As mentioned earlier, much of the innovation literature is focused on individual elements, such as technology or an idea. System eco-innovation is an attempt to move away from this more narrow focus to engage in discussion about system-level change. As you have already seen, quite what is understood as the ‘system’ is dependent on who is describing the system and the boundaries being drawn. In this sense, the ‘system’ may be the individual organisation (and all its component elements) or the organisation as part of a supply chain and particular part of the economy.
Approximate reading time: 10 minutes
Read Section 4.3 ‘System eco-innovation: measuring up to the challenge’ on pages 36–8 of the EIO’s annual report ‘Europe in Transition: Paving the Way to a Green Economy through Eco-innovation’ (EIO, 2013).
Allow about 10 minutes
Briefly define system eco-innovation and summarise the main points made in the reading.
Provide your answer...
System eco-innovation is defined as a ‘series of connected innovations that improve or create new systems delivering desired functions while reducing environmental impact’ (EIO, 2013, p. 36).
As set out in the accompanying text, notably, this definition refers to the whole system rather than a focus on its individual components or elements.
The main points discussed in this section include the following:
The reading also contains an interesting graphical representation of innovation, an interpretation of which is shown in Figure 6.
While some of the detail is less important, the figure shows innovation according to the degree of change (from incremental to radical) and the scope of change (from individual elements, such as a product, through to system level). You will notice that the figure does not explicitly refer to ‘disruptive’ innovation.
The lower left quadrant is where incremental innovation is located – essentially improving existing components, processes or products. An example would be improving the manufacturing process of a light bulb or reducing its toxic components. Directly above this, innovations in the subsystem encompass some aspects of system, but not all. An example might be innovations in the supply chain of the materials obtained for manufacturing the light bulb. Or innovations in the lighting sector more widely, such as introducing LEDs into domestic markets. The upper left quadrant is when innovations occur at societal level – arguably, the adoption of CFLs in the EU would be situated here.
The lower right quadrant is where radical changes in individual components, processes or ideas are situated. An example might be a solar panel. The middle right quadrant corresponds to subsystem innovations, such as a manufacturer improving the environmental aspects of the supply chain of its solar panel components and, more radically, disposal options, including buy-back. The upper right quadrant is the arena for locating transformative system-level eco-innovation. This might include rethinking the way domestic energy is generated, leading to system-level transformations in domestic energy production and use.
As noted earlier, where a particular product, process or idea is located on this grid is dependent on the perspective of the person. If you consider a CFL light bulb to be a radical lighting technology, you might move it to the right-hand quadrants. If you see it as just one small improvement, you might locate it on the left-hand side of the graphic.
It is also important to be aware that this graphic assumes innovations of any type are essentially positive. It does not provide room for locating negative innovations that could engender system-level transformation but with highly negative environmental impacts. Arguably, the invention of the internal combustion engine and its ubiquitous adoption for personal transport in the twentieth century has led to a wide range of environmental impacts associated with resource use and pollution. On the basis of this graphic, would we be justified in placing the engine, the car and road transport systems on the right-hand side?
OpenLearn - Organisations, environmental management and innovation Except for third party materials and otherwise, this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence, full copyright detail can be found in the acknowledgements section. Please see full copyright statement for details.