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Random processes

1 What is a random process?

In this section, the basic ideas of random processes and the notation used to
represent them are introduced. Several examples are described in Subsection 1.1,
and the Bernoulli process is discussed in Subsection 1.2.

1.1 Basic ideas

Examples 1.1 to 1.4 illustrate some fundamental ideas concerning random
processes.

Example 1.1 The gambler’s ruin

Two players, Adam and Ben, with initial capital £k and £(a− k), respectively
(where a and k are positive integers and a > k), engage in a series of games that
involve some element of chance. After each game, the loser pays the winner £1.
The series of games continues until one player has lost all his money, in which case
he is said to be ruined.

This situation can be described in terms of a sequence of random variables. Let
Xn represent Adam’s capital (in £) after n games. The series of games ends when
either Xn = 0 (in which case Adam is ruined) or Xn = a (Ben is ruined). Suppose
that k = 4 and a = 7, and that Adam’s capital at the start and after each
subsequent game is given by the sequence

4, 5, 6, 5, 4, 3, 4, 5, 6, 5, 6, 7.

This is a realisation of the sequence of random variables {Xn} for
n = 0, 1, . . . , 11. In this case the series of games ends when Ben is ruined after the
eleventh game.

If Adam and Ben had played again, the results of their games would probably
have produced a different sequence of values from the one given above; that is, a
different realisation of the sequence of random variables {Xn} would have been
obtained. Note that the distribution of each Xn (other than X0) depends on
chance. It also depends on the value of Xn−1: for example, if Xn−1 = 4, then the
value of Xn can be only either 3 or 5. �

The sequence of random variables {Xn;n = 0, 1, . . .} described in Example 1.1 is
an example of a random process or stochastic process. Essentially, a random The word ‘stochastic’ is derived

from a Greek word meaning ‘to
aim at’. The evolution of its
meaning is uncertain, but it now
means ‘pertaining to chance’ or
‘random’. It is pronounced
sto-kas-tic.

process is a sequence of random variables that is developing, usually over time,
though as you will see later, it can be developing in space. The term ‘random
process’ is also used for the whole underlying situation that is being observed.

In Example 1.1, Adam’s capital was observed only at specific instants of time,
immediately after each game had been completed. A process that is observed
continuously during an interval of time is described in Example 1.2.
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Section 1 What is a random process?

Example 1.2 Customers in a village shop

For two hours, a record was kept of the number of customers in a village shop.
Figure 1.1 shows the number of customers in the shop at time t (0 ≤ t ≤ 2), where
t is measured in hours.

t (hours)
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0
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the shop

Number of
customers in

Figure 1.1 The number of customers in a shop

Each rise in the graph represents a customer arriving, and each fall, a customer
leaving. At the start of the period of observation, there were three customers in
the shop, and during the second hour there was a period of about 40 minutes This example is a particular

case of a queueing process; such
processes are studied in Book 4.

when the shop was empty.

If a record had been kept at the same time of day on another day, it would almost
certainly have been different from the one represented in Figure 1.1: it would have
been a different realisation of the stream of random variables {X(t); 0 ≤ t ≤ 2},
where X(t) is the number of customers in the shop at time t. On each occasion
that such records are kept, a realisation is obtained of a developing situation – the
number of customers in the shop at time t.

For any fixed t, the distribution of X(t) will depend on several factors, such as the
arrival rate of customers and the time a customer spends in the shop. It also
depends on the starting value. For example, in the realisation shown in Figure 1.1,
X(0) = 3, so it would be very unlikely that X(0.01) = 0, because it is unlikely that
all three customers would leave in under a minute. On the other hand, if the shop
had been empty at time 0, then it would be quite likely that X(0.01) = 0. �

In the gambler’s ruin example, the process is observed only at specific points in
time. This process is said to be a discrete-time random process. On the other
hand, the number of customers in the village shop is a random process in
continuous time. In both of the examples, the random variables have taken
only discrete non-negative integer values. Two processes for which the random
variables are continuous are described in Examples 1.3 and 1.4.

Example 1.3 Replacing light bulbs

Suppose that there is a supply of light bulbs whose lifetimes are independent and
identically distributed. One bulb is used at a time, and as soon as it fails it is
replaced by a new one. Let Wn represent the time at which the nth bulb fails and
is replaced. Then the random process {Wn;n = 1, 2, . . .} gives the sequence of
replacement times. Note that the ‘time’ variable in this example is n, the number
of the bulb, so this is a discrete-time random process. However, the lifetime of a This is an example of a renewal

process; such processes are
discussed in Book 5.

bulb is a continuous random variable, so Wn, the replacement time of the nth
light bulb, is continuous. �
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Modelling events in time and space

Example 1.4 The water level in a reservoir

The level of water in a reservoir depends on supply, in the form of rain or melting
snow, on demand, which is the water used by the community served by the
reservoir, and on other minor factors, such as evaporation from the surface. Both
supply and demand may be assumed to be continuous random variables. Let L(t)
be a random variable representing the level of water in the reservoir at time t,
where t is measured in years. The level of the reservoir can be observed at any
time t ≥ 0, so {L(t); t ≥ 0} is a continuous-time random process. A typical
realisation of the process {L(t); t ≥ 0} is shown in Figure 1.2.

t (years)

L(t)

full

empty
0 1 2 3

Figure 1.2 A realisation of {L(t); t ≥ 0}, where L(t) is the water level in a
reservoir

The water level L(t) tends to reach a maximum around March after the winter
rain, and to fall to a minimum in the autumn, because there is more demand
(watering gardens, etc.) in the summer, but less supply. However, there is
variation from year to year. The water level may fall to zero in a drought or
remain at a maximum for a period of time when the reservoir is full and an
overflow is in operation. In this example, the random variable L(t) is continuous
and the random process develops in continuous time. �

Mathematically, a random process is a collection {X(t)} or {Xn} of random
variables defined in either continuous time or discrete time. For a random process
in continuous time, the time variable is usually defined for an interval of the real
line, most commonly −∞ < t < ∞ or t ≥ 0, in which case the collection is written
as {X(t); t ∈ R} or {X(t); t ≥ 0}. The range of t is called the time domain. For
a random process in discrete time, the time variable is usually defined at integer
points, and the process is written as {Xn;n = 0, 1, 2, . . .}. In this case, the time
domain is {0, 1, 2, . . .}. Thus typically a random process with a discrete time
domain is written as {Xn;n = 0, 1, 2, . . .}, and a random process with a
continuous time domain is written as {X(t); t ≥ 0}.
The set of values that may be taken by the random variables in a random process
is called the state space of the process. A state space can be either discrete or
continuous. In Example 1.2, X(t) is the number of customers in a village shop at
time t, so the state space of {X(t); 0 ≤ t ≤ 2} is {0, 1, 2, . . .}. The state space is
discrete in this example. In Example 1.4, L(t) is the level of water in a reservoir,
which is a continuous non-negative variate, so the state space of {L(t); t ≥ 0} is
{l : l ≥ 0}. The state space is continuous in this example.

Activity 1.1 Time domains and state spaces

For each of the random processes described in Examples 1.1 and 1.3, identify the
time domain and say whether it is discrete or continuous. Also write down the
state space and say whether it is discrete or continuous.
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Section 1 What is a random process?

Activity 1.2 More time domains and state spaces

A shop is open between 9 am and 6pm on weekdays. Two random processes
associated with the daily business of the shop are as follows.

(a) {An;n = 1, 2, . . .}, where An is the amount (in £) spent by the nth customer
who enters the shop during the day.

(b) {B(t); 0 ≤ t ≤ 9}, where B(t) is the number of items sold by t hours after the
shop opens.

For each process, identify the time domain and say whether it is discrete or
continuous. Also write down the state space and say whether it is discrete or
continuous.

1.2 The Bernoulli process

The term Bernoulli trial is used to describe a single statistical experiment in
which there are two possible outcomes; these outcomes are referred to as ‘success’
and ‘failure’. A sequence of independent Bernoulli trials for which the probability
of success remains constant from trial to trial is called a Bernoulli process. The
formal definition of a Bernoulli process is given in the following box.

Bernoulli process

A Bernoulli process is a sequence of Bernoulli trials in which:

⋄ trials are independent;

⋄ the probability of success remains the same from trial to trial.

Examples of Bernoulli processes include: a sequence of rolls of a die where success
is a ‘six’; testing items off a production line where success is a ‘good’ item and
failure is a defective item; and treating successive patients arriving at a hospital
where success is a ‘cure’.

For a Bernoulli process, the idea of trials occurring in order, one after the other, is
crucial.

There are several different sequences of random variables associated with a
Bernoulli process. The simplest one is {Xn;n = 1, 2, . . .}, where Xn = 1 if the nth
trial results in success, and Xn = 0 if it is a failure. Each Xn has a Bernoulli
distribution with parameter p, the probability of success at any trial. The random
variables X1, X2, . . . are independent and identically distributed, and the
distribution of Xn does not depend on n or on the results of previous trials.

The ‘time’ variable, n, is discrete; it denotes the number of the trial. The random The real time variable, the time
between trials, is not considered
in a Bernoulli process; it is
irrelevant, for example, exactly
when patients arrive at the
hospital.

variables are also discrete-valued; the state space is {0, 1}. Therefore the random
process {Xn;n = 1, 2, . . .} has a discrete time domain and a discrete state space.

A typical realisation of the process {Xn;n = 1, 2, . . .} is

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0.

In this realisation, successes occur at trials 4, 6, 7, 9, 10 and 11, and failures at
the other trials. In this realisation there were 13 trials.

Another sequence of random variables associated with a Bernoulli process is
{Yn;n = 1, 2, . . .}, where

Yn = X1 +X2 + · · ·+Xn.
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Modelling events in time and space

This sequence specifies the number of successes that have occurred after n trials
have been completed. The realisation of the sequence {Yn;n = 1, 2, . . . , 13}
corresponding to the realisation of {Xn;n = 1, 2, . . . , 13} is

0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 6.

This realisation is represented in Figure 1.3.

n

Y n

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1.3 A realisation of {Yn;n = 1, 2, . . . , 13} from a Bernoulli process

Note that, since the random variable Yn is discrete, the graph of any realisation of
the sequence {Yn;n = 1, 2, . . .} appears as an increasing step function.

Activity 1.3 The distribution of Y
n

(a) What is the unconditional distribution of Yn?

(b) Specify the conditional distribution of Yn given Yn−1 = y.

Activity 1.4 Another sequence

Suggest a third sequence of random variables associated with a Bernoulli process
– that is, another random process. You should use the notation for random
processes in your answer. Write down the distribution of the random variables in
the sequence.

Say whether the time domain of your random process is discrete or continuous,
write down the state space, and say whether the state space is discrete or
continuous.

Example 1.5 The British national lottery

A gambler who buys a single ticket each Saturday for the British national lottery
has probability p = 1/13 983 816 of winning the jackpot (or a share of it) each
week. This probability is unaltered from Saturday to Saturday, and what happens
on any Saturday is independent of what has occurred on previous Saturdays. The
Bernoulli random variable Xn is defined to take the value 1 if the gambler wins
the jackpot at the nth attempt, and 0 otherwise. Then over a period of (say)
20 Saturdays, the random process {Xn;n = 1, 2, . . . , 20} is a discrete-valued
discrete-time random process that may be modelled by a Bernoulli process with
parameter p. �
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Section 1 What is a random process?

Example 1.6 Births of boys and girls in a family

At first sight, a Bernoulli process might appear to be a useful model for the
sequence of boys and girls in a family – scoring 1 for a girl, say, and 0 for a boy.
Then a family of five with four sisters and a baby brother might be represented by
the sequence 1, 1, 1, 1, 0. The probability p of a female child may be estimated
from data.

For some purposes, the model may be adequate. Indeed, departures from the two
defining assumptions of the Bernoulli process are typically rather hard to detect.
But extended analyses of available data suggest that the assumption of
independence from birth to birth is not valid. Nature has a kind of memory, and
the gender of a previous child affects to some degree the probability distribution
for the gender of a subsequent child. �

Activity 1.5 Modelling the weather

Observers classified each day in a three-week interval as either ‘Wet’ or ‘Dry’
according to some rule for summarising the weather on any particular day. The
21-day sequence was as follows.

Wet Wet Wet Dry Dry Wet Wet Dry Wet Wet Wet
Wet Dry Dry Dry Wet Wet Wet Dry Dry Dry

Scoring 1 for a wet day and 0 for a dry day, the sequence may be written more
conveniently as

1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0.

This is a realisation of the random process {Xn;n = 1, 2, . . . , 21}, where the
random variable Xn is discrete and takes the value 0 or 1, so that Xn is a
Bernoulli random variable.

The time variable n denotes the number of the day in the sequence. Thus the
random process {Xn;n = 1, 2, . . .} has a discrete time domain and a discrete state
space.

Explain whether or not a Bernoulli process is likely to be a good model for the
daily weather.

Activity 1.5 raises an important point: probability models are not usually ‘right’
or ‘wrong’: they may be better described as adequate or inadequate. However,
M343 is concerned primarily with the development and application of models,
rather than with testing their adequacy.

Summary of Section 1

In this section, a random process has been defined to be a sequence of random
variables, and the notation for random processes has been introduced. You have
seen that the time domain and the state space of a random process can each be
either discrete or continuous. The Bernoulli process has been discussed. It has
been noted that the term ‘random process’ is used to describe a whole physical
process as well as a sequence of random variables associated with a physical
process.

9



2 Further examples

This section consists of further examples of random processes, many of which will
be discussed in detail later in the module. At this stage, you are expected to note
the type of situation that may be modelled by a random process, to become
accustomed to identifying sequences of random variables, to recognise whether the
time domain and the state space of a random process are discrete or continuous,
and to practise using the notation for random processes.

Example 2.1 A ticket queue

Many probability models have been developed to describe various queueing
situations. The simplest situation is that of a ticket queue at a box office where
customers arrive and join the end of the queue; they eventually reach the front
and are served, then they leave. Sometimes an arriving customer will find that
there is no queue and is served immediately.

To define the queueing process completely, the arrival and service mechanisms
must be specified. The commonest and simplest assumption is that customers
arrive at random. Frequently, the service time is assumed to have an exponential
distribution. �

Activity 2.1 Random processes for a queue

There are several random processes associated with the queueing model described
in Example 2.1. The basic random process is {Q(t); t ≥ 0}, where Q(t) is the
number of people in the queue at time t. Other processes include
{Ln;n = 1, 2, . . .}, where Ln is the number of people in the queue when the nth
customer arrives, and {Wn;n = 1, 2, . . .}, where Wn is the time that the nth
customer has to wait before being served.

For each of these processes, say whether the time domain and the state space are
discrete or continuous, and write down the state space.

The simple queueing model in Example 2.1 can be extended in many ways.
Possibilities include having more than one server, arrival according to an
appointments system, arrival of customers in batches, and ‘baulking’. (‘Baulking’
is a term used to describe the phenomenon of a long queue discouraging Several queueing processes are

developed and analysed in
Book 4.

customers from joining.)

Example 2.2 Machine breakdowns

A machine can be in one of two states: working or under repair. As soon as it
breaks down, work begins on repairing it; and as soon as the machine is repaired,
it starts working again.

For t ≥ 0, let X(t) be a random variable such that X(t) = 1 if the machine is
working and X(t) = 0 if it is under repair. Then the sequence {X(t); t ≥ 0} is a
random process with continuous time domain and having the discrete state
space {0, 1}. �
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Section 2 Further examples

Activity 2.2 Another random process

Suggest another random process associated with the model for machine
breakdowns described in Example 2.2. Say whether the time domain is discrete or
continuous. Write down the state space and say whether it is discrete or
continuous.

The model for machine breakdowns in Example 2.2 could be extended to include
several machines, and questions could then be asked about how many machines
are working at any time or how many mechanics are required to prevent a build
up of broken-down machines. The model could include a third state: broken and
awaiting repair.

Example 2.3 The cardcollecting problem

With every petrol purchase, an oil company gives away a card portraying an
important event in the history of the petroleum industry. There are 20 such
cards, and on each occasion the probability of receiving any particular card is
1/20. For an individual customer, one sequence of random variables associated
with this situation is {Xn;n = 1, 2, . . .}, where Xn = 1 if the card received at his
nth purchase is a new one for his collection, and Xn = 0 if his nth card is a
replica of one he has already. Both the time domain and the state space are
discrete. The state space is {0, 1}. �

Activity 2.3 Collecting cards

(a) Suppose that the customer in Example 2.3 has i different cards after n− 1
purchases. Write down the distribution of Xn in this case.

(b) Explain whether or not the card-collecting process is a Bernoulli process.

(c) Identify two other random processes (sequences of random variables)
associated with the card-collecting process. For each sequence, say whether
the time domain and the state space are discrete or continuous. In each case,
give the state space.

Example 2.4 The weather

Suppose that, at a particular location, the weather is classified each day as either
wet or dry according to some specific criterion – perhaps wet if at least 1mm of
rain is recorded, otherwise dry. Weather tends to go in spells of wet or dry, and a
possible model is that the weather on any one day depends only on the weather This is an example of a Markov

chain. Such models are
discussed in Book 3.

the previous day. For example, if it rains today, then the probability that it will
rain tomorrow is 3

5 , and the probability that it will be dry is 2
5 ; on the other hand,

if it is dry today, then the probability that it will be dry (wet) tomorrow is
7
10

(

3
10

)

.

The random variable Xn could be defined to take the value 0 if it is wet on day n,
and 1 if it is dry on day n. The sequence {Xn;n = 0, 1, 2, . . .} is a random process
with a discrete time domain and a discrete state space. The time domain is
{0, 1, 2, . . .} and the state space is {0, 1}.
The sorts of question that arise include the following. If it is wet on Monday,
what is the probability that it will be wet the following Thursday? What
proportion of days will be wet in the long run? If it is wet today, how long is it
likely to be before the next wet day? �
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Modelling events in time and space

Activity 2.4 The weather model

The model described in Example 2.4 can be thought of as a sequence of trials.
Explain why it is not a Bernoulli process.

Example 2.5 Family surnames

In a community, a surname is passed down from generation to generation through
male offspring only. Suppose that each man has a number of sons. This number is
a random variable taking the values 0, 1, 2, . . .. Each man reproduces
independently of all others.

One ancestor (patriarch) has a number of sons who form the first generation.
Each of these has sons who form the second generation, and so on. Let the
random variable Xn represent the number of men in the nth generation, with
X0 = 1 denoting the original ancestor. Then {Xn;n = 0, 1, 2, . . .} is an example of
a branching process. The time domain, which represents the generation number, is Branching processes are

discussed in Book 3.discrete. The state space is {0, 1, 2, . . .}, which is also discrete.

The questions that are of interest include the following. What is the distribution
of the size of the nth generation? And will the family surname survive, or will it
eventually become extinct? �

Example 2.6 The spread of a disease

Suppose that an infectious disease is introduced into a community and spreads
through it. At any time, each member of the community may be classified as
belonging to just one of four categories: healthy but susceptible to the disease;
having the disease and infectious; recovered and immune from a further attack;
dead. These categories can be called S1, S2, S3, S4, respectively.

A person may pass from S1 to S2 after contact with someone in S2. Anyone in S2

will eventually go to either S3 or S4. Four sequences of random variables,
{S1(t); t ≥ 0}, {S2(t); t ≥ 0}, {S3(t); t ≥ 0}, {S4(t); t ≥ 0}, can be defined, where
Si(t) is the number of people in category Si at time t. Each of these processes is
defined for continuous time, and its state space is discrete. If the disease starts in
a community of size N with a single infectious person, then S1(0) = N − 1,
S2(0) = 1, S3(0) = 0, S4(0) = 0. If, at some time t, S2(t) = 0, then the disease
will spread no further. There is a relationship between the four variates: if no one
enters or leaves the community, then S1(t) + S2(t) + S3(t) + S4(t) = N , the total
size of the community.

To develop a model for this process, it is necessary to specify the mechanics of the This is an example of an
epidemic process, for which
several models are described in
Book 4.

spread of the disease, the probabilities that an infected person will recover or die,
the time spent in various stages, and so on. �
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Section 2 Further examples

Activity 2.5 A population model

A colony of bacteria develops by the division (into two) of bacteria and by the This is an example of a birth and
death process. Such processes
are analysed in Book 4.

death of bacteria. No bacterium joins or leaves the colony.

(a) Identify two random processes to describe the development of this colony,
and in each case specify whether the state space and the time domain are
discrete or continuous. Write down the state space for each process.

(b) Suppose that the colony starts with two bacteria. Sketch a possible
realisation of the size of the colony over time.

Example 2.7 The price of wheat

In an article published in 1953, Professor Sir Maurice Kendall considers wheat Kendall, M.G. (1953) ‘The
analysis of economic time-series,
Part I: Prices’, Journal of the
Royal Statistical Society,
Series A, vol. 116, no. 1,
pp. 11–34.

prices in Chicago, measured in cents per bushel at weekly intervals from
January 1883 to September 1934 (with a gap during the war years). A portion of
these data is shown in Figure 2.1.
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Figure 2.1 The price of wheat in Chicago

There is an overall fall in the price over the two-year period shown in the graph.
However, as Kendall reported, first impressions are ‘almost as if once a week the
Demon of Chance drew a random number . . . and added it to the current price to
determine the next week’s price’. Although observed only once a week, the price
of wheat could change at any time, and the price itself varies continuously
(though rounded to the nearest cent). The random process {Q(t); t ≥ 0}, where
Q(t) is the price of wheat at time t, is therefore an example of a random process
where both the time domain and the state space are continuous; it is an example
of a diffusion process. � This and other diffusion

processes are studied in Book 5.
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Modelling events in time and space

Example 2.8 The thickness of wool yarn

The thickness of wool yarn is not uniform along the length of the yarn. Figure 2.2
shows the variation in weight per unit length (essentially, the variation in
cross-sectional area) along a strand of wool yarn.

s

W (s)

Figure 2.2 Variation of weight per unit length along a strand of wool yarn

The length s along the yarn corresponds to the time variable t that has appeared
in previous examples, and is continuous. The random variable W (s), weight per
unit length, is also continuous. Thus the ‘time’ domain and the state space of the
random process {W (s); s ≥ 0} are both continuous. This is an example of a
random process developing over distance instead of time. �

Random processes in space are discussed in Part III of this book. Random
processes in two-dimensional space, where a process develops over an area of land,
arise frequently in biology and geology. One such process is described in
Example 2.9.

Example 2.9 The bee orchid

Pingle Wood and Cutting is a nature reserve on the route of the now disused
Great Eastern Railway line between March and St Ives. It is owned by The
Wildlife Trust, and bee orchids can be found there in June. In any year, the
distribution of the orchid in the reserve can be thought of as a random process in
two-dimensional space. Each point can be identified as (x, y) according to a map
reference, and a random variable X is defined by X(x, y) = 1 if an orchid grows at
that point, and X(x, y) = 0 otherwise. Then {X(x, y);x ∈ R, y ∈ R} is a random
process where the equivalent of the ‘time’ variable actually refers to space and is
two-dimensional and continuous. The state space is {0, 1}, which is discrete.

Naturalists might be interested in questions such as the following. Does the orchid
grow randomly in the reserve or does it favour certain soil types or south-sloping
land? Does it grow singly or in clumps? To answer such questions, a model would
have to be set up, and the data collected and compared with the model. �

Summary of Section 2

In this section, a variety of examples of random processes have been described
briefly. Some of these will be discussed in detail in M343. In most of the
examples, the process was developing over time. However, you have seen that it is
also possible to have a random process that develops in space.
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Modelling events in time

3 The Poisson process

Some data on major earthquakes that occurred in the 20th century are described
in Example 3.1.

Example 3.1 Earthquakes

Table 3.1 contains a list of the most serious earthquakes that occurred in the 20th
century up to 1977, and includes the date and place of occurrence, the magnitude
of the earthquake and the estimated number of fatalities. The magnitude of an
earthquake is measured on the Richter scale and relates to the energy released.

15



Modelling events in time and space

Table 3.1 Major earthquakes in the 20th century up to 1977 An earthquake is included if its
magnitude was at least 7.5 or if
a thousand or more people were
killed.

These data are from the
discontinued Open University
module S237 The Earth:
structure, composition and
evolution, Block 2.

Magnitude Estimated number
Date (if known) Region of fatalities

1902 Dec 16 Turkestan 4 500
1905 Apr 4 8.6 India: Kangra 19 000

Sept 8 Italy: Calabria 2 500
1906 Jan 31 8.9 Colombia 1 000

Mar 16 Formosa: Kagi 1 300
Apr 18 8.3 California: San Francisco 700
Aug 17 8.6 Chile: Santiago, Valparaiso 20 000

1907 Jan 14 Jamaica: Kingston 1 600
Oct 21 8.1 Central Asia 12 000

1908 Dec 28 7.5 Italy: Messina, Reggio 83 000
1911 Jan 3 8.7 China: Tien-Shan 450
1912 Aug 9 7.8 Marmara Sea 1 950
1915 Jan 13 7.0 Italy: Avezzano 29 980

Oct 3 7.6 California, Nevada 0
1920 Dec 16 8.6 China: Kansu, Shansi 100 000
1922 Nov 11 8.4 Peru: Atacama 600
1923 Sept 1 8.3 Japan: Tokyo, Yokohama 143 000
1925 Mar 16 7.1 China: Yunnan 5 000
1927 Mar 7 7.9 Japan: Tango 3 020

May 22 8.3 China: Nan-Shan 200 000
1929 May 1 7.1 Iran: Shirwan 3 300

June 16 7.8 New Zealand: Buller 17
1930 July 23 6.5 Italy: Ariano, Melfi 1 430
1931 Feb 2 7.9 New Zealand: Hawke’s Bay 255
1933 Mar 2 8.9 Japan: Morioka 2 990
1934 Jan 15 8.4 India: Bihar-Nepal 10 700
1935 Apr 20 7.1 Formosa 3 280

May 30 7.5 Pakistan: Quetta 30 000
1939 Jan 25 8.3 Chile: Talca 28 000

Dec 26 7.9 Turkey: Erzincan 30 000
1943 Sept 10 7.4 Japan: Tottori 1 190
1944 Dec 7 8.3 Japan: Tonankai, Nankaido 1 000
1945 Jan 12 7.1 Japan: Mikawa 1 900
1946 Nov 10 7.4 Peru: Ancash 1 400

Dec 20 8.4 Japan: Tonankai, Nankaido 1 330
1948 June 28 7.3 Japan: Fukui 5 390

Oct 5 7.6 Turkmenia, Ashkhabad Unknown
1949 Aug 5 6.8 Ecuador: Ambato 6 000
1950 Aug 15 8.7 India, Assam, Tibet 1 530
1952 Mar 4 8.6 Japan: Tokachi 28

July 21 7.7 California: Kern County 11
1954 Sept 9 6.8 Algeria: Orléansville 1 250
1955 Mar 31 7.9 Phillipines: Mindanao 430
1956 June 9 7.7 Afghanistan: Kabul 220

July 9 7.7 Aegean Sea: Santorini 57
1957 July 28 7.8 Mexico: Acapulco 55

Dec 4 8.0 Mongolia: Altai-Gobi 30
Dec 13 7.1 Iran: Farsinaj, Hamadan 1 130

1958 July 10 7.8 Alaska, Brit. Columbia, Yukon 5
1960 Feb 29 5.8 Morocco: Agadir 14 000

May 22 8.5 Chile: Valdivia 5 700
1962 Sept 1 7.3 Iran: Qazvin 12 230
1963 July 26 6.0 Yugoslavia: Skopje 1 200
1964 Mar 28 8.5 Alaska: Anchorage, Seward 178
1968 Aug 31 7.4 Iran: Dasht-e Bayaz 11 600
1970 May 31 7.8 Peru: Nr Lima 66 000
1972 Dec 23 6.2 Nicaragua: Managua 5 000
1974 Dec 28 6.2 Pakistan: Pattan 5 300
1975 Feb 4 7.5 China: Haicheng, Liaoning Few
1976 Feb 4 7.9 Guatemala 22 000

May 6 6.5 Italy: Gemona, Friuli 1 000
July 27 7.6 China: Tangshan 650 000

1977 Mar 4 7.2 Romania: Vrancea 2 000

Seismologists would study these data with specific objectives in mind. They
might wish to study the structure of the Earth or to predict future earthquakes,
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Section 3 The Poisson process

for example. In this section, the times of occurrence will be studied. In order to
do this, the times (in days) between successive earthquakes have been calculated;
these are shown in Table 3.2. (The numbers should be read down the columns.)

Table 3.2 Times between major earthquakes (in days)

840 280 695 402 335 99 436 83 735
157 434 294 194 1354 304 30 832 38
145 736 562 759 454 375 384 328 365
44 584 721 319 36 567 129 246 92
33 887 76 460 667 139 9 1617 82
121 263 710 40 40 780 209 638 220
150 1901 46 1336 556 203 599 937

These times range from 9 days up to 1901 days (which is over five years), so they
have a very large variance. It is difficult to appreciate a pattern from studying a
list of figures, so in order to develop some intuition about the pattern, the data
are presented in two ways in Figures 3.1 and 3.2.

04/03/1977

01/01/1900

16/12/1902

Figure 3.1 Times at which major earthquakes occurred, measured in days

01/01/1900

Number
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Figure 3.2 Cumulative number of earthquakes over time

In Figure 3.1, dots on a time axis show the incidence of earthquakes over the
period of observation. Figure 3.2 gives a cumulative count with passing time.

The trend in Figure 3.2 could be approximated very roughly by a straight line;
there is no pronounced curvature. This suggests that the rate of occurrence of
earthquakes has remained more or less steady. However, the random element in
the sequence of earthquake times is evident from both figures, and this is the
element for which a model is required. �
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Modelling events in time and space

In this section, a model that might be suitable for the occurrence of major
earthquakes is described. This model is the Poisson process. It is a model for
events occurring at random for which the rate of occurrence of events remains
constant over time. In Subsection 3.1, the Poisson process is defined and some
basic ideas and results are discussed. Some standard notation for events occurring
in continuous time is introduced in Subsection 3.2. The simulation of events in a
Poisson process is discussed briefly in Subsection 3.3.

3.1 Basic ideas and results

The Poisson process is the continuous-time analogue of the Bernoulli process. In a
Poisson process, events occur ‘at random’, but instead of occurring as a result of
regular trials, as in the Bernoulli process, they can occur at any time. The
Poisson process provides a good model for such varied situations as the decay of
radioactive atoms in a lump of material, the times of arrival of customers to join a
queue, the instants at which cars pass a point on a road in free-flowing traffic, and
the times of goals scored in a soccer match.

The Bernoulli process is a useful model when an event either occurs (a success) or
does not occur (a failure) at each of a clearly defined sequence of opportunities
(trials). The process is characterised by the following assumptions: the
probability of success remains the same from trial to trial, and the outcome at
any trial is independent of the outcomes of previous trials. In this sense, the
sequence of successes and failures is quite haphazard.

Events may also occur in a random, haphazard kind of a way in continuous time,
when there is no notion of a ‘trial’ or ‘opportunity’. Examples of unforecastable
random events occurring in continuous time (with an estimate of the rate at
which they might happen) include the following:

⋄ machine breakdowns on the factory floor (one every five days);

⋄ light bulb failures in the home (one every three months);

⋄ arrivals at a hospital casualty ward (one every ten minutes at peak time);

⋄ major earthquakes worldwide (one every fourteen months);

⋄ power cuts in the home (‘frequently’ in winter, ‘seldom’ in summer).

Typically, a realisation of this sort of random process is represented as a sequence
of points plotted on a time axis, as in Figure 3.3, the points giving the times of
occurrence.

time

Figure 3.3 Schematic representation of a random sequence of events in time

The Poisson process is defined in the following box.

Poisson process

The Poisson process is a model for the occurrence of events in continuous
time in which the following assumptions are made.

⋄ Events occur singly.

⋄ The rate of occurrence of events remains constant.

⋄ The incidence of future events is independent of the past.

Consider, for instance, the occurrence of light bulb failures in the home. Failures
might be well (or at least adequately) modelled by a Poisson process: they never
(or rarely) happen simultaneously and there is no particular reason why the rate

18



Section 3 The Poisson process

at which they occur should vary with passing time. Perhaps it is just arguable
that the incidence of past events provides indicators for the future. But remember
that few models are ‘right’; most are adequate, at best. And a Poisson process
may be an adequate model for failures for the purpose of determining, say, the
stock of light bulbs to keep in the home.

On the other hand, the incidence of power cuts in the home would not be well
modelled by a Poisson process: the rate is greater in winter than in summer, so
the second assumption is not reasonable in this case.

Two random variables are of particular interest for the Poisson process: the
number of events that occur over any particular period of observation (for
example, breakdowns in a month), which is a discrete random variable; and the
time between successive events (or ‘waiting time’ between successive events, as it
is often called), which is a continuous random variable. The distributions of these
random variables are stated in the following box.

Poisson process: two main results

Suppose that events occur at random at rate λ in such a way that their
occurrence may be modelled as a Poisson process. Then:

⋄ N(t), the number of events that occur during an interval of length t,
has a Poisson distribution with parameter λt: N(t) ∼ Poisson(λt);

⋄ T , the waiting time between successive events, has an exponential
distribution with parameter λ: T ∼ M(λ).

These two results are derived in Section 4. Their use is illustrated in Example 3.2.

Example 3.2 Arrivals at a casualty department

Suppose that over moderately short intervals, the incidence of patients arriving at
a casualty department may usefully be modelled as a Poisson process in time with
(on average) 10 minutes between arrivals.

Since the mean time between arrivals is 10 minutes, the rate of the Poisson
process is

λ = 1
10 per minute.

Therefore the number of arrivals in half an hour has a Poisson distribution with
parameter

λt = 1
10 per minute× 30 minutes = 3.

That is,

N(30) ∼ Poisson(3).

The probability that two patients arrive in half an hour is If X ∼ Poisson(3), then

P (X = x) =
e−33x

x!
for x = 0, 1, . . ..

P (N(30) = 2) =
e−332

2!
≃ 0.2240.

The waiting time between arrivals has an exponential distribution with
parameter 1

10 , so the probability that the interval between arrivals exceeds half an
hour is given by P (T > 30).

The c.d.f. of T is

F (t) = P (T ≤ t) = 1− e−λt, t ≥ 0,

so

P (T > t) = e−λt.

Therefore

P (T > 30) = e−30/10 = e−3 ≃ 0.0498. �
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Modelling events in time and space

Activity 3.1 Nerve impulses

In a psychological experiment, nerve impulses were found to occur at the rate of
458 impulses per second. Assume that a Poisson process is a suitable model for
the incidence of impulses.

(a) Calculate the probability that not more than one nerve impulse occurs in an
interval of 1

100 second.

(b) Calculate the probability that the interval between two successive impulses is
less than 1

1000 second.

Activity 3.2 Major earthquakes

Suppose that the incidence of major earthquakes worldwide may be adequately
modelled as a Poisson process, and that earthquakes occur at the rate of one
every fourteen months.

(a) Calculate the probability that there will be at least three major earthquakes
in a period of ten years.

(b) Calculate the probability that the waiting time between successive major
earthquakes exceeds two years.

3.2 Notation for continuoustime processes

Events in an interval

For any continuous-time process where successive events are counted, the number
of events that occur between times t1 and t2 is denoted X(t1, t2).

A realisation of a continuous-time process is depicted in Figure 3.4.

t0 1 2 3 4 5

Figure 3.4 Events in a continuous-time process

In this realisation, the observed value of X(2, 4) is 4, and the observed value of
X(0, 4) is 7. By convention, the random variable X(0, t) is usually written simply
as X(t).

Activity 3.3 Notation

For the realisation of the continuous-time process in Figure 3.4, write down the
values of X(1, 3), X(4, 5), X(0, 2), X(1) and X(3).

For a Poisson process with rate λ, the number of events that occur during any

interval of length t (denoted N(t) in Subsection 3.1) has a Poisson distribution
with parameter λt. So, in particular, X(0, t) = X(t) ∼ Poisson(λt). Also, since
X(t1, t2) is the number of events that occur in the interval (t1, t2], which has
length t2 − t1, it has a Poisson distribution with parameter λ(t2 − t1); that is,
X(t1, t2) ∼ Poisson(λ(t2 − t1)). Although for a Poisson process this distribution
depends only on the length of the interval, note that for many continuous-time
processes, the distribution of X(t1, t2) depends on the values of both t1 and t2.
You will meet a process for which this is the case in Section 6.
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Section 3 The Poisson process

Waiting times

The waiting time from the start of observation to the first event in any
continuous-time process is conventionally denoted T1, and the waiting time
between the first event and the second is denoted T2. In general, the waiting time
between the (n− 1)th event and the nth event is denoted Tn. The waiting time
from the start of observation to the time of the nth event is denoted Wn:
Wn = T1 + T2 + · · ·+ Tn.

This notation is illustrated in Figure 3.5.

W4

T1 T2 T3 T4

t
W1

W2

W3

Figure 3.5 Waiting times

For a Poisson process, the random variables T1, T2, . . . , Tn are independent
identically distributed exponential random variables with parameter λ.

Activity 3.4 The distribution of W
n

Write down the distribution of Wn, the waiting time from the start of observation
to the nth event in a Poisson process with rate λ.

The notation introduced in this subsection, which will be used on many occasions
in M343, is summarised in the following box.

Notation for continuous-time processes

⋄ X(t1, t2) is the number of events that occur in the interval (t1, t2].

⋄ X(t) = X(0, t) is the number of events that occur in the interval (0, t].

⋄ T1 is the time at which the first event occurs.

⋄ Tn is the waiting time between the (n− 1)th event and the nth event.

⋄ Wn is the time at which the nth event occurs.

3.3 Simulation

The simplest way to simulate the occurrences of events in a Poisson process is to
simulate the sequence of waiting times between events. These are independent
observations of the random variable T ∼ M(λ), where λ is the rate of occurrence.

A table of random numbers from the exponential distribution with mean 1 is Random numbers from M(1)
are provided in Table 6 in the
Handbook.

provided in the Handbook. To obtain a sequence of random numbers t1, t2, . . . from
the exponential distribution M(λ) (which has mean 1/λ), each term in a sequence
of random numbers e1, e2, . . . from the table must be multiplied by the mean 1/λ:

tj =
1

λ
ej, j = 1, 2, . . . .
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Modelling events in time and space

Example 3.3 Simulating events in a Poisson process

Suppose that events in a Poisson process occur at the rate of one every
10 minutes, so that the rate λ is 1/10 per minute, and hence the mean time
between events is 1/λ = 10 minutes.

To simulate the sequence of events occurring in the Poisson process, random
numbers from M(1) must be multiplied by 10 to obtain the times between
successive events in minutes. The details of a simulation of the events from the
start of observation for one hour are set out in Table 3.3. The random numbers
are taken from the eleventh row of Table 6 in the Handbook. In practice, computers rather

than tables are used for
simulation.Table 3.3 A simulation

n en tn = 10en wn = t1 + · · ·+ tn

1 0.2316 2.316 2.316 ≃ 2.32
2 1.8293 18.293 20.609 ≃ 20.61
3 1.1956 11.956 32.565 ≃ 32.57
4 3.2992 32.992 65.557 ≃ 65.56

The first event occurs after t1 ≃ 2.32 minutes. The time at which the second
event occurs is given by w2 = t1 + t2 ≃ 20.61 minutes, and the third event occurs
at w3 = t1 + t2 + t3 ≃ 32.57 minutes.

The time of the fourth event is w4 ≃ 65.56 minutes, which is more than one hour
after the start of observation. So three events occur in the first hour of
observation, and the times in minutes at which the first three events occur are

w1 = 2.32, w2 = 20.61, w3 = 32.57. �

Activity 3.5 Computer failures

In an investigation into computer reliability, a particular unit failed on average Musa, J.D., Iannino, A. and
Okumoto, K. (1987) Software
Reliability: Measurement,
Prediction, Application,
McGraw-Hill.

every 652 seconds. Assuming that the incidence of failures may be adequately
modelled by a Poisson process, use the tenth row of Table 6 in the Handbook to
simulate one hour’s usage after switching the unit on. Give the times of failures to
the nearest second.

Summary of Section 3

In this section, the Poisson process has been described. This is the
continuous-time analogue of the Bernoulli process. It is a model for events that
occur at random in continuous time at a constant rate.

If the rate of occurrence of events is λ, then the number of events that occur in an
interval of length t has a Poisson distribution with parameter λt, and the waiting
time between successive events has an exponential distribution with parameter λ.
You have learned how to simulate the occurrences of events in a Poisson process
using random observations from the exponential distribution with mean 1.

Notation has been introduced for the number of events in an interval, for the
times between events, and for the times at which events occur. The notation
applies to any continuous-time process.
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Exercises on Section 3

Exercise 3.1 A Poisson process

Events occur according to a Poisson process in time with, on average, sixteen
minutes between events.

(a) Write down the probability distribution of the waiting time T between
events, where T is measured in hours.

(b) Write down the probability distribution of the number of events in any
hour-long interval.

(c) If there were seven events between 2 pm and 3pm yesterday, calculate the
probability that there was at most one event between 3 pm and 4pm.

(d) Calculate the probability that the waiting time between successive events will
exceed half an hour.

Exercise 3.2 Volcanic eruptions

Data collected on major volcanic eruptions in the northern hemisphere give a
mean time between eruptions of 29 months. Assume that such eruptions occur as
a Poisson process in time.

(a) Calculate the expected number of eruptions during a five-year period.

(b) Calculate the probability that there are exactly two eruptions during a
five-year period.

(c) Calculate the probability that at least three years pass after you have read
this exercise before the next eruption.

Exercise 3.3 Light bulb failures

In Subsection 3.1, it is suggested that light bulb failures in the home might
reasonably be modelled as a Poisson process with a rate of one failure every three
months.

(a) Use this model to simulate the incidence of failures during a two-year period,
setting out your realisation in a table similar to Table 3.3. Use random
numbers en from the twelfth row of Table 6 in the Handbook.

(b) How many failures were there in your simulation? From which probability
distribution is this number an observation?

4 A more formal approach to the Poisson process

In Subsection 3.1, the distribution of the number of events in a Poisson process
that occur in an interval of length t, and the distribution of the time between
successive events, were stated without proof. In order to derive these results, a
more formal approach to the Poisson process is required than has been adopted so
far. In this section, the assumptions of a Poisson process are expressed
mathematically as three postulates. The postulates are then used to derive these
results. Although you will not be expected to reproduce the derivations, you
should work through this section thoroughly and make sure that you understand
the ideas that are introduced here. The approach used here is used again in
Book 4.
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The first two postulates of the Poisson process express mathematically the
assumptions that events occur singly and that the rate of occurrence of events
remains constant. These postulates state the probability of one event in a short
interval and the probability of two or more events in a short interval. The length
of this short interval is denoted by δt (read as ‘delta t’).

The first postulate states that the probability that one event occurs in any
interval of length δt is approximately λ δt. The fact that this probability is the
same for any interval of length δt implies that the rate λ at which events occur
remains constant over time. This postulate is written more precisely as follows.

I The probability that (exactly) one event occurs in any small time interval
[t, t+ δt] is equal to λ δt+ o(δt).

The notation o(δt) (read as ‘little-oh of δt’) is used to represent any function of δt
that is of ‘smaller order’ than δt. Formally, we can write f(δt) = o(δt) for any
function f of δt such that

f(δt)

δt
→ 0 as δt → 0. (4.1)

For example, (δt)2 = o(δt) since

(δt)2

δt
= δt → 0 as δt → 0,

and (δt)3 = o(δt) since

(δt)3

δt
= (δt)2 → 0 as δt → 0.

Since the notation o(δt) is used to represent any function of δt that satisfies (4.1),
it follows that

o(δt)

δt
→ 0 as δt → 0.

The second postulate states formally the probability that two or more events
occur in a short interval of length δt. It is written as follows.

II The probability that two or more events occur in any small time interval
[t, t+ δt] is equal to o(δt).

Essentially, this postulate expresses mathematically the assumption that events
occur singly in a Poisson process.

The third postulate is a formal statement of the third assumption made in
Subsection 3.1.

III The occurrence of events after any time t is independent of the occurrence of
events before time t.

These three postulates are summarised in the following box.

Postulates for the Poisson process

A Poisson process is specified by three postulates.

I The probability that (exactly) one event occurs in any small time
interval [t, t+ δt] is equal to λ δt+ o(δt).

II The probability that two or more events occur in any small time interval
[t, t+ δt] is equal to o(δt).

III The occurrence of events after any time t is independent of the
occurrence of events before time t.
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The distribution of X(t)

One sequence of random variables associated with a Poisson process is
{X(t); t ≥ 0}, where X(t) denotes the number of events that have occurred by
time t. It is assumed here that the process starts at time 0, so X(0) = 0. The
distribution of X(t) is given by X(t) ∼ Poisson(λt), which may be proved
formally as follows.

Suppose that observation of a Poisson process starts at time 0 and continues for a
fixed time t. The number of events that occur in the interval [0, t] is a random
variable X(t). The probability mass function of X(t) will be denoted px(t), so

px(t) = P (X(t) = x). This is not the standard
notation for a p.m.f. It is
adopted here to stress that the
probability is a function of t as
well as of x.

The probability p0(t) = P (X(t) = 0) will be found first. This is the probability
that no event occurs in [0, t]. The interval [0, t] and a further short interval
[t, t+ δt] will be considered, and p0(t+ δt), the probability that no event has
occurred at the end of the second interval, will be derived. Using Postulate III,
the occurrence of events after any time t is independent of what happened before
time t, so

p0(t+ δt) = P (no event by time t+ δt)

= P (no event in [0, t])× P (no event in [t, t+ δt]).

The first of these two probabilities is p0(t). The second probability is equal to

1− P (one event in [t, t+ δt])− P (two or more events in [t, t+ δt])

= 1− (λ δt+ o(δt))− o(δt), using Postulates I and II,

= 1 − λ δt+ o(δt).

This illustrates one of the advantages of the notation o(δt): expressions involving
o(δt) can be simplified. Above, −o(δt)− o(δt) could be replaced by o(δt) because
adding or subtracting any finite number of functions of order smaller than δt
always gives a function of order smaller than δt. Thus

p0(t+ δt) = p0(t)× (1 − λ δt+ o(δt)),

which can be written

p0(t+ δt)− p0(t)

δt
= −λ p0(t) +

o(δt)

δt
. Since p0(t) ≤ 1,

o(δt) p0(t) = o(δt).
Now let δt tend to 0. The left-hand side tends by definition to the derivative of
p0(t) with respect to t. On the right-hand side, o(δt)/δt tends to 0 by definition.
This leads to the differential equation

dp0(t)

dt
= −λ p0(t). (4.2)

This equation can be integrated using separation of variables: The separation of variables
method is described in Book 1
and in the Handbook.

∫

dp0(t)

p0(t)
=

∫

−λdt.

Performing both integrations gives

log p0(t) = −λt+ c. (4.3)

When t = 0, observation of the process is just starting, so no event has occurred,
and hence

p0(0) = P (no event in [0, 0]) = 1.

Putting t = 0 in (4.3) gives

log 1 = 0 + c,

so c = 0. Thus the solution is

log p0(t) = −λt,

which gives

p0(t) = e−λt. (4.4)
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The differential equations satisfied by px(t) (x = 1, 2, . . .) are derived in a similar
way to the differential equation for p0(t). For example,

p1(t+ δt) = P (one event has occurred by time t+ δt)

= P ([one event in [0, t] and no event in [t, t+ δt] ]

∪ [no event in [0, t] and one event in [t, t+ δt] ]).

This is the union of two mutually exclusive events, so their separate probabilities
can be added:

p1(t+ δt) = P ([one event in [0, t] ] ∩ [no event in [t, t+ δt] ])

+ P ([no event in [0, t] ] ∩ [one event in [t, t+ δt] ]).

Using the postulates gives

p1(t+ δt) = p1(t)× (1 − λ δt+ o(δt)) + p0(t)× (λ δt+ o(δt)).

Rearranging this equation gives

p1(t+ δt)− p1(t)

δt
= λ(p0(t)− p1(t)) +

o(δt)

δt
.

Letting δt → 0 leads to the differential equation

dp1(t)

dt
= λ p0(t)− λ p1(t). (4.5)

Substituting for p0(t) using (4.4), this becomes

dp1(t)

dt
+ λ p1(t) = λe−λt.

This differential equation can be solved using the integrating factor method. In The integrating factor method is
described in Book 1 and in the
Handbook.

this case, the integrating factor is eλt, so both sides are multiplied by eλt:

eλt
dp1(t)

dt
+ λeλt p1(t) = λ.

The left-hand side is the derivative of the product eλt × p1(t), so the differential
equation can be rewritten as

d

dt
(eλt p1(t)) = λ.

Integrating this equation gives

eλt p1(t) = λt+ c.

When t = 0, no event has occurred, so p1(0) = P (X(0) = 1) = 0, and hence c = 0.
Therefore

p1(t) = λte−λt.

For x = 2, 3, . . .,

px(t+ δt) = P (x events have occurred by time t+ δt)

= P ([x events in [0, t] and no event in [t, t+ δt] ]

∪ [(x − 1) events in [0, t] and one event in [t, t+ δt] ]

∪ [(x − 2) events in [0, t] and two events in [t, t+ δt] ]

∪ . . .

∪ [no event in [0, t] and x events in [t, t+ δt] ]).

This is the union of mutually exclusive events, so their separate probabilities can
be added:

px(t+ δt) = P ([x events in [0, t] ] ∩ [no event in [t, t+ δt] ])

+ P ([(x − 1) events in [0, t] ] ∩ [one event in [t, t,+δt] ])

+ P ([(x − 2) events in [0, t] ] ∩ [two events in [t, t+ δt] ])

+ · · ·+ P ([no event in [0, t] ] ∩ [x events in [t, t+ δt] ]).
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Section 4 A more formal approach to the Poisson process

Using the postulates gives

px(t+ δt) = px(t)× (1− λ δt+ o(δt)) + px−1(t)× (λ δt+ o(δt)) + o(δt) Again, the brevity of the
interval [t, t+ δt] has been used
to attach probabilities to the
possibilities that nothing
happens, one thing happens, or
more than one thing happens.

= px(t) + λ(px−1(t)− px(t)) δt+ o(δt).

Rearranging this equation gives

px(t+ δt)− px(t)

δt
= λ(px−1(t)− px(t)) +

o(δt)

δt
.

Letting δt → 0 leads to the differential equations

dpx(t)

dt
= λ(px−1(t)− px(t)), x = 2, 3, . . . . Note that the differential

equation (4.5) for p1(t) is of this
form with x = 1.

(4.6)

A set of differential equations satisfied by the p.m.f.s px(t) has been derived. Each
equation contains both px(t) and px−1(t). The equations can be solved recursively.

Activity 4.1 Finding p2(t)

Using the value of p1(t), the differential equation in (4.6) for x = 2 can be solved
using the method that was used for x = 1. Solve this differential equation to
derive an expression for p2(t).

Continuing in this way, p3(t) could be found, then p4(t), and so on. However, if
you look at the results so far, you may recognise that p0(t), p1(t) and p2(t) are
probabilities from a Poisson distribution. The p.m.f. of the Poisson distribution
with parameter µ is

pX(x) = P (X = x) =
e−µµx

x!
, x = 0, 1, 2, . . . .

Hence p0(t), p1(t) and p2(t) are the first three probabilities in a Poisson
distribution with parameter λt. That X(t) has a Poisson distribution with
parameter λt can be either proved by induction or verified by substitution in the
general differential equation. The second of these methods will be used.

If px(t) = e−λt(λt)x/x!, then

d

dt
(px(t)) =

−λe−λt(λt)x

x!
+

e−λtλxxtx−1

x!

= −λ px(t) +
e−λt(λt)x−1λ

(x− 1)!

= −λpx(t) + λ px−1(t).

This is the differential equation (4.6). Therefore the solution of the set of
differential equations (4.6) with initial values p0(0) = 1, px(0) = 0, for
x = 1, 2, . . ., is the p.m.f. of the Poisson distribution with parameter λt.

The distribution of X(t)

The number of events that occur by time t in a Poisson process is a random
variable X(t). In a Poisson process with rate λ, X(t) has a Poisson
distribution with parameter λt. That is, X(t) ∼ Poisson(λt) and

px(t) = P (X(t) = x) =
e−λt(λt)x

x!
, x = 0, 1, . . . .

Since λ, the rate of occurrence of events, is constant, this result holds for any time
interval of length t; it does not matter when observation of the process starts.
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Modelling events in time and space

Waiting times

The other quantity that is often of interest in a Poisson process, and indeed in
many random processes, is the time between successive events. You have seen
that the time from the start of the process until the first event is denoted T1, and
the time between the (n− 1)th event and the nth event is denoted Tn. Each Tn is
referred to as an inter-event time.

The distribution of T1 can be derived using the distribution of X(t). Since T1

exceeds t if and only if no event occurs in [0, t],

P (T1 > t) = P (no event occurs in [0, t])

= P (X(t) = 0)

= e−λt, since X(t) ∼ Poisson(λt).

If T1 has c.d.f. F (t), then

F (t) = P (T1 ≤ t) = 1− P (T1 > t),

so

F (t) = 1− e−λt, t ≥ 0.

Hence T1 has the exponential distribution with parameter λ: T1 ∼ M(λ).

By the memoryless property of the exponential distribution, observation can start
at any stage of the process: the time at which the previous event occurred is
irrelevant. Whether it occurred immediately before observation started or a long
time before, the time until the next event always has an exponential distribution.
Also, for n = 1, 2, . . ., the distribution of the inter-event time Tn is exponential
with parameter λ.

The distribution of Tn

In a Poisson process with rate λ, T1, the time from the start of observation
to the first event, has an exponential distribution with parameter λ.

For n = 2, 3, . . ., Tn, the time between the (n− 1)th event and the
nth event, has an exponential distribution with parameter λ.

That is,

Tn ∼ M(λ), n = 1, 2, . . . .

This result provides the simplest method of simulating observations from a This result was used in
Example 3.3.Poisson process. Independent observations from M(λ) can be used to simulate the

inter-event times.

Many of the processes studied in M343 are extensions of the Poisson process.
Several models for events occurring in time, obtained by modifying the postulates
in various ways, are discussed in Sections 5 to ??. The Poisson process also
provides the basis for many of the models discussed in Book 4.

Summary of Section 4

In this section, the assumptions of a Poisson process have been expressed
mathematically as postulates, and the postulates have been used to derive the
distributions of X(t), the number of events that occur by time t, and T1, the time
at which the first event occurs.
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5 The multivariate Poisson process

A multivariate Poisson process is a Poisson process in which each event may
be just one of several different types of event. For instance, in traffic research, an
event may correspond to the passage of a vehicle past a point of observation by
the side of a road. The vehicles may themselves be classified as private cars,
lorries, buses, motorcycles, and so on. So there are several types of event, and
each event in the process is of just one type.

A typical realisation of a multivariate Poisson process is shown in Figure 5.1.

t
X X

Figure 5.1 Events in a multivariate Poisson process

In general, the multivariate Poisson process may be described as follows.

Multivariate Poisson process

Suppose that events occur as a Poisson process in time at rate λ, and that
each event is one of k types. If the probability that an event is of type i
is pi, where p1 + · · ·+ pk = 1, and occurrences of events of different types
are independent of each other, then the process is a multivariate Poisson
process.

Consider the occurrence of events of type i in the small interval [t, t+ δt]:

P (one event of type i occurs in [t, t+ δt])

= P (one event occurs in [t, t+ δt] and it is of type i)

+ P (more than one event in [t, t+ δt] and one of them is of type i)

= P (one event in [t, t+ δt])× P (an event is of type i) + o(δt)

= (λ δt+ o(δt)) × pi + o(δt)

= λpi δt+ o(δt).

So

P (one event of type i occurs in [t, t+ δt]) = λpi δt+ o(δt).

This is Postulate I for a Poisson process with rate λpi. The other two postulates
are also satisfied by the process of events of type i. Therefore events of type i
occur as in a Poisson process with rate λpi.

It follows that the multivariate Poisson process is built up of k independent
Poisson processes with rates λp1, . . . , λpk. This result can be used to calculate
probabilities associated with events of different types.

Example 5.1 Vehicles passing an observer

Vehicles pass an observer standing at the edge of a main road according to a
Poisson process at the rate of 100 vehicles per hour. Of these vehicles, the
proportions of vehicles that are cars, lorries, coaches and motorcycles are 0.6, 0.3,
0.08 and 0.02, respectively.

What is the probability that more than four lorries pass the observer in a
ten-minute interval? And what is the average waiting time between successive
motorcycles passing the observer?
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Modelling events in time and space

The process of vehicles passing the observer is a multivariate Poisson process: the
proportions of the four types of vehicle are p1 = 0.6, p2 = 0.3, p3 = 0.08 and
p4 = 0.02. Since λ = 100 per hour, the rates at which vehicles of the different
types pass the observer are

λ1 = λp1 = 60 per hour, λ2 = λp2 = 30 per hour,

λ3 = λp3 = 8 per hour, λ4 = λp4 = 2 per hour.

Thus, for example, lorries pass the observer at the rate λ2 = 30 per hour.

If the number of lorries that pass the observer in t hours is denoted L(t), then the
number of lorries that pass the observer in ten minutes

(

1
6 hour

)

is L
(

1
6

)

. This has
a Poisson distribution with parameter λ2t = 30/6 = 5, so the probability that
more than four lorries pass the observer in ten minutes is P

(

L
(

1
6

)

> 4
)

, where

L
(

1
6

)

∼ Poisson(5). That is,

P
(

L
(

1
6

)

> 4
)

= 1− P
(

L
(

1
6

)

≤ 4
)

= 1− e−5

(

1 + 5 +
52

2!
+

53

3!
+

54

4!

)

≃ 0.5595.

Now consider the waiting time between successive motorcycles. This has an
exponential distribution with parameter λ4 = 2. So the mean waiting time
between successive motorcycles is

1

λ4
= 1

2 hour = 30 minutes. �

Activity 5.1 Bank customers

Customers arrive at a bank according to a Poisson process at the rate of ten per
minute. The proportion of customers who simply wish to draw out money from a
cashpoint machine (type A) is 0.6, the proportion who wish to pay in money
(type B) is 0.3, and the proportion who wish to carry out a more complicated
transaction at the counter (type C) is 0.1.

(a) Calculate the probability that more than five customers arrive in an interval
of length 30 seconds.

(b) Calculate the probability that six customers of type A arrive in one minute.

(c) Calculate the probability that six customers of type A, three of type B and at
least one of type C arrive in one minute.

A multivariate Poisson process can alternatively be described as follows.

Suppose that events of type 1 occur as a Poisson process in time at rate λ1, events
of type 2 occur as a Poisson process in time at rate λ2, . . . , and events of type k
occur as a Poisson process in time at rate λk. If the Poisson processes may be
assumed to be developing independently of one another, then the sequence of
events obtained by superposing the events from the processes on the same time
axis occurs as a Poisson process with rate

λ = λ1 + λ2 + · · ·+ λk.

In any realisation of this process, the probability that an event is of type i is given
by

pi =
λi

λ
=

λi

λ1 + λ2 + · · ·+ λk
.

You will need to use this result in Activity 5.2.
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Section 5 The multivariate Poisson process

Activity 5.2 Telephone calls

A university tutor has noticed that over the course of an evening, telephone calls
arrive from students according to a Poisson process at the rate of one every
90 minutes. Independently, calls arrive from members of her family according to a
Poisson process at the rate of one every three hours, and calls from friends arrive
according to a Poisson process at the rate of one call per hour. She does not
receive any other calls.

(a) Calculate the probability that between 7 pm and 9pm tomorrow evening, the
tutor’s telephone will not ring.

(b) Calculate the probability that the first call after 9 pm is from a student.

(c) Given that she receives four telephone calls one evening, calculate the
probability that exactly two of the calls are from members of her family.

Summary of Section 5

The multivariate Poisson process is a model for events occurring at random in
time in which each event may be one of several types. You have seen that it can
also be thought of as the process obtained when the events in several independent
Poisson processes are superposed on the same time axis.

Exercises on Section 5

Exercise 5.1 Post office customers

Customers arrive at a small post office according to a Poisson process at the rate
of eight customers an hour. In general, 70% of customers post letters, 5% post
parcels and the remaining 25% make purchases unrelated to the postal service.

(a) At what rate do customers arrive at the post office to post parcels?

(b) Calculate the probability that the interval between successive customers
arriving to post parcels is greater than an hour.

(c) Calculate the probability that over a three-hour period, fewer than five
customers arrive to post letters.

(d) Calculate the median waiting time between customers arriving to post
something (either a letter or a parcel).

Exercise 5.2 Library acquisitions

New acquisitions arrive independently at a local library as follows: new works of
fiction according to a Poisson process at the rate of eight a week, biographies
according to a Poisson process with rate one a week, works of reference according
to a Poisson process at the rate of one every four weeks, and non-text items
according to a Poisson process at the rate of five a week. Assume that the library
operates for seven days a week.

(a) Calculate the probability that at least two non-text acquisitions will arrive
next week.

(b) Calculate the probability that no new work of fiction will arrive tomorrow.

(c) On average, what proportions of new acquisitions are fiction, biography,
reference and non-text?
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6 The nonhomogeneous Poisson process

The Poisson process is a model for events occurring at random in continuous time
at a constant rate λ. In Subsection 6.1, several examples are described of
situations where the rate at which events occur cannot reasonably be assumed to
be constant, and a model for such events is introduced. This model is the
non-homogeneous Poisson process. The work in Subsection 6.1 includes a chapter
of the computer book. Some basic results for the non-homogeneous Poisson
process are derived in Subsection 6.2, and simulation is discussed in
Subsection 6.3.

6.1 The model

Examples are used in this subsection to motivate and introduce a model for
events occurring at random in time at a rate that changes with time.

Example 6.1 Mining accidents

Data are available on the dates of accidents in coal mines that were due to Jarrett, R.G. (1979) ‘A note on
intervals between coal-mining
disasters’, Biometrika, vol. 66,
no. 1, pp. 191–3.

explosions and in which there were ten or more fatalities. Figure 6.1 shows the
cumulative number of such explosions in coal mines in Great Britain for the
period 15 March 1851 to 22 March 1962.

t (days)

Number
of

explosions
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Figure 6.1 Cumulative number of explosions in coal mines in Great Britain, in
which ten or more miners were killed, against time

This graph is roughly linear for the first 14 000 days (up to about 1890), but the
gradient then becomes less steep. This means that the rate of occurrence of
accidents decreased. A possible explanation for this is that safety precautions in
coal mines were improved in about 1890. This is an example of a process where
the rate of occurrence of events is not constant, but changes with time. �
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Section 6 The nonhomogeneous Poisson process

Example 6.2 Road accidents

Another example of an event in time is a fatality in a road accident. The number These data were obtained from
the website
www.statistics.gov.uk/STATBASE
in January 2010.

of such fatalities in Great Britain in each year from 1992 to 2008 is shown in
Figure 6.2.
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Figure 6.2 Fatalities in road accidents in Great Britain from 1992 to 2008

Figure 6.2 shows that over the period the annual number of deaths from road
accidents tended to decline. As with coal-mining disasters, the rate of occurrence
of events appears to alter with time. �

Example 6.3 Mistakes during learning

In any learning situation (such as a child learning to ride a bicycle, or an adult
learning to perform some complex task, such as text-processing or bricklaying)
there will be an initial period during which many accidents will happen and
mistakes will be made. Then, as the learner becomes more proficient, mistakes
still occur haphazardly – that is, at random – but at a rate that is lower than in
the initial stages. Figure 6.3 shows a possible realisation of events, their incidence
becoming sparser with passing time. (But notice that there is no regular pattern
to the events: it is in the nature of accidents and mistakes that they are
unexpected and unforecastable.)

time

Figure 6.3 Realisation of a random process: mistakes during learning �

Example 6.4 Learning to ride

A young girl learning to ride a bicycle has accidents at random. However, as she
improves, the rate at which she has accidents decreases, so the Poisson process
does not provide an adequate model. A model is needed in which the rate
decreases with time.
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Modelling events in time and space

One possibility is to modify the Poisson process by changing the first postulate,
which states that the probability that one event occurs in [t, t+ δt] is λ δt+ o(δt).
Suppose that the probability that an accident occurs in the interval [t, t+ δt] is
[24/(2 + t)] δt+ o(δt), where t is measured in days. The accident rate 24/(2 + t)
decreases with time: when the girl starts to learn (t = 0) she has an accident once
every two hours on average, but after ten days (t = 10) the rate has dropped to
two a day, and after a year it is only about one a fortnight.

The second and third postulates remain unchanged: accidents occur
independently of each other, and the rate at time t is independent of how many
accidents the girl has had before time t.

If λ(t) denotes the accident rate at time t, then λ(t) = 24/(2 + t), t ≥ 0. A graph
of λ(t) against t is shown in Figure 6.4.

t

λ(t)

12

0
0 20

Figure 6.4 Accident rate
when learning to ride a
bicycle

Note that this model makes the rather unrealistic assumption that the girl does
nothing else during the learning period. �

Activity 6.1 Arrivals at an accident and emergency unit

Suppose that a model is required for arrivals at the accident and emergency unit
in a hospital. Experience from monitoring arrivals over a long period suggests
that there is a daily cycle, and that the unit is busier at some times of day than at
others, so a Poisson process is not an adequate model for arrivals. In fact, arrivals
may be regarded as occurring at a roughly constant rate from (say) 6 am to 6 pm,
but the rate starts to rise after 6 pm until 2 am, after which arrivals are rather
sparse until 6 am.

Suppose that λ(t) denotes the arrival rate at time t. Draw a rough sketch showing
what a graph of λ(t) against t might look like over a 24-hour period.

The non-homogeneous Poisson process, in which the rate changes with time,
is defined by three postulates. As has already been suggested, the second and
third postulates are the same as for the Poisson process. The first postulate is a
modification of the first postulate of the Poisson process that allows the rate of
occurrence of events to vary with time.

I The probability that (exactly) one event occurs in the small time interval
[t, t+ δt] is equal to λ(t) δt+ o(δt).

The function λ(t) can take any form – for example, linear, quadratic or
trigonometric – provided that λ(t) > 0. The behaviour of a non-homogeneous
Poisson process can be illustrated by running simulations for several different
functions λ(t). This is most easily done on a computer. The rest of this
subsection consists of working through a chapter of the computer book.

Refer to Chapter 1 of the computer book for the rest of the work in

this subsection.

6.2 Basic results

In this subsection, the distributions of the number of events in an interval and the
times at which successive events occur in a non-homogeneous Poisson process are
discussed. The derivations of these results are similar to those of the
corresponding results for a Poisson process that were given in Section 4.
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Section 6 The nonhomogeneous Poisson process

The number of events in an interval

For a non-homogeneous Poisson process, λ(t), the rate at which events occur,
changes with time, so the distribution of X(t1, t2), the number of events in the
interval (t1, t2], depends on t1 as well as on the length of the interval.

First consider the interval (0, t]. The number of events in (0, t] is denoted X(0, t),
or simply X(t). The distribution of X(t) can be derived by modifying the
argument used in Section 4 for a Poisson process. The details are very similar,
and you will not be expected to derive the result, so they will be omitted. The
result is stated in the following box.

The distribution of X(t)

If X(t) is the number of events that occur in a non-homogeneous Poisson
process with rate λ(t) during the interval (0, t], then X(t) has a Poisson
distribution with parameter µ(t),

X(t) ∼ Poisson(µ(t)), (6.1)

where

µ(t) =

∫ t

0

λ(u) du. (6.2)

The mean of a Poisson distribution is equal to its parameter, so the
expected number of events in the interval (0, t] is

E[X(t)] = µ(t).

Since µ(t) is found by integrating the rate λ(t), it can be represented by an area
under the graph of λ(t). This is illustrated in Figure 6.5.
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0
0

t

Figure 6.5 The expected
number of events in the
interval (0, t]

Now consider the number of events that occur in the interval (t1, t2] (where
t2 > t1). Since the rate λ(t) changes with time, the distribution of the number of
events in the interval depends not only on the length of the interval but also on
the value of t1. First note that

X(t1, t2) = X(0, t2)−X(0, t1) = X(t2)−X(t1).

It follows that the mean of X(t1, t2), which is denoted µ(t1, t2), is given by

µ(t1, t2) = E[X(t1, t2)] = E[X(t2)]− E[X(t1)]

= µ(t2)− µ(t1)

=

∫ t2

t1

λ(u) du.

This result is illustrated in Figure 6.6.
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Figure 6.6 The expected
number of events in (t1, t2]

In fact, the number of events occurring in (t1, t2] has a Poisson distribution with
parameter µ(t1, t2). This result is stated in the following box.

The distribution of X(t1, t2)

If X(t1, t2) is the number of events that occur in a non-homogeneous Poisson
process with rate λ(t) during the interval (t1, t2] (where t2 > t1), then
X(t1, t2) has a Poisson distribution with parameter µ(t1, t2):

X(t1, t2) ∼ Poisson(µ(t1, t2)), (6.3)

where

µ(t1, t2) = µ(t2)− µ(t1). (6.4)

The application of these results is illustrated in Example 6.5.
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Modelling events in time and space

Example 6.5 Errors in a maze

Suppose that the hourly error rate for a laboratory rat learning its way around a
maze is given by

λ(t) = 8e−t, t ≥ 0.

This rate is illustrated in Figure 6.7.
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Figure 6.7 The error rate
λ(t) = 8e−t, t ≥ 0

A good approach in any problem involving a non-homogeneous Poisson process is
to begin by finding an expression for µ(t), whether or not this is asked for
explicitly. This can then be used to calculate values of µ(t1) and µ(t1, t2) for
specific values of t1 and t2.

The expected number of errors that the rat makes in its first t hours in the maze
– that is, during the interval (0, t] – is given by

µ(t) =

∫ t

0

λ(u) du =

∫ t

0

8e−u du =
[

−8e−u
]t

0
= 8

(

1− e−t
)

.

So, for instance, the expected number of errors in the first hour is

µ(1) = 8
(

1− e−1
)

≃ 5.057.

This is illustrated in Figure 6.8.

µ(0, 1) = 5.057

t

λ(t)

8

0
0 1 2 3 4

Figure 6.8 The expected
number of errors in the first
hour, µ(0, 1) = µ(1)The expected number of errors that the rat makes during its second hour in the

maze is given by

µ(1, 2) = µ(2)− µ(1)

= 8
(

1− e−2
)

− 8
(

1− e−1
)

≃ 1.860.

This is illustrated in Figure 6.9.
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Figure 6.9 The expected
number of errors in the
second hour, µ(1, 2)

Therefore the number of errors that the rat makes in the second hour, which is
denoted X(1, 2), has a Poisson distribution with mean 1.86. Hence, for example,
the probability that the rat makes more than two errors in the second hour is

P (X(1, 2) > 2) = 1− P (X(1, 2) ≤ 2)

= 1− e−1.86

(

1 + 1.86 +
1.862

2!

)

≃ 0.285. �

Activity 6.2 Learning to ride

In Example 6.4, the accident rate at time t of a young girl learning to ride a
bicycle is given by

λ(t) =
24

2 + t
, t ≥ 0,

where t is measured in days.

(a) Find the expected number of accidents in the first t days.

(b) Calculate the expected number of accidents during the first week.

(c) Calculate the expected number of accidents during the third week. What is
the probability that the girl has eight accidents in the third week?

(d) Calculate the probability that the fourth week is free of accidents.
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Section 6 The nonhomogeneous Poisson process

Event times

As for the Poisson process, the distribution of X(t) can be used to obtain the
distribution of the waiting time T1 until the first event. The derivation makes use
of the fact that the waiting time to the first event exceeds t if and only if there is
no event in (0, t]: [T1 > t] and [X(t) = 0] are equivalent events. It follows that

P (T1 > t) = P (X(t) = 0).

Since X(t) ∼ Poisson(µ(t)),

P (X(t) = 0) = e−µ(t),

and hence

P (T1 > t) = e−µ(t).

The c.d.f. of T1 is

FT1
(t) = P (T1 ≤ t) = 1− P (T1 > t).

So the c.d.f. of the waiting time until the first event is given by

FT1
(t) = 1− e−µ(t), t > 0.

Similarly, the distribution of X(t1, t2) can be used to obtain the distribution of the
time T from the start of observation until the next event after some given time v.
The time T exceeds t if and only if there is no event in the interval (v, t], so

P (T > t) = P (X(v, t) = 0).

Since X(v, t) ∼ Poisson(µ(v, t)), it follows that

P (T > t) = e−µ(v,t),

and hence the c.d.f. of the time T at which the next event after time v occurs is
given by

FT (t) = P (T ≤ t) = 1− e−µ(v,t), t > v.

These results will be used in Subsection 6.3 to simulate the times W1,W2, . . . at
which events occur in a non-homogeneous Poisson process. The results are
summarised in the following box.

Times of events

The c.d.f. of T1, the waiting time until the first event occurs, is

FT1
(t) = 1− e−µ(t), t > 0. (6.5)

The c.d.f. of T , the time from the start of observation until the first event
after time v occurs, is

FT (t) = 1− e−µ(v,t), t > v. (6.6)

Activity 6.3 Event times

Suppose that events in a non-homogeneous Poisson process occur at the rate

λ(t) = 2t, t ≥ 0.

(a) Find the expected number of events that occur by time t.

(b) If observation starts at time t = 0, find the probability P (T1 > t), where T1 is
the waiting time until the first event.

(c) Find E(T1), the expected waiting time until the first event. Use the following result from
the Handbook :

∫

∞

−∞

e
−αx

2

dx =

√

π

α
.

(d) If T is the time from the start of observation until the occurrence of the first
event after time v, find P (T > t).
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6.3 Simulation

In Subsection 3.3, the times of occurrence of events in a Poisson process were
simulated by obtaining observations on the inter-event times T1, T2, . . .. For a
non-homogeneous Poisson process, the times of occurrence of events, W1,W2, . . .,
can be simulated directly using the probability-integral transformation and
Results (6.5) and (6.6). The probability-integral transformation states that an
observation x of a continuous random variable X can be simulated by solving the
equation F (x) = u for x, where u is a random observation from U(0, 1), and F (x)
is the c.d.f. of X . The c.d.f. of W1 = T1, which is given by (6.5), can be used to
simulate the time of occurrence of the first event. The times of occurrence of
subsequent events, W2,W3, . . ., can be simulated using (6.6).

If FW1
(w) is the c.d.f. of W1, the time at which the first event occurs, then, given

a random observation u from U(0, 1), a random observation w1 of W1 can be
obtained by solving the equation FW1

(w1) = u for w1. Since W1 = T1, the c.d.f. of
W1 is given by (6.5), and hence w1 is found by solving

1− e−µ(w1) = u.

Rearranging this equation gives

e−µ(w1) = 1− u,

or equivalently

µ(w1) = − log(1 − u).

The solution w1 of this equation is the simulated time of occurrence for the first
event.

If the jth event occurs at time wj , then the time at which the (j + 1)th event
occurs can be simulated as follows. Since Wj+1 is the time at which the next
event occurs after time wj , putting v = wj in (6.6) gives the c.d.f. of Wj+1:

FWj+1
(t) = 1− e−µ(wj ,t) = 1− e−[µ(t)−µ(wj)].

A random observation wj+1 of Wj+1 can be obtained by solving for wj+1 the
equation

1− e−[µ(wj+1)−µ(wj)] = u,

where u is a random observation from U(0, 1). Rearranging this equation gives

e−[µ(wj+1)−µ(wj)] = 1− u,

or equivalently

µ(wj+1)− µ(wj) = − log(1− u),

which can be written as

µ(wj+1) = µ(wj)− log(1 − u).

These results for simulating the times at which events occur in a
non-homogeneous Poisson process are summarised in the following box.

Simulation for a non-homogeneous Poisson process

Given a random observation u from U(0, 1), the simulated time of
occurrence of the first event in a non-homogeneous Poisson process is w1,
where w1 is the solution of

µ(w1) = − log(1− u). (6.7)

Suppose that the jth event occurs at time wj , j = 1, 2, . . .. Then, given a
random observation u from U(0, 1), the simulated time at which the
(j + 1)th event occurs is wj+1, where wj+1 is obtained by solving

µ(wj+1) = µ(wj)− log(1− u). (6.8)
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Notice that if j is set equal to 0 in (6.8) and w0 is defined to be equal to 0,
then (6.8) can be used as the formula to generate the simulated time w1 as well as
all subsequent times w2, w3, . . ..

Example 6.6 Simulating errors made by a rat

In Example 6.5, it was shown that the expected number of errors that a
laboratory rat makes during its first t hours in a maze is given by

µ(t) = 8
(

1− e−t
)

.

The random numbers u1 = 0.964 17, u2 = 0.633 36 and u3 = 0.884 91 will be used
to simulate the times at which the rat makes its first three errors.

Using (6.7), the simulated time w1 at which the first error is made is the solution
of

µ(w1) = − log(1 − u1) = − log(1− 0.964 17) ≃ 3.3290.

Solving

8
(

1− e−w1
)

= 3.3290

leads to

e−w1 = 1− 3.3290

8
= 0.583 875,

giving

w1 ≃ 0.538 07 hours ≃ 32 minutes.

The simulated time w2 for the rat’s second error is found using (6.8):

µ(w2) = µ(w1)− log(1− u2) = 3.3290− log(1− 0.633 36) ≃ 4.3324.

Solving

8
(

1− e−w2
)

= 4.3324

leads to

w2 ≃ 0.779 90 hours ≃ 47 minutes.

Using (6.8) again, the simulated time w3 for the rat’s third error can be found:

µ(w3) = µ(w2)− log(1− u3) = 4.3324− log(1− 0.884 91) ≃ 6.4944.

Solving

8
(

1− e−w3
)

= 6.4944

leads to

w3 ≃ 1.670 25 hours ≃ 1 hour 40 minutes.

In this simulation the rat makes its first three errors 32 minutes, 47 minutes and
1 hour 40 minutes after entering the maze. �

Activity 6.4 Simulating times of events

The rate at which events occur in the non-homogeneous Poisson process of
Activity 6.3 is

λ(t) = 2t, t ≥ 0.

Simulate the times at which the first three events occur in a realisation of the
process. Use the numbers u1 = 0.622, u2 = 0.239, u3 = 0.775, which are random
observations from U(0, 1).
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The calculations involved in simulating the times of events in a non-homogeneous
Poisson process can sometimes be simplified by solving Formula (6.8)
algebraically to obtain a recurrence relation for the simulated times
w1, w2, w3, . . .. This is illustrated in Example 6.7.

Example 6.7 Simulating times of machine malfunctions

Occasionally a machine malfunctions, resulting in the production of defective
items. The incidence of these malfunctions may be modelled as a
non-homogeneous Poisson process with rate

λ(t) =
2t

1 + t2
, t ≥ 0.

The expected number of events in the interval (0, t] is given by

µ(t) =

∫ t

0

λ(v) dv =

∫ t

0

2v

1 + v2
dv

=
[

log(1 + v2)
]t

0

= log(1 + t2)− log(1)

= log(1 + t2).

The times of machine malfunctions can be simulated using Formula (6.8):

µ(wj+1) = µ(wj)− log(1 − u).

In this case, this gives

log(1 + w2
j+1) = log(1 + w2

j )− log(1− u).

This can be rearranged to give wj+1 explicitly, as follows. Taking exponentials
gives

1 + w2
j+1 =

1 + w2
j

1− u
,

so that

w2
j+1 =

1 + w2
j

1− u
− 1 =

(

1 + w2
j

)

− (1− u)

1− u
=

w2
j + u

1− u
,

and hence

wj+1 =

√

w2
j + u

1− u
.

This recurrence relation can be used to simulate the occurrence of malfunctions
during the interval (0, 2]. Using numbers from the fourth row of Table 5 in the
Handbook (25727, 64334, . . . ) gives the following simulated times:

w1 =

√

02 + 0.257 27

1− 0.257 27
≃ 0.5885, Recall that w1 can be found by

setting w0 = 0 in (6.8).

w2 =

√

0.58852 + 0.643 34

1− 0.643 34
≃ 1.6658,

w3 =

√

1.66582 + 0.086 91

1− 0.086 91
≃ 1.7704,

w4 =

√

1.77042 + 0.189 12

1− 0.189 12
≃ 2.0245. Retaining full calculator

accuracy throughout also leads
to w4 ≃ 2.0245.The fourth event occurs after time 2, so there are three malfunctions in (0, 2] in

this simulation, and these occur at times w1 ≃ 0.5885, w2 ≃ 1.6658,
w3 ≃ 1.7704. �

40



Section 6 The nonhomogeneous Poisson process

Activity 6.5 Another simulation

Show that for the non-homogeneous Poisson process of Activities 6.3 and 6.4,
which has rate λ(t) = 2t, t ≥ 0, the times at which events occur can be simulated
using the recurrence relation

wj+1 =
√

w2
j − log(1− u).

Hence simulate the times of the first four events in a realisation of the process.
Use the numbers u1 = 0.927, u2 = 0.098, u3 = 0.397, u4 = 0.604, which are
random observations from U(0, 1).

Summary of Section 6

The non-homogeneous Poisson process is a model for events occurring at random
in time at a rate that changes with time. The distribution of the number of events
in an interval has been used to calculate probabilities, and you have learned how
to simulate the times at which events occur.

Exercises on Section 6

Exercise 6.1 A nonhomogeneous Poisson process

Events occur according to a non-homogeneous Poisson process with rate

λ(t) = 3
8 t

2(4− t), 0 ≤ t ≤ 4.

(a) Sketch the function λ(t) for t between 0 and 4, and show on your sketch the
expected number of events between t = 1 and t = 2.

(b) Find µ(t), the expected number of events that occur by time t.

(c) Find the expected number of events between t = 1 and t = 3, and the
expected total number of events (that is, between t = 0 and t = 4).

(d) Calculate the probability that more than two events occur between t = 1 and
t = 3.

(e) Given that two events occur between t = 0 and t = 1, calculate the
probability that at least four events occur in total (that is, between t = 0 and
t = 4).

Exercise 6.2 Simulation

Simulate the occurrences of events in the interval (0, 1] in a non-homogeneous
Poisson process with rate λ(t) = 3t2. Use random numbers from the third row of
the table of random digits in the Handbook (beginning u1 = 0.240 36,
u2 = 0.290 38, . . . ).
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Solutions to Activities

Solution 1.1

The gambler’s ruin The time domain of
{Xn;n = 0, 1, . . .} is {0, 1, 2, . . .}, which is discrete.
The state space is {0, 1, . . . , a}, which is also discrete.

Replacing light bulbs The time domain of
{Wn;n = 1, 2, . . .} is {1, 2, 3, . . .}, which is discrete.
The replacement time of a light bulb is a continuous
non-negative random variable, so the state space is
{w : w ≥ 0}, which is continuous.

Solution 1.2

(a) The time domain is {1, 2, . . .}, which is discrete.
For practical purposes, the amount of money (in £)
spent by a customer can be treated as continuous,
though it is actually an integral number of pence. In
this case the state space is {a : a ≥ 0}, and is
continuous. (If An were modelled by a discrete
random variable, then the state space would be
{0, 0.01, 0.02, . . .}.)
(b) The time domain is {t : 0 ≤ t ≤ 9}, which is
continuous. The number of items sold by time t is a
non-negative integer, so the state space is {0, 1, 2, . . .},
which is discrete.

Solution 1.3

(a) The random variable Yn represents the number of
successes in n trials, so Yn ∼ B(n, p).

(b) Since Yn = X1 + · · ·+Xn−1 +Xn = Yn−1 +Xn,
and it is known that Yn−1 = y, it follows that
Yn = y +Xn. Therefore Yn will take the value y if
Xn = 0 or y + 1 if Xn = 1, and

P (Yn = y |Yn−1 = y) = P (Xn = 0) = 1− p,

P (Yn = y + 1 |Yn−1 = y) = P (Xn = 1) = p.

Solution 1.4

Another sequence of random variables associated with
a Bernoulli process is {An;n = 1, 2, . . .}, where An is
the number of trials necessary to achieve the nth
success. The random variable An has a negative
binomial distribution with range {n, n+ 1, . . .} and
parameters n and p.

The random process has a discrete time domain and a
discrete state space. The state space is {1, 2, . . .}.
There are other possible sequences of random
variables.

Solution 1.5

The changing weather from day to day may be well
modelled by a Bernoulli process if (and only if!) it is
reasonable to assume that the weather on any day is
independent of the weather on preceding days, and if
p, the probability of rain, does not vary from day to
day.

Taken over a period of observation as long as a year,
these assumptions would appear to fail: there will be

‘wet spells’ and ‘dry spells’; and, in general, rain is
more likely at some times of the year than at others.
But over a shorter period, where perhaps seasonal
variation may be discounted, the idea of a Bernoulli
process might provide a useful model. (Actually, if a
good model is required for representing the seasonal
variation in weather, then it may be necessary to allow
p to vary with n in some quite complicated way.)

Solution 2.1

The time domain of {Q(t); t ≥ 0} is continuous, but
{Ln;n = 1, 2, . . .} and {Wn;n = 1, 2, . . .} have discrete
time domains. The state space of {Wn;n = 1, 2, . . .} is
{t : t ≥ 0}, which is continuous. Both {Q(t); t ≥ 0}
and {Ln;n = 1, 2, . . .} have state space {0, 1, 2, . . .},
which is discrete.

Solution 2.2

Two random processes associated with the model for
machine breakdowns are as follows.

{Tn;n = 1, 2, . . .}, where Tn is the time at which the
nth breakdown occurs. The time domain is {1, 2, . . .},
which is discrete, and the state space is {t : t ≥ 0},
which is continuous.

{Y (t); t ≥ 0}, where Y (t) is the number of breakdowns
that have occurred by time t. The time domain is
{t : t ≥ 0}, which is continuous, and the state space is
{0, 1, 2, . . .}, which is discrete.

There are many other possibilities.

Solution 2.3

(a) If the customer has i different cards after n− 1
purchases, then the probability that he collects a new
one at the nth purchase is (20− i)/20. Hence Xn has
a Bernoulli distribution with parameter p = 1− i/20.

(b) This is not a Bernoulli process because the
probability of ‘success’ (receiving a new card) changes
during the process as new cards are acquired.

(c) Three possible sequences are given below; there
are many others.

{Yn;n = 1, 2, . . .}, where Yn denotes the number of
different cards collected by the nth purchase. Both the
time domain and the state space are discrete. The
state space is {1, 2, . . . , 20}.
{Tk; k = 1, 2, . . . , 20}, where Tk is the number of
purchases after the customer has k − 1 different cards
until and including the purchase at which he receives
the kth different card. Both the time domain and the
state space are discrete. The state space is {1, 2, . . .}.
{Wk; k = 1, 2, . . . , 20}, where Wk is the total number
of purchases required for the customer to obtain k
different cards. Both the time domain and the state
space are discrete. The state space is {1, 2, . . .}.
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Solution 2.4

The model is not a Bernoulli process because trials on
successive days are not independent.

Solution 2.5

(a) Examples of suitable random processes are as
follows.

{X(t); t ≥ 0}, where X(t) is the size of the colony at
time t. X(t) is discrete, t is continuous; so the state
space is discrete and the time domain is continuous.
The state space is {0, 1, 2, . . .}.
{Tn;n = 1, 2, . . .}, where Tn is the time between the
(n− 1)th and nth events, either divisions or deaths.
The state space {t : t ≥ 0} is continuous, and the time
domain is discrete.

{Yn;n = 1, 2, . . .}, where Yn is the time between the
(n− 1)th and nth divisions. The state space
{y : y ≥ 0} is continuous, and the time domain is
discrete.

{Zn;n = 1, 2, . . .}, where Zn is the time between the
(n− 1)th and nth deaths. The state space {z : z ≥ 0}
is continuous, and the time domain is discrete.

Other possible processes include {Wn;n = 1, 2, . . .},
where Wn is the time to the nth event, and
{Dn;n = 1, 2, . . .}, where Dn is the time to the nth
death.

(b) Assuming that only one event (that is, one
division or one death) occurs at any given time, your
sketch should show steps of one unit up or down at
random times. If the size X(t) reaches 0, then it
remains there, as there are then no bacteria to divide.
A possible realisation is shown in Figure S.1.

x(t)

6

5

4

3

2

1

0
0 t

Figure S.1 A realisation of {X(t); t ≥ 0}

Solution 3.1

(a) The rate of occurrence of nerve impulses is
λ = 458 per second, and the length of the interval is
t = 0.01 second. So N(0.01), the number of impulses
in 0.01 second, has a Poisson distribution with
parameter

λt = 458 per second× 0.01 second = 4.58.

The probability required is

P (N(0.01) ≤ 1) = P (N(0.01) = 0) + P (N(0.01) = 1)

= e−4.58 +
e−4.58 × 4.58

1!
≃ 0.0572.

(b) The c.d.f. of T , the interval between successive
impulses, is F (t) = 1− e−458t, so

P
(

T < 1
1000

)

= F
(

1
1000

)

= 1− e−0.458 ≃ 0.3675.

Solution 3.2

(a) The rate of the Poisson process is

λ = 1
14 per month.

The number of major earthquakes that occur in a
ten-year period, or 120 months, is N(120), which has a
Poisson distribution with parameter

λt = 1
14 per month× 120 months ≃ 8.571.

Hence the probability that there will be at least three
major earthquakes in a ten-year period is

P (N(120) ≥ 3) = 1− P (N(120) ≤ 2)

≃ 1− e−8.571

(

1 + 8.571 +
8.5712

2!

)

≃ 0.9912.

(b) The waiting time (in months) between successive
major earthquakes has an exponential distribution
with parameter λ = 1/14. The probability that the
waiting time exceeds two years, or 24 months, is given
by

P (T > 24) = 1− F (24) = e−24/14 ≃ 0.1801.

Solution 3.3

For the realisation in Figure 3.4, X(1, 3) = 3,
X(4, 5) = 0, X(0, 2) = 3, X(1) = X(0, 1) = 2 and
X(3) = X(0, 3) = 5.

Solution 3.4

Since Wn = T1 + T2 + · · ·+ Tn, it is the sum of
n independent exponential random variables
T1, T2, . . . , Tn, each having parameter λ. Therefore Wn

has a gamma distribution Γ(n, λ).
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Solution 3.5

Using the tenth row of the table of random numbers
from M(1), the simulation is as shown in Table S.1.

Table S.1 A simulation

n en tn = 652en wn = t1 + · · ·+ tn

1 1.5367 1001.9 1001.9
2 0.1395 91.0 1092.9
3 1.3503 880.4 1973.3
4 1.7518 1142.2 3115.5
5 1.6398 1069.1 4184.6

The first four failures occur at times w1 = 1001.9,
w2 = 1092.9, w3 = 1973.3, w4 = 3115.5 (in seconds) –
that is, after 1002 seconds, 1093 seconds, 1973 seconds
and 3116 seconds (to the nearest second). The fifth
failure occurs at time 4184.6, which is after the first
hour of usage.

Solution 4.1

Setting x = 2 in (4.6) gives

dp2(t)

dt
= λ p1(t)− λ p2(t).

Substituting the known value of p1(t) in this
differential equation gives

dp2(t)

dt
= λ2te−λt − λ p2(t),

or
dp2(t)

dt
+ λ p2(t) = λ2te−λt.

Next, both sides of this equation are multiplied by the
integrating factor, which is again eλt:

eλt
dp2(t)

dt
+ λeλt p2(t) = λ2t.

The left-hand side is the derivative of the product
eλt × p2(t), so the differential equation can be written
as

d

dt

(

eλt p2(t)
)

= λ2t.

Integrating both sides gives

eλt p2(t) =

∫

λ2t dt = 1
2λ

2t2 + c.

At time t = 0, no event has occurred, so
p2(0) = P (X(0) = 2) = 0, and hence c = 0. Thus

eλt p2(t) =
1
2λ

2t2,

so

p2(t) =
1
2λ

2t2e−λt,

which can be rewritten as

p2(t) =
e−λt(λt)2

2
.

Solution 5.1

The probabilities that an arriving customer is of
types A, B and C are pA = 0.6, pB = 0.3 and pC = 0.1,
respectively, and λ = 10 per minute, so

λA = λpA = 6 per minute,

λB = λpB = 3 per minute,

λC = λpC = 1 per minute.

(a) If N(t) denotes the number of customers who
arrive in an interval of length t minutes, then the
number of customers who arrive in 30 seconds, or
0.5 minute, is N(0.5), which has a Poisson distribution
with parameter

λt = (10 per minute)× (0.5 minute) = 5.

Therefore

P (N(0.5) > 5) = 1− P (N(0.5) ≤ 5)

= 1− e−5

(

1 + 5 +
52

2!
+

53

3!
+

54

4!
+

55

5!

)

≃ 0.3840.

(b) Let A(t) represent the number of customers of
type A who arrive in an interval of length t minutes.
Then the number of customers of type A who arrive in
one minute is A(1), which has a Poisson distribution
with parameter

λAt = (6 per minute)× (1 minute) = 6.

Therefore

P (A(1) = 6) =
e−666

6!
≃ 0.1606.

(c) Customers of different types arrive independently,
so the probability required is given by the product

e−666

6!
× e−333

3!
×
(

1− e−1
)

≃ 0.1606× 0.2240× 0.6321

≃ 0.0227.

Solution 5.2

If calls from students are type 1, from family are
type 2, and from friends are type 3, then

λ1 = 1 per 90 minutes = 2
3 per hour,

λ2 = 1 per 3 hours = 1
3 per hour,

λ3 = 1 per hour.

(a) The rate at which telephone calls arrive is given
by

λ = λ1 + λ2 + λ3 = 2 per hour.

If N(t) is the number of calls that arrive in t hours,
then the number of calls between 7 pm and 9pm is
N(2), which has a Poisson distribution with parameter
λt = 4. The probability that there will be no calls is
given by

P (N(2) = 0) = e−4 ≃ 0.0183.

(b) The proportion of calls that are from students is

p1 =
λ1

λ1 + λ2 + λ3

= 2
3/2 = 1

3 .

So the probability that the first call after 9 pm is from
a student is 1

3 .
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(c) The probability that a call received is from a
family member is

p2 =
λ2

λ1 + λ2 + λ3
= 1

3/2 = 1
6 .

Since calls of different types arrive independently, and
the probability that each call is from a family member
is 1

6 , N , the number of calls out of 4 that are from
family members, has a binomial distribution:
N ∼ B

(

4, 1
6

)

.

The probability required is

P (N = 2) =

(

4
2

)

(

1
6

)2 ( 5
6

)2
= 25

216 ≃ 0.1157.

Solution 6.1

A possible sketch of the arrival rate λ(t) is shown in
Figure S.2.

t

λ(t)

6 am midday 6 pm midnight 6 am

Figure S.2 Arrival rate at an accident and emergency
unit over a 24-hour period

Solution 6.2

(a) The expected number of accidents in the first
t days is given by

µ(t) =

∫ t

0

λ(u) du =

∫ t

0

24

2 + u
du

=
[

24 log(2 + u)
]t

0

= 24 log(2 + t)− 24 log 2

= 24 log
2 + t

2

= 24 log

(

1 +
t

2

)

.

(b) The expected number of accidents during the first
week (t = 7 days) is

µ(7) = 24 log 4.5 ≃ 36.1.

Remember that in M343 ‘log’ refers to logarithms to
base e and that on most calculators you need to use
the key labelled ‘ln’.

(c) The expected number of accidents during the
third week (t1 = 14 days, t2 = 21 days) is

µ(14, 21) = µ(21)− µ(14)

= 24 log 11.5− 24 log 8

≃ 8.71.

The number of accidents has a Poisson distribution
with parameter 8.71, so the probability required is

P (X(14, 21) = 8) =
e−8.718.718

8!
≃ 0.135.

(d) The expected number of accidents during the
fourth week is

µ(21, 28) = µ(28)− µ(21)

= 24 log 15− 24 log 11.5

≃ 6.38.

Therefore the number of accidents in the fourth week
has a Poisson distribution with parameter 6.38.

The probability that the fourth week is free of
accidents is

P (X(21, 28) = 0) = e−6.38 ≃ 0.0017.

Solution 6.3

(a) The expected number of events by time t is given
by

µ(t) =

∫ t

0

λ(u) du =

∫ t

0

2u du =
[

u2
]t

0
= t2.

(b) Using (6.5), the c.d.f. of T1, the time until the
first event, is

FT1
(t) = 1− e−µ(t) = 1− e−t2 .

Therefore

P (T1 > t) = 1− FT1
(t) = e−t2 , t ≥ 0.

(c) The easiest way to find the expected value of T1 is
to use the alternative formula for the mean:

E(T1) =

∫

∞

0

(1− FT1
(t)) dt

=

∫

∞

0

P (T1 > t) dt

=

∫

∞

0

e−t2 dt.

Setting α = 1 in the standard result
∫

∞

−∞

e−αx2

dx =

√

π

α

gives
∫

∞

−∞

e−x2

dx =
√
π.

Since e−x2

is symmetric about x = 0,
∫

∞

0

e−x2

dx = 1
2

√
π,

and hence

E(T1) =
1
2

√
π.

(d) Using (6.6), the c.d.f. of T is

FT (t) = 1− e−µ(v,t)

= 1− e−(µ(t)−µ(v))

= 1− e−(t2−v2).

Therefore

P (T > t) = 1− FT (t) = e−(t2−v2).
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Solutions to Activities

Solution 6.4

From the solution to part (a) of Activity 6.3,

µ(t) = t2, t > 0.

Using (6.7), w1 is the solution of

w2
1 = − log(1− u1) = − log(1 − 0.622) ≃ 0.972 86,

so

w1 ≃ 0.986.

Using (6.8) gives

w2
2 = w2

1 − log(1− u2),

which leads to

w2 ≃ 1.116.

Using (6.8) again gives

w2
3 = w2

2 − log(1− u3),

which leads to

w3 ≃ 1.655.

Solution 6.5

From the solution to part (a) of Activity 6.3,
µ(t) = t2, so (6.8) reduces to

w2
j+1 = w2

j − log(1− u),

and hence

wj+1 =
√

w2
j − log(1− u).

Setting w0 = 0 in this recurrence relation gives

w1 =
√

− log(1 − 0.927) ≃
√
2.6173 ≃ 1.618,

w2 =
√

2.6173− log(1− 0.098) ≃
√
2.7204 ≃ 1.649,

w3 =
√

2.7204− log(1− 0.397) ≃
√
3.2263 ≃ 1.796,

w4 =
√

3.2263− log(1− 0.604) ≃
√
4.1526 ≃ 2.038.

(Full calculator accuracy has been retained throughout
these calculations.)
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Solutions to Exercises

Solution 3.1

The rate at which events occur is

λ = 1
16 per minute = 3.75 per hour.

(a) The waiting time between events has an
exponential distribution with parameter λ = 3.75.

(b) The number of events in any hour-long interval,
N(1), has a Poisson distribution with mean 3.75.

(c) The time intervals 2 pm–3pm and 3pm–4pm are
disjoint, so what happened between 2 pm and 3 pm
does not influence what happens in the next hour.
The probability of at most one event between 3 pm
and 4 pm is

P (N(1) ≤ 1) = e−3.75(1 + 3.75) ≃ 0.1117.

(d) The probability required is

P (T > 0.5) = 1− F (0.5) = e−3.75×0.5

= e−1.875

≃ 0.1534.

Solution 3.2

The eruption rate is

λ = 1 per 29 months = 1
29 per month.

(a) The number of eruptions during a five-year
period, N(60), has a Poisson distribution with
parameter

λt =
(

1
29 per month

)

× (60 months) ≃ 2.069,

so the expected number of eruptions is 2.069.

(b) The probability of exactly two eruptions is

P (N(60) = 2) =
e−2.069(2.069)2

2!
≃ 0.2704.

(c) By the memoryless property of the exponential
distribution, the time between the start of observation
and any previous event can be ignored. If T is the time
from the start of observation until the next eruption
then, since P (T ≥ t) = e−λt, where t is in months,

P (T ≥ 36) = e−36/29 ≃ 0.2890.

Solution 3.3

(a) The mean time between events is 3 months, so
each random number en from Table 6 in the Handbook

must be multiplied by 3 to give a simulated time
between events in months. The realisation is shown in
Table S.2.

Table S.2

n en 3en wn = t1 + · · ·+ tn

1 3.5677 10.7031 10.7031 ≃ 10.70
2 4.1622 12.4866 23.1897 ≃ 23.19
3 0.6071 1.8213 25.0110 ≃ 25.01

(b) From Table S.2, it is evident that the third event
occurred outside the 24-month period being modelled.
So two failures were observed: the first occurring after
10.70 months, the second after 23.19 months. The
number 2 is a single observation from the Poisson
distribution with parameter 24/3 = 8.

Solution 5.1

The rate at which customers arrive is λ = 8 per hour.
The proportions of customers in the three categories
are p1 = 0.70, p2 = 0.05, p3 = 0.25, where the
categories are letters, parcels and non-postal,
respectively.

(a) The parcel rate is

λ2 = λp2 = 8× 0.05 = 0.4 per hour.

(b) The time T between arrivals of customers posting
parcels has an exponential distribution with
parameter λ2, so the probability that the interval
between the arrivals of such customers is greater than
an hour is

P (T > 1) = e−λ2×1 = e−0.4 ≃ 0.6703.

(c) The letter rate is

λ1 = λp1 = 8× 0.70 = 5.6 per hour.

Let L(t) be the number of customers arriving to post
letters in t hours. Then L(3), the number of customers
posting letters in a three-hour period, has a Poisson
distribution with parameter

λ1t = 5.6 per hour× 3 hours = 16.8.

The probability that there are fewer than five such
customers is

P (L(3) ≤ 4)

= e−16.8

(

1 + 16.8 +
16.82

2!
+

16.83

3!
+

16.84

4!

)

≃ e−16.8 × 4268.33

≃ 0.000 22.

(d) The arrival rate of customers posting letters or
parcels is λ(p1 + p2) = 8× 0.75 = 6 per hour.

The waiting time between arrivals of such customers
is M(6), so the median waiting time (in hours) is the
solution of the equation

F (t) = 1− e−6t = 1
2 ,

that is,

e−6t = 1
2 .

Therefore the median waiting time is

t = 1
6 log 2 hours

= 10× log 2 minutes

≃ 6.93 minutes.
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Solutions to Exercises

Solution 5.2

The arrival rates of works of fiction, biographies,
works of reference and non-text items are λ1 = 8 per
week, λ2 = 1 per week, λ3 = 0.25 per week, λ4 = 5 per
week, respectively.

(a) Let N(1) be the number of non-text items that
arrive in one week; then N(1) ∼ Poisson(5). So the
probability that at least two non-text acquisitions will
arrive next week is given by

P (N(1) ≥ 2) = 1− P (N(1) ≤ 1)

= 1− e−5(1 + 5)

≃ 0.9596.

(b) Let W (t) be the number of works of fiction that
arrive in t weeks, so the number that arrive in one day
is W

(

1
7

)

. Since λ1 = 8 per week, W
(

1
7

)

∼ Poisson
(

8
7

)

.
The probability that no new work of fiction will arrive
tomorrow is

P
(

W
(

1
7

)

= 0
)

= e−8/7 ≃ 0.3189.

(c) The proportions of new acquisitions in each of the
four categories are

pfiction =
λ1

λ1 + λ2 + λ3 + λ4

=
8

8 + 1 + 0.25 + 5

=
8

14.25
≃ 0.561,

pbiography =
1

14.25
≃ 0.070,

preference =
0.25

14.25
≃ 0.018,

pnon-text =
5

14.25
≃ 0.351.

Solution 6.1

(a) A sketch of the function λ(t) for 0 ≤ t ≤ 4 is
shown in Figure S.3.

t

λ(t)

43210
0

1

2

3

4

Figure S.3 The event rate λ(t) = 3
8 t

2(4− t),
0 ≤ t ≤ 4

The shaded area represents the expected number of
events between t = 1 and t = 2.

(b) The expected number of events that occur by
time t is

µ(t) =

∫ t

0

λ(u) du =

∫ t

0

3
8u

2(4 − u) du

= 3
8

∫ t

0

(

4u2 − u3
)

du

= 3
8

[

4
3u

3 − 1
4u

4
]t

0

= 1
2 t

3 − 3
32 t

4.

(c) The expected number of events between t = 1 and
t = 3 is

µ(1, 3) = µ(3)− µ(1)

=
(

1
2 × 33 − 3

32 × 34
)

−
(

1
2 × 13 − 3

32 × 14
)

= 5.906 25− 0.406 25

= 5.5.

The expected total number of events is

µ(4) = 1
2 × 43 − 3

32 × 44 = 8.

(d) The number of events between t = 1 and t = 3,
X(1, 3), has a Poisson distribution with parameter 5.5.
The probability of more than two events between t = 1
and t = 3 is given by

P (X(1, 3) > 2) = 1− P (X(1, 3) ≤ 2)

= 1− e−5.5

(

1 + 5.5 +
5.52

2!

)

= 1− e−5.5(21.625)

≃ 1− 0.0884

= 0.9116.

(e) Given that (exactly) two events occur between
t = 0 and t = 1, the probability that at least four
events occur in total is just the probability that at
least two events occur between t = 1 and t = 4, that is,

P (X(1, 4) ≥ 2).

The number of events, X(1, 4), has a Poisson
distribution with parameter

µ(1, 4) = µ(4)− µ(1) = 8− 0.406 25 = 7.593 75.

Therefore

P (X(1, 4) ≥ 2) = 1− P (X(1, 4) ≤ 1)

= 1− e−7.593 75(1 + 7.593 75)

≃ 0.9957.

Solution 6.2

The event rate is λ(t) = 3t2, so

µ(t) =

∫ t

0

λ(u) du =

∫ t

0

3u2 du = t3.

The simulated times may be found using (6.8):

µ(wj+1) = µ(wj)− log(1− u).

In this case,

w3
j+1 = w3

j − log(1− u),

so

wj+1 = 3
√

w3
j − log(1− u).
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Modelling events in time and space

The simulated times are

w1 = 3
√

w3
0 − log(1− u1)

= 3
√

− log(1− 0.240 36) ≃ 0.650 23 ≃ 0.650,

w2 = 3
√

0.650 233 − log(1 − 0.290 38)

≃ 0.851 76 ≃ 0.852,

w3 = 3
√

0.851 763 − log(1− 0.432 11) ≃ 1.057 85 > 1.

The simulation is required only for 0 ≤ t ≤ 1, so two
events occur, at t1 = 0.650 and t2 = 0.852.
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F -distribution, 82
R-distance, 72
S-distances, 72
χ2 dispersion test, 78
p value, 83

Bernoulli process, 8
two-dimensional, 57

Bernoulli trial, 8

compound event, 44
compound Poisson process, 44, 46

index of dispersion, 49
continuous-time random process, 6

notation, 21, 22
count, 69
counts of objects, 69

discrete-time random process, 6
distance, 69

fixed-level test, 78

heterogeneity of habitat, 67
hexagonal lattice, 64
Hopkins’ test, 81

index of dispersion, 49, 70
compound Poisson process, 49

inter-event time, 28
interpretation of p values, 84

lattice, 64
lattice pattern with independent random

displacements, 65
lattice pattern with random deaths, 65

multivariate Poisson process, 30

non-homogeneous Poisson process, 33, 36, 39
basic results, 36
postulates, 36
simulation, 39, 40

notation for continuous-time processes, 21, 22

object-to-nearest-object distance, 71, 73

patterns with regularity, 64
point process, 48
point-to-nearest-object distance, 71, 73
Poisson process, 16, 19

assumptions, 19
formal approach, 24
inter-event time, 28
postulates, 25
simulation, 22, 59
two main results, 20
waiting time, 20, 28

quadrats, 69

random pattern, 63
random process, 5

continuous-time, 6
discrete-time, 6

random spatial pattern, 63
randomly-positioned clusters model, 68
Rayleigh distribution, 73, 75

c.d.f., 73
p.d.f., 73

realisation, 5
reproductive clumping, 67

sequential inhibition process, 66
significance testing, 83
simple sequential inhibition process, 66
simulation, 39

non-homogeneous Poisson process, 40
Poisson process, 22

square lattice, 57, 64
state space, 7
stochastic process, 5

time domain, 7
times of events, 39
triangular lattice, 64
two-dimensional Poisson process, 58

postulates, 58
simulation, 61

waiting time, 20

50




