y is again in
HK.

16



1 Direct products

Suppose x = h1k1 and y = h2k2 for some h1, h2 ∈ H and k1, k2 ∈ K.
Then

x−1y = (h1k1)
−1h2k2

= k−1
1
h−1
1
h2k2

= h−1
1
h2k

−1
1
k2,

since elements of H commute with elements of K.

But h−1
1
h2 ∈ H and k−1

1
k2 ∈ K (because H and K are both

subgroups), therefore the product h−1
1
h2k

−1
1
k2 = x−1y is in HK, as

required.

Thus HK is a subgroup of G.

Now, since hk = kh for all h ∈ H and k ∈ K, we have

hkh−1 = k ∈ K and

khk−1 = h ∈ H,

so H and K are both normal subgroups of HK.

Hence, since H ∩K = {e}, we can apply Theorem 1.5 with HK = G
to show that HK ∼= H ×K as required.

The next exercise gives a useful tip for working with direct products of two
groups inside abelian groups.

Exercise 1.10

Let G be an abelian group, and let H1,H2 be subgroups of G with

H1 ∩H2 = {1}.

Show that if h1 ∈ H1 and h2 ∈ H2 are such that h1h2 = 1, then h1 = 1 and
h2 = 1.

Finally, we include a result about direct products of direct products.

Proposition 1.10

Let H,K be subgroups of G, and H1,H2 be subgroups of H. Suppose
that G ∼= H ×K and H ∼= H1 ×H2. Then G ∼= H1 ×H2 ×K.

Proof We show that the three conditions in Corollary 1.7 hold for G,
H1, H2 and K.

(a) Since G ∼= H ×K, we have that G = HK and since H ∼= H1 ×H2, we
have that H = H1H2. It follows that G = H1H2K.

(b) Since G ∼= H ×K, we have that H ∩K = {e} and so H1H2 ∩K = {e}.

17



Towards classification

Since H ∼= H1 ×H2, we have H1 ∩H2 = {e}. Suppose g ∈ H1K ∩H2.
Then

g = h1k = h2 (∗)

for some h1 ∈ H1, h2 ∈ H2 and k ∈ K.

But then k = h−1
1
h2 ∈ H and so k ∈ H ∩K. Thus k = e, and h1 = h2.

But h1 = h2 implies that h1 = h2 = e because H1 ∩H2 = {e}. Then
equation (∗) implies g = e, and so

H1K ∩H2 = {e}.

The proof that H2K ∩H1 = {e} is similar.

(c) Since G ∼= H ×K, by Theorem 1.5 we have that K is normal in G.
From Exercise 1.8 we know that:

• hk = kh for all h ∈ H and k ∈ K

• h1h2 = h2h1 for all h1 ∈ H1 and h2 ∈ H2.

Now let h ∈ H1 and g ∈ G. We can write g = h1h2k for some
h1 ∈ H1, h2 ∈ H2 and k ∈ K. Then

ghg−1 = h1h2khk
−1h−1

2
h−1

1

= h1h2h
−1
2
kk−1hh−1

1

= h1hh
−1

1
∈ H1.

Thus H1 is normal in G. Similarly, H2 is normal in G.

We have shown that the three conditions in Corollary 1.7 are satisfied
and hence that G ∼= H1 ×H2 ×K.

2 Cyclic groups

We defined cyclic groups in Chapter 5. This section describes the key
properties of their structure, starting with a complete description of all
cyclic groups.

We will often retain multiplicative notation despite the fact that we know
that cyclic groups are abelian.

18



2 Cyclic groups

2.1 The classification of cyclic groups

We are already in a position to describe fully all cyclic groups up to
isomorphism. We do so by showing that any cyclic group is isomorphic to
one of a list of concrete examples of groups. In fact, the concrete examples
are

(Z,+) and (Zn,+n)

for each positive integer n.

The cyclic group with which you are most familiar is (Z,+), which is Z is also generated by −1.

generated by the element 1.

Theorem 2.1

(a) All infinite cyclic groups are isomorphic to (Z,+).

(b) A finite cyclic group of order n is isomorphic to the quotient
group Z/nZ, which is (Zn,+n).

Proof

(a) Let G be an infinite cyclic group. Then G has a generator, a say, so
every element of G can be written as an for some n ∈ Z.
Define the function φ :G→ Z by

an 7→ n.

We claim that φ is an isomorphism. Since an = am ⇒ n = m, we have
that φ is well defined. For any m ∈ Z, φ(am) = m, so φ is onto.

Since φ(an) = φ(am) ⇒ n = m, we have that

φ(an) = φ(am) ⇒ an = am,

so φ is one–one.

Finally, we check the morphism property, that is, we check that
φ(an) + φ(am) = φ(anam). The key to this is that we have been using
standard power notation when considering elements of groups; that is,
we write

aa · · · a︸ ︷︷ ︸
n times

as an, and a−1a−1 · · · a−1

︸ ︷︷ ︸
n times

as a−n.

Thus, the familiar power laws apply to products of elements of G, and
we get

φ(an) + φ(am) = n+m = φ(an+m) = φ(anam).

Therefore the morphism property holds.

(b) Let G be a finite cyclic group of order n. Then G has a generator, a
say, so every element of G can be written as as for some s ∈ Z and,
moreover, an = e.
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Towards classification

Now, by the Division Algorithm (see Book A, Chapter 1, Theorem 4.1)
we have that s = kn+ r where 0 ≤ r < n. Thus

as = akn+r = (an)kar = ar.

Hence G = {e, a, a2, . . . , an−1}, and these elements are distinct.

Define the function φ :G→ Z/nZ by

ar 7→ r + nZ.

We show that φ is an isomorphism. It is clear that φ is onto. To show
that φ is one–one, we need to check that φ(ar) = φ(as) ⇒ ar = as.
Now

φ(ar) = φ(as) ⇒ r + nZ = s+ nZ

⇒ r − s = kn for some k ∈ Z

⇒ r = s+ kn

⇒ ar = as+kn = asakn = as (since an = e),

as required.

Finally, we need to show the morphism property. Suppose that
r, s ∈ Z. Let t ∈ Z be such that 0 ≤ t < n and t ≡ r + s (mod n). Then

φ(aras) = φ(ar+s)
= φ(at) (since r + s = t+ kn for some k ∈ Z)
= t+ nZ
= r + nZ+ s+ nZ
= φ(ar) + φ(as),

so the morphism property holds.

2.2 Subgroups and quotient groups of cyclic groups

Chapter 5 showed that subgroups and quotient groups of abelian groups
are abelian. A natural question arises as to whether the same is true if
‘abelian’ is replaced by ‘cyclic’. The answer is yes, as will be shown in this
subsection.

Although we know, from Theorem 2.1, that cyclic groups can be written in
a specific form, namely as Z or Zn, it is sometimes convenient to view
them in a more abstract way and in multiplicative notation. This more
abstract view is adopted in this subsection.

We begin by looking at quotients of cyclic groups.
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2 Cyclic groups

Theorem 2.2 Quotients of cyclic groups

(a) Let G be a cyclic group and let φ :G→ H be a homomorphism.
Then φ(G) is cyclic.

(b) Let G be a cyclic group generated by a and let H be a subgroup
of G. Then the quotient group G/H is cyclic and generated by
the coset aH.

Proof

(a) Since G is cyclic, it has a generator g, say. We claim that φ(g) ∈ H
generates φ(G).

Let h ∈ φ(G). Then h = φ(a) for some a ∈ G. Since g generates G we
know that a = gn for some n ∈ Z. Hence

h = φ(a) = φ(gn) = (φ(g))n.

Thus we have shown that every element of φ(G) can be written in the
form (φ(g))n for some n ∈ Z, and so φ(G) is cyclic with generator
φ(g), as required.

(b) We must show that every element of G/H is of the form (aH)k for
some k ∈ Z.

Suppose that gH is any element of G/H. Then, since G is generated
by a, we know that g = ak for some integer k. But
(aH)k = (ak)H = gH. Hence aH generates G/H.

Before proving that every subgroup of a cyclic group is cyclic, you are
asked to work through an exercise that should help you understand what is
happening.

Exercise 2.1

Let G be a cyclic group generated by a and let H be a non-trivial subgroup
of G. Each element of H must be of the form ak with k ≥ 0. Among the
elements of H, choose the one with the smallest non-zero exponent and let
this exponent be m. Since H is non-trivial, such an m exists.

(a) Suppose that ak is an element of H. Show that m divides k and hence
that H = 〈am〉.

Assume now that G is a finite cyclic group of order n – that is, a has
order n.

(b) Deduce that m divides n.

(c) If n = mq, show that the order of H is q.

Hint : in part (a), use the Division Algorithm (Book A, Chapter 1,
Theorem 4.1).
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Towards classification

Exercise 2.1 is a major step towards the proof that every subgroup of a
cyclic group is cyclic.

Theorem 2.3

Let G be a cyclic group and let H be a subgroup of G. Then H is
cyclic.

Proof If H is the trivial subgroup, that is H = {e}, then H is generated
by e and so it is cyclic.

We therefore consider the case when H 6= {e}, so that H contains at for
some integer t 6= 0. Then H also contains a−t = (at)−1. As one of t and −t
must be positive, H contains ak for some positive integer k and we can
choose m to be the least such positive integer. Then H = 〈am〉 by
Exercise 2.1, and so H is cyclic and generated by am.

Interpreting this result for the infinite cyclic group Z, using additive
notation, gives the following corollary.

Corollary 2.4

The subgroups of Z are all of the form nZ for n ∈ Z, n ≥ 0.

Proof By Theorem 2.3, every subgroup of Z is cyclic. The cyclic
subgroups of Z are those generated by an element of Z, that is, those of
the form {nz : z ∈ Z} = nZ for some n ∈ Z, n > 0, as required.

We can summarise the results in Exercise 2.1 and Theorem 2.3 as follows. If

G = 〈a : an = e〉

is a finite cyclic group of order n and H is a subgroup of G, then:

• H is cyclic

• H is generated by am, where m is the smallest positive exponent of a
such that am ∈ H

• m divides n

• if n = mq then H has order q.

We have shown that every subgroup of a cyclic group is also cyclic. In fact
where the group is finite, we will do rather more. As we have seen,
Lagrange’s Theorem states that, for finite groups, the order of a subgroup
must divide the order of the group. For finite cyclic groups we can prove a
strong converse to Lagrange’s Theorem: for every divisor of the order of
the group, not only is there a subgroup having that number of elements,
but also this subgroup is unique.
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2 Cyclic groups

Theorem 2.5 Subgroups of cyclic groups

Let G = 〈a〉 be a finite cyclic group of order n, so that a has order n.
If q is a factor of n with n = mq, then G has a unique subgroup of
order q that is generated by the element am.

Proof

We start by proving the existence of subgroups whose orders correspond to
factors of the order of the group.

Let H be the subgroup H = 〈am〉. In Exercise 2.1, you showed that the
order of H is q. Thus, given a factor q of n, the subgroup generated by am,
where n = mq, has order q.

Finally, we show that the subgroup corresponding to the factor q of n is
unique.

Suppose that n = mq. Then we know that there is a subgroup 〈am〉 of
order q. Let H be any subgroup of order q. From Exercise 2.1 and
Theorem 2.3, we know that H is cyclic and generated by al, where l is the
least positive exponent of a occurring among the elements of H.
Furthermore, the order of H is k, where n = lk. But the order of H is q, so
k = q and mq = n = lk = lq, and, therefore, m = l. Thus H is the
subgroup generated by am.

This completes the proof of Theorem 2.5.

Theorem 2.5 can be regarded as a strong converse to Lagrange’s Theorem
for cyclic groups. We say ‘strong’ because not only is there a subgroup for
every factor of the order of the group, but, in addition, this subgroup is
unique.

Later we will investigate the effect of relaxing the assumptions about the
group G. We will first consider the case where G is finite and abelian
(instead of cyclic) and then go on to relax the condition further to merely
finite. At each stage we will still obtain some sort of converse to
Lagrange’s Theorem; but, as the conditions on G are relaxed, the
conclusions become weaker, although still useful.

We conclude this subsection by interpreting the results that we have
obtained so far for our standard finite cyclic groups, that is, the groups Zn.

At this point, a word is in order about how we think of Zn. In
Theorem 2.1, the group Zn was defined as the quotient group Z/nZ.
However, in practice we think of Zn as the set {0, 1, . . . , n− 1}, with
addition carried out modulo n.

Since the order of Zn is n, by Theorem 2.5 there is a subgroup
corresponding to each factor of n. That is, if q is a factor of n, then Zn has
a cyclic subgroup of order q. Theorem 2.1 tells us that this subgroup must
be isomorphic to Zq.
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Moreover, we know a generator of the subgroup. Since Zn is generated
by 1, the subgroup of order q is generated by m = n

q
.

Exercise 2.2

(a) Write down the orders of the subgroups of Z24.

(b) For each such subgroup:

(i) state to which Zk it is isomorphic

(ii) by using the remark above about how we think of the groups Zn,
give an explicit list of its elements.

The interpretation of our results about quotient groups is also seen quite
easily: for each factor q of n, there is a subgroup of Zn of order q. This
subgroup is normal. The corresponding quotient group is cyclic, by
Theorem 2.2, and it has order

|Zn|

q
=
n

q
.

Hence the quotient group Zn/Zq is isomorphic to Zn
q
.

2.3 Direct products of cyclic groups

In this subsection we will apply the direct product ideas from Section 1 of
this chapter to cyclic groups.

We recall some terminology and results about integers. You saw the details
in Book A, Chapter 1, Section 4, so here we restate the results that we
need without proof.

Let m and n be two positive integers and let p1, p2, . . . , pk be the prime
numbers occurring in either of their prime factorisations. Then

m = pa1
1
pa2
2

· · · pakk and n = pb1
1
pb2
2
· · · pbkk ,

where ai or bi, but not both, might be zero.

For example, if m = 126 and n = 120 then p1 = 2, p2 = 3, p3 = 5, p4 = 7
and we have

126 = 2× 32 × 50 × 7 and 120 = 23 × 3× 5× 70.

We know that the prime factorisation of mn is

pa1+b1
1

pa2+b2
2

· · · pak+bk
k ,

so if p is a prime factor of mn, then p must be a prime factor of either m
or n or both.

Recall that the highest common factor of m and n, written hcf(m,n), is
the largest positive integer h that is a factor of both. If ci is the smaller of
ai and bi for each i, then h has prime factorisation

pc1
1
pc2
2
· · · pckk .
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2 Cyclic groups

For example, hcf(126, 120) = 21 × 31 × 50 × 70 = 2× 3 = 6.

The least common multiple of m and n, written lcm(m,n), is the
smallest positive integer l that is a multiple of both m and n. If di is the
larger of ai and bi for each i, then l has prime factorisation

pd1
1
pd2
2
· · · pdkk .

For example, lcm(126, 120) = 23 × 32 × 51 × 71 = 2520.

Two positive integers m and n are said to be coprime if their highest
common factor is 1.

Proposition 2.6

Let m and n be two positive integers and let h = hcf(m,n) and
l = lcm(m,n). Then: This proposition combines the

results from Proposition 4.7,
Lemma 4.9 and Proposition 4.15
of Book A, Chapter 1.

(a) The product of m and n is the product of their highest common
factor and least common multiple, that is, mn = hl.

(b) If m and n are coprime then their least common multiple is mn.

(c) There are integers a and b such that am+ bn = hcf(a, b). In
particular, if m and n are coprime there are integers a and b such
that am+ bn = 1.

The results in Proposition 2.6 turn out to be relevant when we calculate
the order of the element of a direct product. You can tackle the following
exercise using direct calculation, but we will shortly prove a result that will
avoid the need for calculations.

Exercise 2.3

(a) What is the order of (1, 1) in Z2 × Z3?

(b) What is the order of (1, 1) in Z2 × Z2?

As promised, we now prove some results that enable us to avoid direct
calculations when determining the order of an element in a direct product.
The following lemma concerns the order of two commuting elements in any
group.

Lemma 2.7

Let a and b be elements of finite orders m and n respectively in a
group G. Suppose that ba = ab and that 〈a〉 ∩ 〈b〉 = {e} (that is, the
only element of G that can be written both as a power of a and as a
power of b is e).

Then the order of ab is the least common multiple of m and n.
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Proof Let l = mp = nq be the least common multiple of m and n. Since
a and b commute, we have that (ab)r = arbr for any integer r. Then

(ab)l = albl = ampbnq = (am)p(bn)q = epeq = e,

so the order of ab is at most l. Now let k > 0 and suppose that (ab)k = e.
Then akbk = e so ak = b−k. But then ak ∈ 〈a〉 ∩ 〈b〉 so ak = e. Similarly,
bk = e. By Proposition ?? of Chapter 5, we have that k is a common
multiple of m and n, and so k ≥ l. Thus the order of ab is at least l. We
have already seen that the order of ab is at most l, so it must be l.

Exercise 2.4

Let G be an abelian group and let g1, g2, . . . , gr be elements of G that have
distinct prime orders p1, p2, . . . , pr respectively. Show that the order of
g1g2 · · · gr is p1p2 · · · pr.

Proposition 2.8

Let G,A,B be groups with G = A×B. Suppose that a ∈ A has
order m and b ∈ B has order n. Then the order of (a, b) is the least
common multiple of m and n.

Proof We consider the elements (a, e) and (e, b) in A×B and check the
hypotheses of Lemma 2.7. Firstly, (a, e)(e, b) = (a, b) = (e, b)(a, e).
Secondly 〈(a, e)〉 = {(ak, e) : k = 0, . . . ,m− 1} and
〈(e, b)〉 = {(e, bk) : k = 0, . . . , n− 1}, so that

〈(a, e)〉 ∩ 〈(e, b)〉 = {(e, e)}.

Since both hypotheses hold, we can conclude that the order of (a, b) is the
least common multiple of m and n as required.

There is one more result about orders of elements in any group G that will
be useful.

Proposition 2.9

If g ∈ G has order n, then the order of gm is

l

m
=
n

h
,

where l is the least common multiple of m and n, and h is the highest
common factor of m and n. In particular, if m is a factor of n then
the order of gm is n

m
.
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Proof The order of gm is the least positive integer k such that gmk = e.
By Exercise ?? of Chapter 5, we know that gmk = e precisely when mk is
also a multiple of n. So k is the least positive integer such that mk is a
multiple of n, hence mk is the least common multiple of m and n. Then
k = l

m
.

Since mn = hl by Proposition 2.6(a), we also have

|gm| =
l

m
=
n

h
,

as required.

We can now proceed to consider direct products of cyclic groups. Firstly,
we note that, as observed in Subsection 1.2, irrespective of whether the
groups are cyclic or not, the order of the direct product of two finite
groups is the product of the orders of the individual groups.

Secondly, if the groups concerned are cyclic, then they are abelian, and
hence, by Exercise 1.4, so is their direct product.

On the other hand, we also know that direct products of cyclic groups are We can now also use
Proposition 2.8 to obtain results
of this kind: the order of (1, 1)
in Z2 × Z3 is the least common
multiple of the order of 1 in Z2

and the order of 1 in Z3. Since
these orders are 2 and 3, with
least common multiple 6, (1, 1)
has order 6.

not always cyclic. For example, in Subsection 1.2 we showed that
V ∼= Z2 × Z2, and V is not cyclic.

However, sometimes the direct product of cyclic groups is cyclic. For
example, consider the group Z2 × Z3. In Exercise 2.3 we showed that the
order of (1, 1) is 6. Since this is the order of Z2 × Z3 = 〈(1, 1)〉, this direct
product is indeed cyclic.

So, a direct product of cyclic groups may or may not be cyclic. The aim of
this subsection is to determine under what circumstances the direct
product Zm × Zn is cyclic.

Exercise 2.5

Show that both of the following direct products are cyclic.

(a) Z3 × Z5

(b) Z4 × Z5

In the following exercises you will meet two examples of direct products
that are not cyclic even though the factor groups are.

Exercise 2.6

(a) Show that (1, 1) does not generate Z2 × Z4. Why is this insufficient to
prove that Z2 × Z4 is not cyclic?

(b) Show that Z2 × Z4 is not cyclic.
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In the solution to Exercise 2.6, we saw that the maximum order for an
element of Z2 × Z4 is 4. We could show this directly as follows. If (a, b) is
any element of the direct product Z2 × Z4, then

4(a, b) = (4a, 4b)
= (0, 0).

Exercise 2.7

Show that the order of any element of Z6 × Z8 is at most 24 and, hence,
that this direct product is not cyclic.

Being able to determine the maximum order for any element in a direct
product will be useful throughout this chapter, so we generalise the result
in Exercises 2.6 and 2.7 in the following proposition.

Proposition 2.10

Let G = Zm × Zn. Then no element of G can have order greater than
the least common multiple of m and n.

Proof Let (a, b) ∈ Zm × Zn. Suppose that a has order r and b has
order s. Then we have that r divides m and s divides n. Thus r and s
both divide l = lcm(m,n). Hence

l(a, b) = (la, lb) = (e, e).

Thus the order of (a, b) is at most l, as required.

The property in Proposition 2.10 does not necessarily hold for a direct
product where the factor groups are not both cyclic.

Exercise 2.8

Let G = S3 × Z3.

(a) What is m, the maximum order of an element of S3?

(b) What is n, the maximum order of an element of Z3?

(c) What is the lowest common multiple of m and n?

(d) Write down an element of order 6 in G.

The following exercise asks you to decide whether some direct products are
cyclic.
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Exercise 2.9

For each of the following direct products, decide whether or not it is cyclic
and justify your conclusion.

(a) Z4 × Z6

(b) Z2 × Z9

Inspecting the examples above suggests that the direct product of cyclic
groups of coprime orders is cyclic, but if the orders are not coprime then
the direct product is not cyclic. This is the content of the next theorem.
However, first you are asked to attempt the following exercise, which
provides part of the proof of the theorem.

Exercise 2.10

Show that, if m and n are not coprime, then Zm × Zn is not cyclic.

Theorem 2.11 Direct products of cyclic groups

The direct product Zm × Zn of the cyclic groups Zm and Zn is cyclic
if, and only if, m and n are coprime positive integers.

Proof First we prove that, if m and n are coprime, then the direct
product Zm × Zn is cyclic.

The element 1 in Zm has order m and the element 1 in Zn has order n. It
follows by Proposition 2.8 that (1, 1) has order lcm(m,n). By
Proposition 2.6, we have that lcm(m,n) = mn. Therefore the order of the
element (1, 1) in the direct product is mn. However, the direct product has
mn elements and so it is cyclic.

We proved the converse statement in Exercise 2.10, where we showed that
if m and n are not coprime, then Zm × Zn is not cyclic. This is equivalent
to showing that if Zm × Zn is cyclic, then m and n are coprime.

The next corollary gives an important and useful consequence of
Theorem 2.11.

Corollary 2.12

Let m and n be coprime positive integers. Then Zmn
∼= Zm × Zn.
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Proof We know that the group Zmn is cyclic and has order mn. Since
Zm × Zn also has order mn and it is cyclic by Theorem 2.11, we have that
Zmn

∼= Zm × Zn by Theorem 2.1(b).

This corollary is an example of the sort of decomposition result that is our
main concern in this book. It leads to the main decomposition theorem for
cyclic groups, which we prove later in this subsection.

Exercise 2.11

Show that Z90
∼= Z2 × Z9 × Z5.

If, in Exercise 2.11, we had decomposed 90 in a different manner, taking
90 = 9× 10, for example, we would have obtained

Z90
∼= Z9 × Z2 × Z5.

Other decompositions of 90 into a product of pairwise coprime factors
produce corresponding direct products. However, Theorem 1.6 ensures
that all the resulting direct product decompositions are isomorphic.

Exercise 2.12

Suppose that n is a positive integer with prime decomposition

n = pk1
1
· · · pkrr ,

where p1 < · · · < pr are distinct primes and k1, . . . , kr are positive integers.
Show that

Zn
∼= Zn1

× · · · × Znr ,

where ni = pkii for i = 1, . . . , r.

Hint: use induction on r.

The solution to Exercise 2.12 provides a decomposition theorem for finite
cyclic groups, which we restate as follows.

Theorem 2.13 Decomposition of finite cyclic groups

If n is a positive integer with prime decomposition

n = pk1
1
· · · pkrr ,

where p1 < · · · < pr are distinct primes and k1, . . . , kr are positive
integers, then

Zn
∼= Zn1

× · · · × Znr ,

where ni = pkii , i = 1, . . . , r.
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If we combine Theorem 2.13 with the uniqueness of prime decomposition
in Z, we see that the decomposition into cyclic groups of prime power
order is unique up to isomorphism.

Since each prime power order is a factor of the order of the group, then by
Theorem 2.5 each Zni

is (isomorphic to) a subgroup. Thus the
decomposition theorem expresses the group as a direct product of normal All subgroups of cyclic groups

are normal.subgroups.

We now have a complete description of all cyclic groups, summarised in
the three bullet points below.

• Firstly, we have a list of the familiar cyclic groups Z and Zn for each
positive n. Every cyclic group is isomorphic to one group in this list.

• Secondly, every finite cyclic group can be written as a direct product
in which every factor is a cyclic group of prime power order. These The fact that cyclic groups of

prime power order cannot be
written as direct products of
cyclic groups of smaller orders is
a consequence of Theorem 2.11.

cyclic groups of prime power order cannot be written as direct
products of cyclic groups of smaller orders. Thus the cyclic groups of
prime power order form a collection of fundamental building blocks
from which all finite cyclic groups can be constructed.

• Thirdly, we know all about the subgroups of a cyclic group.
For the infinite cyclic group, Z, the subgroups are precisely the sets
nZ = {nx : x ∈ Z}, for every non-negative integer n.
A finite cyclic group has a unique cyclic subgroup corresponding to
each factor of its order.

In addition, given any group that is a direct product of cyclic groups, we
can factorise it as a direct product of cyclic groups of prime power order.

Exercise 2.13

Prove that the following two groups are isomorphic by factorising each of
them as a direct product of cyclic groups of prime power order:

Z154 × Z20 × Z5 and Z55 × Z28 × Z10.

Exercise 2.14

Factorise the following groups as a direct product of cyclic groups of prime
power order.

(a) Z2 × Z6 × Z75

(b) Z9 × Z21 × Z245
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3 Describing groups

The idea that a single group element generates a (cyclic) subgroup by
repeated applications of the group operation can be generalised to the case
of a finite set of elements. This section introduces the notion of a set of
generators of a group and a set of relations among the generators. As an
example, it looks at a family of finite groups called the dicyclic groups,
describing them in terms of generators and relations.

3.1 Generators and relations

A group with 12 elements, such as D6, the symmetry group of the regular
hexagon, is really too large to deal with conveniently by a Cayley table. In
this section we formally introduce a way of describing a group using
generators. We have been using this approach informally in the previous
two chapters, and in this section we will take a more rigorous approach.

Our aim is to find a more succinct way of describing the elements of D6

than by simply listing all 12 elements. In Chapter 6, we used this approach
when working with the action of D6 on itself by conjugation. We would
like this description to aid us with manipulating elements in the same way
that in Z7 (say) we can write any element as a power of a generator a, and
can write the composition of two elements a2 and a3 (say) as a2a3 = a5.

The term ‘generators’ is an extension of the term ‘generator’ that you met
in the context of cyclic groups. We will start this section by describing D6

in this way. In the following discussion, you can think of the generators as
being the elements involved in our succinct description and of the relations
as being the rules we need to carry out manipulations.

It is fairly easy to spot a possible generator for all the rotations: for
example, the rotation anticlockwise about the centre through π

3
can be

used to produce all the rotations (including the identity).

O
s

Figure 3.1 Reflection of a
hexagon in a given line

Composing rotations with the same centre always produces a rotation and
never a reflection. As a consequence, a set of generators of D6 must
contain a reflection, since the whole group does. Consider, for example, the
reflection in the line shown in Figure 3.1.

Let us label the chosen rotation r and the chosen reflection s. In the

In the notation of M208,
r = rπ/3 and s = q0. We have
chosen shorter labels for
convenience in the calculations
that follow.

following exercise, you are asked to show that these two elements generate
D6. In fact, as you may wish to check, the reflection s is not the only
possible choice: any reflection will do.
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Exercise 3.1

Let s be the reflection of the hexagon shown in Figure 3.1, and let r be the
anticlockwise rotation through π

3
about the centre of the hexagon.

(a) Express each of the six rotations in D6 as powers of r.

(b) Express each of the six reflections in D6 in the form rns, for suitable
integers n.

(c) Since sr must be a group element (by the closure axiom), it must be
one of the elements found in the solutions to parts (a) and (b). Which
one?

The solution to Exercise 3.1 gives a description of D6 that will make
calculations with its elements much easier. The group D6 is generated by
two elements r and s about which we know the following:

r6 = s2 = e, sr = r5s.

Note that the second equation can also be written

sr = r−1s.

We use these equations to describe the group as follows:

D6 = 〈r, s | r6 = s2 = e, sr = r5s〉.

In this description of D6, the elements r and s are known as the generators

of the group, and the equations r6 = s2 = e, sr = r5s as the relations. We
have further information about D6, namely that every element can be
written uniquely in the form

risj for i = 0, . . . , 5 and j = 0, 1.

Note that, since r0 = s0 = e, we usually write ris0 as ri and r0sj as sj.
Thus, elements of D6 have a standard form. The existence of such a
standard form enables computations to be made without recourse to a
Cayley table.

In practice if, for a given group G, we know

• two generators a and b

• the orders of the two generators

• a relation indicating how to write ba as ambn for some m,n For an abelian group, for
example, we have the relation
ba = ab.then we have enough information to write the elements of G in a standard

form aibj .

This means that we can give an alternative complete and compact
description of D6 as follows:

D6 = {risj : i = 0, . . . , 5, j = 0, 1; r6 = s2 = e, sr = r5s}.

Note that we have used set notation here, rather than angled brackets.
This is because you can read this description of D6 as ‘the set of
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expressions of the form risj where i = 0, . . . , 5, j = 0, 1; r6 = s2 = e and
sr = r5s’.

The information on the orders of the generators and the relation between
them can be used to express any element of D6 in standard form. As an
example, here is how to find the standard form of the product sr2s.

sr2s = srrs
= r5srs using sr = r5s
= r5r5ss using sr = r5s again
= r10e using s2 = e
= r4 using r6 = e

Exercise 3.2

Let D6 = {risj : i = 0, . . . , 5, j = 0, 1; r6 = s2 = e, sr = r5s}.

(a) Use the relations given to express sr2 and sr3 in standard form.

(b) Write s5 in standard form.

The description D6 = 〈r, s | r6 = s2 = e, sr = r5s〉 is known as a group

presentation. In general, a group presentation consists of a set of
generators g1, g2, . . . , gn, say, and a set of equations known as relations.
Sometimes the relations are given as expressions involving the generators
that equate to the identity. Such presentations assume the existence of
inverses of the generators as well as the existence of the identity e. It is
possible to formally define a group presentation and to define the group
described by any such presentation, but we will not do this here. We will
just note the properties we need as follows.

Properties of a group presentation

Let G be a group with presentation

G = 〈g1, g2, . . . , gn | r1, r2, . . . , rm〉.

1. Any element of the group can be written in the form

gn1

i1
gn2

i2
· · · gns

is
,

where i1, . . . , is ∈ {1, 2, . . . , n} and ni ∈ Z. In this expression
there may be repetitions of a generator, and the powers can be
both positive and negative.

2. Any equation that holds in the group can be derived from the
given relations.

Expressions such as gn1

i1
gn2

i2
· · · gns

is
are known as words.

There is a famous issue with this form of presentation, known as the word

problem, whereby it is not always possible to know whether two words w1

and w2 are equal. In other words, it is not always possible to know whether
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3 Describing groups

the equality w1 = w2 can be derived from the given relations. Luckily, the
word problem does not arise in the groups we discuss in this module.

For some groups, such as the dihedral groups, elements have a standard
form.

Definition 3.1 Standard form of elements

Let G be a group with presentation

G = 〈g1, g2, . . . , gn | r1, r2, . . . , rm〉.

Then we say that elements of G have a standard form if every
element of G can be written uniquely as a product of powers of the
generators according to a specified pattern.

When it is possible to find a standard form for the elements of a certain
group, it is also possible to give an alternative presentation of the group
whereby the list of generators is replaced by the standard form of the
elements of the group. We have done this above for D6, where we have
used the presentation

D6 = {risj : i = 0, . . . , 5, j = 0, 1; r6 = s2 = e, sr = r5s},

where, as remarked earlier, we use set notation rather than angled
brackets.

Exercise 3.3

By what names do you know the groups with the following presentations?

(a) {ri : i = 0, . . . , 5; r6 = e}

(b) {risj : i = 0, . . . , 3, j = 0, 1; r4 = s2 = e, sr = r3s}

(c) {risj : i = 0, 1, j = 0, 1; r2 = s2 = e, sr = rs}

Recall from Section 1 of Chapter 5 that there is a whole family of dihedral
groups, one for each regular polygon. The dihedral group Dn is the
symmetry group of the regular n-gon, and it has order 2n. As you can
probably see, all dihedral groups can be described in the following way:

Dn = {risj : i = 0, . . . , n− 1, j = 0, 1; rn = s2 = e, sr = rn−1s}.

The next exercise and example are designed to give you practice in
working with this type of group presentation. You are asked to work with
the dihedral group D4. Before you start, it is worth convincing yourself
that the elements of D4 may be generated by a rotation r through π

2
about

the centre of the square and a reflection s in an axis through the centre of
the square and parallel to two of its sides.
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Exercise 3.4

Let G be the group of symmetries of the square, denoted by D4. In other
words,

G = {risj : i = 0, 1, 2, 3, j = 0, 1; r4 = s2 = e, sr = r3s}

= {e, r, r2, r3, s, rs, r2s, r3s}.

Let N be the set {e, r2}.

(a) Prove that N is a normal subgroup of G.

(b) Find the set of left cosets of N in G in the form aN where a ∈ G.

(c) Using your notation in part (b), write out the Cayley table of the
quotient group G/N .

Example 3.2 D6 and the Correspondence Theorem

Let D6 = 〈r, s | r6 = s2 = e, sr = r5s = r−1s〉 and let N = {e, r3}.

It is not difficult to check that r3 commutes with every other element of
D6 and that (r3)2 = e, so N is a normal subgroup of D6. This implies that
the quotient D6/N is a group, whose elements are

N = {e, r3} = r3N,
rN = {r, r4} = r4N,
r2N = {r2, r5} = r5N,
sN = {s, r3s} = r3sN,
rsN = {rs, r4s} = r4sN,
r2sN = {r2s, r5s} = r5sN.

So D6/N = {N, rN, r2N, sN, rsN, r2sN} ∼= D3. We now apply the
Correspondence Theorem to D6/N to understand the structure of D6.

You can check that in this copy of D3, the identity is N , the two non-trivial
rotations are rN and r2N , and sN , rsN , r2sN are the three reflections.

Now consider the subgroup H = {e, r, r2, r3, r4, r5} of D6. This subgroup
contains N , and it is a normal subgroup of index 2 in D6.

Thus, by the Correspondence Theorem, H/N is a normal subgroup of
D6/N of index 2 in D6/N . Since H/N = {hN : h ∈ H}, the elements of
H/N are as follows.

N = {e, r3}
rN = {r, r4}
r2N = {r2, r5}

So H/N = {N, rN, r2N}, which is indeed a normal subgroup of D6/N of
index 2: it corresponds to the subgroup of three rotations in D3

(remember that the identity is a rotation through 0).

Now, the group D3 has three non-normal subgroups of order 2 and
index 3, each of which contains the identity and a reflection.
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3 Describing groups

As a subgroup of D6/N , one of these three non-normal subgroups is

K = {N, sN}.

Since (sN)2 = s2N = eN = N , we know that sN is self-inverse.

By the Correspondence Theorem, D6 has a non-normal subgroup K of
index 3 that contains N and for which K/N = {N, sN} = K. Thus K is
the union of two cosets of N , namely Confirm this by finding K/N for

K = {e, r3, s, r3s} ⊆ D6.K = N ∪ sN = {e, r3} ∪ {s, r3s} = {e, r3, s, r3s}.

Finally, note the following.

• K is a subgroup containing N – in fact K is isomorphic to the Klein
group, or D2.

• |K| = 4 so the index of K in D6 is |D6|/4 = 12/4 = 3.

• rK = {r, r4, rs, r4s} whereas Kr = {r, r4, r5s, r2s} 6= rK, so K is not
normal in D6.

Exercise 3.5

In the notation of Example 3.2, let K1 and K2 be the two non-normal
subgroups of D6/N not equal to K.

(a) Write down the elements of K1 and K2.

(b) Find the subgroups of D6 that contain N which correspond to K1 and
K2 as in the Correspondence Theorem.

Our findings about the Correspondence Theorem for D6 in Example 3.2
and Exercise 3.5 are illustrated in Figure 3.2.

D6

H

N

{e}

D6/N

H

N

normal

non-normal

D6

K1

N

K

{e}

K2D6/N

K1
K K2

N

Figure 3.2 D6 and the Correspondence Theorem
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3.2 Dicyclic groups

Consider the group Dic2 with presentation

Dic
2

= 〈a, b | a4 = e, a2 = b2, aba3b = e〉.

This is the first in an important family of finite groups whose properties
we will explore in this subsection.

Our first task will be to derive some properties of Dic2 that follow from the
relations a4 = e, a2 = b2 and aba3b = e.

Exercise 3.6

Show that the following hold in the group Dic2:

(a) b4 = e

(b) b2 commutes with both a and b

(c) ba = a3b

(d) any element g of Dic2 can be written in the form
g = arbs : r = 0, . . . , 3, s = 0, 1.

You may suspect, rightly, that in Exercise 3.6(d) we have found a standard
form for the elements of Dic2. However, to be sure that we really have a
standard form we need to show that each element of Dic2 can be written as
arbs, for suitable r and s, in a unique way.

Note that the expression arbs gives eight elements as r ranges over 0, . . . , 3
and s over 0, 1. Thus, if we can find a group of eight elements with the
given presentation, we will know that the expression arbs gives a standard
form for its elements. You should be aware that there is no general way of
finding such a group.

Consider the diagram in Figure 3.3. You may find it helpful to think of it

1

23

4

5

6 7

8

Figure 3.3 A dance
formation

as a dance formation or as the spokes of two wheels. In Figure 3.4 below,
regard a as the dance move where the dancers (or the spokes of the two
wheels) rotate anticlockwise through π

2
.

1

1 2

2

3

3

4

4

5

5 6

6

7

7

8

8

a

Figure 3.4 The effect of a on the dancers
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Now regard b as the dance move where the two sets of dancers separate,
rotate by one dancer in opposite directions and then come together again,
or the move that rotates the two sets of spokes (one dashed and one solid)
by one spoke but in opposite directions (Figure 3.5). The dancers (spokes)
joined by solid lines move clockwise and the ones joined by a dotted line
move anticlockwise.

1

23

4

5

6 7

8 1

2

3

45

6

7

8

b

Figure 3.5 The effect of b on the dancers

If we regard a and b as permutations of the set of dancers (or spokes),
these descriptions of a and b show that a4 = b4 = e. They also show that a
followed by b is a permutation that reverses the direction of the
dancers/spokes in b; that is, the solid lines now move anticlockwise and the
dotted lines clockwise. This shows that ba = ab−1 = ab3. Finally, you can
observe that a2 = b2 (Figure 3.6).

1

23

4

5

6 7

8

2 3

4

5

67

1

8

a2(= b2)

Figure 3.6 The effect of a2(= b2) on the dancers

We have thus shown that a and b satisfy the relations in the presentation
of the group Dic2. Since the possible combinations of a and b give rise to
eight different permutations of the dancers/spokes, we can see that these
permutations form a group of order 8. This group is known as the dicyclic

group of order 8. It is also known as the quaternion group.

In the next exercise you will see another characterisation of the group Dic2
as a group of matrices over the complex numbers.
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Recall that a complex number is an expression of the form

x+ iy,

where x and y are real numbers and i2 = −1. The set of all complex
numbers is denoted by C.

Exercise 3.7

(a) Let GL(2,C) be the group of invertible 2× 2 matrices over the complex
numbers, and let G be the subgroup of GL(2,C) whose generators are

a =

[
i 0
0 −i

]
and b =

[
0 −1
1 0

]
.

Show that G ∼= Dic2 .

(b) Show that G has three normal cyclic subgroups of order 4.

The quaternions are an extension of the complex numbers, and they
were first described by the Irish mathematician Sir William Rowan
Hamilton (1805–1865). A key fact about this extension is that it is a
group where multiplication is not commutative. The quaternion
group is the smallest multiplicative subgroup containing the three
elements often known as i, j, k, where

i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.

The reason why Dic2 has two names is that it is the smallest in a family of
groups known as the dicyclic groups. The dance or wheel pictures help us
to describe this family. Consider a dance formation with 4n dancers, or a
pair of wheels with 4n spokes, 2n of which are dotted and 2n solid. The
dancers, or spokes, are divided into four blocks with n dancers or spokes in
each, arranged so that the dotted blocks are opposite one another and the
solid blocks are opposite one another.

As before, we regard a as the dance move where the dancers, or spokes,
rotate anticlockwise by π

2
(Figure 3.7).
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Figure 3.7 The effect of a on a formation of 16 dancers
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Again, regard b as the dance move where the two sets of dancers separate,
rotate by one dancer in opposite directions and then come together again,
or the move that rotates the two sets of spokes (one dashed and one solid)
by one spoke but in opposite directions (Figure 3.8). The dancers/spokes
joined by solid lines move clockwise, and the ones joined by dotted lines
move anticlockwise.
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Figure 3.8 The effect of b on a formation of 16 dancers

We can see that in the general case of 4n dancers/spokes,

a4 = e, b2n = e and a2 = bn.

Some thought may enable you to see that ab = b−1a or, equivalently,
aba3b = e. We can therefore give a presentation of the group described
using 4n dancers/spokes as the dicyclic group

Dic
n

= 〈a, b | a4 = e, a2 = bn, aba3b = e〉.

Note that there are 4n possible positions of the dancers/spokes, so this
group has order 4n.

Adding dicyclic groups to our list of ‘known’ groups will enable us, by the
end of this chapter, to describe all groups of order up to 14.

Exercise 3.8

Show that elements of Dicn have a standard form given by

arbs for r = 0, . . . , 3, s = 0, . . . , n− 1.
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Solutions and comments on exercises

Solution to Exercise 1.1

Closure Let (x1, y1) and (x2, y2) be any two elements of R× R. By
definition, x1, y1, x2 and y2 are in R. Since R is closed under addition, it
follows that x1 + x2 and y1 + y2 are also in R. By definition,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

so, by the above, this sum is an element of R× R. Therefore the operation
+ satisfies the closure axiom.

Associativity Let (x1, y1), (x2, y2) and (x3, y3) be three elements of
R× R. By definition,

((x1, y1) + (x2, y2)) + (x3, y3) = ((x1 + x2) + x3, (y1 + y2) + y3) and

(x1, y1) + ((x2, y2) + (x3, y3)) = (x1 + (x2 + x3), y1 + (y2 + y3)).

The right-hand sides of these two equations are equal, since addition in R

is associative. Hence

((x1, y1) + (x2, y2)) + (x3, y3) = (x1, y1) + ((x2, y2) + (x3, y3))

and so + in R× R is associative.

Identity The element (0, 0) belongs to R× R, and

(0, 0) + (x, y) = (x, y) + (0, 0) = (x, y)

for any (x, y) in R× R. Therefore (0, 0) is the identity of R× R, and the
identity axiom is satisfied.

Inverses If (x, y) is any element of R× R then, as x and y are in R,
their additive inverses −x and −y are also in R. So the element (−x,−y)
is an element of R× R. Furthermore,

(x, y) + (−x,−y) = (0, 0) = (−x,−y) + (x, y).

So (−x,−y) is the inverse of the element (x, y), and the inverses axiom is
satisfied.

Solution to Exercise 1.2

The underlying set is

Z2 × Z3 = {0, 1} × {0, 1, 2}

= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.
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The Cayley table is constructed using addition modulo 2 for the first
components and addition modulo 3 for the second.

+ (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

(0, 0) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)
(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)

Solution to Exercise 1.3

(a) Let (g1, h1), (g2, h2) and (g3, h3) be any three elements of G×H.
Then

((g1, h1) • (g2, h2)) • (g3, h3)

= (g1 ◦ g2, h1 ∗ h2) • (g3, h3) by the definition of •
= ((g1 ◦ g2) ◦ g3, (h1 ∗ h2) ∗ h3) by the definition of •
= (g1 ◦ (g2 ◦ g3), h1 ∗ (h2 ∗ h3)) by the associativity axiom for G and H
= (g1, h1) • ((g2 ◦ g3), (h2 ∗ h3)) by the definition of •
= (g1, h1) • ((g2, h2) • (g3, h3)) by the definition of • .

(b) Let (g, h) be any element of the direct product G×H. Then

(eG, eH) • (g, h) = (eG ◦ g, eH ∗ h) by the definition of •
= (g, h) by the identity axiom for G and H.

Similarly,

(g, h) • (eG, eH) = (g, h).

Hence (eG, eH) is the identity element of the direct product.

(c) Applying the inverse properties for the groups G and H, we have

(g, h) • (g−1, h−1) = (g ◦ g−1, h ∗ h−1) by the definition of •
= (eG, eH) by the inverses axiom for G and H.

Similarly,

(g−1, h−1) • (g, h) = (eG, eH).

Hence (g−1, h−1) is the inverse of (g, h).

Solution to Exercise 1.4

Let (g1, h1), (g2, h2) ∈ G×H. Then

(g1, h1)(g2, h2) = (g1g2, h1h2)
= (g2g1, h2h1)

since G and H are both abelian. But

(g2g1, h2h1) = (g2, h2)(g1, h1),

so the direct product G×H is abelian.
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Solution to Exercise 1.5

Assume that h ∈ H1 ∩H2. We can express h in two ways as an element of
H1H2, namely

h = he, with h ∈ H1, e ∈ H2, and

h = eh, with e ∈ H1, h ∈ H2.

Hence φ(h, e) = φ(e, h), and, since φ is one–one, we have

(h, e) = (e, h).

Then h = e by the definition of an ordered pair. Thus the only element in
H1 ∩H2 is the identity, as required.

Solution to Exercise 1.6

As before, we write a = h1h2, where h1 ∈ H1 and h2 ∈ H2.

Let aha−1 be any element of aH2a
−1, where h ∈ H2. Then

aha−1 = (h1h2)h(h1h2)
−1

= h1h2hh
−1

2 h−1

1

= h1(h2hh
−1

2 )h−1

1

= h1h
′h−1

1 (where h′ = h2hh
−1

2 ∈ H2)

= h′h1h
−1
1 (since h1 ∈ H1 and h′ ∈ H2 commute)

= h′ ∈ H2,

and so aH2a
−1 ⊆ H2.

Solution to Exercise 1.7

We can define the subgroups as follows:

H1 = 〈a3〉 = {e, a3},

H2 = 〈a2〉 = {e, a2, a4}.

Note that H1
∼= Z2 and H2

∼= Z3.

Since e, a2, a3, a4, a5 are all in H1H2 and

a3a4 = a7 = a,

we see that Z6 = H1H2.

Next, by inspection, H1 ∩H2 = {e}.

Lastly, we must check that H1 and H2 are both normal in Z6. But Z6 is
abelian, so every subgroup is normal.

Hence H1 and H2 satisfy the conditions in Theorem 1.5, and we can
conclude that Z6

∼= Z2 × Z3, as required.
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Solution to Exercise 1.8

Let g = h−1k−1hk. Since K is a normal subgroup of G,h−1k−1h ∈ K; and
so, since k ∈ K, g ∈ K. Since H is a normal subgroup of G, k−1hk ∈ H;
and so, since h ∈ H, g ∈ H. Thus g ∈ H ∩K = {e} and so g = e. That is,
h−1k−1hk = e, and so by multiplying on the left by kh we see that
hk = kh.

Solution to Exercise 1.9

Suppose that ψ(a1, (b1, c1)) = ψ(a2, (b2, c2)). By the definition of ψ,

((a1, b1), c1) = ((a2, b2), c2).

By the definition of ordered pairs, (a1, b1) = (a2, b2) and c1 = c2.
Applying the definition of ordered pairs again, we get a1 = a2 and b1 = b2.
Hence (a1, (b1, c1)) = (a2, (b2, c2)). This shows that ψ is one–one.

To see that ψ is onto, let ((a, b), c) be any element of the codomain. Then
a ∈ A, b ∈ B, c ∈ C, and so (a, (b, c)) ∈ A× (B × C) and
ψ(a, (b, c)) = ((a, b), c). Hence ψ is onto.

To check the morphism property, let (a1, (b1, c1)) and (a2, (b2, c2)) be any
two elements of the domain. Then

ψ((a1, (b1, c1))(a2, (b2, c2))) = ψ(a1a2, ((b1, c1)(b2, c2)))
= ψ(a1a2, (b1b2, c1c2))
= ((a1a2, b1b2), c1c2)
= ((a1, b1)(a2, b2), c1c2)
= ((a1, b1), c1)((a2, b2), c2)
= ψ(a1, (b1, c1))ψ((a2, (b2, c2)).

This completes the proof that ψ is an isomorphism.

Solution to Exercise 1.10

Since G is abelian, the elements of H1 and H2 commute, so we can apply
Proposition 1.9(b) to conclude that H1H2

∼= H1 ×H2 via the isomorphism
ψ :H1H2 → H1 ×H2 defined by

x1x2 7→ (x1, x2).

If h1h2 = 1, then (h1, h2) = ψ(h1h2) = ψ(1). Since ψ must map the
identity in H1H2 to the identity in H1 ×H2, we must have
(h1, h2) = (1, 1), which gives the required result.

Solution to Exercise 2.1

(a) Since m is the least positive exponent such that am is in H, we have
k ≥ m and we can use the Division Algorithm (Book A, Chapter 1,
Theorem 4.1) to write k = mq + r where 0 ≤ r < m. Hence
r = k −mq, and so

ar = ak−mq

= aka−mq

= ak(am)−q.

Since ak and am belong to H, so does ar.
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Now, m was chosen as the least positive exponent appearing in H, so
we must have r = 0, and hence m | k. We have shown that every
element ak of H is a power ak = amq = (am)q of am, which completes
the proof that H = 〈am〉.

(b) Since an = e, which is an element of H, from part (a) we have that
m | n.

(c) Let n = mq. We first observe that e = an = amq = (am)q. So q is a
positive power of am that produces the identity. It remains to prove
that q is the smallest such power of am.

Consider a positive power k of am that is the identity; that is,
e = (am)k = amk. Since the order of a is n, this can only be true if
mk ≥ n = mq. Hence k ≥ q. Therefore q is the least power of am that
gives the identity. Hence the order of am, and therefore the order of
H, is q.

Solution to Exercise 2.2

(a) The divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24, so Z24 will have a
subgroup of each of these orders.

(b) (i) The subgroups are isomorphic to Z1, Z2, Z3, Z4, Z6, Z8, Z12 and
Z24, respectively.

(ii) The first subgroup in the list is the trivial subgroup, generated
by 24

1
≡ 0 (mod 24).

The remaining ones have generators 12, 8, 6, 4, 3, 2 and 1,
respectively.

We list the generators, the elements generated and the cyclic
group to which the subgroup is isomorphic in the table below.

Generator
(mod 24)

Elements generated Isomorphic
group

24

1
≡ 0 {0} Z1

24

2
≡ 12 {0, 12} Z2

24

3
≡ 8 {0, 8, 16} Z3

24

4
≡ 6 {0, 6, 12, 18} Z4

24

6
≡ 4 {0, 4, 8, 12, 16, 20} Z6

24

8
≡ 3 {0, 3, 6, 9, 12, 15, 18, 21} Z8

24

12
≡ 2 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} Z12

24

24
≡ 1 {0, 1, . . . , 23} Z24
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Solution to Exercise 2.3

We use additive notation so that (0, 0) denotes the identity in both cases,
and we write n(x, y) for (x, y) + · · · + (x, y)︸ ︷︷ ︸

n times

.

(a) We have (1, 1) = (1, 1), 2(1, 1) = (0, 2), 3(1, 1) = (1, 0),

4(1, 1) = (0, 1), 5(1, 1) = (1, 2), 6(1, 1) = (0, 0).

Hence (1, 1) has order 6.

(b) We have 1(1, 1) = (1, 1) and 2(1, 1) = (0, 0). Hence (1, 1) has order 2.

Solution to Exercise 2.4

We use induction on r, the number of elements in the product. For r = 2,
the result follows from Lemma 2.7, since G is abelian and p1 and p2 are
distinct primes, so that 〈g1〉 ∩ 〈g2〉 = {e}.

Suppose the result is true for r = k; that is, if g1, g2, . . . , gk are elements of
G that have distinct prime order p1, p2, . . . , pr respectively, then the order
of g1g2 · · · gk is p1p2 · · · pk.

Let gk+1 be an element of G of order pk+1, where pk+1 is prime and
distinct from p1, p2, . . . , pk. Then

〈g1g2 · · · gk〉 ∩ 〈gk+1〉 = {e}

since no elements of 〈g1g2 · · · gk〉 can have order pk+1, and so we can apply
Lemma 2.7 to obtain that the order of g1g2 · · · gk+1 is p1p2 · · · pk+1.

The result follows by induction.

Solution to Exercise 2.5

By Proposition 2.8, the order of the element (1, 1) in the direct product is
the least common multiple of the orders of the element 1 in each of the
factor groups.

(a) The order of 1 in Z3 is 3 and the order of 1 in Z5 is 5.
Since lcm(3, 5) = 15, the element (1, 1) has order 15 in Z3 × Z5.
As Z3 × Z5 has 15 elements, it is cyclic.

(b) The order of 1 in Z4 is 4 and the order of 1 in Z5 is 5.
Since lcm(4, 5) = 20, the element (1, 1) has order 20 in Z4 × Z5.
As Z4 × Z5 has 20 elements, it is cyclic.

Solution to Exercise 2.6

(a) The order of 1 in Z2 is 2 and the order of 1 in Z4 is 4.
Since lcm(2, 4) = 4, the element (1, 1) has order 4 in Z2 × Z4.
As Z2 × Z4 has 8 elements, it is not generated by (1, 1).

All we have done is to show that (1, 1) is not a generator. To show
that the direct product is not cyclic, we would have to show that none
of the elements of Z2 × Z4 generates the whole group.
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(b) If (a, b) is any element of Z2 × Z4, then a has order 1 or 2 and b has
order 1, 2 or 4. The only possible least common multiples of the
orders of a and b are 1, 2 and 4. Hence no element of the direct
product has order 8, and so Z2 × Z4 is not cyclic.

Solution to Exercise 2.7

Let a ∈ Z6. Then 6a = 0. Similarly, if b ∈ Z8, then 8b = 0. Hence for any
element (a, b) in Z6 × Z8, we have

24(a, b) = (24a, 24b)
= (4(6a), 3(8b))
= (0, 0).

So the maximum order of any element of Z6 × Z8 is at most 24. Since this
direct product has order 48, it cannot be cyclic.

Solution to Exercise 2.8

(a) The maximum order of an element of S3 is 3.

(b) The maximum order of an element of Z3 is 3.

(c) The lowest common multiple is 3.

(d) ((1 2), 1) has order 6.

Solution to Exercise 2.9

(a) The group Z4 × Z6 is not cyclic.

The maximum order of an element in Z4 is 4 and the maximum order
for an element of Z6 is 6. Since lcm(4, 6) = 12, the maximum order for
any element is at most 12.

Therefore the direct product, of order 24, is not cyclic.

(b) The group Z2 × Z9 is cyclic.

Previous examples suggest that (1, 1) should be a generator, which we
can confirm as follows.

The order of 1 in Z2 is 2 and the order of 1 in Z9 is 9. Since
lcm(2, 9) = 18, the element (1, 1) has order 18 in the direct product.
As the direct product has 18 elements, it is cyclic.

Solution to Exercise 2.10

By Proposition 2.10, no element of Zm × Zn can have order greater than
the least common multiple of m and n.

Since m and n are not coprime, we have that lcm(m,n) < mn, the order
of the direct product. Hence no element can generate the whole of the
direct product, and so Zm × Zn is not cyclic.
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Solution to Exercise 2.11

We have 90 = 2× 45. Since 2 and 45 are coprime, we can deduce from
Corollary 2.12 that

Z90
∼= Z2 × Z45.

Similarly, since 45 = 9× 5 and these factors are coprime, we have

Z45
∼= Z9 × Z5.

Combining these results gives

Z90
∼= Z2 × Z45

∼= Z2 × Z9 × Z5.

Solution to Exercise 2.12

We use induction on r, the number of distinct prime factors, and
generalise the argument used in the solution to Exercise 2.11.

Firstly, if r = 1 the result is immediate. Now suppose that the result is
true for r − 1 and write

n = pk1

1 (pk2

2 · · · pkr

r )

= n1(n2 · · · nr),

where, because all the pi are distinct, the factors n1 and n2 · · ·nr are
coprime. By Corollary 2.12, we have

Zn
∼= Zn1

× Zn2···nr
.

But Zn2···nr

∼= Zn2
× · · · × Znr

by the inductive hypothesis, hence the
result holds for Zn by Proposition 1.10.

Solution to Exercise 2.13

We apply Theorem 2.13 to each of the cyclic factors appearing in the direct
product Z154 × Z20 × Z5. For example, since 154 = 2× 7× 11, we have

Z154
∼= Z2 × Z7 × Z11.

Hence Z154 × Z20 × Z5
∼= (Z2 × Z7 × Z11)× (Z4 × Z5)× Z5

∼= (Z2 × Z4)× (Z5 × Z5)× Z7 × Z11

= (Z2 × Z22)× (Z5 × Z5)× Z7 × Z11.

Note that 4 is a prime power and it cannot be factorised into distinct
primes.

Similarly, we apply Theorem 2.13 to each of the cyclic factors appearing in
the direct product Z55 × Z28 × Z10. This gives

Z55 × Z28 × Z10
∼= (Z5 × Z11)× (Z4 × Z7)× (Z2 × Z5)
∼= (Z2 × Z4)× (Z5 × Z5)× Z7 × Z11

= (Z2 × Z22)× (Z5 × Z5)× Z7 × Z11.

Thus the two groups Z154 × Z20 × Z5 and Z55 × Z28 × Z10 are isomorphic
to the same direct product and hence to one another.
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Solution to Exercise 2.14

Z2 × Z6 × Z75
∼= Z2 × (Z2 × Z3)× (Z3 × Z25)(a)
∼= (Z2 × Z2)× (Z3 × Z3)× Z25

= (Z2 × Z2)× (Z3 × Z3)× Z52 .

Z9 × Z21 × Z245
∼= Z9 × (Z3 × Z7)× (Z5 × Z49)(b)
∼= (Z3 × Z9)× Z5 × (Z7 × Z49)

= (Z3 × Z32)× Z5 × (Z7 × Z72).

Solution to Exercise 3.1

(a) All the rotations in D6 are obtained by repeating r a sufficient number
of times. Thus the rotations are

r, r2, r3, r4, r5, r6 = r0 = e.

(b) The easiest way to find out which reflection corresponds to each
expression of the form rns is to keep track of what happens to the
vertices of the hexagon under each composite transformation. These
transformations are illustrated in the figure below.

O

O

O O O

O O

A

A

A A

AA

A

s rs r2s

r3s r4s r5s

(c) By inspection, we find that sr = r5s.

You may have expressed this element in the form r−1s, which is the
same because r−1 = r5.

Solution to Exercise 3.2

(a) sr2 = srr = r5sr = r5r5s = r10s = r4s

sr3 = sr2r = r4sr = r4r5s = r9s = r3s

The second result should be no surprise as r3 is rotation through π
and so commutes with all the elements of D6. If you spotted this and
used it in your solution, well done!

(b) s5 = s
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Solution to Exercise 3.3

(a) This is the cyclic group Z6.

(b) This is the dihedral group D4 – the symmetry group of a square.

(c) This is the Klein group V ∼= Z2 × Z2.

The relation sr = rs means that the two generators commute. A little
thought might convince you that this implies the group is abelian. In
addition, the standard form shows the group has four elements, and it
is not hard to see that no element has order greater than 2. These
conditions are enough to show that the group is isomorphic to V .

Solution to Exercise 3.4

(a) Firstly we show that N is a subgroup of G.

Closure The only non-trivial product to check is r2r2 = e. So N
satisfies the closure axiom.

Identity As e is in N , the identity axiom is satisfied.

Inverses As e−1 = e and
(
r2
)
−1

= r2, the inverses axiom is satisfied.

Hence N is a subgroup of G.

Alternatively, simply note that N = 〈r2〉.

Next, we must show that N is normal. We need to check that aNa−1

is a subset of N for each a in G.

As aea−1 = e ∈ N for each a in G, we only have to check that ar2a−1

is in N . Using the relations r4 = s2 = e and sr = r3s gives the
following.

er2e−1 = r2

rr2r−1 = r2

(r2)r2(r2)−1 = r2

(r3)r2(r3)−1 = r2

sr2s−1 = r2

(rs)r2(rs)−1 = r2

(r2s)r2(r2s)−1 = r2

(r3s)r2(r3s)−1 = r2

This completes the proof that N is a normal subgroup of G.

(b) The distinct left cosets of N = {e, r2} are

eN = r2N = N,

rN = r3N = {r, r3},

sN = r2sN = {s, r2s},

rsN = r3sN = {rs, r3s}.
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(c) The Cayley table of G/N is as follows.

◦ N rN sN rsN

N N rN sN rsN
rN rN N rsN sN
sN sN rsN N rN
rsN rsN sN rN N

Solution to Exercise 3.5

(a) K1 = {N, rsN}, K2 = {N, r2sN}.

(b) K1 = {e, r3, rs, r4s}, K2 = {e, r3, r2s, r5s}.

Solution to Exercise 3.6

(a) b4 = (b2)2 = a4 = e

(b) b2a = a2a = a3 = aa2 = ab2 and b2b = b3 = bb2

(c) aba3b = e ⇒ aaba3b = a
⇒ ba2ba3b = ba
⇒ b4a3b = ba using a2 = b2

⇒ a3b = ba using a4 = e and a2 = b2

(d) The result in part (c) means that in any word involving a and b we
can successively move all the bs to the right. This will give us a word
of the form αβ, where α is a word containing only as and β is a word
containing only bs.

We can then use a4 = e and b4 = e to reduce α and β to ar and bs

respectively for some r, s ∈ {0, 1, 2, 3}.

Lastly, we can use b2 = a2 and b3 = a2b to write an element g of Dic2
in the form g = arbs : r = 0, . . . , 3, s = 0, 1.

Solution to Exercise 3.7

(a) We have

a2 =

[
i 0
0 − i

] [
i 0
0 − i

]
=

[
−1 0
0 − 1

]
and

b2 =

[
0 − 1
1 0

] [
0 − 1
1 0

]
=

[
−1 0
0 − 1

]
,

so a2 = b2. Moreover,

[
−1 0
0 −1

]2
=

[
1 0
0 1

]
, that is, (a2)2 = a4 = e.

Another matrix calculation shows that aba3b = e.

Calculation also shows that the eight matrices

arbs : r = 0, . . . , 3, s = 0, 1

are distinct, and the required result follows.
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(b) Both 〈a〉 and 〈b〉 are cyclic subgroups of order 4. Moreover, the

product ab =

[
0 −i

−i 0

]
also generates a cyclic subgroup of order 4.

Since |G| = 8, these three subgroups of order 4 have index 2 in G, and
so they are normal.

Solution to Exercise 3.8

Since a4 = e, we have a3 = a−1.

Since a2 = bn and a4 = e, we have a4 = (bn)2 = b2n = e, hence

b2n−1 = b−1.

Now aba3b = e ⇒ ba3b = a−1 = a3

⇒ ba3 = a3b−1 = a3b2n−1

⇒ ba3 = a3a2bn−1 = abn−1

⇒ ba = abn−1a2 = a3bn−1.

We can use this relation to rewrite any word in a, b as a word in a followed
by a word in b, that is, a power of a followed by a power of b. We then use

a4 = e, a2 = bn

to ensure that the power of a is one of a0(= e), a, a2, a3 and the power of b
is one of b0(= e), b, . . . , bn−1.

This shows that every element of Dicn can be written in the required form.
Since this form gives 4n elements and Dicn has order 4n, we have a
standard form.
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