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Unit AA1 Numbers

Introduction to Analysis Block A

The analysis units of this course are concerned with the study of functions
whose domains and codomains are subsets of the real line R. In Analysis
Block A we begin to study such functions from a precise point of view in
order to prove many of their properties. Some of these properties may
seem intuitively obvious, but this work will provide a sound basis for the
study of more difficult properties of functions later in the course.

For example, consider the problem:

Does the graph y = 2x have a gap at x =
√
2?

Later in the block we answer this question by showing that the function
f(x) = 2x has a property called continuity, so its graph has no gaps.
Before we can tackle this problem, however, we must answer the question:

What precisely is meant by 2
√
2?

Thus, to answer a question about functions, we first need to clarify our
ideas about real numbers.
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Introduction

Introduction

This unit is devoted to the real numbers and their properties. In
particular, we discuss inequalities, which play a crucial role in analysis.

In Section 1 we start by revising rational numbers and their decimal
representations. Then we introduce the real numbers as infinite decimals,
and describe their properties and the difficulties involved in doing Some of the properties of real

numbers discussed in this
section were introduced in
Unit I3, Section 1.

arithmetic with such decimals.

In Section 2 we discuss the rules for manipulating inequalities, and show
how to find the solution set of an inequality involving a real variable x by
applying these rules. We also explain how to deal with inequalities which
involve modulus signs.

In Section 3 we describe various techniques for proving inequalities; this
section includes an audio devoted to the proofs of several inequalities
which are needed in later analysis units.

The concept of a least upper bound, which is of great importance in
analysis, is introduced in Section 4, where we also discuss the Least Upper
Bound Property of R.

In Section 5 we describe how least upper bounds can be used to define
arithmetic operations in R.

Study guide
You will already be familiar with much of the early material in this unit
and so you should spend most of your study time on Sections 2, 3 and 4 in
order to gain facility with manipulating inequalities.

The sections should be studied in the natural order. Section 5 is intended
for reading only and will not be assessed directly.

The video is a general one which can be watched at any time during your
study of the unit. It starts from an elementary level, and explains how the
real number system is composed of the rationals and the irrationals.

The video touches on many of the key ideas in the unit, including:

1. rational numbers, whose decimals terminate or recur;

2. ordering the real numbers;

3. a geometric proof of the fact that
√
2 is irrational;

4. the reason why (−1)× (−1) = +1;

5. the fact that 0.999 . . . = 1;

6. arithmetic with real numbers, using truncations of their decimals and
the Least Upper Bound Property.
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Unit AA1 Numbers

1 Real numbers

After working through this section, you should be able to:

(a) explain the relationship between rational numbers and recurring

decimals;

(b) explain the term irrational number and describe how such a
number can be represented on a number line;

(c) find a rational and an irrational number between any two distinct
real numbers.

In this section we discuss the real numbers and describe some of their
properties. We start with the rationals and investigate their decimal
representations, and then proceed to the irrational numbers.

1.1 Rational numbers
The set of natural numbers is Note that 0 is not a natural

number.
N = {1, 2, 3, . . .},

the set of integers is

Z = {. . . ,−2,−1, 0, 1, 2, . . .}
and the set of rational numbers is

Q = {p/q : p ∈ Z, q ∈ N} .
Remember that each rational number has many different representations
as a ratio of integers; for example,

1

3
=

2

6
=

10

30
= · · · .

Rational numbers satisfy the usual arithmetical operations of addition,
subtraction, multiplication and division of rational numbers. They can be
represented on a number line.

For example, the rational 3
2
is placed at the point which is one half of the

way from 0 to 3.

This representation means that rationals have a natural order on the
number line. For example, 19/22 lies to the left of 7/8 because

19

22
=

76

88
and

7

8
=

77

88
.

If a lies to the left of b on the number line, then we say that

a is less than b or b is greater than a

and we write

a < b or b > a.
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Section 1 Real numbers

For example, we write

19

22
<

7

8
or

7

8
>

19

22
.

Also, we write a ≤ b (or b ≥ a) if either a < b or a = b.

Exercise 1.1 Arrange the following rationals in order:

0, 1, −1,
17

20
, −17

20
,

45

53
, −45

53
.

Exercise 1.2 Show that between any two distinct rationals there is
another rational.

1.2 Decimal representation of rational
numbers
The decimal system enables us to represent all the natural numbers using
only the ten integers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

which are called digits. We now remind you of the basic facts about the
representation of rational numbers by decimals.

Definition A decimal is an expression of the form For example,

0.8500 . . . ,

13.1212 . . . ,

−1.111 . . . ,

are all decimals.

± a0.a1a2a3 . . . ,

where a0 is a non-negative integer and an is a digit for each n ∈ N.

If only a finite number of the digits a1, a2, . . . are non-zero, then the For example,

0.8500 . . . = 0.85.decimal is a terminating or finite decimal, and we usually omit the tail
of zeros.

Terminating decimals are used to represent rational numbers in the
following way:

± a0.a1a2 . . . an = ±
(

a0 +
a1
101

+
a2
102

+ · · ·+ an
10n

)

. For example,

0.85= 0 +
8

101
+

5

102

=
85

100
=

17

20
.

It can be shown that any fraction whose denominator contains only powers
of 2 and/or 5 (for example, 20 = 22 × 5) can be represented by such a
terminating decimal, which can be found by long division.

However, if we apply long division to other rationals, then the process of
long division never terminates and we obtain a non-terminating or
infinite decimal. For example, applying long division to 1/3 gives
0.333 . . . and for 19/22 we obtain 0.863 63 . . . .

Exercise 1.3 Find the decimal corresponding to 1/7.

The infinite decimals which are obtained by applying the long division
process have a certain common property. All of them are recurring

decimals; that is, they have a repeating block of digits, so they can be
written in shorthand form as follows: Another commonly used

notation is

0.3̇ and 0.1̇42 857̇.
0.333 . . . = 0.3,

0.142 857 142 857 . . . = 0.142 857,

0.863 63 . . . = 0.863.
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Unit AA1 Numbers

Whenever we apply the long division process to a fraction p/q, the
resulting decimal is recurring. To see why, note that there are only q
possible remainders at each stage of the division, so one of these
remainders must eventually repeat. When this happens, the block of digits
obtained after the first occurrence of this remainder will be repeated
infinitely often. If the remainder 0 occurs, then the resulting decimal is
finite; that is, it ends in recurring 0s.

Infinite recurring decimals which arise from the long division of fractions
are used to represent the corresponding rational numbers. This
representation is not quite so straightforward as for finite decimals,
however. For example, the statement

1

3
= 0.3 =

3

101
+

3

102
+

3

103
+ · · ·

can be made precise only when we have introduced the idea of the sum of This idea is discussed in
Unit AA3.a convergent infinite series. For the moment, when we write the statement

1/3 = 0.3 we mean simply that the decimal 0.3 arises from 1/3 by the long
division process.

The following example illustrates one way of finding the rational with a
given decimal representation.

Example 1.1 Express in the form of a fraction the rational number
whose decimal representation is 0.863.

Solution First we find the fraction x such that

x = 0.63.

If we multiply both sides by 102 (because the recurring block has
length two), then we obtain

100x = 63.63 = 63 + x.

Hence

99x = 63, so x =
63

99
=

7

11
.

Thus

0.863 =
8

10
+

x

10
=

8

10
+

7

110
=

95

110
=

19

22
.

The key idea in the above solution is that multiplication of a decimal
by 10k moves the decimal point k places to the right.

Exercise 1.4 Using the above method, find the fractions whose
decimal representations are:

(a) 0.231; (b) 2.281.

Decimals which end in recurring 9s sometimes arise as alternative When possible, we avoid using
the form of a decimal which
ends in recurring 9s.

representations for terminating decimals. For example,

1 = 0.9 = 0.999 . . . and 1.35 = 1.349 = 1.349 99 . . . .

You may find this rather disconcerting, but it is important to realise that
this representation is a matter of definition. We wish to allow the decimal This definition is discussed in

the video.0.999 . . . to represent a number x, so x must be less than or equal to 1 and
greater than each of the numbers

0.9, 0.99, 0.999, . . . .

The only rational with these properties is 1.
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Section 1 Real numbers

The decimal representation of rational numbers has the advantage that it
enables us to decide immediately which of two distinct positive rationals is
the greater. We need examine only their decimal representations and
notice the first place at which the digits differ. For example, to order 7/8
and 19/22, we can write

7

8
= 0.875 and

19

22
= 0.863 63 . . . .

Then

↓ ↓
0.863 63 . . . < 0.875, so 19/22 < 7/8.

Exercise 1.5 Find the first two digits after the decimal point in the
decimal representations of 17/20 and 45/53, and hence determine
which of these two rationals is the greater.

1.3 Irrational numbers
You have already seen earlier in the course that there is no rational See Unit I3, Section 1.

number which satisfies the equation x2 = 2. A number which is not
rational is called irrational. There are many other mathematical
quantities which cannot be described exactly by rational numbers; for
example, m

√
n, where m and n are natural numbers and xm = n has no

integer solution, as well as the numbers π and e. We discuss π and e in the video
for Unit AA2. The video for this
unit discusses

√
2.It is natural to ask whether irrational numbers, such as

√
2 and π, can be

represented as decimals. Using your calculator, you can check that

(1.414 213 56)2

is very close to 2, so 1.414 213 56 is a very good approximate value for
√
2.

But is there a decimal that represents
√
2 exactly? If such a decimal exists,

then it cannot be recurring because all the recurring decimals correspond
to rational numbers.

In fact, it is possible to represent all the irrational numbers mentioned so
far by non-recurring decimals. For example, there are non-recurring
decimals representing

√
2 and π, the first few digits of which are

√
2 = 1.414 213 56 . . . and π = 3.141 592 65 . . . . We prove that

√
2 has a decimal

representation in Subsection 5.2.
It is also natural to ask whether arbitrary non-recurring decimals, such as

0.101 001 000 100 001 . . . and 0.123 456 789 101 112 . . .

represent irrational numbers. We take it as a basic assumption about the
number system that they do.

Thus the set of irrational numbers consists of all the non-recurring
decimals.

1.4 Real numbers and their properties
Together, the rational numbers (recurring decimals) and irrational numbers
(non-recurring decimals) form the set of real numbers, denoted by R.

9



Unit AA1 Numbers

As with rational numbers, we can determine which of two real numbers is
greater by comparing their decimals and noticing the first pair of
corresponding digits which differ. For example, When comparing decimals in

this way, the decimal on the left
should not end in recurring 9s.
As noted earlier, any decimal
ending in recurring 9s has an
alternative representation as a
terminating decimal.

↓ ↓
0.101 001 000 100 001 . . . < 0.123 456 789 101 112 . . . .

We now associate with each irrational number a point on the number line.
For example, the irrational number

x = 0.123 456 789 101 112 . . .

satisfies each of the inequalities

0.1 < x < 0.2
0.12 < x < 0.13
0.123 < x < 0.124

...

We assume that there is a point on the number line corresponding to x
which lies to the right of each of the rational numbers 0.1, 0.12, 0.123, . . .
and to the left of each of the rational numbers 0.2, 0.13, 0.124, . . . .

As usual, negative real numbers correspond to points lying to the left of 0.
The number line, complete with both rational and irrational points, is
called the real line.

There is thus a one-one correspondence between the points on the real line
and the set R of real numbers.

We now state several order properties of R with which you are probably
already familiar, although you may not have met their names before.

Order properties of R These properties are used
frequently in analysis and we do
not always refer to them
explicitly by name.

1. Trichotomy Property If a, b ∈ R, then exactly one of the
following holds:

a < b or a = b or a > b.

2. Transitive Property If a, b, c ∈ R, then

a < b and b < c ⇒ a < c. The use of the symbol ⇒ to
represent ‘implies’ is discussed in
Unit I2, Section 3.3. Archimedean Property If a ∈ R, then there is a positive

integer n such that

n > a.

4. Density Property If a, b ∈ R and a < b, then there is a
rational number x and an irrational number y such that

a < x < b and a < y < b.
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Section 1 Real numbers

The first three of these properties are almost self-evident, but the Density
Property is not so obvious. One consequence of the Density Property is
that between any two distinct real numbers there are infinitely many
rational numbers and infinitely many irrational numbers. Rather than
prove the Density Property, we give an example which illustrates how it
can be proved for general numbers a and b.

Example 1.2 Let a = 0.123 and b = 0.123 45 . . . . Find a rational
number x and an irrational number y such that

a < x < b and a < y < b.

Solution The two decimals

↓ ↓
a = 0.123 33 . . . and b = 0.123 45 . . .

differ first at the fourth digit. If we truncate b after this digit, then we
obtain the rational number

x = 0.1234,

which satisfies a < x < b.

To find an irrational number y between a and b, we attach to x a
(sufficiently small) non-recurring tail such as 010 010 001 . . . to give

y = 0.1234 |010010001 . . . .
|non-recurring tail

Thus a < y < b and y is irrational, since its decimal is non-recurring.

Exercise 1.6

(a) Let a = 0.3 and b = 0.3401. Find a rational number x and an
irrational number y such that a < x < b and a < y < b.

(b) Given positive real numbers a and b such that a < b, describe how
you can find a rational number x and an irrational number y such
that a < x < b and a < y < b.

1.5 Arithmetic with real numbers
We can do arithmetic with recurring decimals by first converting the
decimals to fractions. However, it is not obvious how to do arithmetic with
non-recurring decimals. For example, assuming that we can represent

√
2

and π by the non-recurring decimals
√
2 = 1.414 213 56 . . . and π = 3.141 592 65 . . . ,

can we also represent the sum
√
2 + π and the product

√
2× π as

decimals? What is meant by the operations of addition and multiplication
when non-recurring decimals (irrationals) are involved, and do these
operations satisfy the usual properties of addition and multiplication These properties were discussed

in Unit I3, Section 1.stated in the following table?
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Unit AA1 Numbers

closure

identity

inverses

associativity

commutativity

distributivity

Arithmetic in R

Addition Multiplication

A1. If a, b ∈ R, then M1. If a, b ∈ R, then

a+ b ∈ R. a× b ∈ R.

A2. If a ∈ R, then M2. If a ∈ R, then

a+ 0 = 0 + a = a. a× 1 = 1× a = a.

A3. If a ∈ R, then there is a M3. If a ∈ R− {0}, then there is

number −a ∈ R such that a number a−1 ∈ R such that

a+ (−a) = (−a) + a = 0. a× a−1 = a−1 × a = 1.

A4. If a, b, c ∈ R, then M4. If a, b, c ∈ R, then

(a+ b) + c = a+ (b+ c). (a× b)× c = a× (b× c).

A5. If a, b ∈ R, then M5. If a, b ∈ R, then

a+ b = b+ a. a× b = b× a.

D. If a, b, c ∈ R, then a× (b+ c) = a× b+ a× c.

We can summarise the contents of this table as follows:

• R is an Abelian group under the operation of addition +; Groups are defined in
Unit GTA1, Section 3.• R− {0} is an Abelian group under the operation of multiplication ×;

and these two group structures are linked by the distributive property.
Any system satisfying the properties listed in the table is called a field.

Certainly the set Q of rationals forms a field, but it is not clear that the
set R of real numbers does. As mentioned above, we have not yet defined
addition and multiplication of real numbers. However, these definitions can
be made, and it can be proved that all the above properties hold in R.
Since this is a lengthy process, we assume from now on that it has been In Section 5 we describe one way

to justify these assumptions, and
also remind you of the
properties of powers.

carried out. Furthermore, we assume that the set R contains the nth roots
and rational powers of positive real numbers, with their usual properties.

Remark Analysis texts take various approaches to defining real numbers.
For example, it is common to assume that there exists a set R which is a
field containing Q and having certain extra properties, and then to deduce
all results from these assumptions. In this ‘axiomatic approach’ the
definition of the real numbers themselves may not be given (though they
can be defined by a somewhat abstract procedure involving subsets of Q
called ‘Dedekind cuts’), but it is proved that each real number must have a
decimal representation. We have chosen a more concrete approach in
which real numbers are defined to be decimals.

Further exercises
Exercise 1.7 Arrange the following numbers in increasing order:

(a) 7/36, 3/20, 1/6, 7/45, 11/60;

(b) 0.465, 0.465, 0.465, 0.4655, 0.4656.

Exercise 1.8 Find the fractions whose decimal representations are:

(a) 0.481; (b) 0.481.

Exercise 1.9 Let x = 0.21 and y = 0.2. Find x+ y and xy in decimal
form.

Exercise 1.10 Find a rational number x and an irrational number y in
the interval (0.119, 0.12).
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Section 2 Inequalities

2 Inequalities

After working through this section, you should be able to:

(a) solve inequalities by rearranging them into simpler equivalent
forms;

(b) solve inequalities involving modulus signs.

2.1 Rearranging inequalities
Much of analysis is concerned with inequalities of various kinds; the aim of
this section and the next is to provide practice in their manipulation.

The fundamental rule, on which much manipulation of inequalities is
based, is that the statement a < b means exactly the same as the
statement b− a > 0.

Rule 1 a < b ⇔ b− a > 0. The use of the symbol ⇔ to
represent ‘if and only if’ is
discussed in Unit I2, Section 3.

Put another way, the inequalities a < b and b− a > 0 are equivalent.

There are several other standard rules for rearranging a given inequality
into an equivalent form. Each of these can be deduced from Rule 1. For
example, we obtain an equivalent inequality by adding the same expression
to both sides.

Rule 2 a < b ⇔ a+ c < b+ c.

Another way to rearrange an inequality is to multiply both sides by a
non-zero expression, making sure to reverse the inequality if the expression
is negative.

Rule 3 If c > 0, then

a < b ⇔ ac < bc;

if c < 0, then For example,

2 < 3 ⇔ −2 > −3.
a < b ⇔ ac > bc.

Sometimes the most effective way to rearrange an inequality is to take
reciprocals. However, both sides of the inequality must be positive and the
direction of the inequality has to be reversed.

Rule 4 If a, b > 0, then For example,

2 < 3 ⇔ 1

2
> 1

3
.

a < b ⇔ 1

a
>

1

b
.

Some inequalities can be simplified only by taking powers. In order to do
this, both sides must be non-negative and the power must be positive.
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Unit AA1 Numbers

Rule 5 If a, b ≥ 0 and p > 0, then

a < b ⇔ ap < bp.

For positive integers p, Rule 5 follows from the identity For example,

b3 − a3 = (b − a)(b2 + ba+ a2).bp − ap = (b− a)(bp−1 + bp−2a+ · · · + bap−2 + ap−1);

since the value of the right-hand bracket is positive, we deduce that

b− a > 0 ⇔ bp − ap > 0.

For other positive real numbers p the proof of Rule 5 is harder, but the
rule remains true, as you will see later in the block.

There are corresponding versions of Rules 1–5 in which the strict inequality Another rule for rearranging an
inequality into an equivalent
form is given in Subsection 2.3.

a < b is replaced by the weak inequality a ≤ b. For example, if c > 0, then

a ≤ b ⇔ ac ≤ bc.

Also, we frequently use the usual rules for the sign of a product:

× + −
+ + −
− − +

In particular, the square of any real number is non-negative.

2.2 Solving inequalities
Solving an inequality involving an unknown real number x means
determining those values of x for which the inequality holds; that is,
finding the solution set of the inequality, usually given as a union of
intervals. We can often do this by rewriting the inequality in an equivalent
but simpler form, using Rules 1–5.

Example 2.1 Solve the inequality

x+ 2

x+ 4
>

x− 3

2x− 1
.

Solution We rearrange this inequality to give an equivalent simpler
inequality, using Rule 1:

x+ 2

x+ 4
>

x− 3

2x− 1
⇔ x+ 2

x+ 4
− x− 3

2x− 1
> 0

⇔ x2 + 2x+ 10

(x+ 4)(2x − 1)
> 0.

By completing the square, we obtain

x2 + 2x+ 10 = (x+ 1)2 + 9,

so the numerator is always positive. We can now find the solution set using
a sign table: Sign tables were introduced in

Unit I1, Section 2. In future we
shall not usually draw a sign
table, but you should draw your
own if you find this helpful.

x (−∞,−4) −4 (−4, 1
2
) 1

2
(1
2
,∞)

x2 + 2x+ 10 + + + + +
x+ 4 − 0 + + +

2x− 1 − − − 0 +

x2 + 2x+ 10

(x+ 4)(2x − 1)
+ ∗ − ∗ +

14



Section 2 Inequalities

So the solution set is
{

x :
x+ 2

x+ 4
>

x− 3

2x− 1

}

= (∞,−4) ∪
(
1
2
,∞

)
.

Remark Some inequalities can be solved by cross-multiplying, using
Rules 3 and 4. However, this method cannot be used in Example 2.1, since
the denominators x+ 4 and 2x− 1 are negative for some values of x.

The following example illustrates some of the other rules for rearranging
inequalities.

Example 2.2 Solve the inequality

1

2x2 + 2
<

1

4
.

Solution Since 2x2 + 2 > 0, we can rearrange the inequality into an
equivalent form as follows:

1

2x2 + 2
<

1

4
⇔ 2x2 + 2 > 4 (Rule 4)

⇔ x2 + 1 > 2 (Rule 3)

⇔ x2 − 1 > 0 (Rule 1)

⇔ (x− 1)(x+ 1) > 0.

So the solution set is
{

x :
1

2x2 + 2
<

1

4

}

= (−∞,−1) ∪ (1,∞).

Exercise 2.1 For each of the following expressions, include the
expression in an inequality which is equivalent to x > 2.

(a) x+ 3 (b) 2− x (c) 5x+ 2 (d) 1/(5x+ 2)

Exercise 2.2 Solve the following inequalities.

(a)
4x− x2 − 7

x2 − 1
≥ 3 (b) 2x2 ≥ (x+ 1)2

In the next example, we have to solve an inequality which involves rational
powers. Here we need to be careful, when applying Rule 5, to ensure that
both sides of the inequality are non-negative.

Example 2.3 Solve the inequality
√
2x+ 3 > x.

Solution The expression
√
2x+ 3 is defined only when 2x+ 3 ≥ 0, that Remember that

√
always

means the non-negative square
root.

is, for x ≥ −3/2. Hence we need to consider only those x in [−3/2,∞).

We can obtain an equivalent inequality by squaring, provided that both√
2x+ 3 and x are non-negative. Thus, for x ≥ 0, we have
√
2x+ 3 > x ⇔ 2x+ 3 > x2 (Rule 5, p = 2)

⇔ x2 − 2x− 3 < 0 (Rule 1)

⇔ (x− 3)(x+ 1) < 0.

So the part of the solution set in [0,∞) is [0, 3).

Here we use the Transitive
Property:√

2x+ 3 ≥ 0 and 0 > x,

implies that√
2x+ 3 > x.

On the other hand, if −3/2 ≤ x < 0, then
√
2x+ 3 ≥ 0 > x,

so the other part of the solution set is [−3/2, 0).
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Hence the complete solution set is
{
x :

√
2x+ 3 > x

}
= [−3/2, 0 ) ∪ [0, 3) = [−3/2, 3).

Exercise 2.3 Solve the inequality
√

2x2 − 2 > x.

2.3 Inequalities involving modulus signs
Now we consider inequalities involving the modulus of a real number.
Recall that if a ∈ R, then its modulus, or absolute value, |a| is defined
by

|a| =
{

a, if a ≥ 0,

−a, if a < 0.

It is useful to think of |a| as the distance along the real line from 0 to a. For example,

|3| = |−3| = 3.

In the same way, |a− b| is the distance from 0 to a− b, which is the same For example, the distance from
−2 to 3 is

|(−2)− 3| = |−5| = 5.
as the distance from a to b.

Note also that |a+ b| = |a− (−b)| is the distance from a to −b.

We now list some basic properties of the modulus, which follow
immediately from the definition.

Properties of the modulus

If a, b ∈ R, then For example:

1. |−2| > 0;

2. −|−2| ≤ −2 ≤ |−2|;
3. |−2|2 = (−2)2;

4. |−2−1| = |1− (−2)|;
5. |(−2)× 1| = |−2| × |1|.

1. |a| ≥ 0, with equality if and only if a = 0;

2. −|a| ≤ a ≤ |a|;
3. |a|2 = a2;

4. |a− b| = |b− a|;
5. |ab| = |a| |b|.

There is a basic rule for rearranging inequalities involving modulus signs.

Rule 6 |a| < b ⇔ −b < a < b. There is a corresponding version
of this rule with weak
inequalities.

It is often possible to rearrange inequalities involving modulus signs by
using Rule 5 with p = 2. Examples 2.4 and 2.5 illustrate both approaches.

16
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Example 2.4 Solve the inequality |x− 2| < 1.

Solution We rearrange the inequality into an equivalent form:

|x− 2| < 1 ⇔ −1 < x− 2 < 1 (Rule 6) Take a = x− 2 and b = 1.

⇔ 1 < x < 3.

So the solution set is

{x : |x− 2| < 1} = (1, 3).

Example 2.5 Solve the inequality |x− 2| ≤ |x+ 1|.
Solution We rearrange the inequality into an equivalent form:

|x− 2| ≤ |x+ 1| ⇔ (x− 2)2 ≤ (x+ 1)2 (Rule 5, p = 2)

⇔ x2 − 4x+ 4 ≤ x2 + 2x+ 1

⇔ 3 ≤ 6x

⇔ 1
2
≤ x.

So the solution set is

{x : |x− 2| ≤ |x+ 1|} =
[
1
2
,∞

)
.

The inequalities in Examples 2.4 and 2.5 can be interpreted geometrically.
The inequality

|x− 2| < 1

holds when the distance from x to 2 is strictly less than 1. So it holds
when x lies in the open interval (1, 3), which has midpoint 2.

Similarly, the inequality

|x− 2| ≤ |x+ 1|
holds when the distance from x to 2 is less than or equal to the distance
from x to −1, since |x+ 1| = |x− (−1)|. Since the point halfway from −1
to 2 is 1

2
, the inequality holds when x lies in the interval

[
1
2
,∞

)
.

Try to use geometric intuition, where possible, to give yourself an idea of
the solution set of an inequality.

Exercise 2.4 Solve the following inequalities.

(a) |2x2 − 13| < 5 (b) |x− 1| ≤ 2|x+ 1|

Further exercises
Exercise 2.5 Solve the following inequalities.

(a)
x− 1

x2 + 4
<

x+ 1

x2 − 4
(b)

√
4x− 3 > x (c) |17− 2x4| ≤ 15

17
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3 Proving inequalities

After working through this section, you should be able to:

(a) state and use the Triangle Inequality;

(b) use the Binomial Theorem and mathematical induction to prove
inequalities which involve an integer n.

In this section we show you how to prove inequalities of various types. We
use the rules for rearranging inequalities given in Section 2, and also other
rules which enable us to deduce ‘new inequalities from old’. We met the
first such rule in Section 1, where it was called the Transitive Property
of R.

Transitive Rule a < b and b < c ⇒ a < c.

We use the Transitive Rule when we want to prove that a < c and we For an example of this use, see
Example 2.3.know that a < b and b < c.

The following rules are also useful.

Combination Rules If a < b and c < d, then For example, if 2 < 3 and 4 < 5,
then

2 + 4 < 3 + 5;
2× 4 < 3× 5.

Sum Rule a+ c < b+ d;

Product Rule ac < bd, provided a, c ≥ 0.

There are versions of the Transitive Rule and Combination Rules involving
weak inequalities, which you can work out as they arise.

Remark The Transitive Rule and Combination Rules have a different
nature from Rules 1–6 given in Section 2. Rules 1–6 tell us how to
rearrange inequalities into equivalent forms, whereas the Transitive Rule
and the Combination Rules enable us to deduce new inequalities which are
not equivalent to the old ones.

3.1 Triangle Inequality
Our next inequality is also used to deduce ‘new inequalities from old’. It The Triangle Inequality is

related to the fact that the
length of one side of a triangle is
less than the sum of the lengths
of the other two sides.

involves the absolute values of three real numbers a, b and a+ b, and is
called the Triangle Inequality. As you will see, the Triangle Inequality has
many applications in the analysis units.

Triangle Inequality If a, b ∈ R, then For example,

| − 1 + 3| ≤ | − 1|+ |3|;
|(−1)− 3| ≥ || − 1| − |3|| .

1. |a+ b| ≤ |a|+ |b| (usual form);

2. |a− b| ≥
∣
∣|a| − |b|

∣
∣ (‘backwards’ form).

18



Section 3 Proving inequalities

Proof We rearrange the inequality into an equivalent form:

Remember that

|a|2 = a2.

|a+ b| ≤ |a|+ |b| ⇔ (a+ b)2 ≤ (|a|+ |b|)2 (Rule 5, p = 2)

⇔ a2 + 2ab+ b2 ≤ a2 + 2|a| |b| + b2

⇔ 2ab ≤ |2ab|.
This final inequality is certainly true for all a, b ∈ R, so the first inequality
must also be true for all a, b ∈ R. Hence we have proved part 1.

We prove part 2 using the same method:

|a− b| ≥
∣
∣|a| − |b|

∣
∣ ⇔ (a− b)2 ≥ (|a| − |b|)2

⇔ a2 − 2ab+ b2 ≥ a2 − 2|a| |b| + b2

⇔ −2ab ≥ −|2ab|
⇔ 2ab ≤ |2ab|,

which is again true for all a, b ∈ R.

Remarks

1. Although we have used double-headed arrows here, the proof requires
only the arrows going from right to left. For example, in the proof of
part 1, the important implication is

|a+ b| ≤ |a|+ |b| ⇐ 2ab ≤ |2ab|.
2. Part 1 of the Triangle Inequality can also be proved by using Rule 6,

which implies that

|a+ b| ≤ |a|+ |b| ⇔ −(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|. (3.1)

We know that

−|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|,
so, by the Sum Rule,

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.
Hence, by statement (3.1),

|a+ b| ≤ |a|+ |b|.
A modification of this proof shows that there is a version of the
Triangle Inequality with n real numbers, where n ≥ 2:

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.

The next example gives typical applications of the Triangle Inequality.

Example 3.1 Use the Triangle Inequality to prove that:

(a) |a| ≤ 1 ⇒ |3 + a3| ≤ 4; (b) |b| < 1 ⇒ |3− b| > 2. In each part, we are deducing
one inequality from another, not
showing that two inequalities are
equivalent.

Solution

(a) Suppose that |a| ≤ 1. The Triangle Inequality gives

Here we use the Transitive Rule.

|3 + a3| ≤ |3|+ |a3|
= 3 + |a|3
≤ 3 + 1 (since |a| ≤ 1)

= 4.

Thus

|a| ≤ 1 ⇒ |3 + a3| ≤ 4.
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(b) Suppose that |b| < 1. The backwards form of the Triangle Inequality
gives

|3− b| ≥
∣
∣|3| − |b|

∣
∣

= |3− |b||
≥ 3− |b|. Again, we use the Transitive

Rule.
Now |b| < 1, so −|b| > −1, and hence

3− |b| > 3− 1 = 2.

We deduce from the previous chain of inequalities that

|b| < 1 ⇒ |3− b| > 2.

Remarks

1. The results of Example 3.1 can also be stated in the form:

(a) |3 + a3| ≤ 4, for |a| ≤ 1;

(b) |3− b| > 2, for |b| < 1.

2. The reverse implications

|3 + a3| ≤ 4 ⇒ |a| ≤ 1 and |3− b| > 2 ⇒ |b| < 1

are false. For example, try putting a = −3
2
and b = −2.

Exercise 3.1 Use the Triangle Inequality to prove that:

(a) |a| ≤ 1

2
⇒ |a+ 1| ≤ 3

2
; (b) |b| < 1

2
⇒ |b3 − 1| > 7

8
.

3.2 Inequalities involving integers
In analysis we often need to prove inequalities involving an integer n. It is
a common convention in mathematics that the symbol n is used to denote
an integer (frequently a natural number).

It is often possible to deal with inequalities involving n using the rules of
rearrangement given in Section 2. Here is an example.

Example 3.2 Prove that

2n2 ≥ (n+ 1)2, for n ≥ 3.

Solution Rearranging this inequality into an equivalent form, we obtain

2n2 ≥ (n+ 1)2 ⇔ 2n2 − (n + 1)2 ≥ 0 (Rule 1)

⇔ n2 − 2n− 1 ≥ 0

⇔ (n− 1)2 − 2 ≥ 0 (completing the square)

⇔ (n − 1)2 ≥ 2.

This final inequality is true for n ≥ 3, so the inequality 2n2 ≥ (n+ 1)2 is
true for n ≥ 3.

Remarks

1. In Exercise 2.2(b), we asked you to solve the inequality

2x2 ≥ (x+ 1)2,

and the solution set is (−∞, 1−
√
2 ] ∪ [1 +

√
2,∞). In Example 3.2

we showed that all natural numbers n ≥ 3 lie in this solution set.
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2. An alternative solution to Example 3.2 is the following:

2n2 ≥ (n+ 1)2 ⇔ 2 ≥
(
n+ 1

n

)2

(Rule 3)

⇔
√
2 ≥ 1 +

1

n
(Rule 5, p = 2) Here we use the fact that both

sides of the inequality are
positive.and this final inequality certainly holds for n ≥ 3.

Exercise 3.2 Prove that

3n

n2 + 2
< 1, for n > 2.

3.3 Worked examples
The audio illustrates various methods for proving inequalities. Several of
the inequalities that we prove will be used in later analysis units.

In addition to the techniques already described for proving inequalities, we
use mathematical induction and the Binomial Theorem, restated below. See Unit I2, Sections 3 and 4.

Theorem 3.1 Binomial Theorem

1. If x ∈ R and n ∈ N, then The notation
(
n
k

)

=
n!

k!(n− k)!

is also denoted by nCk.

By convention, 0! = 1, so
(
n
0

)

=

(
n
n

)

= 1.

Here, we also adopt the
convention that

00 = 1.

(1 + x)n =
n∑

k=0

(
n
k

)

xk

= 1 + nx+
n(n− 1)

2!
x2 + · · ·+ xn.

2. If a, b ∈ R and n ∈ N, then

(a+ b)n =
n∑

k=0

(
n
k

)

an−kbk

= an + nan−1b+
n(n− 1)

2!
an−2b2 + · · ·+ bn.

Listen to the audio as you work through the frames.
Audio

21



Unit AA1 Numbers

22



Section 3 Proving inequalities

23



Unit AA1 Numbers

24



Section 3 Proving inequalities

Postaudio exercises

To practise using the techniques described in the audio, we suggest that
you now try the following exercises.

Exercise 3.3 Use the Binomial Theorem to prove that
(

1 +
1

n

)n

≥ 5

2
− 1

2n
, for n ≥ 1.

Hint: Consider the first three terms in the binomial expansion.

Exercise 3.4 Prove the inequalities:

(a) 2n3 ≥ (n+ 1)3, for n ≥ 4; (b) 2n ≥ n3, for n ≥ 10.

Exercise 3.5 Suppose that a > 0 and a2 > 2. Prove that

1

2

(

a+
2

a

)

< a.

Further exercises
Exercise 3.6 Use the Triangle Inequality to prove that

|a| ≤ 1 ⇒ |a− 3| ≥ 2.

Exercise 3.7 Prove that

(a2 + b2)(c2 + d2) ≥ (ac+ bd)2, where a, b, c, d ∈ R.

Exercise 3.8 Prove the inequality

3n ≥ 2n2 + 1, for n = 1, 2, . . . ,

(a) using the Binomial Theorem, applied to (1 + x)n with x = 2;

(b) using mathematical induction.

Exercise 3.9 Apply Bernoulli’s Inequality, first with x = 2/n and then
with x = −2/(3n), to prove that

1 +
2

3n− 2
≤ 31/n ≤ 1 +

2

n
, for n = 1, 2, . . . .
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4 Least upper bounds

After working through this section, you should be able to:

(a) explain the terms bounded above, bounded below and bounded;

(b) use the strategies for determining least upper bounds and greatest
lower bounds;

(c) state the Least Upper Bound Property of R and the Greatest
Lower Bound Property of R.

4.1 Upper bounds and lower bounds
Any finite set of real numbers has a greatest element (and a least element),
but this property does not necessarily hold for infinite sets. For example,
neither of the sets N = {1, 2, 3, . . .} and [0, 2) has a greatest element.
However, the set [0, 2) is bounded above by 2, since all points of [0, 2) are
less than or equal to 2.

Definition A set E ⊆ R is bounded above if there is a real
number M , called an upper bound of E, such that

x ≤ M, for all x ∈ E.

If the upper bound M belongs to E, then M is called the maximum

element of E, denoted by maxE.

Geometrically, the set E is bounded above by M if no point of E lies to
the right of M on the real line.

For example, if E = [0, 2), then the numbers 2, 3, 3.5 and 157.1 are all
upper bounds of E, whereas the numbers 1.995, 1.5, 0 and −157.1 are not
upper bounds of E. Although it seems obvious that [0, 2) has no maximum
element, you may find it difficult to write down a proof. The following
example shows you how to do this.

Example 4.1 Determine which of the following sets are bounded above
and which have a maximum element.

(a) E1 = [0, 2)

(b) E2 = {1/n : n = 1, 2, . . .}
(c) E3 = N

Solution

(a) The set E1 is bounded above. For example, M = 2 is an upper bound
of E1, since

x ≤ 2, for all x ∈ E1.

However, E1 has no maximum element. For each x in E1, we have

The number 2 is not a maximum
element, since 2 /∈ E1.

x < 2, so there is a real number y such that

x < y < 2,

by the Density Property of R. Hence y ∈ E1, so x is not a maximum
element of E1.
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(b) The set E2 is bounded above. For example, M = 1 is an upper bound
of E2, since

1

n
≤ 1, for n = 1, 2, . . . .

Also, since 1 ∈ E2 (take n = 1), we have

maxE2 = 1.

(c) The set E3 is not bounded above. For each real number M , there is a
positive integer n such that n > M , by the Archimedean Property
of R. Hence M is not an upper bound of E3.

Since E3 is not bounded above, it has no maximum element.

Exercise 4.1 Sketch the following sets, and determine which are
bounded above and which have a maximum element.

(a) E1 = (−∞, 1]

(b) E2 = {1− 1/n : n = 1, 2, . . .}
(c) E3 = {n2 : n = 1, 2, . . .}

Similarly, we define lower bounds. For example, the interval (0, 2) is
bounded below by 0, since

0 ≤ x, for all x ∈ (0, 2).

However, 0 does not belong to (0, 2), so 0 is not a minimum element of
(0, 2). In fact, (0, 2) has no minimum element.

Definition A set E ⊆ R is bounded below if there is a real
number m, called a lower bound of E, such that

m ≤ x, for all x ∈ E.

If the lower bound m belongs to E, then m is called the minimum

element of E, denoted by minE.

Geometrically, the set E is bounded below by m if no point of E lies to the
left of m on the real line.

Exercise 4.2 Determine which of the following sets are bounded
below and which have a minimum element.

(a) E1 = (−∞, 1]

(b) E2 = {1− 1/n : n = 1, 2, . . .}
(c) E3 = {n2 : n = 1, 2, . . .}

The following terminology is also useful.

Definition A set E ⊆ R is bounded if E is bounded above and
bounded below; the set E is unbounded if it is not bounded.

For example, in Exercise 4.2, the set E2 = {1− 1/n : n = 1, 2, . . .} is
bounded, but E1 = (−∞, 1] and E3 = {n2 : n = 1, 2, . . .} are unbounded.
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4.2 Least upper and greatest lower bounds
We have seen that the set [0, 2) has no maximum element. However, [0, 2)
has many upper bounds, for example, 2, 3, 3.5 and 157.1. Among all these
upper bounds, the number 2 is the least upper bound because any number
less than 2 is not an upper bound of [0, 2).

Definition A real number M is the least upper bound, or
supremum, of a set E ⊆ R if The word supremum comes from

the Latin word supremus
meaning ‘highest’.1. M is an upper bound of E;

2. each M ′ < M is not an upper bound of E.

In this case, we write M = supE.

If E has a maximum element maxE, then supE = maxE. For example,
the closed interval [0, 2] has maximum element 2, so it has least upper
bound 2. We can think of the least upper bound of a set, when it exists, as
a ‘generalised maximum element’.

If a set does not have a maximum element, but is bounded above, then we
may be able to guess the value of its least upper bound. As in the example
E = [0, 2), there may be an obvious ‘missing point’ at the upper end of the
set. The next example shows you how to prove that your guess is correct.

Example 4.2 Prove that the least upper bound of [0, 2) is 2. If you are asked to ‘prove’ or
‘determine’ something, then you
are expected to justify your
answer.

Solution We know that M = 2 is an upper bound of [0, 2) because

x ≤ 2, for all x ∈ [0, 2).

To show that 2 is the least upper bound, we must prove that each number
M ′ < 2 is not an upper bound of [0, 2).

Suppose that M ′ < 2. We must find an element x in [0, 2) which is greater
than M ′. But, by the Density Property, there is a real number x that is
less than 2 and greater than both M ′ and 0. Thus x ∈ [0, 2) and x > M ′,
which shows that M ′ is not an upper bound of [0, 2). Hence M = 2 is the
least upper bound of [0, 2).

The solution to Example 4.2 illustrates the strategy for determining the
least upper bound of a set, if there is one.

Strategy 4.1 Given a subset E of R, to show that M is the least
upper bound, or supremum, of E, check that:

guess the value of M , then
check parts 1 and 2.

1. x ≤ M , for all x ∈ E;

2. if M ′ < M , then there is some x ∈ E such that x > M ′.

If M is an upper bound of a set E and M ∈ E, then parts 1 and 2 are
automatically satisfied, so M = supE = maxE.

Example 4.3 Determine the least upper bound of

E = {1− 1/n2 : n = 1, 2, . . .}.
Solution We guess from the diagram that the least upper bound of E is
M = 1. Certainly, 1 is an upper bound of E, since

1− 1

n2
≤ 1, for n = 1, 2, . . . .
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To check part 2 of Strategy 4.1, we need to show that if M ′ < 1, then there
is some natural number n such that

1− 1

n2
> M ′. (4.1)

Suppose that M ′ < 1. We have

1− 1

n2
> M ′ ⇔ 1−M ′ >

1

n2

⇔ 1

1−M ′ < n2 (since 1−M ′ > 0) Here we rearrange
inequality (4.1) into an
equivalent form with just n on
one side.⇔

√

1

1−M ′ < n (since 1/(1 −M ′) > 0 and n > 0).

We can certainly choose n so that this final inequality holds, by the
Archimedean Property of R. Thus inequality (4.1) holds with this n.

Hence, by Strategy 4.1, the least upper bound of E is 1.

Remark Although we used double-headed arrows in this solution, the
proof requires only the implications going from right to left. In other
words, the proof uses only the fact that

1− 1

n2
> M ′ ⇐

√

1

1−M ′ < n.

Exercise 4.3 Determine supE, if it exists, for each of the following
sets.

(a) E1 = (−∞, 1]

(b) E2 = {1− 1/n : n = 1, 2, . . .}
(c) E3 = {n2 : n = 1, 2, . . .}

Similarly, we define the notion of a greatest lower bound.

Definition A real number m is the greatest lower bound, or
infimum, of a set E ⊆ R if The word infimum comes from

the Latin word infimus meaning
‘least’.

1. m is a lower bound of E;

2. each m′ > m is not a lower bound of E.

In this case, we write m = inf E.

If E has a minimum element, then inf E = minE. For example, the closed
interval [0, 2] has minimum element 0, so it has greatest lower bound 0.

The strategy for proving that a number is the greatest lower bound of a set
is similar to Strategy 4.1.

Strategy 4.2 Given a subset E of R, to show that m is the greatest guess the value of m, then
check parts 1 and 2.lower bound, or infimum, of E, check that:

1. x ≥ m, for all x ∈ E;

2. if m′ > m, then there is some x ∈ E such that x < m′.

If m is a lower bound of E and m ∈ E, then parts 1 and 2 are
automatically satisfied, so m = inf E = minE.
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Exercise 4.4 Determine inf E, if it exists, for each of the following
sets.

(a) E1 = (1, 5] (b) E2 = {1/n2 : n = 1, 2, . . .}

4.3 Least Upper Bound Property
In the examples just given, it was straightforward to guess the values of
supE and inf E. Sometimes, however, this is not the case. For example, if

E = {(1 + 1/n)n : n = 1, 2, . . .} = {(2
1
)1, (3

2
)2, (4

3
)3, . . .}, This set E is discussed in the

video for Unit AA2. It turns out
that

supE = e = 2.718 28 . . . .

then it can be shown that E is bounded above by 3, but it is not so easy to
guess the least upper bound of E.

In such cases, it is reassuring to know that supE does exist, even though it
may be difficult to find. This existence is guaranteed by the following
fundamental result, on which many other results in analysis are based.

Least Upper Bound Property of R Let E be a non-empty subset The Least Upper Bound
Property of R is an example of
an existence theorem, one which
asserts that a mathematical
object, such as a real number,
exists with a certain property.

of R. If E is bounded above, then E has a least upper bound.

The Least Upper Bound Property of R is very plausible geometrically. If
the set E lies entirely to the left of some number M , then you can imagine
decreasing the value of M steadily until any further decrease causes M to
be less than some point of E. At this point, supE has been reached.

The Least Upper Bound Property of R can be used to show that R
includes decimals which represent irrational numbers such as

√
2, as

claimed earlier, and also to define arithmetic operations with decimals. See Subsection 5.2.

There is a corresponding property for lower bounds.

Greatest Lower Bound Property of R Let E be a non-empty subset
of R. If E is bounded below, then E has a greatest lower bound.

Finally we prove the Least Upper Bound Property in the case when the
set E contains at least one positive number. The proof in the general case
can be reduced to this special case; we omit the details.

Proof We know that E is bounded above and contains at least one If you are short of time, omit
this proof. It is included for the
sake of completeness.

positive number. We can now apply the following procedure to give us the
successive digits in a decimal a0.a1a2 . . . , which we then prove to be the
least upper bound of E.

We choose in succession:

the greatest integer a0 such that a0 is not an upper bound of E;

the greatest digit a1 such that a0.a1 is not an upper bound of E;

the greatest digit a2 such that a0.a1a2 is not an upper bound of E;
...

the greatest digit an such that a0.a1 . . . an is not an upper bound of E;
...
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Thus at the nth stage we choose the digit an so that

a0.a1a2 . . . an is not an upper bound of E; (4.2)

a0.a1a2 . . . an +
1

10n
is an upper bound of E. (4.3)

We now use Strategy 4.1 to prove that the least upper bound of E is

a = a0.a1a2 . . . .

First we have to show that a is an upper bound of E; that is, if x ∈ E,
then x ≤ a. To do this, we prove the contrapositive statement: if x > a,
then x /∈ E. Let x > a and represent x as a non-terminating decimal For example, if x = 3.2, then we

write x = 3.1999 . . . .x = x0.x1x2 . . . . Since x > a, there is an integer n such that

a < x0.x1x2 . . . xn.

Hence

x0.x1x2 . . . xn ≥ a0.a1a2 . . . an +
1

10n
,

so x0.x1x2 . . . xn is an upper bound of E, by statement (4.3). Since x is
non-terminating, x > x0.x1x2 . . . xn, so x /∈ E, as required.

Next we have to show that if x < a, then x is not an upper bound of E.
Let x < a. Then there is an integer n such that

x < a0.a1a2 . . . an,

so x is not an upper bound of E, by statement (4.2).

Thus we have proved that a is the least upper bound of E.

Further exercise
Exercise 4.5 In this exercise, take

E1 = {x ∈ Q : 0 ≤ x < 1} and E2 = {(1 + 1/n)2 : n = 1, 2, . . .}.
(a) Prove that each of the sets E1 and E2 is bounded above. Which of

them has a maximum element?

(b) Prove that each of the sets E1 and E2 is bounded below. Which of
them has a minimum element?

(c) Determine the least upper bound of each of the sets E1 and E2.

(d) Determine the greatest lower bound of each of the sets E1 and E2.
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5 Manipulating real numbers

After working through this section, you should be able to: This section is intended for
reading only. There are no
exercises on this section.(a) explain how the Least Upper Bound Property is used to define

arithmetical operations with real numbers;

(b) explain the meaning of rational powers.

5.1 Arithmetic with real numbers
At the end of Section 1, we discussed the decimals

√
2 = 1.414 213 56 . . . and π = 3.141 592 65 . . . , Here we are assuming that

√
2

and π can be represented as
decimals.and asked whether it is possible to add and multiply these numbers to

obtain another real number. We now explain how this can be done using
the Least Upper Bound Property of R.

A natural way to obtain a sequence of approximations to the sum
√
2 + π

is to truncate each of the above decimals and then form the sums of these
truncations. If each of the decimals is truncated at the same decimal place,
then we obtain sequences of approximations, which are increasing.

√
2 π

√
2 + π

1 3 4
1.4 3.1 4.5
1.41 3.14 4.55
1.414 3.141 4.555
1.4142 3.1415 4.5557
...

...
...

Intuitively we expect that the sum
√
2 + π is greater than each of the

numbers in the right-hand column, but ‘only just’. To accord with our
intuition, therefore, we define the sum

√
2 + π to be the least upper bound

of the set of numbers in the right-hand column; that is,
√
2 + π = sup{4, 4.5, 4.55, 4.555, 4.5557, . . .}.

To be sure that this definition makes sense, we need to show that this set
is bounded above. But all the truncations of

√
2 are less than 1.5 and all

those of π are less than 4. Hence, all the sums in the right-hand column
are less than 1.5 + 4 = 5.5. So, by the Least Upper Bound Property of R,
the set of numbers in the right-hand column does have a least upper bound
and we can define

√
2 + π this way.

This method can be used to define the sum of any pair of positive real
numbers.

Let us check that this method of adding decimals gives the correct answer
when we use it in a familiar case. Consider the simple calculation This is not a practical method

for adding rationals!1
3
+ 2

3
= 0.333 . . . + 0.666 . . . .

Truncating each of these decimals and forming the sums, we obtain the set

{0, 0.9, 0.99, 0.999, . . .}.
The supremum of this set is 0.999 . . . = 1, which is the correct answer.
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Similarly, we can define the product of any two positive real numbers. For
example, to define

√
2× π, we can form the sequence of products of their

truncations.

√
2 π

√
2× π

1 3 3
1.4 3.1 4.34
1.41 3.14 4.4274
1.414 3.141 4.441374
1.4142 3.1415 4.4427093
...

...
...

As before, we define
√
2× π to be the least upper bound of the set of

numbers in the right-hand column.

Similar ideas can be used to define the operations of subtraction and
division, but we omit the details.

In this way we can define arithmetic with real numbers in terms of the
familiar arithmetic with rationals by using the Least Upper Bound
Property of R. Moreover, it can be proved that these operations in R

satisfy all the usual properties of a field. The properties of a field are
listed in Subsection 1.5.

5.2 Existence of roots
Just as we usually take for granted the basic arithmetical operations with
real numbers, so we usually assume that, given any positive real number a,
there is a unique positive real number b =

√
a such that b2 = a. We now

discuss the justification for this assumption.

First, here is a geometric justification. Given line segments of lengths 1
and a, we can construct a semicircle with diameter a+ 1 as shown.

Using similar triangles, we find that

a

b
=

b

1
, so b2 = a.

This shows that there should be a positive real number b such that b2 = a,
in order that the length of the vertical line segment in this figure can be
described exactly. But does b =

√
a always exist exactly as a real number?

In fact it does, and a more general result is true.

Theorem 5.1 For each positive real number a and each integer A proof of this theorem is given
in Unit AA4, Section 4.n > 1, there is a unique positive real number b such that

bn = a.

We call this positive number b the nth root of a, and write b = n
√
a. We

also define n√0 = 0, since 0n = 0.
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In the special case a = 2 and n = 2, Theorem 5.1 asserts the existence of a
positive real number b such that

b2 = 2.

Here is a direct proof of Theorem 5.1 in this special case. We choose the
numbers 1, 1.4, 1.41, 1.414, . . . to satisfy the inequalities:

12 < 2 < 22

(1.4)2 < 2 < (1.5)2

(1.41)2 < 2 < (1.42)2

(1.414)2 < 2 < (1.415)2

...

(5.1)

This process gives an infinite decimal b = 1.414 . . . and we claim that

b2 = (1.414 . . .)2 = 2.

This can be proved using our method of multiplying decimals.

b b b2

1 1 1
1.4 1.4 1.96
1.41 1.41 1.9881
1.414 1.414 1.999396
...

...
...

We have to prove that the least upper bound of the set E of numbers in
the right-hand column is 2. In other words,

supE = sup{1, (1.4)2, (1.41)2 , (1.414)2, . . .} = 2.

To do this, we use Strategy 4.1.

First we check that M = 2 is an upper bound of E. This follows from the
left-hand inequalities in (5.1).

Next we check that if M ′ < 2, then there is a number in E which is greater
than M ′. To prove this, we put

x0 = 1, x1 = 1.4, x2 = 1.41, x3 = 1.414, . . . .

By the right-hand inequalities in (5.1) we have, for n = 0, 1, 2, . . . ,

For example, in the case n = 1,

2 <

(

1.4 +
1

10

)2

= (1.5)2.
2 <

(

xn +
1

10n

)2

= x2n +
2xn
10n

+

(
1

10n

)2

,

so

For example, in the case n = 2,

(1.41)2 > 1.95.

x2n > 2− 1

10n

(

2xn +
1

10n

)

> 2− 5

10n
= 1. 99 . . . 95

︸ ︷︷ ︸

n digits

.

Thus, if M ′ < 2, then we can choose n so large that x2n > M ′. This proves
that the least upper bound of the set E is 2, so

b2 = (1.414 . . .)2 = 2,

as claimed. Thus b = 1.414 . . . is a decimal representation of
√
2.
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5.3 Powers
Having discussed nth roots, we are now in a position to define the
expression ax, where a is positive and x is a rational power (or exponent).

Definition If a > 0, m ∈ Z and n ∈ N, then An equivalent definition is

am/n = n
√
am.am/n = ( n

√
a)m.

For example, for a > 0 with m = 1 we have a1/n = n
√
a, and with m = 2

and n = 3 we have a2/3 = ( 3
√
a)2.

This notation is particularly useful because rational powers satisfy the
following laws, whose proofs depend on Theorem 5.1.

Exponent Laws If a, b > 0 and x, y ∈ Q, then For example:

21/2 × 31/2 = 61/2;

21/2 × 21/3 = 25/6;

(21/2)1/3 = 21/6.

axbx = (ab)x, axay = ax+y and (ax)y = axy.

Remarks

1. If x and y are integers, then these laws also hold for all non-zero real
numbers a and b, not just positive ones. However, if x and y are not
integers, then we must have a > 0 and b > 0. For example, (−1)1/2 is not

defined as a real number.
2. Each positive number has two nth roots when n is even. For example,

22 = (−2)2 = 4. We adopt the convention that, for a > 0, n
√
a and a1/n

always denote the positive nth root of a. If we wish to refer to both
roots (for example, when solving equations), then we write ± n

√
a.

We conclude this section by briefly discussing the meaning of ax when
a > 0 and x is an arbitrary real number. We have defined ax when x is
rational, but the same definition does not work if x is irrational. However,
it is common practice to write expressions such as

√
2

√
2

and even to apply the Exponent Laws to give equalities such as

(√
2

√
2
)

√
2

=
√
2

√
2×

√
2
= (

√
2)2 = 2.

Such manipulations can be justified, and by the end of Analysis Block A
you will have seen one way to do this. Moreover, the justification uses See Unit AA4, Section 4.

several key ideas from the block, including convergence of sequences,
convergence of series and continuity.





Solutions to the exercises

Solutions to the exercises

1.1 Since 45× 20 = 900 and 17× 53 = 901, we have
45/53 < 17/20. Thus

−1 < −17

20
< −45

53
< 0 <

45

53
<

17

20
< 1.

1.2 Let a, b be distinct rationals, where a < b.

Let c = 1

2
(a+ b); then c is rational, and

c − a = 1

2
(b− a) > 0,

b− c = 1

2
(b− a) > 0,

so a < c < b.

1.3 We have 1

7
= 0.142 857 142 857 . . . .

1.4 (a) Let x = 0.231.

Multiplying both sides by 103, we obtain

1000x = 231.231 = 231 + x.

Hence

999x = 231, so x =
231

999
=

77

333
.

(b) Let x = 0.81.

Multiplying both sides by 102, we obtain

100x = 81.81 = 81 + x.

Hence

99x = 81, so x =
81

99
=

9

11
.

Thus

2.281 = 2 +
2

10
+

9

110
=

251

110
.

1.5
17

20
= 0.85 and

45

53
= 0.84 . . . , so

45

53
<

17

20
.

1.6 (a) For example,

x = 0.34 and y = 0.340 010 010 001 . . . .

(b) Here is one method. Let

a = a0.a1a2 . . . and b = b0.b1b2 . . . ,

where a0, b0 ≥ 0. We can arrange that a does not end
in recurring 9s, whereas b does not terminate.

Since a < b, there is an integer n such that

a0 = b0, a1 = b1, . . . , an−1 = bn−1, but an < bn.

Thus x = a0.a1 . . . an−1bn is rational and

a < x < b.

Since x < b and b does not terminate, we can attach
a non-recurring tail to x to obtain an irrational y
such that

a < x < y < b.

1.7 (a) Putting all the fractions over the common
denominator of 180, we obtain

3

20
<

7

45
<

1

6
<

11

60
<

7

36
.

(Alternatively, we can compare the decimal
representations of these fractions.)

(b) 0.465 < 0.4655 < 0.465 < 0.4656 < 0.465

1.8 (a) If x = 0.481, then

1000x = 481.481 = 481 + x.

Hence x = 481/999 = 13/27.

(b) If y = 0.1, then 10y = 1.1 = 1 + y, so y = 1/9.
Hence

0.481 =
48

100
+

1

900
=

433

900
.

x+ y =
21

99
+

2

9
=

43

99
= 0.431.9

xy =
21

99
× 2

9
=

14

297
= 0.047 138

1.10 For example, x = 0.1195 and
y = 0.119 501 001 . . . .

2.1 (a) Rule 2 gives x+ 3 > 5.

(b) Rules 1 and 3 give 2− x < 0.

(c) Rules 2 and 3 give 5x+ 2 > 12.

(d) Part (c) and Rule 4 give 1/(5x+ 2) < 1/12.

2.2 (a) Rearranging the inequality using Rule 1
and Rule 3 (with c = −4), we obtain

4x− x2 − 7

x2 − 1
≥ 3 ⇔ 4x− x2 − 7

x2 − 1
− 3 ≥ 0

⇔ 4x− 4x2 − 4

x2 − 1
≥ 0

⇔ x2 − x+ 1

x2 − 1
≤ 0

⇔
(
x− 1

2

)2
+ 3

4

x2 − 1
≤ 0.

Since (x− 1

2
)2 + 3

4
> 0, for all x, the inequality holds

if and only if x2 − 1 = (x− 1)(x+ 1) < 0.

Hence the solution set is
{

x :
4x− x2 − 7

x2 − 1
≥ 3

}

= (−1, 1).

(b) Rearranging the inequality, we obtain

2x2 ≥ (x+ 1)2 ⇔ 2x2 ≥ x2 + 2x+ 1

⇔ x2 − 2x− 1 ≥ 0 (Rule 2)

⇔ (x− 1)2 ≥ 2.
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Hence the solution set is

{x : 2x2 ≥ (x+ 1)2}
= {x : x− 1 ≤ −

√
2 } ∪ {x : x− 1 ≥

√
2}

= (−∞, 1−
√
2 ] ∪ [1 +

√
2,∞).

2.3 We can obtain an equivalent inequality by
squaring, provided that both sides are non-negative.

Now
√
2x2 − 2 is defined, and non-negative, when

2x2 − 2 ≥ 0, that is, for x2 ≥ 1. Thus
√
2x2 − 2 is

defined if x lies in (−∞,−1] ∪ [1,∞).

For x ≥ 1,
√

2x2 − 2 > x ⇔ 2x2 − 2 > x2 (Rule 5, p = 2)

⇔ x2 > 2.

So the part of the solution set in [1,∞) is (
√
2,∞).

For x ≤ −1,
√

2x2 − 2 ≥ 0 > x,

so the whole of (−∞,−1] lies in the solution set.

Hence the complete solution set is

{x :
√

2x2 − 2 > x} = (−∞,−1] ∪ (
√
2,∞).

2.4 (a) We have

|2x2 − 13| < 5 ⇔ −5 < 2x2 − 13 < 5 (Rule 6)

⇔ 8 < 2x2 < 18

⇔ 4 < x2 < 9

⇔ 2 < |x| < 3 (Rule 5, p = 2).

Hence the solution set is

{x : |2x2 − 13| < 5} = (−3,−2) ∪ (2, 3).

(b) We have

|x− 1| ≤ 2|x+ 1| ⇔ (x− 1)2 ≤ 4(x+ 1)2

⇔ x2 − 2x+ 1 ≤ 4x2 + 8x+ 4

⇔ 0 ≤ 3x2 + 10x+ 3

⇔ 0 ≤ (3x+ 1)(x+ 3).

Hence the solution set is

{x : |x− 1| ≤ 2|x+ 1|} = (−∞,−3] ∪ [−1

3
,∞).

2.5 (a) We have

x− 1

x2 + 4
<

x+ 1

x2 − 4
⇔ 0 <

x+ 1

x2 − 4
− x− 1

x2 + 4

⇔ 0 <
2x(x+ 4)

(x− 2)(x+ 2)(x2 + 4)
.

Using a sign table including the factors x, x+ 4, x− 2
and x+ 2, we find that the solution set is

{

x :
x− 1

x2 + 4
<

x+ 1

x2 − 4

}

= (−∞,−4) ∪ (−2, 0) ∪ (2,∞).

(b) The expression
√
4x− 3 is defined, and

non-negative, for x ≥ 3

4
.

For x ≥ 3

4
,

√
4x− 3 > x ⇔ 4x− 3 > x2

⇔ 0 > x2 − 4x+ 3

⇔ 0 > (x− 1)(x− 3).

Hence the solution set is

{x :
√
4x− 3 > x} = (1, 3).

|17− 2x4| ≤ 15 ⇔ −15 ≤ 17− 2x4 ≤ 15(c)

⇔ −32 ≤ −2x4 ≤ −2

⇔ 16 ≥ x4 ≥ 1

⇔ 2 ≥ |x| ≥ 1

Hence the solution set is

{x : |17− 2x4| ≤ 15} = [−2,−1] ∪ [1, 2].

3.1 (a) Suppose that |a| ≤ 1

2
.

The Triangle Inequality gives

|a+ 1| ≤ |a|+ 1

≤ 1

2
+ 1

(
since |a| ≤ 1

2

)

= 3

2
.

Hence

|a| ≤ 1

2
⇒ |a+ 1| ≤ 3

2
.

(b) Suppose that |b| < 1

2
.

The backwards form of the Triangle Inequality gives

|b3 − 1| ≥
∣
∣|b3| − 1

∣
∣

=
∣
∣|b|3 − 1

∣
∣

≥ 1− |b|3.
Now

|b| < 1

2
⇒ |b|3 < 1

8
⇒ 1− |b|3 > 7

8
,

so, from the previous chain of inequalities,

|b| < 1

2
⇒ |b3 − 1| > 7

8
.

3.2 Rearranging the inequality, we obtain
3n

n2 + 2
< 1 ⇔ 3n < n2 + 2 (since n2 + 2 > 0)

⇔ 0 < n2 − 3n+ 2

⇔ 0 < (n− 1)(n− 2).

This final inequality certainly holds for n > 2, so
3n

n2 + 2
< 1, for n > 2.
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3.3 Applying the Binomial Theorem in the form

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 + · · ·+ xn,

with x = 1/n, we obtain, for n ≥ 2,
(

1 +
1

n

)n

= 1 + n

(
1

n

)

+
n(n− 1)

2!

(
1

n

)2

+ · · ·

≥ 1 + 1 +
1

2

(

1− 1

n

)

=
5

2
− 1

2n
.

Since this inequality also holds for n = 1, we deduce
that

(

1 +
1

n

)n

≥ 5

2
− 1

2n
, for n ≥ 1.

3.4 (a) Using Rule 3 for rearranging inequalities,
we obtain

2n3 ≥ (n+ 1)3 ⇔ 2 ≥
(
n+ 1

n

)3

.

The inequality on the right is certainly true for
n = 4, since (5/4)3 = 125/64 < 2. Also,

(
n+ 1

n

)3

=

(

1 +
1

n

)3

≤
(

1 +
1

4

)3

, for n ≥ 4,

so
(
n+ 1

n

)3

≤ 2, for n ≥ 4.

Hence

2n3 ≥ (n+ 1)3, for n ≥ 4.

(b) Here we use mathematical induction. Let P (n)
be the statement

2n ≥ n3.

Step 1: P (10) is true because 210 = 1024 > 103.

Step 2: We show that

P (k) true ⇒ P (k + 1) true, for k ≥ 10;

that is

2k ≥ k3 ⇒ 2k+1 ≥ (k + 1)3, for k ≥ 10.

Suppose that 2k ≥ k3 for some k ≥ 10. Then

2k+1 = 2× 2k ≥ 2k3.

Thus it is sufficient to prove that

2k3 ≥ (k + 1)3, for k ≥ 10.

By part (a), this inequality is true. (It holds for
k ≥ 4.) Hence

2k+1 ≥ (k + 1)3.

Thus

P (k) true ⇒ P (k + 1) true, for k ≥ 10.

Therefore, by mathematical induction,

2n ≥ n3, for n ≥ 10.

3.5 Suppose that a > 0 and a2 > 2. By the rules for
rearranging inequalities into equivalent forms,

1

2

(

a+
2

a

)

< a ⇔ a

2
+

1

a
< a

⇔ 1

a
<

a

2

⇔ 2 < a2 (since a > 0).

Since the final inequality is true, the first inequality
must also be true. Hence

1

2

(

a+
2

a

)

< a.

3.6 Suppose that |a| ≤ 1. By the backwards form of
the Triangle Inequality,

|a− 3| ≥ ||a| − 3|
≥ 3− |a|
≥ 2 (since |a| ≤ 1).

Hence

|a| ≤ 1 ⇒ |a− 3| ≥ 2.

3.7 We rearrange the inequality into a simpler
equivalent form:

(a2 + b2)(c2 + d2) ≥ (ac+ bd)2

⇔ a2c2 + a2d2 + b2c2 + b2d2 ≥ a2c2 + 2acbd+ b2d2

⇔ a2d2 + b2c2 − 2acbd ≥ 0 (Rule 1)

⇔ (ad− bc)2 ≥ 0.

The last equality is true for all a, b, c, d ∈ R, so the
first inequality must also be true, as required.

3.8 (a) By the Binomial Theorem for n ≥ 2,

3n = (1 + 2)n ≥ 1 + 2n+
n(n− 1)

2!
22

= 1 + 2n+ 2n(n− 1)

= 1 + 2n2.

Since the inequality is also true for n = 1, we obtain

3n ≥ 1 + 2n2, for n ≥ 1.

(b) To use mathematical induction, we let P (n) be
the statement

3n ≥ 2n2 + 1.

Step 1: We noted in part (a) that P (1) is true.

Step 2: We now show that if P (k) is true for some k,
then P (k + 1) is also true; that is,

3k ≥ 2k2 + 1 ⇒ 3k+1 ≥ 2(k + 1)2 + 1, for k ≥ 1.

Suppose that 3k ≥ 2k2 + 1. Then

3k+1 = 3× 3k ≥ 3(2k2 + 1).

Thus it is sufficient to prove that

3(2k2 + 1) ≥ 2(k + 1)2 + 1.
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Now

3(2k2 + 1) ≥ 2(k + 1)2 + 1

⇔ 6k2 + 3 ≥ 2k2 + 4k + 3

⇔ 4k2 ≥ 4k,

and this last equivalent inequality is certainly true
for k ≥ 1. Hence

3k+1 ≥ 2(k + 1)2 + 1.

Thus we have shown that

P (k) true ⇒ P (k + 1) true, for k = 1, 2, . . . .

Hence P (n) is true, for n = 1, 2, . . . , by mathematical
induction.

3.9 Applying Bernoulli’s Inequality with x = 2/n,
we obtain

(1 + 2/n)n ≥ 1 + n(2/n) = 3.

Hence

1 + 2/n ≥ 31/n, for n = 1, 2, . . . .

Applying Bernoulli’s Inequality with x = −2/(3n),
we obtain

(1− 2/(3n))n ≥ 1 + n(−2/(3n)) = 1/3.

Hence

3n− 2

3n
≥

(
1

3

)1/n

, for n = 1, 2, . . . ,

so

31/n ≥ 3n

3n− 2
= 1 +

2

3n− 2
, for n = 1, 2, . . . .

4.1 (a)

The set E1 is bounded above. For example, M = 1 is
an upper bound of E1, since

x ≤ 1, for all x ∈ E1.

Also, maxE1 = 1, since 1 ∈ E1.

(b)

The set E2 is bounded above. For example, M = 1 is
an upper bound of E2, since

1− 1

n
≤ 1, for n = 1, 2, . . . .

However, E2 has no maximum element. If x ∈ E2,
then x = 1− 1/n, for some n ∈ N, so there is another
element of E2, for example 1− 1/(n+ 1), such that

1− 1

n
< 1− 1

n+ 1

(

since
1

n+ 1
<

1

n

)

.

Hence x is not a maximum element of E2.

(c)

The set E3 is not bounded above. For each real
number M , there is a positive integer n such that
n2 > M (for instance, take n > M , which implies
that n2 ≥ n > M ). Hence M is not an upper bound
of E3.

It follows that E3 cannot have a maximum element.

4.2 (a) The set E1 = (−∞, 1] is not bounded
below. For each real number m, there is a negative
real number x such that x < m. Since x ∈ E1, the
number m is not a lower bound of E1.

It follows that E1 cannot have a minimum element.

(b) The set E2 is bounded below by 0, since

1− 1

n
≥ 0, for n = 1, 2, . . . .

Also, 0 ∈ E2, so minE2 = 0.

(c) The set E3 is bounded below by 1, since

n2 ≥ 1, for n = 1, 2, . . . .

Also, 1 ∈ E3, so minE3 = 1.

4.3 (a) The set E1 = (−∞, 1] has maximum
element 1, so

supE1 = maxE1 = 1.

(b) We use Strategy 4.1. We know that the set
E2 = {1− 1/n : n = 1, 2, . . .} is bounded above by 1,
since

1− 1

n
≤ 1, for n = 1, 2, . . . .

To show that M = 1 is the least upper bound of E2,
we have to prove that if M ′ < 1, then there is an
element 1− 1/n of E2 such that

1− 1

n
> M ′.

Suppose that M ′ < 1. We have

1− 1

n
> M ′

⇔ 1−M ′ >
1

n
⇔ 1/(1−M ′) < n (since 1−M ′ > 0).

Thus if we take a positive integer n so large that
n > 1/(1−M ′), then we obtain a number 1− 1/n
in E2 such that 1− 1/n > M ′, as required.

Hence 1 is the least upper bound of E2.

(c) The set E3 = {n2 : n = 1, 2, . . .} is not bounded
above, so it cannot have a least upper bound.
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Solutions to the exercises

4.4 (a) We use Strategy 4.2. We know that the set
E1 = (1, 5] is bounded below by 1, since

1 ≤ x, for all x ∈ E1.

To show that m = 1 is the greatest lower bound
of E1, we prove that if m′ > 1, then there is an
element x in E1 which is less than m′. But if m′ > 1,
then there is a real number x such that

1 < x < m′ and 1 < x ≤ 5,

so x ∈ E1, as required.

Hence 1 is the greatest lower bound of E1.

(b) We use Strategy 4.2. We know that the set
E2 = {1/n2 : n = 1, 2, . . .} is bounded below by 0,
since

0 < 1/n2, for n = 1, 2, . . . .

To show that m = 0 is the greatest lower bound
of E2, we prove that if m′ > 0, then there is an
element 1/n2 in E2 such that 1/n2 < m′.

But if m′ > 0, then we have
1

n2
< m′ ⇔ n2 >

1

m′

⇔ n >
√

1/m′.

Thus if we take a positive integer n so large that
n >

√

1/m′, then we obtain a number 1/n2 in E2

such that 1/n2 < m′, as required.

Hence 0 is the greatest lower bound of E2.

4.5 (a) The set E1 is bounded above by 1, since

x ≤ 1, for x ∈ E1.

But E1 does not have a maximum element. For each
x ∈ E1 we have 0 ≤ x < 1, so there is a rational
number y such that x < y < 1. Since y ∈ E1, we
deduce that x is not a maximum element of E1.

The set E2 is bounded above by 4, since
(

1 +
1

n

)2

≤ (1 + 1)2 = 4, for n = 1, 2, . . . .

Also, E2 does have a maximum element, namely 4
(take n = 1).

(b) The set E1 is bounded below by 0, since

x ≥ 0, for x ∈ E1.

Also, E1 does have a minimum element, namely 0.

The set E2 is bounded below by 1, since
(

1 +
1

n

)2

≥ 1, for n = 1, 2, . . . .

But E2 does not have a minimum element. For each
x in E2, we have x = (1 + 1/n)2, for some n, so

y = (1 + 1/(n+ 1))2 < x and y ∈ E2.

Hence x is not a minimum element of E2.

(c) The least upper bound of E1 is M = 1. As noted
in part (a), 1 is an upper bound of E1. To see that it
is the least upper bound, suppose that M ′ < 1. Then
there is a rational number x such that M ′ < x < 1.
Since x ∈ E1, we deduce that M ′ is not an upper
bound of E1. Hence the least upper bound of E1 is 1.

The least upper bound of E2 is 4, since maxE2 = 4.

(d) The greatest lower bound of E1 is 0, since
minE1 = 0.

The greatest lower bound of E2 is m = 1. As noted
in part (b), 1 is a lower bound of E2. To see that it is
the greatest lower bound, suppose that m′ > 1. We
want to find an element x = (1 + 1/n)2 of E2 such
that x < m′.

Since
√
m′ > 1, we have

(

1 +
1

n

)2

< m′ ⇔ 1 +
1

n
<

√
m′

⇔ 1

n
<

√
m′ − 1

⇔ n > 1/(
√
m′ − 1).

Choosing a positive integer n so large that
n > 1/(

√
m′ − 1), we obtain x = (1 + 1/n)2 < m′, as

required. Hence m′ is not a lower bound of E2, so
the greatest lower bound of E2 is 1.
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