Skip to content
Skip to main content

About this free course

Download this course

Share this free course

Understanding antibiotic resistance
Understanding antibiotic resistance

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

References

Baym, M., Lieberman, T., Kelsic, E., Chait, R., Gross, R., Yelin, I. and Kishony, R. (2016) ‘Spatiotemporal microbial evolution on antibiotic landscapes’, Science, vol. 353, no. 6304, pp. 1147–51 [Online]. Available at http://science.sciencemag.org/ content/ 353/ 6304/ 1147 [Tip: hold Ctrl and click a link to open it in a new tab. (Hide tip)] (Accessed 30 October 2017).
Bonnet, R. (2004) ‘Growing group of extended-spectrum β-lactamases: the CTX-M enzymes’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 1–14 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC310187/ (Accessed 17 November 2017).
Cantón, R. and Coque, T. M. (2006) ‘The CTX-M β-lactamase pandemic’, Current Opinion in Microbiology, vol. 9, no. 5, pp. 466–75 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1369527406001342 (Accessed 15 November 2017).
Carattoli, A. (2013) ‘Plasmids and the spread of resistance’, International Journal of Medical Microbiology, vol. 303, no. 6–7, pp. 298–304 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1438422113000167 (Accessed 15 November 2017).
Cartelle, M., del Mar Tomas, M., Molina, F., Moure, R., Villanueva, R. and Bou, G. (2004) ‘High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2308–13 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC415568/ pdf/ 0618-03.pdf (Accessed 17 November 2017).
Chen, Y., Delmas, J., Sirot, J., Shoichet, B. and Bonnet, R. (2005) ‘Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability’, Journal of Molecular Biology, vol. 348, no. 2, pp. 349–62 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S0022283605001634 (Accessed 17 November 2017).
Falgenhauer, M., Yao, Y., Fritzenwanker, M., Schmiedel, J., Imirzalioglu, C., Chakraborty, T. (2014) ‘Complete Genome Sequence of Phage-Like Plasmid pECOH89, Encoding CTX-M-15’, Genome Announc. vol. 2, no. 2, pp. e00356-14 [Online] Available at https://mra.asm.org/ content/ 2/ 2/ e00356-14.short (Accessed 9th October 2018)
Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R. and Philippon, A. (2002) ‘β-Lactamases of Kluyvera ascorbata, Probable progenitors of some plasmid-encoded CTX-M types’, Antimicrobial Agents and Chemotherapy, vol. 46, no. 9, pp. 3045–9 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC127423/ (Accessed 14 November 2017).
Potron, A., Nordmann, P., Rondinaud, E., Jaureguy, F. and Poirel, L. (2013) ‘A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance’, Journal of Antimicrobial Chemotherapy, vol. 68, no. 2, pp. 476–7 [Online]. Available at https://academic.oup.com/ jac/ article/ 68/ 2/ 476/ 674526 (Accessed 15 November 2017).
Smet, A., Van Nieuwerburgh, F., Vandekerckhove, T. T. M., Martel, A., Deforce, D., Butaye, P. and Haesebrouck, F. (2010) ‘Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences’, PLoS ONE, vol. 5, no. 6, p. e11202 [Online]. Available at http://journals.plos.org/ plosone/ article?id=10.1371/ journal.pone.0011202 (Accessed 15 November 2017).