Moons of our Solar System
Moons of our Solar System

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

Free course

Moons of our Solar System

2.2 Minerals under the microscope

The first step to understanding rocks on the surface of the Moon is recognising the different minerals and the mineral textures of those rocks. We know how these minerals form on Earth from our study of volcanoes, so we can extrapolate to understand how the rocks on the Moon were formed.

We can determine mineral structure and composition using a microscope to study thin sections of rock only 30 micrometres (0.03 mm) thick, which are almost transparent (1 micrometre is one-millionth of 1 metre). In thin sections, the crystals show a range of colours and textures, which allows them to be identified and categorised.

Rocks are examined under the microscope using polarised light, in other words light vibrating exclusively in one direction, as seen when you look through Polaroid sunglasses. (Polaroid is the name for a plastic used to polarise light.) The rocks can be observed using one polarising filter, or two. A microscope with two polarising filters, at right angles, blocks out all the light until a thin section of rock is introduced between the two polarisers. This changes the polarisation of the light hitting the second polariser and now some light gets through. The colours of the light are called birefringence colours and are diagnostic of the minerals. Some minerals and glass do not alter the polarisation of the light and remain black between crossed polars. Finally there are some minerals – mostly oxides and sulfides or metals such as iron and titanium – that appear black under any kind of light. Such minerals are called opaque since no light passes through them even in thin sections, but in such cases reflected light can reveal structural information.

Described image
Figure 15 Thin section of a Moon rock seen in different lighting conditions.

Figure 15 was taken of one thin section of lunar mare basalt. The field of view is about 3 mm across. What can be seen is a piece of glass with minerals embedded in it. On the left you can see a range of different minerals and glass in plane-polarised light; on the right, the same view is shown with the thin section between crossed polars. Note some of the minerals are coloured in plane-polarised light and between crossed polars, whereas the glass is black in both views. This feature, combined with colours and variations as the sample is rotated, allows geologists to identify, characterise and discriminate minerals under the microscope.


Take your learning further

Making the decision to study can be a big step, which is why you'll want a trusted University. The Open University has 50 years’ experience delivering flexible learning and 170,000 students are studying with us right now. Take a look at all Open University courses.

If you are new to University-level study, we offer two introductory routes to our qualifications. You could either choose to start with an Access module, or a module which allows you to count your previous learning towards an Open University qualification. Read our guide on Where to take your learning next for more information.

Not ready for formal University study? Then browse over 1000 free courses on OpenLearn and sign up to our newsletter to hear about new free courses as they are released.

Every year, thousands of students decide to study with The Open University. With over 120 qualifications, we’ve got the right course for you.

Request an Open University prospectus371