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1 Rings

1 Rings

In Book B we learnt about groups, which are defined as a set of elements
equipped with some operation ◦, and satisfying certain axioms given in
Definition 1.1 of Book B, Chapter 5. When we think of the set of integers,
however, there are two basic operations that we can use: addition, +, and
multiplication, ·. We learnt in Chapter 5 that (Z,+) is an abelian group, What about subtraction and

division? In a sense, we can
think of these as the inverses to
addition and multiplication.

but we can quickly verify that (Z, ·) is not: no integers apart from 1 and
−1 have multiplicative inverses and so axiom G3 of Definition 1.1 does not
hold.

We may ask which of the group axioms do hold for (Z, ·). If m,n ∈ Z,
then m · n ∈ Z and so we have closure (axiom G1). Next, since
1 ·m = m · 1 = m, the element 1 ∈ Z acts as the identity to confirm
axiom G2. Finally, associativity of multiplication is a basic property of the
integers and so G4 holds. The integers form a model for our definition of a
ring.
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Rings and polynomials

Definition 1.1 Ring axioms

Let R be a set and let + and · be binary operations defined on R.
Then (R,+, ·) is a ring if the following axioms hold.The old German word Ring can

mean ‘association’; hence the
terms ‘ring’ and ‘group’ have
similar origins.

Axioms for addition:

R1 Closure For all a, b ∈ R,

a+ b ∈ R.

R2 Associativity For all a, b, c ∈ R,

a+ (b+ c) = (a+ b) + c.

R3 Additive identity There exists an additive identity 0 ∈ R such
that, for all a ∈ R,

a+ 0 = a = 0 + a.

R4 Additive inverses For each a ∈ R, there exists an additive
inverse −a ∈ R such that

a+ (−a) = 0 = (−a) + a.

R5 Commutativity For all a, b ∈ R,

a+ b = b+ a.

Axioms for multiplication:

R6 Closure For all a, b ∈ R,

a · b ∈ R.

R7 Associativity For all a, b, c ∈ R,

a · (b · c) = (a · b) · c.
R8 Multiplicative identity There exists a multiplicative identity

1 ∈ R such that, for all a ∈ R,

a · 1 = a = 1 · a.
Axioms combining addition and multiplication:

R9 Distributive laws For all a, b, c ∈ R, multiplication is left
distributive over addition in R:

a · (b+ c) = (a · b) + (a · c),
and multiplication is right distributive over addition in R:

(a+ b) · c = (a · c) + (b · c).
Furthermore, (R,+, ·) is a commutative ring if the following extra
axiom holds.

R10 Commutativity For all a, b ∈ R,

a · b = b · a.
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1 Rings

At first sight, this looks like a lot of individual axioms to satisfy; so let us
look at them collectively. First off, note that the axioms for addition (R1
to R5) are exactly the axioms required for (R,+) to be an abelian group.
As a result, we can use the ‘Elementary consequences’ (see, for example,
Proposition 1.2 of Book B, Chapter 5) to deduce the following.

Lemma 1.2

Let (R,+, ·) be a ring. Then the additive identity 0 ∈ R is unique.
Furthermore, for every a ∈ R the additive inverse (−a) is unique.

Next, R6 to R8 tell us some rules about multiplication, but note that it is
not the case that (R, ·) is a group, because we are missing the axiom that
guarantees the existence of multiplicative inverses. Finally, R9 shows us
how to combine these two operations, in exactly the way we expect when
multiplying and adding integers.

Early definitions of a ring did not include the multiplicative identity
axiom, and this approach persists in some texts. In this case, the ring we
have defined above is called a ring with 1, to distinguish it from a ‘ring
without 1’. However, all our rings will have a multiplicative identity, and
so we can use the term ‘ring’ unambiguously.

Most of the rings in this module will also be commutative (that is, axiom
R10 holds), but as we are about to see an example of a non-commutative
ring, we will not for the moment assume this axiom.

Example 1.3 Some familiar rings

(a) (Z,+, ·), the set of integers Z, with normal addition and This was our original ‘template’
to create the abstract definition
of a ring. So it is appropriate
that it is the first example we
encounter.

multiplication, is a commutative ring.

To see this, first note that (Z,+) forms an infinite abelian group, with
additive identity 0. This, therefore, immediately covers axioms R1 to
R5. Similarly, R6 to R8 follow since multiplication over the integers is
closed, associative, and the multiplicative identity is 1. Of course,
multiplication over the integers is commutative, and so we can also
verify axiom R10. This leaves only axiom R9, which follows as
distributivity is a basic property of the integers.

(b) (Q,+, ·), the set of rational numbers, with normal addition and
multiplication, forms a commutative ring. Similarly, we can readily
check that the set of real numbers, R, and the set of complex numbers,
C, are also both commutative rings under the same operations.

(c) (M2×2,+, ·), the set of 2× 2 matrices over R, with matrix addition
and multiplication, is a ring but not a commutative ring.

Checking some of the axioms for this example takes a little more
thought. For addition, closure follows since the sum of two 2× 2
matrices is another 2× 2 matrix. It can easily be checked that the
addition of matrices is associative and commutative. The additive
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identity is the zero matrix

(

0 0
0 0

)

and consequently the additive

inverse of the matrix

(

a b

c d

)

is

(

−a −b

−c −d

)

.

For multiplication, when we multiply two 2× 2 matrices together we
obtain another 2× 2 matrix, and so closure (R6) is satisfied. It is
straightforward (but not immediately obvious) to check that
multiplication is associative, and we can check that the identity matrix
(

1 0
0 1

)

acts as the multiplicative identity for axiom R8.

Finally, axiom R9 can be readily verified, but it is well known that
multiplication of matrices is not commutative and so R10 does not
hold. For example:

(

1 1
1 0

)

·
(

0 1
1 1

)

=

(

1 2
0 1

)

, but

(

0 1
1 1

)

·
(

1 1
1 0

)

=

(

1 0
2 1

)

.

Exercise 1.1

The ring Z× Z consists of all ordered pairs of integers (a, b), with addition
and multiplication defined by (a, b) + (c, d) = (a+ c, b+ d) and
(a, b) · (c, d) = (ac, bd). Write down:

(a) (2, 1) + (4, 5) and (2, 1) · (4, 5)
(b) the additive identity element

(c) the additive inverse of the element (2, 1)

(d) the multiplicative identity element.

Exercise 1.2

Show that the following are commutative rings.

(a) The set of integers Zn = {0, 1, 2, . . . , n− 1}, equipped with addition
and multiplication modulo n.

(b) The set

Z[
√
2] = {a+ b

√
2 : a, b ∈ Z},

equipped with the usual addition and multiplication of real numbers.

You may be wondering how we justify statements such as ‘multiplication of
integers is associative’. The properties of integers that you have known
(not necessarily by name) and used since you first started doing arithmetic
can be justified only by working with a formal definition of the integers. A
well-known definition of the integers starts from a set of axioms known as
‘Peano axioms’, after Giuseppe Peano (1858–1932). These are then
extended to give ‘Peano arithmetic’. These axioms include the properties
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1 Rings

such as associativity, commutativity and distributivity that we have been
discussing, but in this module you are not expected to be familiar with
these axioms; the approach we have used so far to justify such statements
is sufficient.

In light of the examples above, you may now be wondering what objects do
not form rings; so let us look at a couple before we proceed.

Example 1.4 Two examples of non-rings

(a) The set of non-negative integers, Z+ = {0, 1, 2, . . .}, with the usual
addition and multiplication.

We find that R1 and R2 are true, but then we cannot find additive
inverses to satisfy R3: for example, we need −1 to be the additive
inverse of 1, but it is not in the set Z+.

(b) The even integers, 2Z = {. . . ,−4,−2, 0, 2, 4, . . .}, with the usual
addition and multiplication.

In this example, we find that this set does actually form an abelian
group under addition. The problem comes when we try to find a
multiplicative identity for axiom R8: there isn’t one! If there was a
multiplicative identity, 2k ∈ 2Z, say, then (2k) · (2n) = 2n for all
n ∈ Z. This, however, implies that 2k = 1, and so k 6∈ Z, which is a
contradiction.

Having seen some examples and non-examples, we are ready to prove some
simple properties that we should expect to find. Throughout these, you
should be thinking how this is exactly what we expect in the examples of
rings that we have just seen. Are the properties also true for each of our
two non-examples, and if they aren’t, why not?

Proposition 1.5 Basic properties of rings

Let (R,+, ·) be a ring. Then:

(a) 0 · a = a · 0 = 0 for all a ∈ R

(b) −(−a) = a for all a ∈ R

(c) a · (−b) = (−a) · b = −(a · b) for all a, b ∈ R

(d) (−a) · (−b) = a · b for all a, b ∈ R.
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Proof We will prove parts (a)–(c), and leave part (d) as an exercise forProving statements like these is
actually quite tricky: we need to
be careful that at each stage we
use only the axioms that define
a ring, or results that we have
derived from these axioms.

you to do.

(a) Let a ∈ R, and set b = 0 · a. We want to show that b is the additive
identity. First, we know that 0 = 0 + 0, and so 0 · a = (0 + 0) · a
= 0 · a+ 0 · a, using axiom R9. Since we set b = 0 · a, we have
b = b+ b. Therefore, using associativity:

0 = b+ (−b) = (b+ b) + (−b) = b+ (b+ (−b)) = b+ 0 = b.

A similar argument can be used to prove that a · 0 = 0.

(b) First, for any a ∈ R we have (−a) + a = 0. Now, the element (−a) of
R has a unique additive inverse (by Lemma 1.2), namely −(−a), from
which it follows that a = −(−a).

(c) We have a · b+ (−a) · b = (a+ (−a)) · b = 0 · b = 0, the last step
following by part (a) of the proposition. Therefore, (−a) · b must be
the additive inverse of a · b, and so we have (−a) · b = −(a · b).
Similarly, we can show that −(a · b) = a · (−b).

Having established these basic properties, we will relax our notation a
little. We have so far used the minus sign ‘−’ to denote the additive
inverse of an element: a+ (−a) = 0. When working with the integers, we
are familiar with using the minus sign as a binary operation, that is, we
write expressions such as ‘a− b’. We will extend this notation here.
Formally, in any ring R with a, b ∈ R, we define a− b to mean the result of
adding the additive inverse of b to a. Put simply, a− b = a+ (−b).

When the context is clear, we will use two further notational
simplifications, similar to those made at the start of Book B. First, we will
write the juxtaposition ab to mean the product a · b. Second, we will often
refer to (R,+, ·) by the set symbol R when it is clear which operations are
being used.

Exercise 1.3

Prove part (d) of Proposition 1.5.

Exercise 1.4

What can you say about a ring in which the additive and multiplicative
identities are the same, that is, a ring where 0 = 1?

10



1 Rings

1.1 Subrings

In Exercise 1.2, we showed that the sets Zn and Z[
√
2] were rings. In the

solution, we appealed to properties of addition and multiplication of a
larger set to prove some of the axioms. For example, Z[

√
2] is a subset of

the ring R, and hence, since we are using the same definition of addition
and multiplication for both, some of the axioms hold immediately. In this
subsection, we want to formalise this approach.

Definition 1.6 Subring

Let R be a ring. We say that S is a subring of R if:

(a) the set S is a subset of R

(b) S is a ring when equipped with the same binary operations as R

(c) the ring S has the same multiplicative identity as R.

Why do we insist that S has the same multiplicative identity? As we will
see shortly in Worked Exercise 1.9(b), it is possible for a subset of a ring to
be a ring itself, but with a different multiplicative identity. We want to be
able to distinguish between this case and the definition given above.

Why, then, did we not also insist that S should have the same additive
identity as R? We can deduce this from the definition given above.

Lemma 1.7

Let R be a ring, and S a subring of R. Then the additive identity
of S is the same as the additive identity of R.

Proof Suppose 0S is the additive identity in S, and 0R that for R. Then
for any s ∈ S, we have s+ 0S = s as an equation in S, and so also as an
equation in R. Working in R, we now have:

0R = (−s) + s

= (−s) + (s + 0S)

= ((−s) + s) + 0S = 0R + 0S

= 0S .

Some obvious examples are the integers Z as a subring of the rationals Q,
and the rationals as a subring of the reals R, and the reals as a subring of
the complex numbers C. We saw in Example 1.3 that all of Z,Q,R and C

are rings, and for each the additive identity is 0 and the multiplicative
identity is 1.

Now, as we wanted, we can state and prove a lemma justifying why we do
not need to check all the axioms R1–R9 when verifying that a subset of a
ring is a subring.
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Lemma 1.8 Subring criterion

Let R be a ring and let S be a subset of R. Then S is a subring of R
if:

SR1 for all s, t ∈ S, s− t ∈ SAxiom SR1 can be thought of as
‘closure under subtraction’.

SR2 for all s, t ∈ S, st ∈ S

SR3 the multiplicative identity of R is in S.

Proof Since S is a subset of R, we just need to check that S is a ring
with the same binary operations and multiplicative identity as R.

Let s ∈ S. (Note that S is non-empty by SR3; so such an s exists.) By
SR1, s− s = 0 ∈ S and so 0− s = (−s) ∈ S. In addition, if t ∈ S then
(−t) ∈ S, so that s+ t = s− (−t) ∈ S. This shows that (S,+) is an
abelian subgroup of (R,+).

Multiplication is closed in S by SR2, and axiom SR3 ensures that the
multiplicative identity of R is in S, and in fact it must be a multiplicative
identity for S. The associative and distributive laws hold since they hold
in R. Thus we have shown that S is a ring, and since the multiplicative
identity coincides, it follows immediately that S is a subring of R.

Worked Exercise 1.9

(a) Show that the set of Gaussian integers,
Z[i] = {a+ ib : a, b ∈ Z} where i =

√
−1, equipped with the usual

addition and multiplication of complex numbers, is a ring.

(b) Why is S = {0, 5} not a subring of Z10?

Solution

(a) Since Z[i] is a subset of the complex numbers C, it will be enough
to prove that Z[i] is a subring of C. We check the conditions of
Lemma 1.8. Consider two elements a+ ib and c+ id of Z[i]. Then

SR1: (a+ ib)− (c+ id) = (a− c) + i(b− d) ∈ Z[i].

SR2: (a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc) ∈ Z[i].

SR3: The multiplicative identity of C and Z[i] is 1 = 1 + 0i.

It follows from the subring criterion that Z[i] is a subring of C,
and therefore that Z[i] is a ring.

(b) Condition SR3 does not hold for S: the multiplicative identity of
Z10 is 1, which is not in S.

Note, however, that S is a ring with the same operations as Z10.
The multiplicative identity of S is 5.

12



1 Rings

The requirement that the multiplicative identity of a subring is always the
same as that of the original ring has some interesting consequences. For
example, the only subring of Z is Z itself, and the only subring of Zn is Zn.

Exercise 1.5

By considering a suitable larger ring and using Lemma 1.8, prove that the
following are rings:

(a) Z[ω] = {a+ bω+ cω2 : a, b, c ∈ Z} where ω = e2iπ/3, so that ω3 = 1

(b) Q[i] = {a+ bi : a, b ∈ Q}.

1.2 Zero divisors and units

The axioms that define a ring leave some opportunities for results that we
might not expect. By considering the integers Z, we already know that
elements do not need to have multiplicative inverses, but in some rings
even stranger things can happen.

Suppose that in Z we wish to solve the quadratic equation

x2 − 5x+ 6 = 0.

Factorising the left-hand side, we obtain

(x− 2)(x− 3) = 0.

It follows that either x− 2 = 0 or x− 3 = 0, and hence that x = 2 or
x = 3. This method works since if in Z the product of two terms is 0, then
one of the two terms must itself be 0.

More generally, if we know that the product of two integers a and b is 0,
then we can deduce that at least one of a or b must be 0. Put another way,
if we multiply two non-zero integers then their product must also be
non-zero.

However, in the ring Z6 we have 2 · 3 ≡ 0 (mod 6). In other words, there
are two non-zero elements whose product is zero. We want to be able to
distinguish between elements where this does happen and those where it
does not, and so we make the following definition.

Definition 1.10 Zero divisor

Let R be a ring. A non-zero element a ∈ R is a zero divisor in R if
there is a non-zero element b ∈ R for which ab = 0 or ba = 0.

In a sense, 0 is also a zero divisor since 0 · 1 = 0 is true in every ring, but
we have deliberately excluded this so that in future we do not have to keep
using phrases such as ‘no non-zero zero divisors’. Commutative rings with
no zero divisors have a special name. Since they have several of the We will learn more about

integral domains in Chapter 12.properties of the ring of integers, we call them integral domains.

13
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Example 1.11 Rings with no zero divisors

(a) The ring Z has no zero divisors – this is the fact that we used to solve
the quadratic equation above. Similarly, Q, R and C also have no zero
divisors.

(b) Z7 has no zero divisors. If ab ≡ 0 (mod 7), then 7 divides ab, and hence
(since 7 is prime) divides a or b (or both) in Z7. Thus a = 0 or b = 0.

Example 1.12 Rings with zero divisors

(a) Z6, as we saw above, does have zero divisors. Since 2 · 3 ≡ 0 (mod 6)
and 3 · 4 ≡ 0 (mod 6), we see that all of 2, 3 and 4 are zero divisors.

However, 1 and 5 are not zero divisors since there are no numbers a
and b (other than 0) in Z6 for which 1 · a ≡ 0 (mod 6) or
5 · b ≡ 0 (mod 6).

(b) The ring M2×2 of 2× 2 matrices with entries from R has zero divisors.
For example, the product

(

1 0
0 0

)

·
(

0 0
0 1

)

=

(

0 0
0 0

)

shows that both

(

1 0
0 0

)

and

(

0 0
0 1

)

are zero divisors.

Exercise 1.6

Let R be the ring Z× Z (as defined in Exercise 1.1). For a, b, c, d ∈ Z,
addition is defined by (a, b) + (c, d) = (a+ c, b+ d), and multiplication is
given by (a, b) · (c, d) = (ac, bd).

(a) Give an example of a zero divisor in R.

(b) Describe all the zero divisors in R.

Now that we are aware of the possibility that rings have zero divisors, we
turn again to the issue of multiplicative inverses: which elements of a ring
can be multiplied together to give 1? For example, in Z, we have
(−1) · (−1) = 1, and so −1 is its own multiplicative inverse, but there is no
multiplicative inverse of 2 in Z.

So far, we have allowed our rings to be non-commutative, that is, axiom
R10 has not needed to be satisfied. Our main example of a
non-commutative ring has been M2×2, the ring of 2× 2 matrices with
entries from R. As we move our focus to consider elements that have
multiplicative inverses, the existence of non-commutative rings leads to
some awkward possibilities. For example, could we have a
non-commutative ring R and a, b ∈ R, with a · b = 1, but b · a 6= 1?The answer to this question is

‘yes’ for some quite peculiar
rings, but we will not explore
this here.
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Convention: commutative rings

To avoid the complications described above, all rings we will consider
from now on will be commutative. Additionally, we will drop the
word ‘commutative’ and simply use the term ‘ring’.

With this settled, we can define a term for elements that have
multiplicative inverses.

Definition 1.13 Unit

An element a of a (commutative) ring R is a unit if there is an The term ‘unit’ is overused in
mathematics generally. It should
be clear from the context which
meaning is appropriate.

element a−1 ∈ R for which a · a−1 = a−1 · a = 1.

For example, in the ring Z the only units are 1 and −1; in the ring Z10 the
units are 1, 3, 7 and 9, since

1× 1 ≡ 1 (mod 10), 3× 7 ≡ 1 (mod 10) and 9× 9 ≡ 1 (mod 10).

Exercise 1.7

List all the units in the following rings.

(a) Z12

(b) Z× Z

(c) Z[i]

Although in the above exercise it was relatively straightforward to list the
units in specific rings, this is not always the case. We will see examples in
Chapter 12 where finding units is rather more difficult.

Exercise 1.8

(a) Write down all the zero divisors in the rings Zn, for n = 8, 9, 10, 11
and 12.

(b) Give a description of all the zero divisors in Zn, for any given natural
number n.

(c) Which rings Zn have no zero divisors?

(d) Show that in a ring R, if a is a unit then it cannot be a zero divisor.

15
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1.3 Fields

In the definition of a ring, the axiom we were missing for the non-zero
elements to form a group under multiplication was that every element has
an inverse: in other words, every non-zero element is a unit. A ring with
this property is called a field.

Definition 1.14 Field

A (commutative) ring R is a field if the additive and multiplicativeRecall Exercise 1.4, which tells
us what happens when 0 = 1 in
a ring.

identities are distinct, and every non-zero element is a unit.

In other words, R has distinct elements 0 and 1, axioms R1–R10 hold,
and so does:

R11 Multiplicative inverses For every non-zero a ∈ R, there
exists a−1 ∈ R such that a · a−1 = a−1 · a = 1.

In the same way that we have been using the symbol R to refer to a general
ring, we will use F for a field. You may find that in other texts the letter
K is used: this is because the German mathematician Richard Dedekind
(1831–1916) used the term Körper for field, which translates as ‘body’.

Example 1.15 Some well-known fields

The following are easily seen to be fields.

(a) Q: Since p
q ·

q
p = 1 for non-zero p, q ∈ Z, the inverse of p

q is q
p .

(b) R: The inverse of any non-zero x ∈ R is x−1 = 1
x .

(c) C: The inverse of z = a+ ib 6= 0 is

z−1 =
1

a+ ib
=

(

a

a2 + b2

)

+ i

( −b

a2 + b2

)

.

Example 1.16 Some rings that are not fields

(a) Z is not a field: as we observed in the previous subsection, the only
units are −1 and 1, and so no other integer has a multiplicative inverse.

(b) Z6 is not a field: for example, the element 2 is not a unit.

Since Z6 has sufficiently few elements, we can verify this by testing all
multiples of 2 modulo 6:

2 · 0 ≡ 0, 2 · 1 ≡ 2, 2 · 2 ≡ 4,

2 · 3 ≡ 0, 2 · 4 ≡ 2, 2 · 5 ≡ 4.

16
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Exercise 1.9 Properties of multiplicative inverses

Let F be a field, and a, b ∈ F non-zero elements. Prove the following.

(a) (a−1)−1 = a

(b) (ab)−1 = b−1a−1

The second example of a non-field, Z6, raises an interesting point: we used
the element 2, which is a zero divisor, since 2 · 3 ≡ 0 (mod 6). In
Exercise 1.8(d), we showed that any element that is a unit cannot also be a
zero divisor. As a consequence of this, we have the following lemma.

Lemma 1.17

Let F be a field. Then F has no zero divisors.

Proof Suppose a 6= 0 is a zero divisor in F , and so there exists a
non-zero b ∈ F such that a · b = 0. By axiom R11, there exists b−1 ∈ F

such that b · b−1 = 1. Now

a = a · 1 = a · (b · b−1) = (a · b) · b−1 = 0 · b−1 = 0,

which is a contradiction.

In Exercise 1.8, we stated that Zn has no zero divisors if, and only if, n is a
prime number. In fact, each element of Zn is either a zero divisor or a unit.

Lemma 1.18

Let a ∈ Zn be non-zero, where n ∈ N. Then a is either a zero divisor
or a unit.

Proof If hcf(a, n) = 1, then by Proposition 4.7 of Book A, Chapter 1 For any non-zero element a, one
of two things can happen: either
hcf(a, n) = 1, or hcf(a, n) > 1.
We consider each of these
possibilities in turn.

there exist s, t ∈ Z such that sa+ tn = 1. Therefore, sa ≡ 1 (mod n), and
hence a is a unit in Zn.

On the other hand, if hcf(a, n) = d > 1, then a = dh and n = dk for some
h, k, with 1 < k < n and hcf(h, k) = 1. Then

ak = (dh)k = (hd)k = h(dk) = hn ≡ 0 (mod n),

which proves that a is a zero divisor.

This lemma immediately gives us an important consequence.

Corollary 1.19

The ring Zn is a field if, and only if, n is a prime number.
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The fields Zp, where p is a prime number, contain only finitely many
elements, and are therefore called finite fields. We will not explore finite
fields further in this chapter, as we will study them in some detail in
Book E, Chapter 19. However, we will make two quick remarks.

First, the fields Zp, for p prime, are not the only finite fields: in fact, there
exists a finite field with q elements if, and only if, q is a power of a prime
number.

Second, if we repeatedly add the multiplicative identity to itself,
1 + 1 + · · ·+ 1, we will at some point end up with the additive identity.
For example, in Z3, 1 + 1 + 1 = 3 ≡ 0 (mod 3). The number of times we
add 1 to itself to get 0 is known as the characteristic. So, the
characteristic of Z3 is 3.

We finish this section by defining subfields, and developing an analogue to
the subring criterion (Lemma 1.8) that allows us to avoid checking all the
axioms.

Definition 1.20 Subfield

A subset S of a field F that is a field with the same binary operations
and multiplicative identity as F is known as a subfield of F .

Lemma 1.21 Subfield criterion

Let F be a field, and let S be any subset of F . Then S is a subfield of
F if:

(a) S is a subring of F

(b) every non-zero element of S has a multiplicative inverse in S.

Consequently, to determine whether S is a subfield of F or not, we need to
check only axioms SR1–SR3 from Lemma 1.8 and axiom R11 from
Definition 1.14.

Proof Since S is a subset of F , we just need to check that S is a field
with the same binary operations and identities as F . First, condition (a)
tells us that S has the same multiplicative identity as F , and that all the
axioms R1–R10 hold. This leaves only axiom R11 about the existence of
multiplicative inverses, but this is guaranteed by condition (b).

Exercise 1.10

By considering suitable larger fields, show that the following are fields.

(a) Q[i] = {a+ bi : a, b ∈ Q}
(b) Q[

√
2] = {a+ b

√
2 : a, b ∈ Q}
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2 Polynomials over fields

As we saw in Subsection 1.2, rings can have unexpected properties. To
avoid some of these issues, we are going to spend the remainder of this
chapter studying polynomial rings where the coefficients of the
polynomials come from a field, as these are generally much better behaved
than generic rings.

2.1 Polynomial rings

Definition 2.1 Polynomial ring over a field

Let F be a field. Then a polynomial over F with the variable x is a
polynomial of the form f(x) = a0 + a1x+ a2x

2 + · · ·+ anx
n, where

a0, a1, a2, . . . , an ∈ F and n ≥ 0, where x0 is defined to be 1.

The polynomial ring over F is

F [x] = {a0 + a1x+ · · ·+ anx
n : a0, a1, . . . , an ∈ F, n ≥ 0}.

We have seen the square bracket notation ‘F [x]’ a few times already in this
chapter, and it is worth verifying that our use of it has been consistent.
For example, in Exercise 1.10(b) we encountered Q[

√
2], which was defined

to be the set {a+ b
√
2 : a, b ∈ Q}. The above definition would define it as

{a0 + a1
√
2 + · · ·+ an(

√
2)n : ai ∈ Q}, but of course (

√
2)2 = 2 is already

an element of Q, and so the higher terms of
√
2 can simply be included in

the coefficients a0 and a1.

To be clear that F [x] is indeed a ring, we need to define ‘addition’ and
‘multiplication’ within F [x], and then be sure that all the axioms hold.
How we add and multiply polynomials should come as no surprise: first,
we need to remember that the field F came with its own addition and
multiplication, and use these to build the natural definitions. If in doubt,
think about how it is done in R[x], that is, when the coefficients are all real
numbers.

Addition is defined by
(

n
∑

i=0

aix
i

)

+

(

m
∑

i=0

bix
i

)

=

max(m,n)
∑

i=0

(ai + bi)x
i.

Note that the sum on the right-hand side of this equation goes up to
max(m,n): so, if n < m then we add ‘dummy’ coefficients
an+1 = an+2 = · · · = am = 0.

What is the zero of F [x]? If ‘0’ is the symbol for the zero in the field F ,
then let 0x be the zero in F [x]. It is defined as the polynomial where every
coefficient is equal to 0; so in fact we have 0x = 0. However, we will
continue to use the symbol 0x to highlight when we are working in the
polynomial ring F [x].
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We can now work out additive inverses:
(

n
∑

i=0

aix
i

)

+

(

n
∑

i=0

(−ai)x
i

)

=

n
∑

i=0

(ai + (−ai)) x
i = 0x.

The closure, associativity and commutativity of addition in F [x] follow
quite easily: remember that we can assume they hold in F .

Next, we define multiplication:
(

n
∑

i=0

aix
i

)

·





m
∑

j=0

bjx
j



 =

m+n
∑

k=0





∑

i+j=k

ai · bj



xk.

At first sight, this definition looks rather offputting. So, let us quickly
consider an example to reassure ourselves that this is exactly what we
expect to see. Take polynomials f(x) = 1 + 5x− 4x2 and g(x) = 2 + 3x
over R. Then

f(x)g(x) = (1 + 5x− 4x2) · (2 + 3x)

=
(

1 · 2
)

+
(

1 · 3 + 5 · 2
)

x+
(

5 · 3 + (−4) · 2
)

x2 +
(

(−4) · 3
)

x3

= 2 + 13x + 7x2 − 12x3.

What is the multiplicative identity of F [x]? As we did with the zero, we
will use the special symbol 1x to distinguish it from the ‘1’ in F , even
though 1x = 1.

The remaining axioms R6–R9 are readily verified, as a consequence of the
axioms for the field F . In addition, since multiplication in F is
commutative, it follows that F [x] is a commutative ring, that is, axiom
R10 holds.

Example 2.2 Some common polynomial rings

(a) The set of polynomials with rational coefficients, Q[x], with 0x = 0 andThe polynomial ring Q[x] will
appear in Section ??. 1x = 1, is a ring since Q is a field.

(b) C[x] represents the polynomials with complex coefficients, and R[x]
the polynomials with real coefficients. Note that Q[x] ⊂ R[x] ⊂ C[x].

(c) The polynomial ring Z2[x] consists of all polynomials whose
coefficients are all either 0 or 1. More generally, we can consider the
polynomial ring Zp[x] where p is a prime number.
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Worked Exercise 2.3

Let f(x) = 1 + 2x and g(x) = 1 + 3x+ 2x3 be polynomials in Z5[x],
the ring of polynomials over the field Z5, equipped with addition and
multiplication modulo 5.

(a) Calculate and simplify (i) f(x) + g(x), and (ii) 3f(x)− g(x).

(b) Compute f(x)g(x).

Solution

(a) (i) f(x) + g(x) = (1 + 1) + (2 + 3)x+ 2x3 ≡ 2 + 2x3 (mod 5)

3f(x)− g(x) = 3(1 + 2x)− (1 + 3x+ 2x3)(ii)

= (3 + (3× 2)x)− 1− 3x− 2x3

≡ (3 + x) + 4 + 2x+ 3x3

= (3 + 4) + (1 + 2)x+ 3x3

≡ 2 + 3x+ 3x3 (mod 5)

f(x)g(x) = (1 + 2x)(1 + 3x+ 2x3)(b) Note that it is sometimes easier
when working in Zp[x] to
calculate the polynomials over
Z, and then reduce the
coefficients modulo p at the end.

= 1 + 5x+ 6x2 + 2x3 + 4x4

≡ 1 + x2 + 2x3 + 4x4 (mod 5)

Exercise 2.1

Let f(x) = 2x3 − 3 and g(x) = 9x4 + 7x2 − x+ 1. Compute (i) f(x) + g(x)
and (ii) f(x) · g(x) in the following polynomial rings:

(a) Q[x]

(b) Z7[x]

(c) Z2[x].

2.2 The degree of a polynomial

Definition 2.4 Degree of a polynomial

Let F be a field, and let f(x) = a0 + a1x+ · · ·+ anx
n be a

polynomial in F [x]. The degree of f(x), deg(f), is the largest k ≥ 0
for which ak 6= 0.

This non-zero coefficient ak is known as the leading coefficient.
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At this point, it is also worth making a remark about notation: strictly
speaking, we should have written deg(f(x)) rather than deg(f), but this is
rather clumsy. For the same reason, in future we will occasionally drop
the ‘(x)’ from other equations involving polynomials, where the meaning is
still sufficiently clear.

Example 2.5 The degree of a polynomial

In Exercise 2.1, the polynomial f(x) = 2x3 − 3 has degree 3 in Q[x] and
Z7[x], but f(x) ≡ 1 (mod 2) and so f(x) has degree 0 in Z2[x].

On the other hand, the polynomial g(x) = 9x4 + 7x2 − x+ 1 has degree 4
in all of Q[x], Z7[x] and Z2[x].

Convention: degree of the zero polynomial

By convention, the degree of the polynomial 0x will be −∞, which
should be interpreted as meaning we can choose the degree of 0x to be
as largely negative as we need.

This choice is made so that the following lemma is consistent when one or
both of the polynomials f and g are equal to 0x.

Lemma 2.6

Let F be a field, and let f(x) and g(x) be polynomials in F [x]. Then
deg(fg) = deg(f) + deg(g).

This seemingly innocuous lemma actually turns out to be quite important,
as we will see later in this chapter and the next. Before we prove it, let us
pause to think what would happen if we replaced the field F with some
arbitrary ring R. We consider an example in the following exercise.

Exercise 2.2

Consider the polynomials f(x) = 2x2 + x+ 3 and g(x) = 3x+ 1 in the
polynomial ring Z6[x]. Find:

(a) deg(f)

(b) deg(g)

(c) deg(fg).

What went wrong? We expected the degree of f(x)g(x) to be 3, but the
coefficient of x3 disappeared because 2 · 3 ≡ 0 (mod 6). This, of course, is
because 2 and 3 are zero divisors in Z6, and we know from Lemma 1.17
that fields cannot have zero divisors.
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2 Polynomials over fields

Proof of Lemma 2.6 First, if either f(x) or g(x) is equal to 0x, then
fg = 0x and deg(fg) = −∞ as we should expect. So we now suppose that
f(x) 6= 0x and g(x) 6= 0x.

Let f(x) = a0 + a1x+ · · · + anx
n and g(x) = b0 + b1x+ · · ·+ bmxm be

polynomials over F , where deg(f) = n and deg(g) = m. In particular, this
means that an 6= 0 and bm 6= 0. Now, from the definition of multiplication
in F [x],

f(x)g(x) =

m+n
∑

k=0





∑

i+j=k

ai · bj



xk.

The highest term in this sum is anbmxm+n, and so we certainly have
deg(fg) ≤ deg(f) + deg(g). Moreover, since an, bm ∈ F are both not equal
to zero, it follows by Lemma 1.17 that their product anbm is also not 0.
Thus deg(fg) = m+ n = deg(f) + deg(g).

Meanwhile, what happens to the degree if we add two polynomials?
Clearly, from the definition, deg(f + g) ≤ max(deg(f),deg(g)), but can we
replace the ‘≤’ with ‘=’? Again, let us first consider a couple of examples.

Exercise 2.3

Calculate the degree of f(x) + g(x) over the stated ring:

(a) f(x) = 2x3 + 4x2 − 1 and g(x) = 3x3 + 3x2 − 2x over Z5

(b) f(x) = 1 + x and g(x) = 1− x over Q.

In the above exercise, you should have found that it is indeed possible for
the degree of the sum of two polynomials to be less than the sum of the
degrees. In each case, the top term of f + g disappeared because
deg(f) = deg(g), and the leading coefficients of f and g were additive
inverses of each other.

Lemma 2.7

Let F be a field, and let f(x) and g(x) be polynomials in F [x]. Then
deg(f + g) ≤ max(deg(f),deg(g)).

Proof This follows directly from the definition of addition for
polynomials in F [x].

2.3 Basic properties of polynomial rings over fields

Now we have defined and developed the concept of the degree of a
polynomial, we are in a position to prove some results to reassure us that
polynomials over fields behave in the way that we expect them to.
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First, the property that the field F has no zero divisors can be shown to
imply that there are also no zero divisors in F [x].

Lemma 2.8

Let F be a field, and let f(x), g(x) ∈ F [x] be polynomials such that
f(x)g(x) = 0x. Then either f(x) = 0x, or g(x) = 0x (or both).

Proof Since by Lemma 2.6 we have −∞ = deg(0x) = deg(fg)
= deg(f) + deg(g), it follows that at least one of f(x) or g(x) must have
degree −∞, that is, f(x) = 0x or g(x) = 0x.

We might now wonder whether in fact F [x] is a field: is every element a
unit? This turns out not to be the case.

Lemma 2.9

An element of a polynomial ring F [x] over a field F has a
multiplicative inverse (that is, the element is a unit) if, and only if, it
has degree 0.

Proof First, a polynomial f(x) of degree 0 is simply a non-zero element
of the field F : f(x) = a0 with a0 ∈ F . Since F is a field, there exists
a−1
0 ∈ F such that a0 · a−1

0 = 1. Therefore, the inverse of f(x) in F [x] is

f−1(x) = a−1
0 .

Conversely, for a polynomial f(x) ∈ F [x], suppose that g(x) ∈ F [x] is the
multiplicative inverse. Then f(x)g(x) = 1x, and so by Lemma 2.6
deg(f) + deg(g) = deg(1x) = 0. By definition, the degree of a polynomial is
either −∞ or an integer value greater than or equal to 0. So the only
possible situation in which deg(f) + deg(g) = 0 arises is when f has
degree 0.

Since every unit in a polynomial ring F [x] is actually in F , we will
typically refer to u ∈ F [x] rather than u(x) ∈ F [x] from now on.

Lemma 2.9 implies that F [x] is not itself a field, since we cannot find
inverses for anything with degree ≥ 1. However, despite this lack of
inverses in F [x], we can still cancel terms from equations.

Lemma 2.10 Cancellation of polynomials

If f(x) is a non-zero polynomial and f(x)g(x) = f(x)h(x) in F [x],
then g(x) = h(x).

24



3 Divisibility of polynomials

Proof We can rearrange the equation fg = fh to obtain fg − fh = 0,
which by distributivity gives us f(g − h) = 0. Now g − h is a polynomial
over F , so by Lemma 2.8 either f(x) = 0x (which by assumption is not
true), or g(x) − h(x) = 0x. Therefore, we must have g(x) = h(x).

We finish this section with a couple of definitions that we will need later in
this chapter.

Definition 2.11 Associate and monic

Let F be a field, and f(x), g(x) ∈ F [x].

(a) We say that f(x) is an associate of g(x) if f(x) = ug(x) where u We will generalise the concept of
‘associate’ to other rings in
Chapter 12.

is a unit in F [x].

(b) The polynomial f(x) is monic if the leading coefficient is equal
to 1.

Exercise 2.4

Let F be a field, and f(x) a non-zero polynomial in F [x]. Prove the
following.

(a) If g(x) ∈ F [x] is an associate of f(x), then deg(g) = deg(f).

(b) There exists a unique monic polynomial that is an associate of f(x).

3 Divisibility of polynomials

This section seeks to develop some results concerning the divisibility of
polynomials that mirror results in Book A, Chapter 1 for the integers.

3.1 Polynomial division

You may already have had practice at dividing one polynomial over the
real numbers by another and calculating the remainder. Here, we want to
extend this ‘long division’ to polynomials over an arbitrary field F . Before
we do this, however, we should justify that what we are doing is valid, and
can be done in a unique way: what we need is a division algorithm for
polynomials, to mirror Theorem 4.1 in Book A, Chapter 1. In fact, as we
proceed through this section you may like periodically to glance back at
Section 4 of Chapter 1, and observe the similarities.
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Theorem 3.1 Division Algorithm for polynomials

Let F be a field and let f and g be polynomials in F [x], with g 6= 0x.
Then there exist unique polynomials q and r in F [x] such that

(a) deg(r) < deg(g), and

(b) f = qg + r.

The polynomials q and r are respectively known as the quotient and
remainder when dividing f by g.

Proof If f = 0x or deg(f) < deg(g), then we can simply take q = 0x andThere are two parts to this
proof. First, we prove the
existence of a suitable q and r
using induction, and then we
prove that they are unique.

r = f(x). Thus from now on we will assume deg(f) ≥ deg(g). Let
f(x) = a0 + a1x+ · · ·+ anx

n and g(x) = b0 + b1x+ · · ·+ bmxm, with
an 6= 0 and bm 6= 0 so that deg(f) = n and deg(g) = m. We use induction
on d = n−m ≥ 0 to prove the existence of a suitable q(x) and r(x).

The base case is d = 0, when m = n. In this case, we can take q = anb
−1
m ,Remember F is a field, and so

we can find b−1
m such that

bmb−1

m = 1.
and r = f − qg. Note that deg(r) < deg(g) because the coefficient of xm

in r disappears: am − amb−1
m bm = 0.

For the inductive step, suppose that the statement is true for
d = 0, 1, . . . , k − 1. Now consider d = k. Define f1 = f − anb

−1
m xkg. ThereWe have expressly constructed

f1 so that deg(f1) < deg(f). are three cases to consider: f1 = 0x, deg(f1) < deg(g) and
deg(f1) ≥ deg(g). If f1 = 0x, then we take q = anb

−1
m xn−m and r = 0x. If

deg(f1) < deg(g), then we take q = anb
−1
m xn−m and r = f1. Thus we now

suppose deg(f1) ≥ deg(g). By induction, we can find q1(x), r1(x) such that
f1 = q1g + r1, with deg(r1) < deg(g). We now substitute back:

f = anb
−1
m xn−mg + f1

= anb
−1
m xn−mg + (q1g + r1)

=
(

anb
−1
m xn−m + q1

)

g + r1

and so we take q = anb
−1
m xn−m + q1 and r = r1.

For uniqueness of q and r, suppose that we can find another pair of
polynomials q∗, r∗ with f = q∗g + r∗. Then we have qg + r = q∗g + r∗,
which can be rearranged to give (r − r∗) = (q∗ − q)g. Applying Lemma 2.6,
we get deg(r − r∗) = deg(q∗ − q) + deg(g), but since deg(g) > deg(r − r∗)
this is a contradiction unless r = r∗ and q∗ = q.

Actually finding q and r, when working in a polynomial ring, requires long
division of polynomials. We will work through the steps of one example, in
case you are not familiar with the process or need reminding.
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Worked Exercise 3.2

Find the quotient and remainder on dividing f(x) = x4 + x2 + x− 2
by g(x) = x2 − 1 in Q[x].

Solution

We want to find q(x) and r(x) with f(x) = g(x)q(x) + r(x) and the
degree of r(x) smaller than that of g(x) (so that q(x) has as high a
degree as possible).

First, we write the terms of f(x) and g(x) in descending powers of x,
leaving a ‘gap’ for any powers of x that are missing in f(x).

x2 − 1 x4 + x2 + x − 2

Next, take the highest term of f(x), which is x4, and divide it by the
highest term of g(x), which is x2. The result is the first term, x2, of
the quotient q(x), which we write above the line.

x2

x2 − 1 x4 + x2 + x − 2

Now, multiply g(x) by this first term of q(x), and write the terms
below the corresponding terms of f(x). Then subtract these terms
from f(x).

x2

x2 − 1 x4 + x2 + x − 2
x4 − x2

2x2 + x − 2

We repeat the process with this new polynomial, 2x2 + x− 2, in place
of f(x): take the highest term of the new polynomial, which is 2x2,
and divide it by the highest term of g(x), x2, to get the next term, 2,
of q(x).

x2 + 2

x2 − 1 x4 + x2 + x − 2
x4 − x2

2x2 + x − 2

Then multiply g(x) by this new term of q(x), and subtract from the
polynomial at the bottom.

x2 + 2

x2 − 1 x4 + x2 + x − 2
x4 − x2

2x2 + x − 2
2x2 − 2

x

We would now repeat the process, except that the highest term of
g(x) is now larger than the highest term of the polynomial we want to
divide, and hence what is left is the remainder. This gives
q(x) = x2 + 2 and r(x) = x.

27



Rings and polynomials

Exercise 3.1

For each of the following polynomials f(x), g(x) in Q[x], find the quotient
q(x) and the remainder r(x) for the division of f(x) by g(x).

(a) f(x) = x3 − 2x2 + 3x− 1, g(x) = x− 1

(b) f(x) = 2x4 − x+ 1, g(x) = x2 + 1

(c) f(x) = 3x3 − 2x2 + 1, g(x) = 2x+ 1

With a division algorithm in hand, we now state precisely what we mean
when we say that one polynomial divides another: the remainder in the
above process must equal the zero polynomial 0x in F [x].

Definition 3.3 Factors of a polynomial

Let F be a field, and f, g polynomials in F [x]. We say that g
divides f (or g is a factor of f) if there is some polynomial h ∈ F [x],
such that f = gh.

If f is non-zero and neither g nor h are units then g and h are
proper factors of f .

Notice that if g and h are proper factors of f in F [x], then
0 < deg(g) < deg(f) and 0 < deg(h) < deg(f): if deg(g) = 0 then g ∈ F

would be a unit, while if deg(g) = deg(f) then Lemma 2.6 of this chapter
would imply deg(h) = 0, and so h would be a unit.

Once again, the zero polynomial 0x behaves slightly differently: every
polynomial is a factor of 0x since 0x = f(x) · 0x. The following exercise will
enable you to develop properties of polynomial division that are directly
analogous to those we proved for the integers in Section 4 of Book A,
Chapter 1.

Exercise 3.2 Properties of division for polynomials

Let F be a field, and let f, g and h be non-zero polynomials in F [x]. Prove
the following statements.

(a) If g divides f then g divides f + gh for any polynomial h ∈ F [x].

(b) If h divides g and g divides f then h divides f .

(c) If h divides f and h divides g then h divides af + bg for any
polynomials a, b ∈ F [x].

(d) The polynomials f and g are associates if, and only if, g divides f
and f divides g.
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3.2 Highest common factors

We have now laid the foundations we need to enable us to describe the
analogue of the Euclidean Algorithm for polynomials, and hence develop
the concept of highest common factor. We proceed in exactly the same
way as we did for the integers in Book A, Chapter 1.

Definition 3.4 Highest common factor of two polynomials

Let F be a field, and f, g two polynomials in F [x], not both equal
to 0x. Then the highest common factor of f and g, written
hcf(f, g), is a monic polynomial of largest degree satisfying the
following:

(a) hcf(f, g) divides both f and g.

(b) Any polynomial d ∈ F [x] that divides both f and g must also
divide hcf(f, g).

As with the highest common factor of two integers, the hcf of two
polynomials is unique, as the next result will show. First, however, we
should ask ourselves whether the condition that hcf(f, g) is monic is
strictly necessary. It is straightforward to see that yes, it is necessary to
ensure uniqueness; otherwise, any associate of hcf(f, g) would also satisfy
conditions (a) and (b) of Definition 3.4.

Theorem 3.5

Let F be a field, and f, g two polynomials in F [x], not both equal
to 0x. Then hcf(f, g) is unique, and there exist polynomials
a, b ∈ F [x] such that

hcf(f, g) = af + bg.

Proof We consider the set of polynomials Compare the proof of this
theorem to the proof of
Proposition 4.7 in Book A,
Chapter 1.

S = {af + bg : a, b ∈ F [x]}.
First note that if h is a polynomial in S, any associate of h is also in S,
since these are formed by multiplying h by an element of F . By applying
the Well-Ordering Principle to the degrees of the polynomials in S, we can
choose from S a polynomial of smallest degree, h = af + bg. Moreover,
since every associate of h is also in the set S, we can assume h is monic.

We claim that this monic polynomial h is unique. If there existed in S

another monic polynomial h1 = a1f + b1g of the same degree as h, then

h− h1 = af + bg − (a1f + b1g)

= (a− a1)f + (b− b1)g

is another polynomial from S. Since h and h1 are both monic, it follows
that either h− h1 6= 0x has smaller degree than h (which is impossible), or
h− h1 = 0x, so that h and h1 are identical.
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To complete the proof, we need to prove that h = hcf(f, g). For this, we
use the Division Algorithm (Theorem 3.1) to find polynomials q and r such
that f = qh+ r with deg(r) < deg(h). We want to show that r = 0x. To
do this, we demonstrate that r is a member of S:

r = f − qh

= 1 · f − q (af + bg)

= (1− qa)f + (−qb)g ∈ S.

However, r has strictly smaller degree than h, and so we must have r = 0x.
Hence f = qh and so f is a multiple of h. A similar argument tells us
that g is a multiple of h, and hence h is a common factor.

Finally, we have to show that h is the highest of these factors. This follows
by Exercise 3.2(c): for any common factor d of f and g, we know that d
divides af + bg = h.

Both Definition 3.4 and Theorem 3.5 have the condition that f and g

cannot both be equal to the zero polynomial 0x of F [x]. When working
with the integers in Book A, Chapter 1 we simply stated that hcf(0, 0)
does not exist, and this would seem to make sense here too; thus, we
declare that hcf(0x, 0x) does not exist.Some authors instead define

hcf(0x, 0x) = 0x.
Following the pattern laid out by Chapter 1, we can now give meaning to
the term ‘coprime’ in the context of polynomials.

Definition 3.6 Coprime

Let F be a field, and let f, g be polynomials in F [x], not both equal
to 0x. If hcf(f, g) = 1x then we say that f and g are coprime.

As a direct consequence of Theorem 3.5, we therefore have the following
result.

Corollary 3.7

The polynomials f, g ∈ F [x], not both equal to 0x, are coprime if, and
only if, there exist polynomials a, b ∈ F [x] such that af + bg = 1x.

Exercise 3.3

Let F be a field, and f, g and h be polynomials in F [x]. Prove the
following.

(a) If hcf(f, g) = 1x and both f and g divide h, then fg divides h.

(b) If f divides gh and hcf(f, g) = 1x, then f divides h.Part (b) is the polynomial ring
equivalent to Euclid’s Lemma,
Theorem 4.12 of Book A,
Chapter 1.
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3.3 The Euclidean Algorithm

In the last subsection, we proved the existence and uniqueness of the
highest common factor of two polynomials over a field. However, as was
the case in Book A, Chapter 1, the proof of this fact was not hugely
enlightening on how to find the highest common factor. In this subsection,
we will see how to apply the Division Algorithm (Theorem 3.1) to carry
out practical calculation of the highest common factor.

Strategy: Euclidean Algorithm to find the hcf of two
polynomials

Given a field F , and two polynomials f, g ∈ F [x], not both equal
to 0x, let f

∗ = f and g∗ = g.

1. Apply the Division Algorithm (Theorem 3.1) to f∗, g∗ to find
q, r ∈ F [x] for which f∗ = qg∗ + r.

2. If r = 0x then stop: hcf(f, g) = a−1g∗, where a ∈ F is the
coefficient of the highest power of x in g∗.

3. Otherwise, r 6= 0x. Replace f∗ by g∗, and g∗ by r, and go back to
step 1.

Worked Exercise 3.8

In Q[x], find hcf(3x4 + 2x3 + x2 − 4x+ 1, x2 + x+ 1).

Solution

For convenience later, we will set f(x) = 3x4 + 2x3 + x2 − 4x+ 1 and
g(x) = x2 + x+ 1, so that we are trying to find hcf(f, g). First, we
divide f by g using polynomial long division, to obtain

f(x) = (3x2 − x− 1)g(x) + (−2x+ 2).

The next step of the Euclidean Algorithm requires that we divide
g(x) by the remainder, −2x+ 2. This gives

g(x) = (−1
2x− 1)(−2x+ 2) + 3.

As has happened here, when the remainder is a constant (that is, has
degree zero) we know that the next step of the algorithm must give us
zero remainder, and so the following final step could actually be
omitted:

−2x+ 2 = (−2
3x+ 2

3) · 3 + 0.

Therefore, hcf(f, g) = 1
3 · 3 = 1.
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Exercise 3.4

(a) Use the Euclidean Algorithm to find hcf(x3 + 2x2 − x− 2, x2 − 4x+ 3)
in Q[x].

(b) Hence, or otherwise, find polynomials s, t in Q[x] for which
x− 1 = s(x3 + 2x2 − x− 2) + t(x2 − 4x+ 3).

As well as providing a method to find the hcf of two polynomials, the
above exercise shows that the Euclidean Algorithm also helps us to find
the polynomials a(x), b(x) such that hcf(f, g) = af + bg (as was guaranteed
by Theorem 3.5). This was a relatively straightforward task in the above
exercise, but for more complicated scenarios the strategy is to work
backwards through the Euclidean Algorithm (as we did back in Book A,
Chapter 1). We demonstrate this in a worked exercise.

Worked Exercise 3.9

Let f(x) = 3x4 + 2x3 + x2 − 4x+ 1 and g(x) = x2 + x+ 1. In Q[x],
find polynomials a(x) and b(x) such that 1 = a(x)f(x) + b(x)g(x).

Solution

In Worked Exercise 3.8, we showed that hcf(f, g) = 1. Working
backwards through the Euclidean Algorithm:

3 = (12x+ 1)(−2x + 2) + g(x)

= (12x+ 1)
[

f(x)− (3x2 − x− 1)g(x)
]

+ g(x)

= (12x+ 1)f(x)− (32x
3 + 5

2x
2 − 3

2x− 2)g(x).

Therefore, dividing by 3 we obtain a(x) = 1
6x+ 1

3 andOnce you have found
polynomials a(x) and b(x), it is
good practice to check they are
correct by computing af + bg
directly.

b(x) = −1
2x

3 − 5
6x

2 + 1
2x+ 2

3 .

Exercise 3.5

Let f(x) = 2x3 + 3x2 + 2x− 1 and g(x) = x2 + x be polynomials in Q[x].

(a) Find the highest common factor of f and g.

(b) Find polynomials a(x) and b(x) such that af + bg = hcf(f, g).
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3.4 Least common multiples

Throughout this section, we have been drawing parallels between the
integers and polynomials with coefficients from fields. Here, our aim is to
convert the results of Subsection 4.3 of Book A, Chapter 1.

Definition 3.10 Least common multiple of two polynomials

Let F be a field, and f, g two non-zero polynomials in F [x]. Then the
least common multiple of f and g, lcm(f, g), is the monic
polynomial ℓ ∈ F [x] satisfying the following:

(a) f and g both divide ℓ.

(b) For any polynomial h ∈ F [x] that is divisible by both f and g, we
have deg(h) ≥ deg(ℓ).

First, we should establish whether lcm(f, g) must always exist. This is
indeed the case because for any two non-zero polynomials f and g, the
product fg and its associates satisfy condition (a) of Definition 3.10, and
so there is a monic polynomial that satisfies condition (a). Among the
monic polynomials satisfying (a), we need to choose one of smallest degree.
Insisting that the least common multiple of two polynomials be monic then
guarantees uniqueness, as we are about to show.

Lemma 3.11

Let F be a field, and f, g two non-zero polynomials in F [x]. Then
ℓ = lcm(f, g) is unique.

The proof follows the same pattern as the uniqueness part of the proof of
Theorem 3.5.

Proof By the remarks before the lemma, it suffices to show that among
the monic polynomials satisfying condition (a) of Definition 3.10, there is
only one of lowest degree.

For a contradiction, suppose that ℓ1 and ℓ2 are two monic polynomials of
the same lowest degree k that satisfy condition (a). However, then ℓ1 − ℓ2
is a polynomial of degree strictly less than k, and by Exercise 3.2(c), since
each of f and g divides both ℓ1 and ℓ2, each also divides ℓ1 − ℓ2. Thus
ℓ1 − ℓ2 is a polynomial of degree less than k that satisfies condition (a),
which is a contradiction.
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Now we have established that lcms are indeed unique, we want a practical
way to find them. Of course, if we can factorise the polynomials f and g

then it is relatively straightforward to find lcm(f, g) (and indeed hcf(f, g)),
simply by comparing factors as we would do with prime factorisations in
the integers.

There are two problems with this approach. First, we haven’t yet
developed an analogue to ‘prime factorisation’ for polynomials (we will
consider this task in the next section). Second, having managed to
describe an analogue to ‘prime factorisation’, we would then need to find a
way of calculating it. This is no easy task for integers, let alone
polynomials over arbitrary fields! Instead, we will use the following result.

Proposition 3.12

Let f(x), g(x) be non-zero monic polynomials with coefficients from a
field F . Then

lcm(f, g) · hcf(f, g) = f · g.

Notice that this requires both f and g to be monic, otherwise fg is a scalar
multiple of the left-hand side. Given non-monic polynomials f and g, we
can obtain monic ones with the same lcm and hcf by multiplying each of f
and g by the inverse of its leading coefficient.

Proof Let h(x) = hcf(f, g). Since h divides f , it also divides fg.Compare the proof of this
proposition with the proof of
Proposition 4.15 in Book A,
Chapter 1: it is almost identical.

Therefore, there exists a polynomial ℓ(x) ∈ F [x] such that fg = hℓ. We
want to show that ℓ = lcm(f, g).

Since h divides both f and g, there exist polynomials p and q in F [x] such
that

f = hp and g = hq.

Substituting for f and then g in fg = hℓ, and then cancelling out a factor
of h, we obtainRemember that Lemma 2.10 of

this chapter tells us that we are
allowed to cancel factors from
either side of an equation.

ℓ = gp and ℓ = fq.

This shows that ℓ is a common multiple of f and g, and so all that remains
is for us to show it is the least such.

Suppose ℓ1 is another polynomial in F [x] that is divisible by both f and g.
There exist polynomials p1, q1 ∈ F [x] such that

ℓ1 = q1f and ℓ1 = p1g.

We also know from Theorem 3.5 that there exist polynomials a and b in
F [x] such that h = hcf(f, g) = af + bg.
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Multiplying this equation by ℓ1 gives

ℓ1h = ℓ1af + ℓ1bg

= p1gaf + q1fbg

= fg(p1a+ q1b)

= hℓ(p1a+ q1b).

This last line follows since we have already established that fg = hℓ.
Finally, we can cancel a factor of h from either side to obtain

ℓ1 = ℓ(p1a+ q1b),

which proves that ℓ1 is divisible by ℓ, and hence that ℓ(x) = lcm(f, g).

Worked Exercise 3.13

Find lcm(x3 + x2 − x+ 2, x4 + 2x3 − x− 2) in Q[x].

Solution

First, we compute hcf(x3 + x2 − x+ 2, x4 + 2x3 − x− 2). The first
round of polynomial long division tells us that

x4 + 2x3 − x− 2 = (x+ 1)(x3 + x2 − x+ 2) + (−2x− 4).

The remainder here is −2x− 4 = −2(x+ 2). Dividing x3 + x2 − x+ 2
by the monic polynomial x+ 2 gives

x3 + x2 − x+ 2 = (x2 − x+ 1)(x + 2)

so that the hcf is x+ 2.

Now, using Proposition 3.12,

lcm(x3 + x2 − x+ 2, x4 + 2x3 − x− 2)

=
(x3 + x2 − x+ 2) · (x4 + 2x3 − x− 2)

x+ 2

=
x3 + x2 − x+ 2

x+ 2
· (x4 + 2x3 − x− 2)

= (x2 − x+ 1) · (x4 + 2x3 − x− 2)

= x6 + x5 − x4 + x3 − x2 + x− 2.

Exercise 3.6

Working in Q[x], find the lcm of:

(a) x3 − 1 and x4 − x3 + x2 − 1

(b) x3 + x2 − 8x− 12 and x3 + 5x2 + 8x+ 4.
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Solutions and comments on exercises

Solution to Exercise 1.1

(a) (2, 1) + (4, 5) = (6, 6) and (2, 1) · (4, 5) = (8, 5)

(b) (0, 0)

(c) (−2,−1)

(d) (1, 1)

Solution to Exercise 1.2

(a) We check each axiom in turn. R1, R2 and R5 follow by the basic For the additive axioms, we
could use the fact that (Zn,+) is
an abelian group.

properties of addition modulo n. For R3, the additive identity is 0,
since 0 + a ≡ a (mod n) for any a ∈ Zn, and then writing
a+ (−a) ≡ 0 (mod n) proves R4.

The multiplicative axioms follow similarly: R6 and R7 follow directly
from the definition of multiplication modulo n. For R8, the
multiplicative identity is 1, since 1 · a = a · 1 ≡ a (mod n).

Finally, R9 follows directly from the distributivity of addition and
multiplication of the integers, and R10 (commutativity of
multiplication) holds by the properties of multiplication modulo n.
Hence (Zn,+, ·) is a commutative ring.

(b) For Z[
√
2], let a, b, c, d ∈ Z. We consider each axiom in turn.

For R1, we have

(a+ b
√
2) + (c+ d

√
2) = (a+ c) + (b+ d)

√
2,

which is in Z(
√
2) since a+ c, b+ d ∈ Z.

Using the equation in R1 repeatedly together with the associativity of
addition of integers, R2 follows directly. The additive identity is
0 = 0 + 0

√
2, which proves R3, and then for R4, the inverse of a+ b

√
2

is (−a) + (−b)
√
2. Commutativity follows from the equation in R1

with the commutativity of addition over the real numbers.

For the multiplicative axioms, closure (R6) is not immediately
obvious, but it follows from

(a+ b
√
2) · (c+ d

√
2) = ac+ (bc+ ad)

√
2 + bd

√
2 ·

√
2

= (ac+ 2bd) + (bc+ ad)
√
2.

R7 and R10 are now immediate since multiplication of real numbers is
associative and commutative. For R8, the multiplicative identity is
1 = 1 + 0

√
2. Finally, R9 follows, once again, because multiplication is

distributive over addition in R.

Solution to Exercise 1.3

We use part (c) of the proposition twice, followed by part (b):

(−a) · (−b) = −(a · (−b)) = −(−(a · b)) = a · b.
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Solution to Exercise 1.4

If 1 = 0 and a is any element of the ring then, using Proposition 1.5(a),

a = a · 1 = a · 0 = 0

and hence a = 0. Consequently, the ring has only one element, which must
be both the additive and the multiplicative identity.

Solution to Exercise 1.5

(a) We show that Z[ω] is a subring of C. Let a, b, c, d, e, f ∈ Z. For SR1,Note that Z[ω] is not a subring
of Z[i]. we have

(a+ bω+ cω2)− (d+ eω+ fω2) = (a− d) + (b− e)ω+ (c− f)ω2,

which is in Z[ω] since (a− d), (b− e) and (c− f) ∈ Z.

For SR2, using ω3 = 1, we have

(a+ bω+ cω2) · (d+ eω+ fω2)

= (ad+ bf + ce) + (ae+ bd+ cf)ω+ (af + be+ cd)ω2 ∈ Z[ω].

Finally, the multiplicative identity of C is 1, and in Z[ω] we have
1 = 1 + 0ω+ 0ω2. Hence SR3 holds.

(b) We will show that Q[i] is a subring of C. For a, b, c, d in Q, we have

SR1: (a+ ib) − (c+ id) = (a− c) + i(b− d) ∈ Q[i].

SR2: (a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc) ∈ Q[i].

SR3: The multiplicative identity of C and Q[i] is 1 = 1 + 0i.

Solution to Exercise 1.6

(a) (3, 0) · (0, 1) = (0, 0) gives an example of two zero divisors.

(b) The zero divisors are those elements (x, y) for which one of x and y

is 0.

Solution to Exercise 1.7

(a) The units are 1, 5, 7 and 11. Each element is its own inverse – for
example, 7× 7 ≡ 1 (mod 12).

(b) The units are the pairs (1, 1), (1,−1), (−1, 1) and (−1,−1).

(c) The units are 1,−1, i and −i.
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Solution to Exercise 1.8

(a) The zero divisors in Z8 are 2, 4 and 6, since 2× 4 ≡ 6× 4 ≡ 0 (mod 8).

In Z9 the zero divisors are 3 and 6.

In Z10 the zero divisors are 2, 4, 5, 6, 8.

In Z11 there are no zero divisors.

In Z12 the zero divisors are 2, 3, 4, 6, 8, 9 and 10.

(b) The zero divisors in Zn are those positive integers a ∈ Zn that share a We will use this result in the
proof of Lemma 1.18.common factor with n that is greater than 1; that is, hcf(a, n) > 1.

(c) Zn has no zero divisors if, and only if, n is a prime number.

(d) Suppose that a ∈ R is a unit, and so there exists a multiplicative
inverse a−1. If there exists b ∈ R such that a · b = 0, then

b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0.

Therefore a cannot be a zero divisor.

Solution to Exercise 1.9

(a) By definition, (a−1)−1 · a−1 = 1, and therefore we have

(a−1)−1 = (a−1)−1 · 1
= (a−1)−1 · (a−1 · a)
= ((a−1)−1 · a−1) · a
= 1 · a = a.

b−1a−1 = (b−1a−1) · 1 = (b−1a−1) ·
(

(ab)(ab)−1
)

(b)

=
(

(b−1a−1)(ab)
)

· (ab)−1

=
(

b−1(a−1a)b
)

· (ab)−1 =
(

b−1b
)

· (ab)−1

= 1 · (ab)−1 = (ab)−1.

Alternatively, consider

(b−1a−1) · (ab) = b−1(a−1a)b

= b−1 · 1 · b = b−1b

= 1,

which shows that (b−1a−1) is the inverse of the element ab. That is,
(ab)−1 = b−1a−1.

Solution to Exercise 1.10

(a) From Exercise 1.5(b), we know that Q[i] is a subring of C. To show
that Q[i] is a subfield of C, it remains to show only that every
non-zero element of Q[i] has a multiplicative inverse, by Lemma 1.21.
Let a, b ∈ Q, not both equal to zero, so that a+ bi ∈ Q[i] is non-zero.
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We want to find c, d ∈ Q such that (a+ bi)(c+ di) = 1. We could
compare real and imaginary parts, and solve the resulting
simultaneous equations, but there is a quicker method. Observe that
(a+ bi)(a− bi) = a2 + b2 is a rational number, and therefore

(a+ bi)(a− bi)

a2 + b2
= 1.

Thus c =
a

a2 + b2
and d =

−b

a2 + b2
are both in Q, and the

multiplicative inverse c+ di ∈ Q[i] is

a

a2 + b2
− b

a2 + b2
i.

(b) We will use the fact that Q[
√
2] ⊂ R. First we show, using the subring

criterion (Lemma 1.8) that Q[
√
2] is a subring of R. For a, b, c, d ∈ Q,

we have

SR1: (a+ b
√
2)− (c+ d

√
2) = (a− c) + (b− d)

√
2 ∈ Q[

√
2].

SR2: (a+ b
√
2) · (c+ d

√
2) = (ac+ 2bd) + (ad+ bc)

√
2 ∈ Q[

√
2].

SR3: The multiplicative identity of R and Q[
√
2] is 1 = 1 + 0

√
2.

Finally, we find the multiplicative inverses of elements in Q[
√
2]. Let

a, b ∈ Q, with at least one of a or b non-zero, and consider
a+ b

√
2 ∈ Q[

√
2]. We wish to find c, d ∈ Q such that

(a+ b
√
2)(c+ d

√
2) = 1.

Observe that (a+ b
√
2)(a− b

√
2) = a2 − 2b2 is in Q, and is non-zeroIf a2 − 2b2 were 0 with at least

one of a and b non-zero then b
must be non-zero and so a2

b2
= 2.

This gives the contradiction that√
2 = a

b
∈ Q.

since
√
2 is irrational. Thus,

(a+ b
√
2)(a− b

√
2)

a2 − 2b2
= 1.

Therefore, we may take

c =
a

a2 − 2b2
, d =

−b

a2 − 2b2
,

noting that this choice satisfies c, d ∈ Q, and therefore
c+ d

√
2 ∈ Q[

√
2]. Hence, the inverse of a+ b

√
2 is

a

a2 − 2b2
+

b

2b2 − a2

√
2.
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Solution to Exercise 2.1

(a) Working in Q[x]:

(i) f(x) + g(x) = 9x4 + 2x3 + 7x2 − x− 2

(ii) f(x)g(x) = 18x7 + 14x5 − 29x4 + 2x3 − 21x2 + 3x− 3.

(b) Working in Z7[x], we can reduce the answer to part (a) modulo 7:

(i) f(x) + g(x) ≡ 2x4 + 2x3 + 6x+ 5 (mod 7)

(ii) f(x)g(x) ≡ 4x7 + 6x4 + 2x3 + 3x+ 4 (mod 7).

(c) Working in Z2[x], we can reduce the answer to part (a) modulo 2:

(i) f(x) + g(x) ≡ x4 + x2 + x (mod 2)

(ii) f(x)g(x) ≡ x4 + x2 + x+ 1 (mod 2).

Solution to Exercise 2.2

(a) deg(f) = 2

(b) deg(g) = 1

f(x)g(x) = (2x2 + x+ 3)(3x+ 1)(c)

= 2 · 3x3 + (2 + 3)x2 + (3 · 3 + 1)x+ 3

≡ 5x2 + 4x+ 3 (mod 6).

From this, we see that deg(fg) = 2. Note that this is less than
deg(f) + deg(g) = 3.

Solution to Exercise 2.3

(a) f(x) + g(x) = (2x3 + 4x2 − 1) + (3x3 + 3x2 − 2x) =
5x3 + 7x2 − 2x− 1 ≡ 2x2 − 2x− 1 (mod 5). Therefore deg(f + g) = 2.

(b) f(x) + g(x) = (1 + x) + (1− x) = 2, and therefore deg(f + g) = 0.

Solution to Exercise 2.4

(a) Since g(x) is an associate of f(x), there exists a unit u ∈ F [x] such
that g(x) = uf(x). By Lemma 2.6, deg(g) = deg(uf)
= deg(u) + deg(f), and since deg(u) = 0 by Lemma 2.9, we have
deg(f) = deg(g).

(b) Let f(x) be a polynomial of degree deg(f) = n over F with leading
coefficient an 6= 0. Since an ∈ F , there exists a multiplicative inverse
a−1

n ∈ F of an, and so the polynomial a−1

n f(x) is an associate of f(x),
and has leading coefficient equal to 1. That is, the polynomial
a−1

n f(x) is monic.

Moreover, it is the unique monic associate: a−1
n is the unique inverse

of an in F , and so any other associate of f(x) cannot be monic.
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Solution to Exercise 3.1

(a)

x2 − x + 2

x− 1 x3 − 2x2 + 3x − 1
x3 − x2

− x2 + 3x − 1
− x2 + x

2x − 1
2x − 2

1

Thus q(x) = x2 − x+ 2 and r(x) = 1.

(b)

2x2 − 2

x2 + 1 2x4 − x + 1
2x4 + 2x2

− 2x2 − x + 1
− 2x2 − 2

− x + 3

Thus q(x) = 2x2 − 2 and r(x) = −x+ 3.

(c)
3

2
x2 − 7

4
x + 7

8

2x+ 1 3x3 − 2x2 + 1

3x3 + 3

2
x2

− 7

2
x2 + 1

− 7

2
x2 − 7

4
x

7

4
x + 1

7

4
x + 7

8

1

8

Thus q(x) = 3

2
x2 − 7

4
x+ 7

8
and r(x) = 1

8
.

Solution to Exercise 3.2

(a) Since g divides f , there exists a polynomial a ∈ F [x] such that f = ag.
Now, using the distributivity of addition and multiplication in F [x],
we have

f + gh = ag + gh = g(a+ h),

which shows that g is a factor of f + gh.

(b) Since g divides f , we can write f = ag for some a ∈ F [x]. Similarly,
since h divides g, there exists b ∈ F [x] such that g = bh. Now, by
associativity of multiplication in F [x],

f = ag = a(bh) = (ab)h,

which shows that f is divisible by h.
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(c) Since h divides f and g, we can write f = ch and g = dh for some
c, d ∈ F [x]. Now, using associativity of multiplication and the
distributive laws, we see that h divides af + bg:

af + bg = a(ch) + b(dh) = (ac)h+ (bd)h = (ac+ bd)h.

(d) If f and g are associates then there exists a ∈ F such that
g(x) = af(x), which immediately shows that g is divisible by f .
Moreover, we can write a−1g(x) = f(x), which shows that f is
divisible by g.

For the other direction, suppose g divides f and f divides g. Then
there exist polynomials a, b ∈ F [x] such that g = af and f = bg. We
will have finished if we can show that a and b are inverses, since this
would imply a ∈ F, so that g is an associate of f . We write

f = bg = b(af) = (ba)f.

Then by Lemma 2.10 we have 1 = 1x = ba, and therefore a = b−1 as
required.

Solution to Exercise 3.3

(a) Since f and g are coprime, there exist a, b ∈ F [x] such that
1x = af + bg. Multiplying this through by h gives

h = afh+ bgh.

Next, as f divides h there exists c ∈ F [x] such that h = cf . Similarly
there exists d ∈ F [x] such that h = dg, and we substitute these in to
the right-hand side to get

h = af(dg) + bg(cf) = (ad+ bc)fg,

which shows that fg divides h.

(b) Since hcf(f, g) = 1x, there exist a, b ∈ F [x] such that 1x = af + bg.
We multiply this through by h to get

h = afh+ bgh.

Next, since f divides gh, there exists c ∈ F [x] such that gh = cf .
Substituting this into the above equation gives

h = afh+ b(cf) = (ah+ bc)f,

which shows that f divides h.
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Solution to Exercise 3.4

(a) Using polynomial long division, we apply the Euclidean Algorithm:

(x3 + 2x2 − x− 2) = (x+ 6)(x2 − 4x+ 3) + (20x− 20)

(x2 − 4x+ 3) = 1

20
(x− 3)(20x− 20) + 0.

Hence in Q[x],
hcf(x3 + 2x2 − x− 2, x2 − 4x+ 3) = 1

20
(20x− 20) = x− 1.

(b) From the above calculation,
x− 1 = 1

20

(

(x3 + 2x2 − x− 2)− (x+ 6)(x2 − 4x+ 3)
)

and so

x− 1 = 1

20
(x3 + 2x2 − x− 2)− 1

20
(x+ 6)(x2 − 4x+ 3). That is,

s = 1

20
and t = − 1

20
(x+ 6).

Solution to Exercise 3.5

(a) First, we divide f(x) = 2x3 + 3x2 + 2x− 1 by g(x) = x2 + x using
polynomial long division:

f(x) = (2x+ 1)g(x) + (x− 1).

Next, we divide g(x) by the remainder, x− 1:

g(x) = (x+ 2)(x− 1) + 2.

This tells us that hcf(f, g) = 1

2
· 2 = 1.

(b) Working backwards through the Euclidean Algorithm,

2 = g(x)− (x+ 2)(x− 1)

= g(x)− (x+ 2) [f(x)− (2x+ 1)g(x)]

= −(x+ 2)f(x) + (2x2 + 5x+ 3)g(x).

Dividing by 2, this gives a(x) = −1

2
x− 1, and b(x) = x2 + 5

2
x+ 3

2
.

Solution to Exercise 3.6

(a) First, polynomial long division gives

x4 − x3 + x2 − 1 = (x− 1)(x3 − 1) + (x2 + x− 2).

Dividing x3 − 1 by the remainder gives

x3 − 1 = (x− 1)(x2 + x− 2) + (3x− 3).

The remainder here is 3x− 3 = 3(x− 1) and we can see by inspection
that x2 + x− 2 = (x− 1)(x+ 2), which allows us to conclude that the
hcf is x− 1. Therefore, by Proposition 3.12,

lcm(x3 − 1, x4 − x3 + x2 − 1) =
(x3 − 1) · (x4 − x3 + x2 − 1)

x− 1

= (x2 + x+ 1) · (x4 − x3 + x2 − 1)

= x6 + x4 − x− 1.
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(b) Dividing one by the other gives

x3 + 5x2 + 8x+ 4 = 1 · (x3 + x2 − 8x− 12) + (4x2 + 16x+ 16).

The remainder is 4x2 + 16x+ 16 = 4(x2 + 4x+ 4), and so we can now
divide x3 + x2 − 8x− 12 by x2 + 4x+ 4 to get

x3 + x2 − 8x− 12 = (x− 3)(x2 + 4x+ 4).

Therefore hcf(x3 + x2 − 8x− 12, x3 + 5x2 + 8x+ 4) = x2 + 4x+ 4.

Finally, using Proposition 3.12,

lcm(x3 + x2 − 8x− 12, x3 + 5x2 + 8x+ 4)

=
(x3 + x2 − 8x− 12) · (x3 + 5x2 + 8x+ 4)

x2 + 4x+ 4

= (x− 3) · (x3 + 5x2 + 8x+ 4)

= x4 + 2x3 − 7x2 − 20x− 12.

Alternatively, note that x3 + x2 − 8x− 12 = (x− 3)(x+ 2)2 and
x3 + 5x2 + 8x+ 4 = (x+ 1)(x+ 2)2, and so

lcm(x3 + x2 − 8x− 12, x3 + 5x2 + 8x+ 4) = (x− 3)(x+ 1)(x+ 2)2,

which when expanded gives the same result.
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