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Unit GTA1 Symmetry

Introduction to Group Theory Block A

This block is the first of two concerning a branch of mathematics known as
group theory. It introduces the basic ideas leading up to a simple, yet
powerful result known as Lagrange’s Theorem, which underpins much of
the development of the subject. The second block, Group Theory Block B,
investigates the theory further.

Groups appear in many branches of pure mathematics. They also occur
naturally in other fields, such as chemistry and physics.

We introduce the idea of a group by using the geometric concept of
symmetry. Symmetry occurs in nature in many ways; for example, the
human form is (outwardly) symmetric, as are many biological, chemical
and geological forms.

We investigate symmetry groups, groups arising out of addition and
multiplication (including modular arithmetic) and permutation groups.
We use tables, known as group tables, to represent small groups, and
discover special types of groups, including cyclic groups and Abelian

groups. We find subsets of groups which are groups in their own right, and
which we call subgroups. We then show that each subgroup can be used to
define a partition of the group into cosets. These cosets play a central role
in the proof of Lagrange’s Theorem.

Although one of the goals of this block is to establish some abstract theory,
our approach throughout will be to introduce and illustrate the ideas using
concrete examples.
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Introduction

Introduction

In this unit we use the geometric concept of symmetry to introduce some
of the basic ideas of group theory, including group tables, and the four
properties, or axioms, that define a group.

In Section 1 we discuss intuitive ideas of symmetry for a two-dimensional
figure, and define the set of symmetries of such a figure. We then view
these symmetries as functions that combine under composition, and show
that the resulting structure has properties known as closure, identity,
inverses and associativity . We use these properties to define a group in
Section 3.

In Section 2 we develop an algebraic notation for recording symmetries,
and demonstrate how to use the notation to calculate composites of
symmetries and the inverse of a symmetry.

Section 3 is the audio section. We begin by defining the terms group,
Abelian group and order of a group. We then demonstrate how to check
the group axioms, and we extend the examples of groups that we use to
include groups of numbers—the modular arithmetics, the integers and the
real numbers.

In Section 4 we prove that some of the properties of the groups appearing
earlier in the unit are, in fact, general properties, shared by all groups. In
particular, we prove that in any group the identity element is unique, and
that each element has a unique inverse.

Finally, in Section 5, the video section, we extend our ideas of symmetry to
three dimensions and consider, in particular, the regular (Platonic) solids.

Study guide
The main content of this unit is in the first three sections, all of which are
quite substantial. You should study these sections thoroughly and in order.

By contrast, the details of the proofs in Section 4 are less important, and
you should not spend a lot of time struggling with them if you find them
difficult to follow. However, you need to know the results, particularly the
uniqueness results; you also need to be able to use the results, so you
should tackle the exercises in this section.

The video section is fairly free-standing, although before watching it you
should be familiar with the group axioms, given at the beginning of
Section 3.

This is quite a substantial unit and you may find that the study time
needed for it is slightly greater than for an average unit.
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Unit GTA1 Symmetry

1 Symmetry in R2

After working through this section, you should be able to:

(a) explain what is meant by a symmetry of a plane figure;

(b) specify symmetries of a bounded plane figure as rotations or
reflections;

(c) describe some properties of the set of symmetries of a plane figure;

(d) explain the difference between direct and indirect symmetries.

1.1 Intuitive ideas of symmetry
We begin by considering some intuitive ideas of symmetry. Probably you
think of symmetry in terms of figures like a heart-shape, which has two
‘equal and opposite’ halves, or like a capital N, which can be thought of as
being made up of two equal pieces. Mathematically, we can express these
ideas in terms of transformations which leave the figure as a whole looking
the same.

The heart-shape, for example, has reflectional symmetry because a
reflection in the axis of symmetry leaves the figure looking the same.
Similarly, the letter N has rotational symmetry because a half-turn about
the centre leaves the figure looking the same. Rotational symmetry need
not involve a half-turn: in other circumstances it may involve a
quarter-turn or a third of a turn, for example.

Rotations and reflections can be used to describe symmetry because they
are transformations of the plane that preserve distances between points.
That is, the distance between any two points is the same as the distance
between their images. Such transformations act on a figure like the
heart-shape without distorting its size or shape.

We can apply our ideas of symmetry to any plane figure, but we shall
choose many of our examples from the regular polygons.

In order to develop our ideas of symmetry, we look at the square.

We consider the square to be a subset of the plane, with its four vertices
located at definite positions in R2. This means that the size of the square,
its location in the plane and its orientation are completely determined. We
keep track of the configuration of the square by putting distinguishing
marks at two of the corners.

*

We define a symmetry of the square to be a transformation of the plane
that maps the square to itself and preserves distances between points. The
technical name for a function that preserves distances is an isometry. The
only isometries of the plane are translations, rotations and reflections, and
combinations of these. Any non-trivial translation alters the location of The trivial translation is the

translation through zero
distance; all other translations
are non-trivial.

the square in the plane and so cannot be a symmetry of the square.
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Section 1 Symmetry in R2

We therefore consider only rotations and reflections as potential
symmetries of the square.

To specify a rotational symmetry of a figure, we need to give a point which
is the centre of rotation and the angle through which the figure is turned.
Note that we always measure angles anticlockwise, and interpret negative
angles as clockwise. The angle π/2, for example, means an anticlockwise
rotation through π/2 radians, whereas −π/2 means a clockwise rotation
through π/2 radians.

*

*

The square has four rotational symmetries: rotations about the centre of
the square through 0, π/2, π and 3π/2 radians (anticlockwise) all map the
square to itself. A rotation through 0 radians is equivalent to not moving
the square, and we call this the identity symmetry.

* *

* *

*

A rotation through 2π radians returns the square to its original position
and so is the same symmetry as the identity symmetry. Similarly, a
rotation through 5π/2 radians is the same symmetry as a rotation through
π/2 radians because its overall effect on the square is the same. A rotation
through −π/2 radians is the same symmetry as a rotation through 3π/2
radians because a rotation through π/2 radians clockwise has the same
effect on the square as a rotation through 3π/2 radians anticlockwise.

To specify a reflectional symmetry of a figure, we need to give the axis of

symmetry in which the figure is reflected. The square has four such axes of
symmetry: a vertical axis, a horizontal axis and two diagonal axes. So it
has four reflectional symmetries.

* *

* *

*

This completes the set of symmetries of the square. It contains eight
elements: the identity, three non-trivial rotations and four reflections. A trivial rotation is a rotation

through any multiple (positive,
negative or zero) of 2π; all other
rotations are non-trivial.

Exercise 1.1 For each of the following figures, describe the set of
symmetries by drawing diagrams similar to those given above for the
square.
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Unit GTA1 Symmetry

1.2 Formalising ideas of symmetry
Having explored some intuitive ideas of symmetry, we now make some
formal definitions, starting with the definition of a figure.

Definition A plane figure is any subset of the plane R2.

Next we define a symmetry of a plane figure.

Definitions An isometry of the plane is a function f : R2 −→ R2

that preserves distances; that is, for all x, y ∈ R2, the distance
between f(x) and f(y) is the same as the distance between x and y.

A symmetry of a figure F is an isometry mapping F to itself—that
is, an isometry f : R2 −→ R2 such that f(F ) = F .

Remark It is a consequence of these definitions that a symmetry is a One-one functions and onto

functions are defined in Unit I2.one-one and onto function. We prove this later on page 12.

A translation is an isometry; but for a bounded figure such as a square, a A bounded figure in R
2 is a

figure that can be surrounded by
a circle (of finite radius).

non-trivial translation is not a symmetry because it does not map the
figure onto itself. The isometries that interest us as potential symmetries
of bounded plane figures are the following.

The identity: equivalent to doing nothing to a figure. Sometimes the identity is called
the trivial symmetry. It can be
regarded as a zero rotation or a
zero translation.

A rotation: specified by a centre and an angle of rotation.
A reflection: specified by a line—the axis of symmetry.
A combination of the above isometries.

We need to be able to describe formally the situation when two symmetries
are the same. For example, we have seen that a rotation through
2π radians has the same effect on a plane figure as the identity symmetry.

Definition Two symmetries f and g of a figure F are equal if they
have the same effect on F ; that is, f(x) = g(x) for all x ∈ F .

1.3 Symmetries of a plane figure
In this subsection we describe some properties that are shared by all sets
of symmetries of plane figures.

We denote the set of all symmetries of a plane figure F by S(F ). For every
figure F , we include the identity symmetry, usually denoted by e. So every
figure F has a non-empty set of symmetries.

The elements of S(F ) are distance-preserving functions f : R2 −→ R2 such
that f(F ) = F . So we can form the composite of any two elements f and g
in S(F ) to obtain the function g ◦ f : R2 −→ R2.

Let f, g ∈ S(F ). Since f and g both map F to itself, so must g ◦ f ; and
since f and g both preserve distance, so must g ◦ f . Hence g ◦ f ∈ S(F ).
We describe this situation by saying that the set S(F ) is closed under
composition of functions.
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Section 1 Symmetry in R2

Remember that g ◦ f means
f first, then g.

Property 1.1 The set of symmetries S(F ) of a plane figure F is
closed under composition of functions; that is, for all f, g ∈ S(F ),

g ◦ f ∈ S(F ).

We shall look at some examples of composition in S(�), the set of We read S(�) as ‘S-square’.

symmetries of the square. The following diagram shows our standard
labelling for the elements of S(�) which we described in Subsection 1.1.

Many texts use rθ, qφ notation
to describe the symmetries in
S(�), where:

a = rπ/2, b = rπ, c = r3π/2,
r = qπ/2, s = q3π/4,
t = q0, u = qπ/4

.

We explain this notation in
Subsection 1.4, where we use it
to describe the symmetries of a
disc.

The identity symmetry (not shown) is denoted by e.

Remember that the axes are fixed in the plane; so, for example, r means
‘reflect in the vertical axis of symmetry, regardless of any symmetries
already carried out’. You may find it useful to remember the above
notation: the rotations are a, b and c in order of the rotation angle; the
reflections are r, s, t and u starting from the vertical axis of symmetry and
working anticlockwise. We adopt a similar convention for some of the
other regular polygons.

Example 1.1 Find the following composites of symmetries of the square:

a ◦ t, t ◦ a.

Solution We draw pictures with symbols in two corners of the square, as
in Subsection 1.1, to keep track of the composition of the symmetries. You
may like to cut out a square from paper to model the square in the plane.
To physically model a reflection of the square, you have to lift it out of the
plane, turn it over and then replace it in the plane. You will therefore need
to mark the two symbols on both sides of the paper.

**

The following diagram shows the effect of a ◦ t; that is, first t and then a.

*

*

*
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Unit GTA1 Symmetry

Comparing the initial and final positions, we see that the effect of a ◦ t is
to reflect the square in the diagonal from bottom left to top right. This is
the symmetry that we have called u, so

a ◦ t = u.

We summarise this information in a single diagram as follows.

*

**

*

Similarly, we find the composite t ◦ a.

* *

*

*

Comparing the initial and final positions, we see that the effect of t ◦ a is
to reflect the square in the diagonal from top left to bottom right. This is
the symmetry that we have called s, so

t ◦ a = s. Notice that t ◦ a 6= a ◦ t.

Exercise 1.2 With the notation given above, find the following
composites of symmetries of the square:

b ◦ c, s ◦ s, t ◦ s.
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Section 1 Symmetry in R2

Example 1.1 and Exercise 1.2 illustrate a number of properties of
composition of symmetries of a figure F .

1. Order of composition is important.

For example, in Example 1.1 we saw that

a ◦ t = u but t ◦ a = s.

In general, if f, g ∈ S(F ), then g ◦ f may not be equal to f ◦ g. That
is, in general, composition of symmetries is not commutative.

2. Composition of rotations and reflections follows a standard pattern.

rotation ◦ rotation = rotation

rotation ◦ reflection = reflection

reflection ◦ rotation = reflection

reflection ◦ reflection = rotation

For example, in S(�),

b ◦ c = a,

a ◦ t = u,

t ◦ a = s,

t ◦ s = a.

We can summarise this information in a table.

◦ rotation reflection

rotation rotation reflection
reflection reflection rotation

Note that any bounded plane figure can have at most one centre of
non-trivial rotation, and that any axis of symmetry will pass through
this centre.

3. Composing a reflection with itself gives the identity.

For example, in S(�),

r ◦ r = e, s ◦ s = e, t ◦ t = e, u ◦ u = e.

This should be no surprise! If you reflect twice in the same axis you get
back to where you started.

Exercise 1.3 The following diagrams show our standard labelling for
the symmetries of a 4-windmill and a rectangle. We denote these sets
of symmetries by S(wind) and S( ), respectively. In each case, the
identity symmetry (not shown) is denoted by e. We shall usually
assume this without further comment.

(a) For the 4-windmill, find the following composites of symmetries:

a ◦ a, a ◦ b, a ◦ c.

(b) For the rectangle, find the following composites of symmetries:

a ◦ r, a ◦ s, r ◦ s.
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Unit GTA1 Symmetry

Exercise 1.4 The following diagram shows our standard labelling for
the symmetries of an equilateral triangle. We denote this set of
symmetries by S(△).

The labelling of the reflections
here does not follow the
convention described on page 9.

Find the following composites of symmetries of the equilateral triangle:

a ◦ b, a ◦ r, s ◦ t.

At the beginning of this subsection, we stated that any plane figure has at
least one symmetry—the identity symmetry—and so S(F ), the set of
symmetries of a plane figure F , is non-empty. We shall note the existence
of an identity as our second property of symmetries; we note also that the
identity symmetry e composed with any symmetry f ∈ S(F ), in either
order, is simply f .

Property 1.2 The set S(F ) contains an identity symmetry e such
that, for each symmetry f ∈ S(F ),

f ◦ e = f = e ◦ f.

We remarked earlier that a symmetry f : R2 −→ R2 is a one-one and onto
function. This is because it is distance preserving. To see that f is
one-one, suppose that x and y are any two points of R2 such that
f(x) = f(y). Then the distance between f(x) and f(y) is zero and so the
distance between x and y must be zero also. Hence x = y, as required.

To see that f is onto, we use the fact that f leaves the size and shape of
figures unchanged. In particular any circle centred at the origin O is
mapped by f to a circle (of the same radius) centred at O′ = f(O). To see
how this observation helps, let x′ be an element in the codomain R2 of f .
If r is the distance from x′ to O′, then x′ lies on the circle C ′ of radius r
centred at O′. By our observation, C ′ is the image of the circle C of
radius r centred at O, so x′ must be the image of some point x on C.
Since x′ is an arbitrary point of the codomain, f must be onto.

Because any symmetry f ∈ S(F ) is a one-one and onto function, it must
have an inverse function f−1 : R2 −→ R2. Moreover, since f preserves
distances and maps F to itself, so must f−1. In other words, f−1 is also a
symmetry of F , so f−1 ∈ S(F ). The composite of f and f−1, in either
order, must be the identity symmetry e.

Property 1.3 For each symmetry f ∈ S(F ), there is an inverse

symmetry f−1 ∈ S(F ) such that

f ◦ f−1 = e = f−1 ◦ f.

12



Section 1 Symmetry in R2

We illustrate this property by looking again at S(�).

Example 1.2 Find the inverse of each of the elements of S(�).

Solution The symmetry a is a rotation through π/2 about the centre.
We should expect the inverse of a to be a rotation through −π/2; this is
the same symmetry as c, a rotation through 3π/2. Composing a and c in
either order results in a full turn, which returns each point of the square to
its original position. So we have

a ◦ c = e = c ◦ a, (1.1)

and we write

a−1 = c.

Equations (1.1) show that a is the inverse of c, so we can write

c−1 = a.

The symmetry b is a rotation through a half-turn, and composing b with
itself returns the square to its original position. So

b ◦ b = e In this case, the two equations
corresponding to Property 1.3
are identical.and the symmetry b is its own inverse: b−1 = b. We describe this situation

by saying that b is self-inverse or that b is a self-inverse element.

In our discussion earlier we remarked that when composing a reflection
with itself we obtain the identity, so the elements r, s, t and u in S(�) are
all self-inverse:

r−1 = r, s−1 = s, t−1 = t, u−1 = u.

The element e is unique in S(�) because it has no effect on the square.
Since e ◦ e = e, it follows that e is its own inverse, so

e−1 = e.

We summarise the results of this example in the following table.

Element e a b c r s t u

Inverse e c b a r s t u

Exercise 1.5 Draw up a table of inverses for each of the following sets
of symmetries.

(a) S(wind)

(b) S( )

(c) S(△)

There is one further important property of composition of symmetries of a
figure F , which is not as obvious as those that we have considered so far.
This property is called associativity and is a general property of
composition of functions. The following figure shows two ways of
composing three symmetries f , g and h in that order. We can begin with
the composite g ◦ f , and compose that with h on the left as h ◦ (g ◦ f). Remember that g ◦ f means

f first, then g.Alternatively, we can begin with f , and compose that with the composite
h ◦ g on the left to form (h ◦ g) ◦ f .
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Unit GTA1 Symmetry

These two approaches give identical results because each one means ‘do f
first, then g and then h’. Formally, we write

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

In practical terms, associativity means that we may dispense with brackets
in writing a composite of three elements: there is no ambiguity in writing For example,

a ◦ b ◦ c ◦ d = (a ◦ b) ◦ (c ◦ d)

= a ◦ (b ◦ c) ◦ d

= ((a ◦ b) ◦ c) ◦ d.

h ◦ g ◦ f . It means also that we may group or regroup elements in a large
expression to suit our purposes, provided that we do not alter the order in
which the elements appear.

Property 1.4 Composition of symmetries is associative; that is, for Subtraction, for example, is not
associative:

10− (7− 3) 6= (10− 7)− 3.
all f, g, h ∈ S(F ),

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Exercise 1.6 In S(�), check that In Example 1.1 we found that
a ◦ t = u and t ◦ a = s.

a ◦ (t ◦ a) = (a ◦ t) ◦ a.

Symmetries of a regular ngon

We close this subsection by generalising our observations about the
equilateral triangle and the square to the regular n-gon. A regular n-gon is
a polygon with n equal edges and n equal angles, and it has both
rotational and reflectional symmetries. For example, an equilateral triangle
has six symmetries: three rotations and three reflections. A square has Recall that we may think of the

identity symmetry e as a
rotation.

eight symmetries: four rotations and four reflections.

In general, a regular n-gon has 2n symmetries: n rotations (through
multiples of 2π/n) and n reflections in the axes of symmetry through the
centre.
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Section 1 Symmetry in R2

For odd values of n, each of the n axes of symmetry passes through a
vertex and the midpoint of the opposite edge.

For even values of n, there are 1
2n axes of symmetry which pass through

opposite vertices and 1
2n axes of symmetry which pass through the

midpoints of opposite edges.

1.4 Symmetries of the disc
A bounded figure that we have not considered yet is the disc. Rotation
about the centre through any angle is a symmetry of the disc. Likewise,
reflection in any axis through the centre is a symmetry of the disc. Thus
the disc has infinitely many rotational and infinitely many reflectional
symmetries.

We cannot use individual letters to label these symmetries, so we denote a
rotation about the centre through an angle θ by rθ, and a reflection in the
axis of symmetry making an angle φ with the horizontal axis by qφ.

Rotations through θ and θ+ 2kπ, for k ∈ Z, produce the same effect, so we
restrict the angles of rotation to the interval [0, 2π). Reflection in the line
at an angle φ to the horizontal produces the same effect as reflection in the
line at an angle φ+ π to the horizontal (in fact, it is the same line), so we
restrict the angles for axes of symmetry to the interval [0, π).

The symmetries of the disc are:

rθ: rotation through an angle θ about the centre, for
θ ∈ [0, 2π);

qφ: reflection in the line through the centre at an angle φ to
the horizontal (measured anticlockwise), for φ ∈ [0, π).
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Unit GTA1 Symmetry

The identity symmetry e is r0, the zero rotation. Note that q0 is reflection
in the horizontal axis and is not the identity symmetry.

We denote the set of symmetries of the disc by S(©), read as ‘S-disc’:

S(©) = {rθ : θ ∈ [0, 2π)} ∪ {qφ : φ ∈ [0, π)}.

We can compose these symmetries using pictures similar to those that we
used when composing symmetries in S(�). We keep track of a point on
the disc and the orientation of the disc by marking a small arrow pointing
anticlockwise at a point on the horizontal axis. For example, consider a
rotation through π/2 followed by a rotation through π/4.

The resulting symmetry is a rotation through 3π/4, and we may write this
as

rπ/4 ◦ rπ/2 = r3π/4.

Now consider a reflection in the axis making an angle π/2 with the
horizontal axis, followed by a reflection in the axis making an angle π/4
with the horizontal axis.

The resulting symmetry is a rotation through an angle 3π/2, and we may
write this as

qπ/4 ◦ qπ/2 = r3π/2.

16



Section 1 Symmetry in R2

As a final example, consider a rotation through an angle π/2 followed by a
reflection in the axis making an angle π/4 with the horizontal axis. You
may expect this composite to be a reflection, and this is indeed the case.

The resulting symmetry is a reflection in the horizontal axis, and we may
write this as

qπ/4 ◦ rπ/2 = q0.

Exercise 1.7 Find the composite rπ/4 ◦ qπ/2.

The general formulas for the composition of elements in S(©) are
summarised in the following table. For example, qπ followed by rπ/2

results in

rπ/2 ◦ qπ = q(π/4+π) (mod π)

= q5π/4 (mod π)

= qπ/4.

◦ rθ qθ

rφ r(φ+θ) (mod 2π) q( 1
2
φ+θ) (mod π)

qφ q(φ− 1

2
θ) (mod π) r2(φ−θ) (mod 2π)

Rather than derive these general formulas, we ask you to verify each of
them in a specific case.

Exercise 1.8 Check that the formulas given in the table hold for the
following four examples of composites already found:

rπ/4 ◦ rπ/2, qπ/4 ◦ qπ/2, qπ/4 ◦ rπ/2, rπ/4 ◦ qπ/2.

1.5 Direct and indirect symmetries
You may have noticed that, in most of the sets of symmetries of plane
figures that we have considered, the symmetries are of two sorts: those
that we can demonstrate with a model without turning it over, and those
for which we need to take the model out of the plane, turn it over and
replace it in the plane. In the case of a symmetry group of a bounded
plane figure, the former are rotations and the latter are reflections. For
example, for S(�) it is possible to obtain all the reflections by turning the
model over and then rotating it. We illustrate this in the following
diagram using the reflected model shown in the margin.

* *

17



Unit GTA1 Symmetry

* *

* *

*

**

*

Definition The symmetries of a plane figure F that we can
physically demonstrate without lifting a model out of the plane to
turn it over are called direct symmetries. We denote the set of direct For example,

S+(�) = {e, a, b, c}, the set of
rotations.

symmetries of a figure F by S+(F ).

The remaining symmetries are called indirect symmetries: they are
the symmetries that cannot be demonstrated physically without
lifting a model out of the plane, turning it over and then replacing it
in the plane.

Remarks

1. Rotations and translations are direct symmetries, whereas reflections
are indirect symmetries.

2. The diagram above for the square illustrates a general result. If a
figure has indirect symmetries, then they can all be obtained by
composing each of the direct symmetries with any one fixed indirect
symmetry. There are therefore two possibilities for a finite symmetry
group of a plane figure. Either the group has no indirect symmetries,
as in S(wind), or it has as many indirect symmetries as direct
symmetries, as in S(�). In other words, a finite symmetry group of a
plane figure comprises either

• all direct symmetries, or

• half direct symmetries and half indirect symmetries.

3. There is another way to model indirect symmetries that does not
involve lifting the figure out of the plane. Here two models are
made—the first to represent the figure and the second to represent the
reflected figure. Direct symmetries can be demonstrated by rotating
the first model and indirect symmetries by rotating the second model.
Thus symmetries that can be demonstrated with the first model are
direct symmetries and those that require the second model are indirect
symmetries.
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Section 1 Symmetry in R2

4. Some unbounded plane figures have indirect symmetries called
glide-reflections. A glide-reflection is a composite of a reflection and
a translation. Rotations, reflections, translations and glide-reflections
are the only possible symmetries of plane figures. We do not consider
glide-reflections further in this course.

Exercise 1.9 Write down the following sets of direct symmetries.

(a) S+(△) (b) S+( )

Draw a diagram for each set (similar to the one for S(�) given on
page 18) to show how the indirect symmetries can be obtained from
the direct symmetries by using just one indirect symmetry.

In Subsection 1.3 we gave some results about composites of rotations and
reflections. These can be generalised to similar results about direct and
indirect symmetries.

direct ◦ direct = direct

direct ◦ indirect = indirect

indirect ◦ direct = indirect

indirect ◦ indirect = direct

◦ direct indirect

direct direct indirect

indirect indirect direct

Further exercises
Exercise 1.10 Describe geometrically the symmetries of each of the
following figures.

Exercise 1.11 The figure shown in the margin is an equilateral curve This is the shape of a 50p coin.

heptagon. Its symmetries are:

seven anticlockwise rotations: e, a, b, c, d, f and g
about the centre through increasing multiples of 2π/7;

seven reflections: r, s, t, u, v, w and x in the axes shown.

Determine the following composites:

b ◦ d, f ◦ g, c ◦ v, x ◦ u.

Exercise 1.12 Draw up a table of inverses for the symmetries of the
equilateral curve heptagon using the notation of Exercise 1.11.
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Exercise 1.13 List the direct symmetries of the equilateral curve
heptagon using the notation of Exercise 1.11. Show how each of the
indirect symmetries can be obtained as the composite of the indirect
symmetry w and a direct symmetry.

2 Representing symmetries

After working through this section, you should be able to:

(a) use a two-line symbol to represent a symmetry;

(b) describe geometrically the symmetry of a given figure which
corresponds to a given two-line symbol;

(c) find the composite of two symmetries given as two-line symbols;

(d) find the inverse of a symmetry given as a two-line symbol;

(e) write down a Cayley table for the set of symmetries of a plane
figure;

(f) appreciate how certain properties of the set of symmetries of a
figure feature in a Cayley table.

2.1 Twoline symbol
So far we have represented symmetries of plane figures by letters, and used
diagrams or models to work out composites. This method is illuminating
but time consuming. In this section we introduce an algebraic notation
which permits us to manipulate and compose symmetries easily, but at the
expense of geometric intuition.

We illustrate the notation in terms of the symmetries of a square. In the
diagram we have labelled the locations of the vertices of the square with
the numbers 1, 2, 3 and 4. In our discussion we consider these numbers as
being fixed to the background plane. So the number 1 is always at the top
left-hand corner of the square in this example. It does not label the vertex
of the square, and so does not move when we apply a symmetry to the
square. We use these numbers to record the effect of a symmetry as follows.

We first consider the effect of the symmetry a (rotation through π/2 about
the centre).

* *

The symmetry a maps the vertices as follows.

shorthand
vertex at location 1 to location 2 1 7−→ 2
vertex at location 2 to location 3 2 7−→ 3
vertex at location 3 to location 4 3 7−→ 4
vertex at location 4 to location 1 4 7−→ 1
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We can think of a as a function mapping the set {1, 2, 3, 4} to itself. Strictly, a symmetry does not
act on the numbers 1, 2, 3, 4.
We use 1, 2, 3, 4 here as
shorthand for ‘the vertex of the
square at location 1’, etc.

a :















1 7−→ 2
2 7−→ 3
3 7−→ 4
4 7−→ 1

or a :
1 2 3 4
↓ ↓ ↓ ↓
2 3 4 1

We model our new notation for a on the second version, omitting the
arrows and enclosing the numbers in parentheses: thus we write

a =

(

1 2 3 4
2 3 4 1

)

.

The symmetry r has the following effect.

* *

Thus the symmetry r

interchanges the vertices at locations 1 and 4,

interchanges the vertices at locations 2 and 3.

So, in our new notation, we write

r =

(

1 2 3 4
4 3 2 1

)

.

The identity symmetry e leaves all the vertices at their original locations,
so we write

e =

(

1 2 3 4
1 2 3 4

)

.

We refer to this notation for recording a symmetry of a plane figure as the
two-line symbol for the symmetry. To specify a symmetry in this form, we
must first give a picture of the figure with labelled locations.

Example 2.1 For the square with vertices at locations 1, 2, 3 and 4,
labelled as shown, describe geometrically the symmetry represented by the
two-line symbol

(

1 2 3 4
2 1 4 3

)

.

Solution This two-line symbol represents a symmetry that

interchanges the vertices at locations 1 and 2,

interchanges the vertices at locations 3 and 4.

Thus the symmetry has the following effect.

*

*

So the two-line symbol represents reflection in the horizontal axis—the
symmetry t.
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Exercise 2.1 Find the two-line symbols representing the remaining
symmetries of the square, namely b, c, s and u, using the labelling of
locations given in Example 2.1.

Exercise 2.2 Find the two-line symbols representing each of the four
symmetries of the labelled rectangle in the margin. (Do not forget e.)

There is no universal way of labelling the locations of a plane figure, so the
two-line symbols depend on the choice of labels. For example, for the
square and rectangle above, reflection in the vertical axis is represented by
a different two-line symbol in each case because we have used different
systems for labelling the locations of the vertices (anticlockwise around the
square, but across the top and bottom of the rectangle).

Usually, we try to maintain an anticlockwise labelling of the locations of
the vertices, starting at the top left.

Now we define formally the two-line symbol representing a symmetry of a
polygonal figure.

Definition Let f be a symmetry of a polygonal figure F which moves
the vertices of the figure F originally at the locations labelled
1, 2, 3, . . . , n to the locations labelled f(1), f(2), f(3), . . . , f(n), We cannot choose f(1), f(2), . . .

arbitrarily here, as f must be a
symmetry of F .

respectively.

The two-line symbol representing f is
(

1 2 3 . . . n
f(1) f(2) f(3) . . . f(n)

)

.

Remarks

1. The order of the columns in the symbol is not important, although we In natural order we would write
(

2 4 3 1
3 1 4 2

)

as

(

1 2 3 4
2 3 4 1

)

.
often use the natural order to aid recognition. For example, using the
location labels as shown, we would normally write the two-line
symbols for the eight symmetries of the square as follows.

rotations reflections

e =

(

1 2 3 4
1 2 3 4

)

r =

(

1 2 3 4
4 3 2 1

)

a =

(

1 2 3 4
2 3 4 1

)

s =

(

1 2 3 4
1 4 3 2

)

b =

(

1 2 3 4
3 4 1 2

)

t =

(

1 2 3 4
2 1 4 3

)

c =

(

1 2 3 4
4 1 2 3

)

u =

(

1 2 3 4
3 2 1 4

)
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2. Not all two-line symbols represent symmetries of a particular figure.

For example, with our choice of labelling,

(

1 2 3 4
1 3 2 4

)

is not a

symmetry of the square because there is no symmetry which
interchanges the vertices at locations 2 and 3, and leaves fixed the
vertices at locations 1 and 4.

Exercise 2.3 Using the given labelling for the locations of the
vertices, write down the two-line symbol for each of the symmetries of
the equilateral triangle.

Exercise 2.4 The following two-line symbols represent symmetries of
the hexagon shown. Describe each symmetry geometrically.

(a)

(

1 2 3 4 5 6
6 5 4 3 2 1

)

(b)

(

1 2 3 4 5 6
3 4 5 6 1 2

)

(c)

(

1 2 3 4 5 6
3 2 1 6 5 4

)

2.2 Composing symmetries
One advantage of the two-line notation for symmetries is that it is easy to
form composites. For example, let us form the composite r ◦ a of
symmetries of the square. We have

a =

(

1 2 3 4
2 3 4 1

)

and r =

(

1 2 3 4
4 3 2 1

)

,

which are shorthand for the functions

a :















1 7−→ 2
2 7−→ 3
3 7−→ 4
4 7−→ 1

and r :















1 7−→ 4
2 7−→ 3
3 7−→ 2
4 7−→ 1

.

So the composite r ◦ a is given by Remember that r ◦ a means
a first, then r.

1 7−→ 2 7−→ 3
2 7−→ 3 7−→ 2
3 7−→ 4 7−→ 1
4 7−→ 1 7−→ 4

; that is,

1 7−→ 3
2 7−→ 2
3 7−→ 1
4 7−→ 4

.

a r r ◦ a

Thus the two-line symbol for r ◦ a is

r ◦ a =

(

1 2 3 4
3 2 1 4

)

;

this is reflection in the diagonal shown—the symmetry u.
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Composing the functions r and a as we did above suggests a method of
combining two-line symbols for symmetries without drawing diagrams.

To determine r ◦ a, the composite of two symmetries r and a written as
two-line symbols, we reorder the columns of the symbol for r to make its
top line match the order of the bottom line of the symbol for a. We then
read off the two-line symbol for the composite r ◦ a as the top line of the
symbol for a and the bottom line of the symbol for r.

For example, in S(�),

r ◦ a =

(

1 2 3 4
4 3 2 1

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

2 3 4 1
3 2 1 4

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

1 2 3 4
3 2 1 4

)

= u.

After some practice, you may find that you can compose two-line symbols
without reordering the columns.

For example, to find r ◦ a in S(�), we first write down

r ◦ a =

(

1 2 3 4
4 3 2 1

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

1 2 3 4
)

.

Then we find the entries of the bottom row in turn.

Now a sends 1 to 2 and r sends 2 to 3, so the composite sends 1 to 3:

r ◦ a =

(

1 2 3 4
4 3 2 1

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

1 2 3 4
3

)

.

Also a sends 2 to 3 and r sends 3 to 2, so the composite sends 2 to 2:

r ◦ a =

(

1 2 3 4
4 3 2 1

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

1 2 3 4
3 2

)

.

The final two entries are found in the same way: a sends 3 to 4 and r
sends 4 to 1, so the composite sends 3 to 1; a sends 4 to 1 and r sends 1
to 4, so the composite sends 4 to 4:

r ◦ a =

(

1 2 3 4
4 3 2 1

)

◦

(

1 2 3 4
2 3 4 1

)

=

(

1 2 3 4
3 2 1 4

)

.

As we have seen already, the order of composition is important. For
example,

a ◦ r =

(

1 2 3 4
2 3 4 1

)

◦

(

1 2 3 4
4 3 2 1

)

=

(

1 2 3 4
1 4 3 2

)

= s,

so

r ◦ a 6= a ◦ r.

Exercise 2.5 Using the two-line symbols for the symmetries of the
equilateral triangle found in Exercise 2.3, find the following
composites:

a ◦ a, b ◦ s, s ◦ b, t ◦ s.
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2.3 Finding the inverse of a symmetry
We saw in Section 1 that every symmetry has an inverse which ‘undoes’ Property 1.3

the effect of the symmetry. There is an easy way to write down the inverse
of a symmetry given by a two-line symbol. Let us consider again the
symmetry a of the square:

a =

(

1 2 3 4
2 3 4 1

)

.

This is shorthand for the function

a :















1 7−→ 2
2 7−→ 3
3 7−→ 4
4 7−→ 1

with inverse a−1 :















2 7−→ 1
3 7−→ 2
4 7−→ 3
1 7−→ 4

, The inverse of a function is
obtained by reversing the arrows
of the function.

so

a−1 =

(

2 3 4 1
1 2 3 4

)

= c.

Reversing the arrows in the mapping a is equivalent to reading the two-line
symbol for a from the bottom to the top. In other words, to find the
inverse of a, we turn the two-line symbol upside down. Reordering the
columns in the symbol into the natural order is optional but it may make
the inverse easier to recognise.

For example,

a =

(

1 2 3 4
2 3 4 1

)

, so a−1 =

(

2 3 4 1
1 2 3 4

)

(turn the symbol
upside down).

=

(

1 2 3 4
4 1 2 3

)

(reorder the
columns).

Exercise 2.6 Find the inverse of each of the following symmetries of a
regular hexagon, given as a two-line symbol.

(a)

(

1 2 3 4 5 6
5 6 1 2 3 4

)

(b)

(

1 2 3 4 5 6
2 1 6 5 4 3

)

(c)

(

1 2 3 4 5 6
4 5 6 1 2 3

)

2.4 Cayley tables
Finally in this section, we consider a way of recording composites of
symmetries. This is by means of a Cayley table. To form the Cayley
table for the elements of a set S(F ) of symmetries, we list the elements of
S(F ) across the top and down the left-hand side of a square array.

e f g · · · x y z

e
f
g
...
x
y
z
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The order in which we choose to list the elements is not important, but it
is important to use the same ordering across the top and down the side.
Normally we put the identity symmetry e first, as shown above. This
square array enables us to list every possible composite of pairs of elements
in S(F ). However, this is practicable only if S(F ) is a small set, and is not
feasible for S(©), which is infinite!

For any two elements x and y of S(F ), the composite x ◦ y is recorded in
the cell in the row labelled x and the column labelled y.

· · · y · · ·

...
...

x · · · x ◦ y · · ·
...

...

Note that x is on the left both in the composite and in the border of the
table. Of course, the composite x ◦ y is the result of performing first the

Arthur Cayley (1821–1895) was
the leading British algebraist of
the nineteenth century. He
helped to lay the groundwork for
the abstract theory of groups
and he developed the algebra of
matrices and determinants.

symmetry y and then the symmetry x.

We have found many of the composites of elements of S(�) already; for
example, a ◦ t = u, t ◦ a = s and r ◦ a = u. The complete Cayley table for
S(�) is as follows.

◦ e a b c r s t u

e e a b c r s t u
a a b c e s t u r
b b c e a t u r s
c c e a b u r s t
r r u t s e c b a
s s r u t a e c b
t t s r u b a e c
u u t s r c b a e

The Cayley table illustrates a number of properties of S(�) to which we
shall refer later.

Closure No new elements are needed to complete the table because
every composite is one of the eight symmetries.

Identity The row and column labelled by the identity e repeat the
borders of the table.

Inverses The identity e occurs when an element is composed with its
inverse, so e appears once in each row and once in each column. Also, e
appears symmetrically in the table.

Self-inverse elements When a self-inverse element is composed with
itself, the identity e appears on the leading diagonal of the table. The leading diagonal or main

diagonal is the diagonal from
top left to bottom right.

Conversely, when e appears on the leading diagonal, the corresponding
element is self-inverse.

Direct and indirect symmetries We have chosen to list the direct
symmetries, e, a, b and c, first, followed by the indirect symmetries, r,
s, t and u. This leads to a ‘blocking’ of the Cayley table, as illustrated
below.
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We shall see an example of
‘blocking’ in another Cayley
table in Section 5.

Exercise 2.7 Using the two-line symbols from Exercise 2.3 to work You found some of these
composites in Exercise 2.5, and
also in Exercise 1.4.

out the composites, construct the Cayley table for the symmetries of
an equilateral triangle.

Exercise 2.8 Using the labelling of the rectangle shown, construct
the Cayley table for S( ).

Further exercises
Exercise 2.9 Describe geometrically the symmetries of the (non-regular)
hexagon shown in the margin. (The sides joining 1 to 6, 2 to 3 and 4 to 5
all have the same length, as do the sides joining 1 to 2, 3 to 4 and 5 to 6.)
Write down the two-line symbol for each symmetry.

Exercise 2.10 Write down the two-line symbol for each of the eight
symmetries of a square for each of the following labellings.

Exercise 2.11 In the following figure, the labels 1, 2, 3 and 4 refer to the
locations of the four edges of the figure (instead of the vertices).

The position of the rectangle
may be specified by the locations
of the four edges instead of the
four vertices. So our definition of
two-line symbol still makes sense
if we replace vertices by edges.

For this labelling of the rectangle, write down the two-line symbol for each
symmetry of the rectangle.

Exercise 2.12 For the labelling of the regular octagon shown in the
margin, interpret geometrically each of the following two-line symbols.

(a)

(

1 2 3 4 5 6 7 8
3 4 5 6 7 8 1 2

)

(b)

(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

(c)

(

1 2 3 4 5 6 7 8
5 4 3 2 1 8 7 6

)
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Exercise 2.13 Let

x =

(

1 2 3
3 1 2

)

and y =

(

1 2 3
3 2 1

)

.

Find the two-line symbol for each of the following composites:

x ◦ x, y ◦ y, x ◦ y, y ◦ x.

Hence show that

(x ◦ x) ◦ x = e, (x ◦ x) ◦ y = y ◦ x and y ◦ (x ◦ x) = x ◦ y.

3 Group axioms

After working through this section, you should be able to:

(a) explain the meaning of the terms group, Abelian group and the
order of a group;

(b) give examples of finite groups and infinite groups;

(c) determine whether a given set and binary operation form a group,
by checking the group axioms;

(d) deduce information from a given Cayley table.

3.1 Group properties
In Section 1 we considered the set S(F ) of all symmetries of a plane
figure F , and we showed that S(F ) has certain properties with respect to
composition.

1. closure The composite of any two symmetries in S(F ) is
also in S(F ).

2. identity The set S(F ) contains the identity symmetry.

3. inverses Every symmetry of F has an inverse which is also a
symmetry of F .

4. associativity Composition of symmetries is associative:
composites of three (or more) symmetries in a
given order can be written down unambiguously
without parentheses.

There are many other circumstances in which we have a set with a means
of combining elements which together possess these four properties; for
example, sets of real numbers combined under addition or multiplication.
We introduce more examples of this kind in the audio section.

The set together with the means of combining two elements, which is
called a binary operation, are said to form a mathematical structure known
as a group. For example, the set of symmetries of a figure forms a group
under the operation of composition.

To define a group in general, we use the four properties listed above as
axioms, and express them in terms of an unspecified binary operation ◦
acting on an unspecified set G. Any specific set which has an operation
that satisfies these axioms is said to form a group under that operation.
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Definition Let G be a set and let ◦ be a binary operation defined Here ◦ does not necessarily
mean composition of functions.on G. Then (G, ◦) is a group if the following four axioms G1–G4

hold.

G1 closure For all g1, g2 ∈ G,

g1 ◦ g2 ∈ G.

G2 identity There exists an identity element e ∈ G such
that, for all g ∈ G,

g ◦ e = g = e ◦ g.

G3 inverses For each g ∈ G, there exists an inverse element
g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g.

G4 associativity For all g1, g2, g3 ∈ G,

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

Example 3.1 Show that the set S+(F ) of direct symmetries of a plane Remember that a direct
symmetry of a plane figure is
one that can be demonstrated
physically without lifting the
model out of the plane.

figure F , with the operation of composition, is a group.

Solution We show that the four group axioms hold.

G1 closure Let f, g ∈ S+(F ); then f and g are direct
symmetries, so f ◦ g is also a direct symmetry.
Thus,

if f, g ∈ S+(F ), then f ◦ g ∈ S+(F ),

so S+(F ) is closed under composition.

G2 identity An identity symmetry is e, the zero rotation, and
e ∈ S+(F ), so S+(F ) contains an identity.

G3 inverses Let f ∈ S+(F ), so f is a direct symmetry; then its
inverse must also be a direct symmetry. Thus,

if f ∈ S+(F ), then f−1 ∈ S+(F ),

so S+(F ) contains an inverse of each of its
elements.

G4 associativity Composition of symmetries is associative so, in
particular, composition of direct symmetries is
associative.

Hence S+(F ) satisfies the four group axioms, and so (S+(F ), ◦) is The word group was introduced
by the French mathematician
Evariste Galois (1811–32) as
part of a theory to classify
polynomial equations whose
solutions can be expressed by a
formula involving radicals (nth
roots).

a group.

The property of commutativity is not one of our four basic axioms.
A group (G, ◦) that has the additional property of commutativity is given
a special name.

Definition Let (G, ◦) be a group that has the additional property
that for all g1, g2 ∈ G,

g1 ◦ g2 = g2 ◦ g1.

Then (G, ◦) is an Abelian group (or commutative group).

Abelian groups are named after
the Norwegian mathematician
Niels Henrik Abel (1802–29),
who earlier showed that no
formula involving radicals exists
for a general quintic equation;
formulas for the general cubic
and quartic equations had been
found in the 16th century.

A group that is not Abelian is called non-Abelian.
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For example, (S+(�), ◦) is an Abelian group, but (S(�), ◦) is non-Abelian.

In our consideration of symmetry groups we have seen that the underlying
set G of a group (G, ◦) may be finite (as in S(�) and S(△)) or infinite (as
in S(©)). If G is a finite set containing exactly n elements, we say that
the group (G, ◦) has order n. For example, (S(�), ◦) has order 8, and
(S(△), ◦) has order 6. Formally, we make the following definitions.

Definitions A group (G, ◦) is a finite group if G is a finite set;
otherwise, G is an infinite group.

If G is a finite set with exactly n (distinct) elements, then the group
(G, ◦) has order n and we denote this by writing

|G| = n; We read |G| as ‘the order of G’.

otherwise, (G, ◦) has infinite order.

For example, S( ) contains four elements, so (S( ), ◦) is a group of
order 4, and we write

|S( )| = 4;

the set S(©) is infinite, so S(©) is an infinite group and has infinite order.

3.2 Checking group axioms
So far we have considered sets of symmetries of plane figures. These give a
large number of examples of groups, many of which are finite. In the audio
section we consider how the group axioms apply (or do not apply) in other
situations.

Another source of examples of groups is modular arithmetic. Modular arithmetic is discussed
in Unit I3.

For example, in arithmetic modulo 4 we work with the set Z4 = {0, 1, 2, 3}
and the operations +4 and ×4, where we take the remainder on division
by 4 (that is, discard multiples of 4) after forming the ordinary sum or
product. The Cayley tables for these two operations are as follows.

For example,

3 +4 2 (= 5) = 1,

3×4 2 (= 6) = 2.

+4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

×4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

In general, for a and b in

Zn = {0, 1, 2, . . . , n − 1},

the operations +n and ×n are defined by

a+n b = is the remainder of a+ b on division by n,

a×n b = is the remainder of a× b on division by n.

You will meet groups based on modular arithmetic in the second half of
this subsection.

Listen to the audio as you work through the frames.
Audio
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Postaudio exercises

Exercise 3.6 In each of the following cases, write out a Cayley table
and use it to determine whether the given set and binary operation
form a group:

(a) (Z6,+6); (b) (Z6,×6);

(c) (Z∗

7,×7), where Z∗

7 = Z7 − {0}; (d) ({1,−1},×).

Exercise 3.7 Show that (Q+, ◦) is a group, where Q+ is the set of
positive rationals and ◦ is defined by a ◦ b = 1

2ab.

In this subsection we have seen that the sets Q and R are groups with
respect to addition and that the sets Q∗ and R∗ are groups with respect to
multiplication. The set C of complex numbers behaves similarly; it is
straightforward to show that both (C,+) and (C∗,×) are groups. You are asked to show that

(C,+) is a group in Exercise 3.8.

3.3 Comments on group axioms
In this section we comment briefly on each of the group axioms.

G1 closure For all g1, g2 ∈ G,

g1 ◦ g2 ∈ G.

This property is usually easy to check. However, it is essential to check all
the details; for example, in (R∗,×) it is necessary to check that the
product of any two elements is a non-zero real number.

G2 identity There exists an identity element e ∈ G such that,
for all g ∈ G,

g ◦ e = g = e ◦ g.

We have commented already that the identity in a group is unique; we
shall prove this result in the next section. In many situations the identity
element is obvious and can be identified immediately.

You may quote the following results without further justification.

For composition of functions, the identity is x 7−→ x.

For addition of real and complex numbers, the identity is 0.

For multiplication of numbers, the identity is 1.

G3 inverses For each g ∈ G, there exists an inverse element
g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g.

Within a group, the inverse of each element is unique. We shall prove this
result in the next section.
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You may quote the following results without further justification.

For composition of functions, the inverse of the function f is the f−1 exists when f is one-one.

inverse function f−1.

For addition of real and complex numbers, the inverse of x is −x.

For multiplication of numbers, real and complex, the inverse of x is
x−1 = 1/x, provided that x 6= 0.

G4 associativity For all g1, g2, g3 ∈ G,

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

The following operations are associative and may be quoted as such:

composition of functions;

addition of real and complex numbers, modular addition;

multiplication of real and complex numbers, modular multiplication.

Although the associative property is stated in terms of three elements, it
allows us to write down a composite of any finite number of elements
without ambiguity. For example, for four elements a, b, c, d and an This can be proved formally by

induction, but we do not do so
here.

associative operation ◦, an expression such as a ◦ b ◦ c ◦ d is unambiguous.
We need not consider the order in which the compositions are carried out,
but the order in which the four elements appear must be maintained. We
may write

a ◦ b ◦ c ◦ d = (a ◦ b) ◦ (c ◦ d)

= a ◦ (b ◦ (c ◦ d))

= a ◦ ((b ◦ c) ◦ d)

= (a ◦ (b ◦ c)) ◦ d

...

Further exercises
Exercise 3.8 Show that (C,+) is a group.

Exercise 3.9 Show that (2Z,+) is a group where 2Z is the set of even
integers 2Z = {2k : k ∈ Z}.

Exercise 3.10 Let G = {2k : k ∈ Z}. Show that (G,×) is a group.

Exercise 3.11 Show that each of the following sets, with the binary
operation given, is a group.

(a) ({1, 3, 5, 7},×8) (b) ({1, 2, 4, 7, 8, 11, 13, 14},×15 )

(c) ({1, 4, 11, 14},×15) (d) ({0, 2, 4, 6, 8},+10)

Exercise 3.12 For each of the following sets, with the binary operation
given, decide whether it is a group and justify your answer.

(a) (Z∗

9,×9) (b) (Z9,+9) (c) (Z∗

11,×11) Z
∗

n = {1, 2, 3, . . . , n− 1}.
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4 Proofs in group theory

After working through this section, you should be able to:

(a) understand that the identity in a group is unique;

(b) understand that each element in a group has a unique inverse;

(c) recognise how the uniqueness properties can be proved from the
group axioms;

(d) explain the connections between properties of a group table and
the group axioms.

The advantage of defining a group (G, ◦) as a general set G, together with
a binary operation ◦ satisfying the four axioms G1–G4, is that anything we
can prove directly from the axioms (in the general case) must apply to any
group (any specific case). Thus, by giving one proof, we can simultaneously
establish a result that holds for groups of symmetries, modular arithmetic
groups, infinite groups of real or complex numbers, and many more.

In this section we introduce some important properties, and show how
these can be derived from the group axioms. However, we do not expect
you to be able to produce or reproduce these proofs. On your first reading,
concentrate on the group properties and examples, and leave detailed
study of the proofs until later. When you are familiar with the basic ideas,
you should concentrate on the uniqueness proofs in Subsection 4.1, which
impart the ‘flavour’ of proofs in group theory. In general, such proofs are
short and, in some senses, simple. However, a beginner in group theory is
unlikely to think of them unaided. They involve writing down what you

know, thinking about what you want to prove and trying to bridge the gap

in an inspired way by using one or more of the group axioms (there are
only four from which to choose).

4.1 Uniqueness properties

Uniqueness of the identity element

Axiom G2 states that, in every group (G, ◦), there must be an identity
element e such that, for all g ∈ G,

g ◦ e = g = e ◦ g.

Each of our examples of groups has contained precisely one identity
element, and we shall prove now that this must always be the case. We say
that the identity in a group is unique.

As a result of this property we
can, and shall, refer to the
identity element.

Property 4.1 In any group, the identity element is unique.

The proof of this result is short and not difficult—once you know what to
do. We have set out the proof below, with comments to motivate the steps.
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Comments Proof

We use a standard method for proving
uniqueness:

we show that if e and e′ are identity
elements in G, then they must be
equal.

Suppose that e and e′ are identity elements in the
group (G, ◦).

We want to show that e = e′ is the only possibility.

We write down what we know: By axiom G2, we know that

e is an identity element g ◦ e = g = e ◦ g for all g ∈ G, (4.1)

and and

e′ is an identity element. g ◦ e′ = g = e′ ◦ g for all g ∈ G. (4.2)

We wish to relate e and e′.

We use particular cases of the general
equations (4.1) and (4.2). We put

g = e′ in equation (4.1)

and

g = e in equation (4.2).

Equations (4.1) and (4.2) hold for
all g ∈ G; so, in particular,

e′ ◦ e = e′ = e ◦ e′ (4.3)

and

e ◦ e′ = e = e′ ◦ e. (4.4)

We use equations (4.3) and (4.4) to
simplify the element e ◦ e′ in two
different ways.

From the right-hand part of equation (4.3),

e′ = e ◦ e′,

and from the left-hand part of equation (4.4),

e ◦ e′ = e.

We now have Thus

e′ = e ◦ e′ = e, e = e′,

as required. so (G, ◦) has a unique identity element.

Uniqueness of the inverse element

Axiom G3 states that, for each element g in a group (G, ◦), there must
exist an inverse element g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g.

In each group that we have met so far, the inverse of each element is
unique: no element has two distinct inverses.

As a result of this property we
can, and shall, refer to the
inverse of a particular group
element.

Property 4.2 In any group, each element has a unique inverse.

Again the proof is short: we apply the axiom G4 (associativity) to a
particular expression.

Comments Proof

Again, we use the standard method
for proving uniqueness:

we show that if x and y are inverses of
g ∈ G, then they must be equal.

Suppose that g ∈ G has inverse elements—x and y.

We want to show that x = y is the only possibility.

Let e be the identity element in G.

We write down what we know: By axiom G3, we know that

x is an inverse of g g ◦ x = e = x ◦ g (4.5)

and and

y is an inverse of g. g ◦ y = e = y ◦ g. (4.6)
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We wish to relate x and y.

We consider the element Consider the element

y ◦ g ◦ x, y ◦ g ◦ x.

and simplify it in two different ways. From the left-hand part of equation (4.5),

g ◦ x = e,

We have so

y ◦ g ◦ x = y ◦ (g ◦ x), y ◦ (g ◦ x) = y ◦ e

which simplifies to y. = y, (4.7)

since e is the identity.

From the right-hand part of equation (4.6),

y ◦ g = e,

Also so

y ◦ g ◦ x = (y ◦ g) ◦ x, (y ◦ g) ◦ x = e ◦ x

which simplifies to x. = x, (4.8)

since e is the identity.

Now we use associativity: By axiom G4,

y ◦ (g ◦ x) = (y ◦ g) ◦ x, y ◦ (g ◦ x) = (y ◦ g) ◦ x.

which simplifies to y = x. By equation (4.7), the left-hand side is y.

By equation (4.8), the right-hand side is x.

We now have Thus

y = x, y = x,

as required. so g has a unique inverse in G.

4.2 Properties of inverses

Inverse of the inverse

In our work on groups we have found that some elements are self-inverse,
and the remaining elements can be arranged in pairs of elements that are
inverses of each other. In other words, if g−1 is the inverse of g, then g is
the inverse of g−1. We state this as Property 4.3.

Property 4.3 In any group (G, ◦),

if g ∈ G and g has inverse g−1 ∈ G, then g−1 has inverse g.

In symbols, we write

(g−1)−1 = g.

Proof Let g ∈ G and let g−1 be the inverse of g. By axiom G3,

g ◦ g−1 = e = g−1 ◦ g.

Altering the order of the expressions, we obtain

g−1 ◦ g = e = g ◦ g−1.

This tells us that g is an inverse of g−1. Hence, by Property 4.2
(uniqueness of the inverse), we have

(g−1)−1 = g.
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Inverse of a composite

Our second property of inverses concerns the inverse of a composite.

If f and g are symmetries of a plane figure F , then the inverse of g ◦ f This result is true of composites
in general (whenever inverses
exist).

is f−1 ◦ g−1.

To undo ‘f then g’, we first
undo g, then undo f ; that is, we
do ‘g−1 then f−1’.

This result is true for all groups.

Property 4.4 In any group (G, ◦), with x, y ∈ G,

(x ◦ y)−1 = y−1 ◦ x−1.

The strategy of the proof is identical to that of the proof for Property 4.3.
We show that y−1 ◦ x−1 is an inverse of x ◦ y and then use Property 4.2
(uniqueness of the inverse).

Proof Let x, y ∈ G. First, we compose x ◦ y with y−1 ◦ x−1 on the right:

(x ◦ y) ◦ (y−1 ◦ x−1) = x ◦ y ◦ y−1 ◦ x−1 (associativity)
= x ◦ (y ◦ y−1) ◦ x−1 (associativity)
= x ◦ e ◦ x−1 (inverses)
= x ◦ x−1 (identity)
= e (inverses).

Next we compose x ◦ y with y−1 ◦ x−1 on the left:

(y−1 ◦ x−1) ◦ (x ◦ y) = y−1 ◦ x−1 ◦ x ◦ y (associativity)
= y−1 ◦ (x−1 ◦ x) ◦ y (associativity)
= y−1 ◦ e ◦ y (inverses)
= y−1 ◦ y (identity)
= e (inverses).

Hence y−1 ◦ x−1 is an inverse of x ◦ y. So, by Property 4.2, it is the inverse
of x ◦ y; that is,

(x ◦ y)−1 = y−1 ◦ x−1.

4.3 Properties of group tables
For a small group (G, ◦), we may construct a Cayley table for the binary
operation ◦. Often, when we know that (G, ◦) is a group and we wish to
stress this, we refer to the Cayley table as a group table. A group table has
a number of properties that correspond directly to the group axioms, so
when checking whether a given Cayley table describes a group, we can use
these properties to check some of the group axioms. In this subsection we
discuss some of the properties of group tables, starting with those linked to
the group axioms.
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G1 closure For all g1, g2 ∈ G,

g1 ◦ g2 ∈ G.

This means simply that we can complete the body of the Cayley table
using the elements of G: no new elements are required to complete the
table; that is, no elements from outside G are required.

G2 identity There exists an identity element e ∈ G such that,
for all g ∈ G,

g ◦ e = g = e ◦ g.

The composites g ◦ e, for all g ∈ G, form the column of the Cayley table
labelled by e. Similarly, the composites e ◦ g, for all g ∈ G, form the row of
the Cayley table labelled by e. Hence, if a Cayley table is a group table,
then the column and the row corresponding to e must repeat the borders
of the table.

When we know which element is
the identity, we normally write
this label first.

Exercise 4.1 Decide which is the identity element in each of the
following group tables.

(a) O E

O E O

E O E

(b) D I

D D I

I I D

(c) u v w x

u w x u v

v x w v u

w u v w x

x v u x w

G3 inverses For each g ∈ G, there exists an inverse element
g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g.

The fact that each element has a unique inverse means that

the identity e must occur exactly once in each row and each column.

However, there is a slightly stronger result. If an element g is self-inverse,
then g ◦ g = e and so e must occur on the leading diagonal. If g is not
self-inverse, then g and g−1 are distinct elements which are inverses of each
other, so the entries in the Cayley table for g ◦ g−1 = e and g−1 ◦ g = e are
placed symmetrically with respect to the leading diagonal. These
observations are illustrated in the following diagram.
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Thus a group table has the following property.

Property 4.5 In any group table, the identity e must occur exactly
once in each row and each column of the table, and e must occur in
symmetrical positions with respect to the leading diagonal.

Exercise 4.2 Given that the following table is a group table, draw up
a table of the inverses of the eight elements.

◦ a b c d e f g h

a f e g h a b d c

b e f h g b a c d

c h g f e c d b a

d g h e f d c a b

e a b c d e f g h

f b a d c f e h g

g c d a b g h f e

h d c b a h g e f

Exercise 4.3 In the Cayley table below, the identity element e occurs
in each row and column, but the table is not a group table. Explain
why not.

◦ e a b c d

e e a b c d

a a b d e c

b b e c d a

c c d e a b

d d c a b e

G4 associativity For all g1, g2, g3 ∈ G,

g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

It is not easy to deduce anything about associativity simply from a Cayley
table. (You have to do a lot of checking.) Unfortunately, it is possible for a
Cayley table to show the features corresponding to axioms G1, G2 and G3
even when the operation ◦ is not associative. This is illustrated by the
following table.
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◦ e a b c d

e e a b c d
a a e c d b
b b d e a c
c c b d e a
d d c a b e

From this table we find that:

the set is closed under ◦,

e is an identity element,

each element is self-inverse.

However, ◦ is not associative, as we saw in Frame 15.

Another property of a group table that we mentioned in Frame 15 is the
following.

Property 4.6 In a group table, each element of the group occurs
exactly once in each row and exactly once in each column.

We prove this statement for rows. The proof for columns is similar.

Proof We prove that any given element, g say, appears exactly once in
· · · x · · ·

...
...

h · · · g · · ·
...

...

any given row—the row labelled h, say. This is equivalent to proving that
there is a unique element of the group, x say, such that

h ◦ x = g. (4.9)

This equation can be ‘solved’ for the unknown element x by applying the
inverse h−1 on the left:

h−1 ◦ (h ◦ x) = h−1 ◦ g.

Hence

(h−1 ◦ h) ◦ x = h−1 ◦ g (associativity),

so

e ◦ x = h−1 ◦ g (inverses),

giving

x = h−1 ◦ g (identity).

Thus the only possible solution to equation (4.9) is x = h−1 ◦ g, and this is By the inverse and closure
axioms, h−1 ◦ g is an element
of G.

indeed a solution, since

h ◦ (h−1 ◦ g) = (h ◦ h−1) ◦ g = e ◦ g = g.

Thus, in the row labelled h, the element g appears once, in the column
labelled by the element h−1 ◦ g.

The following Cancellation Laws are also proved using the inverse.

Property 4.7 Cancellation Laws

In any group (G, ◦) with elements a, b and x:

if x ◦ a = x ◦ b, then a = b,

if a ◦ x = b ◦ x, then a = b.
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Exercise 4.4 Prove the Cancellation Laws for a group (G, ◦), namely:

(a) if x ◦ a = x ◦ b, then a = b;

(b) if a ◦ x = b ◦ x, then a = b.

The last property of group tables that we shall note concerns
commutativity.

For any elements g1 and g2 of a group G, the entries corresponding to the
composites g1 ◦ g2 and g2 ◦ g1 are symmetrically placed with respect to the
leading diagonal of the group table (because the order of elements across
the top and down the side is the same).

Thus, for an Abelian group, symmetrically-placed entries must be the
same.

Property 4.8 For an Abelian group, the group table is symmetrical
about the leading diagonal.

The following group tables show that (Z6,+6) is an Abelian group,
whereas (S(△), ◦) is not.

For example, in S(△),

a ◦ r = t and r ◦ a = s.

Exercise 4.5 Each of the following tables is a group table for a group
of order 8 with identity e. In each case, draw up a table of inverses
and state whether the group is Abelian.

(a) e a b c d f g h

e e a b c d f g h

a a e c b f d h g

b b c e a g h d f

c c b a e h g f d

d d f g h e a b c

f f d h g a e c b

g g h d f b c e a

h h g f d c b a e

(b) e a b c d f g h

e e a b c d f g h

a a b c e f g h d

b b c e a g h d f

c c e a b h d f g

d d h g f b a e c

f f d h g c b a e

g g f d h e c b a

h h g f d a e c b
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Further exercises
Exercise 4.6 Given that the following tables are group tables, fill in the
missing elements.

(a) e a b

e e a b

a a

b b

(b) a b c d

a a b c

b b a

c d

d d c

Exercise 4.7 The following table is a group table.

e a b c d f g h

e e a b c d f g h

a a b c e g d h f

b b c e a h g f d

c c e a b f h d g

d d f h g b c a e

f f h g d a b e c

g g d f h c e b a

h h g d f e a c b

(a) Which element is the identity element?

(b) Write down the inverse of each of the elements e, a, . . . , h.

(c) Is this group Abelian?

Exercise 4.8 Explain why each of the following Cayley tables is not a
group table.

(a) ◦ e a b c

e e a b c

a a b d e

b b d a b

c c e b a

(b) ◦ e a b c

e b e a b

a e a b c

b c b c a

c a c b e

(c) ◦ e a b c d

e e a b c d

a a b d e c

b b e c d a

c c d e a b

d d c a b e

(d) ◦ e a b c d f

e e a b c d f

a a e f b c d

b b d a e f c

c c f e d b a

d d b c f a e

f f c d a e b

Exercise 4.9 Show that if (G, ◦) is a group with an even number of
elements, then there is an element g ∈ G such that

g ◦ g = e and g 6= e.
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5 Symmetry in R3

After working through this section, you should be able to:

(a) describe the symmetries of some bounded three-dimensional figures;

(b) use two-line symbols to denote symmetries of three-dimensional
figures, and to form composites and inverses of such symmetries;

(c) count the number of symmetries of certain polyhedra;

(d) understand why there are exactly five regular polyhedra.

5.1 Preprogramme work: symmetries of a
figure in R3

Having considered symmetries of two-dimensional figures, we now extend

We use the symbol R3 to denote
three-dimensional space, in
which a point is specified by
three coordinates x, y, z.our ideas to three-dimensional objects.

Some three-dimensional objects have symmetries that are essentially the
same as those of a corresponding two-dimensional figure. For example, the
six-sided bottle shown below has essentially the same symmetries as a
regular hexagon. However, the symmetries of many three-dimensional
objects cannot be thought of as essentially the same as the symmetries of
any two-dimensional figure. A cube, for instance, has the symmetries of a
square when looked at from each of three directions, and (as we shall see)
other symmetries as well.

In this section we adapt the definitions of earlier sections to R3, and
consider symmetries of three-dimensional objects.

Definition A figure in R3 is any subset of R3.

This definition is very general, and includes plane figures as special cases.
We shall mainly consider bounded non-planar figures with polygonal faces. A bounded figure in R3 is a

figure that can be surrounded by
a sphere (of finite radius).

Such solids are called polyhedra.

Polyhedra is the Greek for
‘many faces’. The singular form
is polyhedron.

In our examples we restrict attention to convex polyhedra: that is,
polyhedra without dents or dimples or spikes. Of these, there are five that We shall show why there are

only five regular polyhedra in
Subsection 5.4.

are of particular interest: the regular polyhedra (Platonic solids), in which
all faces are congruent regular polygons and each vertex is the junction of
the same numbers of edges and faces, arranged in the same way, as shown
in the following diagram.
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Our initial definitions are almost exactly the same as those for R2.

Definitions An isometry of R3 is a distance-preserving map
f : R3 −→ R3.

A symmetry of a figure F in R3 is an isometry mapping F onto
itself—that is, an isometry f : R3 −→ R3 such that f(F ) = F .

Two symmetries of a figure F are equal if they have the same effect
on F .

As for R2, our potential symmetries are rotations (this time about an axis
of the figure in R3), reflections (in a plane), translations and combinations
of these isometries. For a bounded figure in R3 (such as a polyhedron),
translations alter the location of the figure and so cannot be symmetries;
hence we concentrate on rotations and reflections.

We have to be careful with rotations in R3, as what is clockwise when
looking along an axis of rotation in one direction is anticlockwise when
looking along it in the other direction. We often indicate the direction of
rotation by an arrow on a diagram.

A rotation of F is a symmetry specified by an axis of symmetry , a
direction of rotation and the angle through which the figure is rotated.

For example, rotation of the cube through π/2 about its vertical axis, in
the direction indicated, has the following effect.

Rotation arrows in R3 indicate
the direction of rotation; they do
not indicate the size of the angle
through which the figure is
rotated.

We shall adopt and extend our two-line symbols to record symmetries of
three-dimensional objects. With the labelling shown above, this rotation is
represented by

(

1 2 3 4 5 6 7 8
4 3 7 8 1 2 6 5

)

.

The identity symmetry

e =

(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)

can be thought of as a zero rotation.
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A reflection of F is a symmetry specified by the plane in which the
reflection takes place.

The two-line symbol for the reflection shown above is
(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)

.

Composition of symmetries written as two-line symbols is similar to that
for plane figures. For example, the rotation above followed by the
reflection above is

(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)

◦

(

1 2 3 4 5 6 7 8
4 3 7 8 1 2 6 5

)

Remember to work from right to
left.

=

(

1 2 3 4 5 6 7 8
1 2 6 5 4 3 7 8

)

.

This is a reflection in the diagonal plane passing through the locations
labelled 1, 2, 7 and 8, as shown below.

To find the inverse of a symmetry given as a two-line symbol, we turn the
symbol upside down. For the rotation above, we have

It is not necessary to reorder the
columns into the natural order,
but it may help with identifying
the symmetry.

(

1 2 3 4 5 6 7 8
4 3 7 8 1 2 6 5

)

−1

=

(

4 3 7 8 1 2 6 5
1 2 3 4 5 6 7 8

)

=

(

1 2 3 4 5 6 7 8
5 6 2 1 8 7 3 4

)

.

This is rotation of the cube through 3π/2 about its vertical axis, in the
direction indicated.
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Symmetries that we can demonstrate physically with a model (for We can make a second model to
represent the reflected
polyhedron. The images of the
polyhedron under an indirect
symmetry can then be
illustrated by rotating this
second model.

polyhedra, this means rotations) are called direct symmetries, whereas
those that we cannot show physically with the model are called indirect

symmetries. As for plane figures, composition of direct and indirect
symmetries follows a standard pattern.

direct ◦ direct = direct

direct ◦ indirect = indirect

indirect ◦ direct = indirect

indirect ◦ indirect = direct

◦ direct indirect

direct direct indirect

indirect indirect direct

We use S(F ) to denote the set of symmetries of a figure F , and S+(F ) to
denote the set of direct symmetries of F . The following results apply to
figures in R3, and also to figures in R2.

Property 5.1

1. The set S(F ) of all symmetries of a figure F forms a group under
composition.

2. The set S+(F ) of all direct symmetries of a figure F forms a
group under composition.

3. If the group S(F ) contains both direct and indirect symmetries
and there are exactly n direct symmetries, then there are exactly
n indirect symmetries. The n indirect symmetries may be
obtained by composing each of the n direct symmetries with any
one fixed indirect symmetry.

Watch the video programme ‘Symmetry counts’.
Video

5.2 Review of the video programme

We begin by looking at various symmetrical objects which we meet in
familiar situations.

Turning to mathematical objects, we pose the question: ‘How can we
count the number of symmetries of each of the regular polyhedra—the
tetrahedron, cube, octahedron, dodecahedron and icosahedron?’

Much of the programme is devoted to answering this question for the
tetrahedron.

Symmetries of the equilateral triangle

As a first step towards answering the above question, we review our
approach to describing and counting symmetries of figures in R2; in
particular, we study the symmetries of the equilateral triangle. This figure
has both direct and indirect symmetries.

The direct symmetries are the identity and the two non-trivial rotations,
and these form a group. Since there are three direct symmetries, there
must be three indirect symmetries. We can find the three indirect
symmetries by composing each of the direct symmetries with any one of See the solution to

Exercise 1.9(a).the indirect symmetries. (See the following diagram.)
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Unit GTA1 Symmetry

Thus we obtain the following group table.

The table for the group of direct
symmetries appears as a
‘subtable’.

This is another example of
‘blocking’ in a group table.

We can represent these symmetries as the two-line symbols:

e =

(

1 2 3
1 2 3

)

, a =

(

1 2 3
2 3 1

)

, b =

(

1 2 3
3 1 2

)

, See the solution to Exercise 2.3.

r =

(

1 2 3
1 3 2

)

, s =

(

1 2 3
3 2 1

)

, t =

(

1 2 3
2 1 3

)

.

Symmetries of the regular tetrahedron

Next we consider the symmetries of the regular tetrahedron. The identity
symmetry e leaves the tetrahedron as it is and is a direct symmetry. Also,
for each of the four vertices, there are two non-trivial direct
symmetries—namely rotations through angles 2π/3 and 4π/3 about an
axis through the vertex from the centre of the opposite face. Thus these
correspond to anticlockwise rotations of the triangular face opposite the
fixed vertex, when viewed from outside the tetrahedron, looking directly at
the face.
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Section 5 Symmetry in R3 (video section)

Now we have nine direct symmetries, but are there any more? We know
that the set of direct symmetries of the tetrahedron is a group, so it must
be closed under composition. So we test for closure by composing some of
the symmetries given above.

The symmetry obtained by performing first the rotation through 2π/3
which fixes the vertex at location 1, and then the rotation through 4π/3
which fixes the vertex at location 2, is

(

1 2 3 4
4 2 1 3

)

◦

(

1 2 3 4
1 4 2 3

)

=

(

1 2 3 4
4 3 2 1

)

,

which is not one of the symmetries already listed. It is a new direct
symmetry, which simultaneously interchanges the vertices at locations 1
and 4 and the vertices at locations 2 and 3. Geometrically, it corresponds
to a rotation through π about an axis through the midpoints of the
opposite edges joining 1 to 4 and 2 to 3.

A similar rotation of the tetrahedron exists for each of the other two pairs
of opposite edges. Thus we have found three further direct symmetries.

We have now found the following 12 direct symmetries of the tetrahedron.
(

1 2 3 4
1 2 3 4

) (

1 2 3 4
2 3 1 4

) (

1 2 3 4
3 1 2 4

) (

1 2 3 4
4 3 2 1

)

(

1 2 3 4
1 4 2 3

) (

1 2 3 4
3 2 4 1

) (

1 2 3 4
4 1 3 2

) (

1 2 3 4
3 4 1 2

)

(

1 2 3 4
1 3 4 2

) (

1 2 3 4
4 2 1 3

) (

1 2 3 4
2 4 3 1

) (

1 2 3 4
2 1 4 3

)

We can see that there are only 12 direct symmetries as follows. Imagine
picking up the tetrahedron shown below, and placing it down again to
occupy the same space it occupied originally, but possibly with the vertices
at new locations. We count the number of ways of doing this. We can
choose any of the 4 faces as the ‘base’ of the tetrahedron, and then there
are 3 ways of placing the tetrahedron on this base, corresponding to the
3 rotational symmetries of the base triangle. Thus altogether there are
4× 3 = 12 ways of placing the tetrahedron—that is, 12 direct symmetries.

There are also indirect symmetries of the tetrahedron—for example, a
reflection in the vertical plane through the edge joining the vertices at
locations 1 and 3 and the midpoint of the edge joining the vertices at
locations 2 and 4.
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Unit GTA1 Symmetry

It follows that the tetrahedron has 12 indirect symmetries, which can be
obtained by composing each of the 12 direct symmetries with the above We perform first the indirect

symmetry and then the direct
symmetry. This is equivalent to
applying the twelve direct
symmetries to the ‘reflected’
tetrahedron.

indirect symmetry on the right.
(

1 2 3 4
1 4 3 2

) (

1 2 3 4
2 4 1 3

) (

1 2 3 4
3 4 2 1

) (

1 2 3 4
4 1 2 3

)

(

1 2 3 4
1 3 2 4

) (

1 2 3 4
3 1 4 2

) (

1 2 3 4
4 2 3 1

) (

1 2 3 4
3 2 1 4

)

(

1 2 3 4
1 2 4 3

) (

1 2 3 4
4 3 1 2

) (

1 2 3 4
2 1 3 4

) (

1 2 3 4
2 3 4 1

)

Thus the tetrahedron has 24 symmetries.

Another way of obtaining the number 24 is as follows. We count the
number of ways of replacing the tetrahedron, or the reflected tetrahedron,
in the space occupied originally by the tetrahedron, but possibly with the
vertices at new locations. We can choose any of the 4 faces to be placed as
the base. Each of the 6 symmetries of such a face gives a symmetry of the
tetrahedron, so there are 6 ways of replacing the tetrahedron, or the
reflected tetrahedron, on this base. Thus there are 4× 6 = 24 symmetries
of the tetrahedron.

Symmetries of the regular polyhedra

For any regular polyhedron, each symmetry of a face gives a symmetry of
the polyhedron. Therefore an argument similar to that for the tetrahedron
shows that the total number of symmetries of a regular polyhedron is the
number of faces multiplied by the number of symmetries of each face.
Thus we have the following strategy.

Strategy 5.1 To determine the number of symmetries of a regular
polyhedron.

1. Count the number of faces. It does not matter whether we
do step 1 or step 2 first. In the
video, step 2 is done first.2. Count the number of symmetries of a face.

Then,




number of
symmetries of

regular polyhedron



 =

(

number of
faces

)

×

(

number of
symmetries of face

)

.

Postvideo exercise

Exercise 5.1 Using Strategy 5.1, show that the cube and the
octahedron have 48 symmetries each, and that the dodecahedron and
the icosahedron have 120 symmetries each.
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Section 5 Symmetry in R3 (video section)

5.3 Symmetries of nonregular polyhedra
Strategy 5.1 for finding the number of symmetries of a regular
polyhedron—multiply the number of faces by the number of symmetries of
a face—can be adapted to find the number of symmetries of a non-regular
polyhedron. We illustrate the method by two examples.

Pentagonal prism

We consider the pentagonal prism, in which the top and bottom faces are
regular pentagons and the vertical faces are squares.

This prism has direct symmetries—for example, we can rotate the prism
about a vertical axis. It also has indirect symmetries—for example, we can
reflect the prism in the plane that contains a vertical edge and bisects the
square face opposite this edge.

To find the number of symmetries of the prism, we can count the number
of ways of replacing the prism, or the reflected prism, in the space it
occupied originally, but possibly with the vertices at new locations.

In the above figure, the prism is shown with a pentagonal face as its base,
so we can choose either of the 2 pentagonal faces to be the base. Each of
the 10 symmetries of such a face gives a symmetry of the prism, so there
are 10 ways of replacing the prism, or the reflected prism, on this base.
Thus there are 2× 10 = 20 symmetries of the prism.

We carried out this calculation by considering one of the pentagonal faces
as the base. We can check our answer by considering one of the square
faces to be the base, as shown below.

Again we count the number of ways of replacing the prism, or the reflected
prism, in the space it originally occupied. We can choose any of the
5 square faces to be the base.

We now have to be careful because only some of the 8 symmetries of the
square give symmetries of the prism. For example, one symmetry of the
square base is a rotation of π/2 about its centre, but if we apply the
corresponding transformation to the prism as a whole—that is, if we rotate
the prism through π/2 about the vertical axis through the centre of the
square base—then the prism does not occupy its original space in R3, so
this is not a symmetry of the prism. Similarly, reflections through the
diagonals of the square base do not give symmetries of the prism.

In fact, only 4 of the symmetries of the square base are also symmetries of
the prism, namely the identity, rotation through π and reflections in the
lines joining midpoints of opposite edges. Thus the number of symmetries
of the prism is 5× 4 = 20. This confirms our earlier answer.
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Unit GTA1 Symmetry

Small rhombicuboctahedron

As a second example, we consider the polyhedron shown below. It is called
a small rhombicuboctahedron, and it has 18 square faces and 8 faces that It is not to be confused with the

great rhombicuboctahedron,
which has 12 square faces, 8
hexagonal faces and 6 octagonal
faces.

are equilateral triangles.

To find the number of symmetries of the polyhedron, we can count the
number of ways of replacing the polyhedron, or the reflected polyhedron,
in the space it occupied originally, as shown above with a square face as its
base, but possibly with the vertices at new locations.

We immediately come across a new complication—only some of the square
faces of the polyhedron can be placed as the base if the polyhedron, or its
reflection, is to occupy its original space in R3. This is because there are
two types of square face: in one type, all four edges of the face are joined
to other square faces, whereas in the other type, two edges are joined to
square faces and two to triangular faces, as shown below.

The small rhombicuboctahedron shown above has a square face of the first
type as its base. There are 6 faces of this type in the polyhedron, and we
can choose any of these to be placed as the base.

Next we have to determine how many of the eight symmetries of one of
these square faces give symmetries of the polyhedron. Consideration of the
polyhedron shows that all 8 symmetries do, so the number of symmetries
of the polyhedron is 6× 8 = 48.

The strategy for finding the number of symmetries of a non-regular
polyhedron is now given.

Strategy 5.2 To determine the number of symmetries of a
non-regular polyhedron.

1. Select one type of face and count the number of similar faces
which are similarly placed in the polyhedron.

2. Count the symmetries of the face within the polyhedron (that is,
symmetries of the face that are also symmetries of the
polyhedron).

Then,





number of
symmetries of
the polyhedron



 =





number of
faces of the
selected type



×











number of
symmetries of face

that are also
symmetries of
the polyhedron











.
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Section 5 Symmetry in R3 (video section)

Exercise 5.2 Using Strategy 5.2, calculate the number of symmetries
of the following figure. Check your calculations by considering the
solid in a different way.

5.4 Platonic solids
The Platonic solids are the convex regular polyhedra in which each face is
the same regular polygon and each vertex is the junction of the same
number of edges and faces arranged in the same way. In order to produce a
solid, we must have at least three edges (and so at least three faces)
meeting at each vertex.

Starting with an equilateral triangle face, we can have three, four or five
triangular faces around each vertex, but six equilateral triangles would lie
flat, and more than six equilateral triangles would give a non-convex solid.

The arrangement of faces at each vertex of the solid must be the same, so
we can build up the rest of the solid from the construction at one vertex.
The three possibilities above give the tetrahedron, the octahedron and the
icosahedron, respectively.

Next we consider a square as a possible face. Three squares at each vertex
give a cube, but four squares would lie flat, and more than four squares
would give a non-convex solid.

The fifth Platonic solid, the dodecahedron, is formed by using three
regular pentagons at each vertex. Four or more regular pentagons around
a vertex would give a non-convex solid.
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Unit GTA1 Symmetry

There can be no more such solids because three regular hexagons lie flat,
and for any regular polygon with more than six edges, the angle at each
vertex is greater than 2π/3, so we cannot fit three together at a vertex The angle at a vertex of a

regular n-gon is π(n− 2)/n,
which is greater than 2π/3 for
n > 6.

without making the solid non-convex.

Thus there are precisely five regular polyhedra.

The Platonic solids are so named not because Plato (427–347 bc)
discovered them, but because he associated the regular tetrahedron, cube,
octahedron and icosahedron with the four elements of fire, earth, air and
water, respectively; he associated the dodecahedron with the universe.

Further exercises
Exercise 5.3 Use Strategy 5.2 to count the number of symmetries of the
small rhombicuboctahedron by considering:

(a) a square face, of the second type;

(b) a triangular face.

Exercise 5.4

(a) Use Strategy 5.2 to show that a rectangular block has eight
symmetries.

(b) Write down the two-line symbol for each of the eight symmetries,
using the labelling shown above.
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Section 6 Summary

This free OpenLearn course is an extract from the Open University course
M208 Pure mathematics. If you feel you are ready to study M208, further
information can be found via the following link to the qualifications
website.

(http://www.open.ac.uk/courses/qualifications/details/m208)

If you feel you are ready to move on in your study of pure mathematics
but don’t have time to study a full Open University course at this time,
you might like to study one of the free OpenLearn courses, Introduction to

Linear equations and matrices, or Introduction to analysis. They are
further adapted extracts from the Open University course, M208, Pure
mathematics.

Alternatively, if you are interested in applied mathematics, you might like
to try the free OpenLearn courses, Second-order differential equations and
Dynamics. If you are interested in statistics, you might like to try the free
OpenLearn courses, Modelling and estimation, Medical statistics and
Bayesian statistics.
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Unit GTA1 Symmetry

Solutions to the exercises

1.1 (a) We denote the initial position by a dot at
the top.

The symmetries are as follows.

(b) We denote the initial position by a dot in the
top left corner.

The symmetries are as follows.

(c) We denote the initial position by symbols near
two of the vertices.

The symmetries are as follows.

*

*

*

*

*

*

1.2 We find the required composites by drawing
diagrams similar to those in the text.

*

*

*

*

Hence b ◦ c = a.

*

*

*

*

Hence s ◦ s = e. (A reflection composed with itself is
the same as the identity e.)

*

*

*

*

Hence t ◦ s = a.
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Solutions to the exercises

1.3 (a) The required composites are as follows.

Hence a ◦ a = b.

Hence a ◦ b = c.

Hence a ◦ c = e.

The required composites are as follows.

Hence a ◦ r = s.

Hence a ◦ s = r.

Hence r ◦ s = a.

1.4 The required composites are as follows.

* * *

Hence a ◦ b = e.

* * *

Hence a ◦ r = t.

* *

*

Hence s ◦ t = a.

1.5 (a) In S(wind), as in S(�), the rotations a
and c are inverses of each other, and b is self-inverse.

Element e a b c

Inverse e c b a

(b) In S( ), each element is self-inverse.

Element e a r s

Inverse e a r s

(c) In S(△), the rotations a and b are inverses of
each other, and the other symmetries are self-inverse.

Element e a b r s t

Inverse e b a r s t

1.6 In this exercise we find the composites using the
diagrammatic method described in the text. (We do
not give the diagrams here.)

First we find a ◦ (t ◦ a):

t ◦ a = s and a ◦ s = t,

so a ◦ (t ◦ a) = t.

Next we find (a ◦ t) ◦ a:

a ◦ t = u and u ◦ a = t,

so (a ◦ t) ◦ a = t.

Hence

a ◦ t ◦ a = a ◦ (t ◦ a) = (a ◦ t) ◦ a.

1.7 We find rπ/4 ◦ qπ/2 using the following diagram.

Hence rπ/4 ◦ qπ/2 = q5π/8.
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1.8 Using the formulas, we obtain:

rπ/4 ◦ rπ/2 = r(π/4+π/2) (mod 2π) = r3π/4,

qπ/4 ◦ qπ/2 = r2(π/4−π/2) (mod 2π)

= r
−π/2 (mod 2π) = r3π/2,

qπ/4 ◦ rπ/2 = q(π/4− 1

2
(π/2)) (mod π) = q0,

rπ/4 ◦ qπ/2 = q( 1

2
(π/4)+π/2) (mod π) = q5π/8.

1.9 This solution uses the standard labelling for
symmetries introduced in Exercises 1.3 and 1.4.

(a) S+(△) = {e, a, b}.

Using the reflection r, we obtain the following
diagram.

*

**

*

*

*

Instead of r, we could have used s or t as the
reflection:

s = e ◦ s, r = a ◦ s, t = b ◦ s,
t = e ◦ t, s = a ◦ t, r = b ◦ t.

(b) S+( ) = {e, a}.

Using the reflection r, we obtain the following
diagram.

Alternatively, we could have used the reflection s:

s = e ◦ s, r = a ◦ s.

1.10 (a) Parallelogram

The symmetries are:

the identity;

rotation about the centre through π.

(b) Rhombus

The symmetries are:

the identity;

rotation about the centre through π;

reflection in each diagonal.

(c) Symmetrical trapezium

The symmetries are:

the identity;

reflection in the line bisecting the two
parallel edges.

(d) Regular star

The symmetries are:

six anticlockwise rotations about the centre
through 0, π/3, 2π/3, π, 4π/3 and 5π/3;

six reflections, three in lines joining opposite
vertices and three in lines joining opposite
reflex angles.

(Only the reflections are shown on the figure.)
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Solutions to the exercises

(e) Circular sawblade

The symmetries are:

six anticlockwise rotations about the centre
through 0, π/3, 2π/3, π, 4π/3 and 5π/3.

(Two of these rotations, through 2π/3 and 5π/3, are
illustrated on the figure. The figure has no
reflectional symmetry.)

1.11 The required composites are as follows.

*

*

*

Hence b ◦ d = g.

*

*

*

Hence f ◦ g = d.

*

*

*

Hence c ◦ v = r.

*

*

*

Hence x ◦ u = c.

1.12

Rotations Reflections

Element e a b c d f g r s t u v w x

Inverse e g f d c b a r s t u v w x

Note that each of the reflections is its own inverse.

1.13 The direct symmetries are the seven rotations

e, a, b, c, d, f, g.

The indirect symmetries x, r and s are obtained by
composing w with the rotations a, b and c,
respectively:

x = a ◦w, r = b ◦ w, s = c ◦ w.

We can picture this as follows.

*
*

*

*

*

*
*

*

Similarly, the indirect symmetries t, u and v are
obtained by composing w with the rotations d, f
and g, respectively:

t = d ◦ w, u = f ◦ w, v = g ◦ w.

We can picture this as follows.

*

* *

*

*

**

*

2.1 We have

b =

(

1 2 3 4
3 4 1 2

)

, c =

(

1 2 3 4
4 1 2 3

)

,

s =

(

1 2 3 4
1 4 3 2

)

, u =

(

1 2 3 4
3 2 1 4

)

.
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2.2 Here

e =

(

1 2 3 4
1 2 3 4

)

, a =

(

1 2 3 4
4 3 2 1

)

,

r =

(

1 2 3 4
2 1 4 3

)

, s =

(

1 2 3 4
3 4 1 2

)

.

2.3 We have

e =

(

1 2 3
1 2 3

)

, a =

(

1 2 3
2 3 1

)

, b =

(

1 2 3
3 1 2

)

,

r =

(

1 2 3
1 3 2

)

, s =

(

1 2 3
3 2 1

)

, t =

(

1 2 3
2 1 3

)

.

2.4

(a)
(

1 2 3 4 5 6
6 5 4 3 2 1

)

represents reflection in the

vertical axis of symmetry joining the midpoints of
the edges 1, 6 and 3, 4.

(b)
(

1 2 3 4 5 6
3 4 5 6 1 2

)

represents anticlockwise

rotation through 2π/3 about the centre.

(c)
(

1 2 3 4 5 6
3 2 1 6 5 4

)

represents reflection in the

horizontal axis of symmetry through locations 2
and 5.

2.5 We have

a ◦ a =

(

1 2 3
2 3 1

)

◦

(

1 2 3
2 3 1

)

=

(

1 2 3
3 1 2

)

= b,

b ◦ s =

(

1 2 3
3 1 2

)

◦

(

1 2 3
3 2 1

)

=

(

1 2 3
2 1 3

)

= t,

s ◦ b =

(

1 2 3
3 2 1

)

◦

(

1 2 3
3 1 2

)

=

(

1 2 3
1 3 2

)

= r,

t ◦ s =

(

1 2 3
2 1 3

)

◦

(

1 2 3
3 2 1

)

=

(

1 2 3
3 1 2

)

= b.

2.6 In each case we turn the symbol upside down
and reorder the columns.

(

1 2 3 4 5 6
5 6 1 2 3 4

)

−1

=

(

5 6 1 2 3 4
1 2 3 4 5 6

)

(a)

=

(

1 2 3 4 5 6
3 4 5 6 1 2

)

(

1 2 3 4 5 6
2 1 6 5 4 3

)

−1

=

(

2 1 6 5 4 3
1 2 3 4 5 6

)

(b)

=

(

1 2 3 4 5 6
2 1 6 5 4 3

)

(

1 2 3 4 5 6
4 5 6 1 2 3

)

−1

=

(

4 5 6 1 2 3
1 2 3 4 5 6

)

(c)

=

(

1 2 3 4 5 6
4 5 6 1 2 3

)

2.7 The Cayley table for S(△) is as follows.

◦ e a b r s t

e e a b r s t

a a b e t r s

b b e a s t r

r r s t e a b

s s t r b e a

t t r s a b e

2.8 The Cayley table for S( ) is as follows.

◦ e a r s

e e a r s

a a e s r

r r s e a

s s r a e

2.9

The symmetries are:

the identity,
(

1 2 3 4 5 6
1 2 3 4 5 6

)

;

rotation about the centre through 2π/3 anticlockwise,
(

1 2 3 4 5 6
3 4 5 6 1 2

)

;

rotation about the centre through 4π/3 anticlockwise,
(

1 2 3 4 5 6
5 6 1 2 3 4

)

;

reflection in the line bisecting the edges joining the
locations 1, 6 and 3, 4,

(

1 2 3 4 5 6
6 5 4 3 2 1

)

;

reflection in the line bisecting the edges joining the
locations 2, 3 and 5, 6,

(

1 2 3 4 5 6
4 3 2 1 6 5

)

;

reflection in the line bisecting the edges joining the
locations 4, 5 and 1, 2,

(

1 2 3 4 5 6
2 1 6 5 4 3

)

.
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Solutions to the exercises

2.10 (a)

The two-line symbols are

e =

(

1 2 3 4
1 2 3 4

)

, a =

(

1 2 3 4
3 4 2 1

)

,

b =

(

1 2 3 4
2 1 4 3

)

, c =

(

1 2 3 4
4 3 1 2

)

,

r =

(

1 2 3 4
4 3 2 1

)

, s =

(

1 2 3 4
1 2 4 3

)

,

t =

(

1 2 3 4
3 4 1 2

)

, u =

(

1 2 3 4
2 1 3 4

)

.

(b)

The two-line symbols are

e =

(

1 2 3 4
1 2 3 4

)

, a =

(

1 2 3 4
3 1 4 2

)

,

b =

(

1 2 3 4
4 3 2 1

)

, c =

(

1 2 3 4
2 4 1 3

)

,

r =

(

1 2 3 4
3 4 1 2

)

, s =

(

1 2 3 4
4 2 3 1

)

,

t =

(

1 2 3 4
2 1 4 3

)

, u =

(

1 2 3 4
1 3 2 4

)

.

2.11 The two-line symbols are

e =

(

1 2 3 4
1 2 3 4

)

, a =

(

1 2 3 4
3 4 1 2

)

,

r =

(

1 2 3 4
1 4 3 2

)

, s =

(

1 2 3 4
3 2 1 4

)

.

2.12

(a)
(

1 2 3 4 5 6 7 8
3 4 5 6 7 8 1 2

)

represents anticlockwise

rotation through π/2 about the centre.

(b)
(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

represents reflection in

the axis bisecting the edges joining locations 1, 8
and 4, 5.

(c)
(

1 2 3 4 5 6 7 8
5 4 3 2 1 8 7 6

)

represents reflection in

the axis joining locations 3 and 7.

2.13 The two-line symbols are

x ◦ x =

(

1 2 3
3 1 2

)

◦

(

1 2 3
3 1 2

)

=

(

1 2 3
2 3 1

)

,

y ◦ y =

(

1 2 3
3 2 1

)

◦

(

1 2 3
3 2 1

)

=

(

1 2 3
1 2 3

)

= e,

x ◦ y =

(

1 2 3
3 1 2

)

◦

(

1 2 3
3 2 1

)

=

(

1 2 3
2 1 3

)

,

y ◦ x =

(

1 2 3
3 2 1

)

◦

(

1 2 3
3 1 2

)

=

(

1 2 3
1 3 2

)

.

Using the above results, we obtain

(x ◦ x) ◦ x =

(

1 2 3
2 3 1

)

◦

(

1 2 3
3 1 2

)

=

(

1 2 3
1 2 3

)

= e,

(x ◦ x) ◦ y =

(

1 2 3
2 3 1

)

◦

(

1 2 3
3 2 1

)

=

(

1 2 3
1 3 2

)

= y ◦ x,

y ◦ (x ◦ x) =

(

1 2 3
3 2 1

)

◦

(

1 2 3
2 3 1

)

=

(

1 2 3
2 1 3

)

= x ◦ y.
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3.1 (a) (R,+) is a group. The proof is similar to
the proof in Frame 3.

We show that the four group axioms hold.

G1 For all x, y ∈ R,

x+ y ∈ R,

so R is closed under +.

G2 For all x ∈ R,

x+ 0 = x = 0 + x,

and 0 ∈ R, so 0 is an identity element.

G3 For each x ∈ R,

x+ (−x) = 0 = (−x) + x,

and −x ∈ R, so −x is an inverse of x.

G4 Addition of real numbers is associative.

Hence (R,+) satisfies the four group axioms, and so
is a group.

(b) (Q,×) is not a group. This situation is similar
to that in Frame 4.

Axioms G1 and G2 hold, and 1 is a multiplicative
identity, but axiom G3 fails because 0 has no
multiplicative inverse in Q.

(c) (Q∗,×) is a group. The proof is similar to the
proof in Frame 5.

We show that the four group axioms hold.

G1 For all x, y ∈ Q
∗, we have x 6= 0 and y 6= 0,

so x× y 6= 0 and x× y ∈ Q
∗, so Q

∗ is closed
under ×.

G2 For all x ∈ Q∗,

x× 1 = x = 1× x,

and 1 ∈ Q
∗, so 1 is an identity element.

G3 For each x ∈ Q
∗, we have x 6= 0, so 1/x is

defined and is non-zero; hence 1/x ∈ Q∗.
Also,

x×
1

x
= 1 =

1

x
× x,

so 1/x is an inverse of x.

G4 Multiplication of rational numbers is
associative.

Hence (Q∗,×) satisfies the four group axioms, and so
is a group.

3.2 (a) (Z,×) is not a group.

Z is closed under multiplication, and 1 is a
multiplicative identity, so axioms G1 and G2 hold.

However, axiom G3 fails because, for example, 2 has
no multiplicative inverse in Z, since 1

2 /∈ Z.

(b) (Z,−) is not a group.

Z is closed under subtraction, but there is no identity
element; for example, there is no integer n such that

2− n = 2 = n− 2,

so axiom G2 fails.

Alternatively, we can show that axiom G4 fails using
the argument given in Frame 8, part (i). The integers
6, 4 and 1 belong to Z, and

6− (4− 1) = 6− 3 = 3,

but

(6− 4)− 1 = 2− 1 = 1.

Since 3 6= 1, subtraction is not associative on Z.

(c) (G = {odd integers},×) is not a group.

The product of two odd integers is odd, so G is
closed under ×. Also, 1 is odd, so 1 is a
multiplicative identity. So axioms G1 and G2 hold.

However, axiom G3 fails because, for example, 3 has
no multiplicative inverse in G, since 1

3 /∈ G.

(d) (2πZ,+) is a group.

We show that the four group axioms hold.

G1 For all m,n ∈ Z,

2πm+ 2πn = 2π(m+ n) ∈ 2πZ,

so 2πZ is closed under +.

G2 For all k ∈ Z,

2πk + 0 = 2πk = 0 + 2πk,

and 0 = 2π× 0 ∈ 2πZ, so 0 is an identity
element.

G3 For each k ∈ Z,

2πk + 2π(−k) = 0 = 2π(−k) + 2πk,

and 2π(−k) ∈ 2πZ, so 2π(−k) is an inverse
of 2πk.

G4 Addition is associative on 2πZ.

Hence (2πZ,+) satisfies the four group axioms, and
so is a group.

(e) Here the operation is unfamiliar, so we examine
the axioms in turn.

The approach is similar to that in Frame 9.

G1 For all x, y ∈ R,

x ◦ y = x− y − 1 ∈ R,

so R is closed under ◦.

G2 Is there an identity element e ∈ R such that,
for each x ∈ R,

x ◦ e = x = e ◦ x?

That is, is there a real number e such that

x− e− 1 = x = e− x− 1?

Clearly, there is not because

x− e− 1 = x ⇒ e = −1

and

e− x− 1 = x ⇒ e = 2x+ 1.

Thus, for each x ∈ R, we must have

e = −1 = 2x+ 1.

But this is false for x = 0, for example, so
axiom G2 fails.

Hence (R, ◦) is not a group.
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3.3 (a) Let x, y, z ∈ R. Then

x ◦ (y ◦ z)

= x ◦ (y + z − yz)

= x+ (y + z − yz)− x(y + z − yz)

= x+ y + z − xy − xz − yz + xyz (S.1)

and

(x ◦ y) ◦ z

= (x+ y − xy) ◦ z

= (x+ y − xy) + z − (x+ y − xy)z

= x+ y + z − xy − xz − yz + xyz. (S.2)

Expressions (S.1) and (S.2) are the same, so ◦ is
associative on R.

(b) Let x, y, z ∈ R. Then

x ◦ (y ◦ z)

= x ◦ (y − z + yz)

= x− (y − z + yz) + x(y − z + yz)

= x− y + z + xy − xz − yz + xyz (S.3)

and

(x ◦ y) ◦ z

= (x− y + xy) ◦ z

= (x− y + xy)− z + (x− y + xy)z

= x− y − z + xy + xz − yz + xyz. (S.4)

Expressions (S.3) and (S.4) are not the same.

For example, if x = 0, y = 1 and z = 2, then

0 ◦ (1 ◦ 2) = 0 ◦ (1− 2 + 2)

= 0 ◦ 1

= 0− 1 + 0 = −1

but

(0 ◦ 1) ◦ 2 = (0− 1 + 0) ◦ 2

= (−1) ◦ 2

= −1− 2− 2 = −5,

so ◦ is not associative on R.

(If you can see that ◦ is not associative, then it is not
necessary to calculate expressions (S.3) and (S.4)); it
is sufficient to produce a specific counter-example.)

3.4 We show that (R− {−1}, ◦) satisfies the group
axioms.

The proof of axiom G1 needs care.

G1 For all x, y ∈ R− {−1},

x ◦ y = x+ y + xy ∈ R.

To show that x+ y + xy ∈ R− {−1}, we
need to show that, for all x, y ∈ R− {−1},

x+ y + xy 6= −1.

Now, if x, y ∈ R, and

x+ y + xy = −1,

then

x(1 + y) = −(1 + y).

So either x = −1, or 1 + y = 0, so y = −1.

However, the given set does not contain −1,
so neither of these conclusions is possible.
Thus x ◦ y cannot equal −1.

Hence, if x, y ∈ R− {−1}, then
x ◦ y ∈ R− {−1}, so R− {−1} is closed
under ◦.

G2 In Frame 9 we showed that 0 is an identity
element for ◦ on R, and 0 ∈ R− {−1}, so 0
is an identity element for ◦ on R− {−1}.

G3 In Frame 9 we showed that, for each
element x in R− {−1}, x ◦ y = e, where
y = −x/(1 + x). Here, x 6= 1 + x, so y 6= −1.
Also, x ◦ y = y ◦ x, so each element x in
R− {−1} has an inverse −x/(1 + x) in
R− {−1}.

G4 Let x, y, z ∈ R− {−1}. Our working in
Frame 8 shows that ◦ is associative on
R− {−1}.

Hence (R− {−1}, ◦) satisfies the four group axioms,
and so is a group.

3.5 (a) This situation is similar to that in
Frame 11.

The Cayley table for (Z5,+5) is as follows.

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

We show that the four group axioms hold.

G1 No new elements are needed to complete the
table, so Z5 is closed under +5.

G2 The first row of the table shows that

0 +5 x = x, for each x ∈ Z5.

The first column of the table shows that

x+5 0 = x, for each x ∈ Z5.

Hence 0 is an identity element.

G3 From the Cayley table above, we see that

0 +5 0 = 0,

1 +5 4 = 0 = 4 +5 1,

2 +5 3 = 0 = 3 +5 2,

so

0 is self-inverse,

1 and 4 are inverses of each other,

2 and 3 are inverses of each other.

G4 The operation +5 is associative.

Hence (Z5,+5) satisfies the four group axioms, and
so is a group.
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(b) This situation is similar to that in Frame 12.

The Cayley table for (Z5,×5) is as follows.

×5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Axioms G1 and G2 hold, and 1 is an identity element.

However, there is no 1 in the column labelled 0, so 0
has no inverse, so axiom G3 fails.

Hence (Z5,×5) is not a group.

(c) In this case, the troublesome 0 has been
omitted, and the Cayley table is as follows.

×5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

We check the four group axioms in turn.

G1 No new elements are needed to complete the
table, so Z∗

5 is closed under ×5.

G2 The first row of the table shows that

1×5 x = x, for each x ∈ Z∗

5.

The first column of the table shows that

x×5 1 = x, for each x ∈ Z∗

5.

Hence 1 is an identity element.

G3 From the table, we see that

1×5 1 = 1,

4×5 4 = 1,

2×5 3 = 1 = 3×5 2,

so

1 and 4 are self-inverse,

2 and 3 are inverses of each other.

G4 The operation ×5 is associative.

Hence (Z∗

5,×5) satisfies the four group axioms, and
so is a group.

3.6 (a) This situation is similar to that in
Frame 11, and to Exercise 3.5(a).

The Cayley table for (Z6,+6) is as follows.

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

We check the four group axioms in turn.

G1 No new elements are needed to complete the
table, so Z6 is closed under +6.

G2 The row and column labelled 0 repeat the
borders of the table, so 0 is an identity.

G3 From the table, we see that each element
has an inverse in Z6.

Element 0 1 2 3 4 5

Inverse 0 5 4 3 2 1

G4 The operation +6 is associative.

Hence (Z6,+6) satisfies the four group axioms, and
so is a group.

(b) This situation is similar to that in Frame 12,
and to Exercise 3.5(b).

The Cayley table for (Z6,×6) is as follows.

×6 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Axioms G1 and G2 hold, and 1 is an identity.

However, there is no 1 in the column labelled 0, so 0
has no inverse, and axiom G3 fails.

Hence (Z6,×6) is not a group.

(c) The Cayley table for (Z∗

7,×7) is as follows.

×7 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

We check the four group axioms in turn.

G1 No new elements are needed to complete the
table, so Z

∗

7 is closed under ×7.

G2 The row and column labelled 1 repeat the
borders of the table, so 1 is an identity.

G3 From the table, we see that each element
has an inverse in Z

∗

7.

Element 1 2 3 4 5 6

Inverse 1 4 5 2 3 6

G4 The operation ×7 is associative.

Hence (Z∗

7,×7) satisfies the four group axioms, and
so is a group.

68



Solutions to the exercises

(d) The Cayley table for ({1,−1},×) is as follows.

× 1 −1

1 1 −1

−1 −1 1

We check the four group axioms in turn.

G1 No new elements are needed to complete the
table, so {1,−1} is closed under ×.

G2 From the table, we see that 1 is an identity
element.

G3 Since 1× 1 = 1 and (−1)× (−1) = 1,
1 and −1 are both self-inverse.

G4 Multiplication of numbers is associative.

Hence ({1,−1},×) satisfies the four group axioms,
and so is a group.

3.7 We show that the four group axioms hold.

G1 For all a, b ∈ Q+, we have a ◦ b = 1
2ab ∈ Q+,

so Q+ is closed under the operation ◦.

G2 For all a ∈ Q
+,

a ◦ 2 = a = 2 ◦ a,

and 2 ∈ Q+, so 2 is an identity element.

G3 An inverse of a is not obvious, so we assume
that an inverse x exists, and try to find it.

We seek x ∈ Q+ such that

a ◦ x = 2 = x ◦ a;

that is,
1
2
ax = 2 = 1

2
xa,

so the only possibility is x = 4/a.

For each a ∈ Q+, we have 4/a ∈ Q+, so 4/a
is an inverse of a.

G4 For all a, b, c ∈ Q
+,

a ◦ (b ◦ c) = a ◦ (12bc)

= 1
2
a(1

2
bc)

= 1
4abc (S.5)

and

(a ◦ b) ◦ c = (12ab) ◦ c

= 1
2 (

1
2ab)c

= 1
4abc. (S.6)

Expressions (S.5) and (S.6) are the same, so
◦ is associative on Q

+.

Hence (Q+, ◦) satisfies the four group axioms, and so
is a group.

3.8 (a) (C,+) is a group. The proof is similar to
the proof in Frame 3.

We show that the four group axioms hold.

G1 For all x, y ∈ C,

x+ y ∈ C,

so C is closed under +.

G2 For all x ∈ C,

x+ 0 = x = 0 + x,

and 0 ∈ C, so 0 is an identity element.

G3 For each x ∈ C,

x+ (−x) = 0 = (−x) + x,

and −x ∈ C, so −x is an inverse of x.

G4 Addition of complex numbers is associative.

Hence (C,+) satisfies the four group axioms, and so
is a group.

3.9 We show that the four group axioms hold.

G1 For all integers m,n ∈ Z,

2m+ 2n = 2(m+ n) ∈ 2Z,

so 2Z is closed under +.

G2 For all k ∈ Z,

2k + 0 = 2k = 0 + 2k,

and 0 = 2× 0 ∈ 2Z, so 0 is an identity in 2Z.

G3 For each k ∈ Z,

2k + (−2k) = 0 = (−2k) + 2k,

and −2k = 2(−k) ∈ 2Z, so −2k is an inverse
of 2k in 2Z.

G4 Addition of integers is associative.

Hence (2Z,+) satisfies the four group axioms, and so
is a group.

3.10 We show that the four group axioms hold.

G1 For all m,n ∈ Z,

2m × 2n = 2m+n ∈ G,

so G is closed under ×.

G2 For all k ∈ Z,

2k × 20 = 2k = 20 × 2k,

and 20 = 1 ∈ G, so 1 is an identity in G.

G3 For each k ∈ Z,

2k × 2−k = 2k−k = 1 = 2−k+k = 2−k × 2k,

so 2−k is an inverse of 2k in G.
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G4 For all k,m, n ∈ Z,

2k × (2m × 2n) = 2k × 2m+n

= 2k+(m+n)

= 2k+m+n (S.7)

and

(2k × 2m)× 2n = 2k+m × 2n

= 2(k+m)+n

= 2k+m+n. (S.8)

Expressions (S.7) and (S.8) are the same, so
× is associative on G.

Hence (G,×) satisfies the four group axioms, and so
is a group.

3.11 In each case, we begin by completing a Cayley
table, and then examine the group axioms.

(a) ×8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

G1 No new elements are needed to complete the
table, so {1, 3, 5, 7} is closed under ×8.

G2 From the table, we see that 1 is an identity,
and 1 ∈ {1, 3, 5, 7}.

G3 From the table, we see that each element in
{1, 3, 5, 7} is self-inverse, so this set contains
an inverse of each element.

G4 Multiplication of numbers is associative.

Hence ({1, 3, 5, 7},×8) satisfies the four group
axioms, and so is a group.

(b) ×15 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

G1 No new elements are needed to complete the
table, so {1, 2, 4, 7, 8, 11, 13, 14} is closed
under ×15.

G2 From the table, we see that 1 is an identity,
and 1 ∈ {1, 2, 4, 7, 8, 11, 13, 14}.

G3 From the table, we see that each element
has an inverse in the set.

Element 1 2 4 7 8 11 13 14

Inverse 1 8 4 13 2 11 7 14

G4 Multiplication of numbers is associative.

Hence ({1, 2, 4, 7, 8, 11, 13, 14},×15) satisfies the four
group axioms, and so is a group.

(c) ×15 1 4 11 14

1 1 4 11 14

4 4 1 14 11

11 11 14 1 4

14 14 11 4 1

G1 No new elements are needed to complete the
table, so {1, 4, 11, 14} is closed under ×15.

G2 From the table, we see that 1 is an identity,
and 1 ∈ {1, 4, 11, 14}.

G3 From the table, we see that each element in
{1, 4, 11, 14} is self-inverse, so each element
has an inverse in the set.

G4 Multiplication of numbers is associative.

Hence ({1, 4, 11, 14},×15) satisfies the four group
axioms, and so is a group.

(d) +10 0 2 4 6 8

0 0 2 4 6 8

2 2 4 6 8 0

4 4 6 8 0 2

6 6 8 0 2 4

8 8 0 2 4 6

G1 No new elements are needed to complete the
table, so {0, 2, 4, 6, 8} is closed under +10.

G2 From the table, we see that 0 is an identity
element, and 0 ∈ {0, 2, 4, 6, 8}.

G3 From the table, we see that each element
has an inverse in the set.

Element 0 2 4 6 8

Inverse 0 8 6 4 2

G4 Addition of numbers is associative.

Hence ({0, 2, 4, 6, 8},+10) satisfies the four group
axioms, and so is a group.

3.12 (a) (Z∗

9,×9) is not a group.

The operation ×9 is not closed on the set
Z
∗

9 = {1, 2, 3, 4, 5, 6, 7, 8} because, for example, 3 ∈ Z
∗

9

and 6 ∈ Z
∗

9, but 3×9 6 = 0 /∈ Z
∗

9, so axiom G1 fails.
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(b) (Z9,+9) is a group.

The Cayley table is as follows.

+9 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8 0

2 2 3 4 5 6 7 8 0 1

3 3 4 5 6 7 8 0 1 2

4 4 5 6 7 8 0 1 2 3

5 5 6 7 8 0 1 2 3 4

6 6 7 8 0 1 2 3 4 5

7 7 8 0 1 2 3 4 5 6

8 8 0 1 2 3 4 5 6 7

G1 No new elements are needed to complete the
table, so Z9 is closed under +9.

G2 From the table, we see that 0 is an identity
element, and 0 ∈ Z9.

G3 From the table, we see that each element
has an inverse in the set.

Element 0 1 2 3 4 5 6 7 8

Inverse 0 8 7 6 5 4 3 2 1

G4 Addition of numbers is associative.

Hence (Z9,+9) satisfies the four group axioms, and
so is a group.

(c) (Z∗

11,×11) is a group.

The Cayley table is as follows.

×11 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 1 3 5 7 9

3 3 6 9 1 4 7 10 2 5 8

4 4 8 1 5 9 2 6 10 3 7

5 5 10 4 9 3 8 2 7 1 6

6 6 1 7 2 8 3 9 4 10 5

7 7 3 10 6 2 9 5 1 8 4

8 8 5 2 10 7 4 1 9 6 3

9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1

G1 No new elements are needed to complete the
table, so Z

∗

11 is closed under ×11.

G2 From the table, we see that 1 is an identity,
and 1 ∈ Z

∗

11.

G3 From the table, we see that each element
has an inverse in the set.

Element 1 2 3 4 5 6 7 8 9 10

Inverse 1 6 4 3 9 2 8 7 5 10

G4 Multiplication of numbers is associative.

Hence (Z∗

11,×11) satisfies the four group axioms, and
so is a group.

4.1 (a) The second row and the second column
repeat the borders of the table, so the identity is E.

(Here the letters E and O could denote the sets of
even and odd integers under addition.)

(b) The first row and the first column repeat the
borders of the table, so the identity is D.

(Here the letters D and I could denote the sets of
direct and indirect symmetries of a figure with
rotational and reflectional symmetries under
composition.)

(c) The third row and the third column repeat the
borders of the table, so the identity is w.

4.2 The fifth row and the fifth column repeat the
borders of the table, so the identity is e.

The table of inverses is as follows.

Element a b c d e f g h

Inverse b a d c e f h g

4.3 The elements a, b and c do not have inverses.

For example, from row 2 we see that the only possible
candidate for a−1 is c, since a ◦ c = e; but from row 4
we see that c ◦ a = d 6= e, so a has no inverse.

Alternatively, the element e does not appear
symmetrically about the main diagonal.

4.4 (a) Suppose that, in a group (G, ◦),

x ◦ a = x ◦ b.

The element x has an inverse x−1 in G, so composing
both sides on the left with x−1, we obtain

x−1 ◦ (x ◦ a) = x−1 ◦ (x ◦ b).

Hence

(x−1 ◦ x) ◦ a = (x−1 ◦ x) ◦ b (associativity).

But

x−1 ◦ x = e (inverses),

so we have

e ◦ a = e ◦ b,

and hence

a = b (identity).

(b) Similarly, if

a ◦ x = b ◦ x,

then, composing both sides on the right with x−1, we
obtain

(a ◦ x) ◦ x−1 = (b ◦ x) ◦ x−1,

so

a ◦ (x ◦ x−1) = b ◦ (x ◦ x−1) (associativity).

Hence

a ◦ e = b ◦ e (inverses),

so

a = b (identity).
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4.5 (a) The table of inverses is as follows.

Element e a b c d f g h

Inverse e a b c d f g h

The group table is symmetrical about the leading
diagonal, so this group is Abelian.

(b) The table of inverses is as follows.

Element e a b c d f g h

Inverse e c b a g h d f

The group is non-Abelian; for example, a ◦ d = f ,
but d ◦ a = h.

4.6 We use the property that in a group table each
element must appear once in each row and once in
each column.

(a) e a b

e e a b

a a b e

b b e a

(b) a b c d

a a b c d

b b c d a

c c d a b

d d a b c

4.7 (a) The first row and the first column repeat
the borders of the table, so the identity is e.

(b) The table of inverses is as follows.

Element e a b c d f g h

Inverse e c b a h g f d

(c) The group is non-Abelian because the table is
not symmetrical about the leading diagonal; for
example, h ◦ g = c, whereas g ◦ h = a.

4.8 (a) The operation ◦ is not closed: a new
element d occurs in the body of the table, so axiom
G1 fails.

(b) Here the operation ◦ is closed, and we see from
row 2 and column 2 that a is an identity element.

However, a does not occur symmetrically about the
main diagonal, so this is not a group.

Alternatively, in row 1 and column 3, b occurs twice
so this is not a group.

(c) Again, the operation ◦ is closed, and we see from
row 1 and column 1 that e is an identity element.

However, e does not appear symmetrically about the
main diagonal, so this is not a group.

Alternatively, the operation is not associative because

a ◦ (b ◦ d) = a ◦ a = b

but

(a ◦ b) ◦ d = d ◦ d = e.

Hence

a ◦ (b ◦ d) 6= (a ◦ b) ◦ d,

so axiom G4 fails.

(d) Here the only axiom that fails is G4; for
example,

a ◦ (b ◦ d) = a ◦ f = d

but

(a ◦ b) ◦ d = f ◦ d = e.

Hence

a ◦ (b ◦ d) 6= (a ◦ b) ◦ d,

so axiom G4 fails.

4.9 We know that |G| is even and that, for each
element g ∈ G,

either g is self-inverse

or g and g−1 are distinct elements which
are inverses of each other.

It follows that the number of elements which are
self-inverse must be even.

However, e is self-inverse, so there must be at least
one element g ∈ G such that

g ◦ g = e and g 6= e.

5.1 In each case, we use Strategy 5.1.

Cube

The cube has 6 faces.

Each face of the cube is a square, and so has
8 symmetries (since the order of S(�) is 8).

It follows from the strategy that the number of
symmetries of the cube is 6× 8 = 48.

Octahedron

The octahedron has 8 faces.

Each face of the octahedron is an equilateral triangle,
and so has 6 symmetries (since the order of S(△)
is 6).

It follows from the strategy that the number of
symmetries of the octahedron is 8× 6 = 48.
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Dodecahedron

The dodecahedron has 12 faces.

Each face of the dodecahedron is a regular pentagon,
and so has 10 symmetries (since the order of S(D)
is 10).

It follows from the strategy that the number of
symmetries of the dodecahedron is 12× 10 = 120.

Icosahedron

The icosahedron has 20 faces.

Each face of the icosahedron is an equilateral
triangle, and so has 6 symmetries.

It follows from the strategy that the number of
symmetries of the icosahedron is 20× 6 = 120.

5.2 We use Strategy 5.2.

The triangular prism has two (congruent) equilateral
triangle faces and three (congruent) rectangular
faces; so there are two ways of applying the strategy.

Consider the equilateral triangle faces.

1. The prism has 2 (congruent) equilateral triangle
faces.

2. Each triangular face is an equilateral triangle,
and so has 6 symmetries; each of these
symmetries is also a symmetry of the whole
prism.

It follows from the strategy that the number of
symmetries of the triangular prism is 2× 6 = 12.

Alternatively, consider the rectangular faces.

1. The prism has 3 (congruent) rectangular faces.

2. Each rectangular face has 4 symmetries (since
S( ) has order 4); each of these symmetries is
also a symmetry of the whole prism.

It follows from the strategy that the number of
symmetries of the triangular prism is 3× 4 = 12.

5.3 (a) We consider a square face of the second
type as the base—a square face with two edges that
are joined to triangular faces and two to square faces.
The small rhombicuboctahedron has 12 square faces
of this type. Only 4 of the symmetries of this square
base give symmetries of the rhombicuboctahedron.

It follows from Strategy 5.2 that the number of
symmetries of the rhombicuboctahedron is
12× 4 = 48.

(b) We consider a triangular face as the base. The
small rhombicuboctahedron has 8 triangular faces.
All 6 symmetries of this equilateral triangle base give
symmetries of the polyhedron.

It follows from Strategy 5.2 that the number of
symmetries of the polyhedron is 8× 6 = 48.

(As expected, we obtain the same number of
symmetries whichever face we consider.)

5.4 (a) Rectangular block

The rectangular block has six faces—three pairs of
opposite faces. Opposite faces are congruent
rectangles: if faces are not opposite each other, then
they are not congruent.

1. Select the 2 congruent faces denoted by A and B
in the above diagram.

2. Each of these faces is a rectangle, and so has four
symmetries (since the order of S( ) is 4).

Each of the symmetries is also a symmetry of the
whole block.

It follows from Strategy 5.2 that the number of
symmetries of the rectangular block is 2× 4 = 8.
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(b) There are two possible approaches here: we give
the details of both.

First we list the symmetries which map A to A and
B to B. (These are essentially the symmetries of a
rectangle.)

The two-line symbols for these symmetries are

e =

(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)

,

a =

(

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6

)

,

r =

(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)

,

s =

(

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)

.

Now we consider the reflection w in the vertical plane
shown below.

The reflection

w =

(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)

maps A to B and B to A, so we obtain the four
remaining symmetries by composing each of the
above symmetries with w on the right:

w = e ◦ w =

(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)

,

x = a ◦ w =

(

1 2 3 4 5 6 7 8
7 8 5 6 3 4 1 2

)

,

y = r ◦ w =

(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

,

z = s ◦ w =

(

1 2 3 4 5 6 7 8
6 5 8 7 2 1 4 3

)

.

Alternatively, we find first the direct symmetries and
then the indirect symmetries, as in the video
programme. The non-trivial direct symmetries a, y
and z are anticlockwise rotations through π about
the axes shown below.

The two-line symbols for the direct symmetries are

e =

(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)

,

a =

(

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6

)

,

y =

(

1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)

,

z =

(

1 2 3 4 5 6 7 8
6 5 8 7 2 1 4 3

)

.

We obtain the four indirect symmetries by composing
each of the direct symmetries with the indirect
symmetry w (given above) on the right:

w = e ◦ w =

(

1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)

,

x = a ◦ w =

(

1 2 3 4 5 6 7 8
7 8 5 6 3 4 1 2

)

,

r = y ◦ w =

(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)

,

s = z ◦ w =

(

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)

.
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Abelian group, 29
associative, 13–14
axis of symmetry, 6, 11

binary operation, 29
bounded figure, 8

Cayley table, 25–27
centre of rotation, 6, 11
closure, 8, 26
commutative, 11
composition, 9, 11

direct symmetry, 18–19, 26, 29
disc, 15–17, 26

equal symmetries, 8
equilateral curve heptagon, 19–20
equilateral triangle
Cayley table, 27
composites, 12
direct symmetries, 19
inverses, 13
set of symmetries, 7
two-line symbols, 23, 24

figure, definition, 8

glide-reflection, 19
group
definition, 28
properties, 28

heptagon, 19–20
hexagon, 23, 25, 27

identity, 8, 12, 14, 26
indirect symmetry, 18–19, 26
inverse, 12–13, 25–26
isometry, 6, 8

leading diagonal, 26

main diagonal, 26

negative angle, 7

octagon, 27

parallelogram, 19
plane figure, 8–9, 12, 26, 28
polygon, 6, 22

rectangle, 7, 11, 13, 19, 27
reflection, 7, 8
reflectional symmetry, 6–7
regular n-gon, 6, 14–15
rhombus, 19
rotation, 7–8, 14
rotational symmetry, 6

sawblade, 19
self-inverse (element), 13, 26
square
Cayley table, 26–27
composites, 9–10
direct symmetries, 17–18
inverses, 13, 25
set of symmetries, 6–7
two-line symbols, 20–22, 27

star, 19
symmetry, definition, 8

translation, 6, 8
trapezium, 19
trivial rotation, 7
trivial symmetry, 8
trivial translation, 6
two-line symbol, 21–25

4-windmill, 7, 11, 13

zero rotation, 8
zero translation, 8
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