
 [image: cover image]

 TT284_1

 An introduction to web applications architecture

 About this free course

 This free course is an adapted extract from the Open University course TT284 Web technologies: http://www.open.ac.uk/courses/modules/tt284.

 This version of the content may include video, images and interactive content that may not be optimised for your device.

 You can experience this free course as it was originally designed on OpenLearn, the home of free learning from The Open University
 – An introduction to web applications architecture.

 There you’ll also be able to track your progress via your activity record, which you can use to demonstrate your learning.

 Copyright © 2018 The Open University

 Intellectual property

 Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University interprets this licence in the following way: www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open University.
 Please read the full text before using any of the content.

 We believe the primary barrier to accessing high-quality educational experiences is cost, which is why we aim to publish as
 much free content as possible under an open licence. If it proves difficult to release content under our preferred Creative
 Commons licence (e.g. because we can’t afford or gain the clearances or find suitable alternatives), we will still release
 the materials for free under a personal end-user licence.

 This is because the learning experience will always be the same high quality offering and that should always be seen as positive
 – even if at times the licensing is different to Creative Commons.

 When using the content you must attribute us (The Open University) (the OU) and any identified author in accordance with the
 terms of the Creative Commons Licence.

 The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed content which is not
 subject to Creative Commons licensing. Proprietary content must be used (retained) intact and in context to the content at
 all times.

 The Acknowledgements section is also used to bring to your attention any other Special Restrictions which may apply to the
 content. For example there may be times when the Creative Commons Non-Commercial Sharealike licence does not apply to any
 of the content even if owned by us (The Open University). In these instances, unless stated otherwise, the content may be
 used for personal and non-commercial use.

 We have also identified as Proprietary other material included in the content which is not subject to Creative Commons Licence. These
 are OU logos, trading names and may extend to certain photographic and video images and sound recordings and any other material
 as may be brought to your attention.

 Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or intellectual property laws.

 We reserve the right to alter, amend or bring to an end any terms and conditions provided here without notice.

 All rights falling outside the terms of the Creative Commons licence are retained or controlled by The Open University.

 Head of Intellectual Property, The Open University

 978 1 47302 479 3 (.kdl)
 978 1 47302 480 9 (.epub)

 Contents

 	Introduction

 	Learning outcomes

 	1 Architecture

 	

 	1.1 Client–server architecture

 	1.2 Multi-tier architecture

 	2 Network and distributed architectures

 	

 	2.1 Service-oriented architecture (SOA)

 	SOA principles

 	Web services

 	2.2 Cloud architecture

 	Software as a Service (SaaS)

 	Platform as a Service (PaaS)

 	Infrastructure as a Service (IaaS)

 	Conclusion

 	References

 	Further reading

 	Acknowledgements

 Introduction

 This free course, An introduction to web applications architecture, provides an overview of the design and implementation of computer software that runs on web servers, instead of running
 solely on desktop computers, laptops or mobile devices.

 Web applications are software which can be accessed via a network using a web browser. Websites such as Amazon and eBay,
 forums and online banking systems are examples of web applications. Web services describes a standardised way of integrating
 web applications using the internet standards and protocols.

 This OpenLearn course is an adapted extract from the Open University course TT284 Web Technologies.

 Learning outcomes

 After studying this course you should be able to:

 	understand the development of web application architecture leading to a more modular approach

 	sketch out the components that would be used in a range of approaches to web application architecture

 	outline a range of benefits and potential problems associated with a specific approach to web application architecture

 	contrast developments in architecture (SOA, Cloud) with more traditional tiered approaches.

 1 Architecture

 ‘Architecture’ is a term normally associated with the design of buildings. In the construction industry, architecture is often
 taken to relate to the style and structure of buildings. In the context of the architecture of web applications we will focus
 on structure, both in the terms of their physical components, the ‘system architecture’, and software (the programs making
 up an application), the ‘software architecture’.

 Let’s first define what we mean by ‘software architecture’ by considering the following interpretations.

 According to Shaw and Garlan in Software Architecture: Perspectives on an Emerging Discipline, (1996):

 The architecture of a software system defines that system in terms of computational components and interactions among those
 components.

 The Microsoft Application Architecture Guide (2009) cites Kruchten et al’s definition of architecture based on the work by Shaw and Garlan:

 Software architecture encompasses the set of significant decisions about the organization of a software system including the
 selection of the structural elements and their interfaces by which the system is composed; behaviour as specified in collaboration
 among those elements; composition of these structural and behavioural elements into larger subsystems; and an architectural
 style that guides this organization. Software architecture also involves functionality, usability, resilience, performance,
 reuse, comprehensibility, economic and technology constraints, tradeoffs and aesthetic concerns.

 In Patterns of Enterprise Application Architecture, Fowler (2002) states:

 ‘Architecture’ is a term that lots of people try to define, with little agreement. There are two common elements: One is the
 highest-level breakdown of a system into its parts; the other, decisions that are hard to change.

 In Pattern-Oriented Software Architecture, Volume 4, A Pattern Language for Distributed Computing, Buschmann et al. (2007) cite the following quote from Booch (2007, p. 214) which emphasises that design and architecture
 cannot be divorced from one another:

 All architecture is design but not all design is architecture. Architecture represents the significant design decisions that
 shape a system, where significant is measured by cost of change.

 In Software Architecture for Developers, Brown (2012) describes architecture more widely:

 So, we can see that the word ‘architecture’ means many different things to many different people and there are many different
 definitions floating around the internet. For me, architecture is comprised of four things:

 	Structure – the building blocks (components) and how they relate to and/or interact with one another.

 	Foundations – a stable basis on which to build something.

 	Infrastructure services – the essential services that are an integral part of whatever is being built. With a building, this
 might be power, water, cooling, etc. With software, this might be security, configuration, error handling, etc.

 	Vision – it is crucial that you understand what it is you are building and how that process will be undertaken. Vision can
 take the form of blueprints, guidelines, leadership, etc.

 There are quite a few other descriptions of architecture which, like those from Shaw and Garlan and Microsoft , focus on components
 and have similar wording to Achimugu et al. (2010):

 The foundation for any software system is its architecture. Software architecture is a view of the system that includes the
 system’s major components, the behaviour of those components as visible to the rest of the system, and the ways in which the
 components interact and coordinate to achieve the overall system’s goal. Every efficient software system arises as a result
 of sound architectural basement. This requires the use of good architecture engineering practices and methods.

 In summary, a ‘software architecture’ relates to the arrangement of software components and the interactions between these
 components. It also relates to the decisions that are taken about the design and composition of the overall system, how it
 is broken down into components and how these components interact. This type of structuring reflects high-level decisions that
 are difficult to change later because they determine software-level decisions. It is thus difficult to change the architecture
 of a system without starting the design from the beginning.

 Activity 1 Defining ‘system architecture’

 Allow 15 minutes to complete this activity

 Produce your own definition in answer to the question ‘What is system architecture?’ To do this, consider the definitions
 of a software architecture given above, and briefly research definitions for ‘system architecture’ and ‘design’ yourself using
 an internet search engine.

 View answer - Activity 1 Defining ‘system architecture’

 We will look at ‘client–server’ and ‘multi-tier’ approaches, which represent mainstream common ‘tried and tested’ approaches,
 and then ‘network type’ approaches, which represent more recent developments that many organisations are using because these
 developments have been shown to have additional benefits over the established approaches.

 By looking at the development of architecture it is possible to understand the potential benefits of adopting one approach
 to application design over another, and to understand why a specific architecture itself imparts specific qualities that can
 lead to a better (or worse) solution.

 1.1 Client–server architecture

 A client–server architecture (Figure 1) divides an application into two parts, ‘client’ and ‘server’. Such an application is implemented on a computer
 network, which connects the client to the server. The server part of that architecture provides the central functionality:
 i.e., any number of clients can connect to the server and request that it performs a task. The server accepts these requests,
 performs the required task and returns any results to the client, as appropriate.

 Consider an online bookstore as an example. The application allows a user to search and look at the details of a large range
 of books, and then to order a book. The application software provides an interface and a means of selecting or finding a book’s
 details, as well as displaying book information and allowing a book order to be generated.

 The application could take the form of a single ‘chunk’ of software downloaded from the web. However, if the software is one
 monolithic item, then every time anything is changed or updated, the entire application has to be redistributed again. Obviously
 this would not work well in this example because the catalogue of books will change regularly. An improvement might be to
 split the application into two parts. One part, the client, can provide the interface for users and be distributed to them.
 The other part can be kept and run on the company’s own server machine (Figure 1). The client application can display information
 and be used to pass information to the server for searching, such as the title of a book. This client application, or software,
 is quite commonly called the ‘presentation’ layer or tier.

 [image:]

 Figure 1 Simple client–server application

 View description - Figure 1 Simple client–server application

 In this client–server model, many clients can connect to the server application and request information about books. The server
 has to process these requests and send the response to the client that originated the request and not to any other client.
 As long as the network is working well and the server can keep up with responding to all the requests it receives, such a
 ‘split’ application will provide much the same level of service as the monolithic version. This simple client–server architecture
 is also commonly called ‘two-tier architecture’.

 The catalogue of book information can be held centrally on the server and then be easily updated. This allows other ‘centralised’
 information to be maintained and sent to clients, such as the stock level of each book. Users of the client will find it much
 simpler and smaller to work with than the complete application. At the same time the company will have better control and
 be able to, for example, monitor usage of the server application itself. A common client used to access applications is a
 web browser that accesses server applications (such as applications on websites) using HTTP. The use of a web browser as the
 client end of an application is interesting because, for most applications, the browser is provided by a third party. This
 means that application builders must rely on agreed standards for the behaviour of the client component.

 There are also different distributions of functionality across a two-tier architecture. For instance, suppose you have a client
 that accesses your bank account online. If that client is a web browser, for example, it can be used to request and display
 your accounts’ statements from the bank’s server. The information you may obtain is restricted to the pre-defined views of
 the information provided by the server. So, while the server’s information might include your account balance, if you want
 to find out the total payments in and out over the last week or year, then you will still have to calculate it yourself, based
 on the figures the server provides. Alternatively, you might access your bank server over the internet using another, ‘more
 intelligent’ client, such as a mobile app. This client might include a facility to extract figures from your bank statements
 and to perform whatever calculations you require. Such a client might also create bar or pie charts that display your income
 and expenditure across different categories that you define.

 The web browser client in the example of the online bank simply displays the information that the server provides. The ‘more
 intelligent’ mobile app client allows you to take the information the server provides and to manipulate and display it in
 various ways according to your own personal needs. The web browser with little functionality of its own is often termed a
 thin client while the more intelligent client is usually termed a thick (or ‘thicker’) client.

 We have seen that a two-tier approach seems to have some advantages, at least for applications that operate over networks.
 The client that is distributed to users may change, while the server part can be a centralised component that maintains dynamic,
 global data in a consistent and secure way for the organisation and for users to access and use. If a third party component,
 such as a web browser, provides the functionality required to support the application, then it can be adopted as part of the
 solution, with a significant saving of development effort. There is a potential disadvantage from splitting the application
 across a network in that data has to be transmitted over what may be a slow or unreliable connection.

 There are other, slightly less obvious advantages in breaking the application into components in this way. We shall look at
 some of these in more detail shortly, but let’s look at one advantage now. This is an advantage from which you will have benefited
 if you have ever decided to change your web browser. You might have changed from Internet Explorer to Mozilla Firefox, for
 example, just as a personal preference. When you did this you changed the client component of all the online applications
 you use. This is only possible because web browsers are based largely on common standards and because they are not realised
 as an intrinsic or built-in part of any of the applications you use; in other words, the client is loosely coupled to the
 server application.

 1.2 Multi-tier architecture

 The approach of splitting an application into tiers can be taken further. Both the client and the server parts can be further
 subdivided if this is appropriate for the application. The client, for example, may be responsible both for some processing
 of data received and for the presentation of information. In the example of a bookshop, we may need to calculate the total
 cost of an order and display sample content of books. These two functions might be separated into two tiers at the client
 end.

 The server software might include one or more data stores (for instance, in the form of a database system). In the example
 of a bookshop, one data store might include the images, cost and reviews of a book; another might be used to store more dynamic
 information, such as the current stock levels or order time for each book. Splitting data up in this way would, for example,
 allow occasional backups of the more static data with more frequent backups of the dynamic data.

 So, an architecture used over the internet might look in outline like that shown in Figure 2. Here we have added two more
 tiers on the server side: a data tier and another tier that handles interactions with the data tier, such as retrieving requested
 information or validating data that is put into the data stores. This tier, between the data tier and the server tier, is
 sometimes termed the ‘middle tier’ or middleware. An application that uses middleware to handle data requests between a user and a database is said to employ multi-tier architecture.

 [image:]

 Figure 2 Example of multi-tier architecture

 View description - Figure 2 Example of multi-tier architecture

 Quite commonly, ‘multi-tier architecture’ refers to what should more specifically be called three-tier architecture (client,
 server and data tiers). More tiers than this, however, can be used (as in Figure 2) and so the term ‘N-tier architecture’
 is used generally to mean any architecture that has more than two tiers.

 As in the two-tier approach, there are advantages to breaking down the application into multiple tiers. Each tier can be changed
 more easily as it is less dependent on the precise details of the other tiers with which it interacts. This again depends
 on how careful we are to adopt an approach that ensures the tiers or components are truly loosely coupled. Simply breaking
 the application into chunks doesn’t guarantee this; we also need to adopt suitable standards, and specify precise and limited
 interactions between the tiers. N-tier architecture has almost become an all-pervasive approach, and is certainly very mainstream.
 Many more clients besides web browsers are now available that can realistically be interchanged without prohibitive effort,
 including databases and web servers.

 2 Network and distributed architectures

 As our description has moved from monolithic applications to client–server and then to N-tier, the application has been broken
 down into more and more parts. This trend has been extended in a modern approach called service-oriented architecture (SOA).
 SOA is based around the idea of breaking down an application into a set of much smaller tasks that can be performed by small
 independent, ‘software components’, each performing a discrete task commonly called a service. Service-oriented architecture (SOA) will be explained in the next section.

 2.1 Service-oriented architecture (SOA)

 SOA is the architectural solution for integrating diverse systems by providing an architectural style that promotes loose
 coupling and reuse. The software components provide services to other components via a communications protocol, typically
 over a network. The party offering the service is known as a service provider (a server), and the party invoking the service a service consumer (a client).

 A service is some functionality, typically a business process, which is packaged as a reusable software component that is:

 	well-defined – a software component with a clearly specified interface and outcome

 	self-contained – the implementation of the service is complete and independent of any product, vendor or technology

 	a black-box – the implementation of the service is hidden (encapsulated) from the service consumer.

 Examples of services might be:

 	Currency conversion – a service that converts a sum of money from one currency to another might be used in a wide range of
 circumstances. It might be used, for example, to convert all the prices on a website store to a customer’s local currency.

 	Customer credit checks – a service that provides the credit rating for a given customer.

 	Provision of weather data – a service that provides selected weather data for a given geographical area and time period.

 	Data storage – a service that allows data to be stored and later retrieved, perhaps with a range of capacities, costs and
 timescales on offer.

 SOA principles

 SOA is governed by a number of design principles (adapted from Erl, 2007):

 Interoperability: services implemented in different systems, locations or even business domains, and using diverse technologies – ranging
 from programming languages to platforms – need to work together to allow diverse consumers and providers to communicate. For
 this to happen effectively, services must rely on internationally agreed communication standards. Many of the current standards
 were developed for communication over the web – although SOA is in fact technology-agnostic, so that its principles apply
 regardless of which communication standard is actually used.

 Location transparency: consumers should be able to make use of a service without necessarily knowing where the service is located, that is, on
 which machine or even in which business organisation. Service consumer and provider are only loosely bound together, with
 the consumer having no knowledge of the service implementation or its platform, and consumer and provider communicating solely
 through messages.

 Discoverability: the consumer must be able to find out about relevant services, which usually involves access to appropriate metadata about
 services. Discovery is often done through registries: a service registry will contain metadata and references to services. The actual services are often contained in inventories: a service inventory is collection of complementary services within a boundary of the provider, an enterprise or even a meaningful segment of
 an enterprise. We distinguish between run-time and design-time discovery. In run-time (or dynamic) discovery, the consumer first queries the registry for a service that matches the consumer’s criteria; if such a service exists, the
 registry provides the consumer with the location of the service provider; the consumer can then bind dynamically with the
 service provider and invoke the service. This model of service collaboration is known as the ‘find, bind and invoke’ cycle. While this model is of historical and theoretical significance, it has yet to become mainstream in practice despite
 much research and development effort in both academia and industry. This is due to the intrinsic difficulty of specifying
 semantic information which may allow one to reliably predict the interaction of a potentially unlimited number of diverse
 services. Instead, current discovery mechanisms support primarily design-time discovery – that is, they’re aimed at developers who are trying to find out about relevant services in the planning stage of a SOA
 application development.

 Loose coupling and encapsulation: coupling between service providers and consumers should be low, and confined to reliance to service public interfaces, with
 an understanding that such interfaces should disclose as little as possible of the underlying implementation details, which
 is known as encapsulation. The interfaces should be based on standard communication protocols, rather than proprietary ones,
 with open standards recommended to foster the highest degree of interoperability.

 Abstraction: both the encapsulated implementation, the implementation technology and the physical location of services should be fully
 transparent to consumers, which should be reliant solely on public interfaces, service contract descriptions and SOA infrastructures
 to locate and invoke required services.

 Autonomy: the more autonomous a service is, the more control it will have over its own implementation and run-time environment, and
 so the greater will be its flexibility and potential for evolution. Both implementation and run-time environment can be modified
 without affecting consumers.

 Statelessness: excessive state information can compromise the availability of a service and limit its scalability; hence, services should
 remain stateless as far as is realistic to allow them to do their work.

 Standardised interfaces and contracts: to support the service collaboration model and automate service interaction, services need to be described in a similar
 way using commonly understood standards. In particular, a service description may include descriptions of the service technical
 interface (that is, the operations which can be invoked and their parameters), the quality of service provided, and a service-level
 agreement which details both service characteristics (e.g. response time or availability) and cost to the consumer of invocation.
 Additional metadata may cover a range of information, for instance including user satisfaction rating or future development
 plans.

 Reusability: services must be designed with reuse in mind, so generality of the service in terms of potential reuse across projects and
 systems is an important design principle. This impacts on both the granularity of the service (the service should strive to
 support generic business processes and tasks and close alignment with the business) and on the choice of standards and implementation
 technology, which should foster the highest possible degree of interoperability.

 Dynamic reconfiguration: service-based systems should be configurable and reconfigurable dynamically by discovering and incorporating existing services,
 but while maintaining coherence and integrity. This should be supported by metadata, which underlie the discovery of existing
 services, coupled with contract agreement descriptors.

 Activity 2 SOA

 Allow 15 minutes to complete this activity

 Given what you’ve just learnt about services and SOA design principles, which do you think are the advantages of developing
 business applications based on SOA?

 View answer - Activity 2 SOA

 Web services

 When a service is made available over the internet, it is then usually termed a web service, which describes the service that
 a client can access from a server over the internet, utilising web protocols and standards to enable the exchange of data
 between them.

 The main protocols and standards employed are XML (eXtensible Markup Language), SOAP (Simple Object Access Protocol), REST
 (Representational State Transfer) and JSON (JavaScript Object Notation) based.

 Discussion of these protocols and standards is beyond the scope of this course, but you’ll find articles on these topics in
 the Further reading section.

 The main point to make here is that web services based on the SOA design principles described above will ensure that web applications
 written in various programming languages can run on various platforms, and can use web services to exchange their data across
 computer networks in a manner similar to inter-process communication on a single computer.

 2.2 Cloud architecture

 SOA is well placed to take advantage of a recent development known as ‘cloud technology’ based on what is often termed ‘the
 cloud’. Cloud technology has changed how organisations use technology to provide computing services. However, there is a lack
 of clarity as to what the term will really come to mean. Some definitions restrict the cloud to mean that virtual servers are made available and used over the internet, but more generally the cloud is seen as consisting of a wide range of different
 resources.

 The National Institute of Standards and Technology (NIST, 2013) provided a wider definition of cloud computing:

 Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
 computing resources (e.g. networks, servers, storage, applications, and services) that can be rapidly provisioned and released
 with minimal management effort or service provider interaction.

 Cloud computing is the practice of delivering computing services – servers, storage, databases, networking, software, analytics
 and more – on-demand over the Internet. It is a means of providing computing services as a utility to consumers in the same
 way as other utilities such as gas and electricity. Companies offering these computing services typically charge for cloud
 computing services based on usage.

 You might take the view that whereas SOA provides services on a network, the cloud extends the principle to other resources
 such as processing power and storage facilities and is not limited to the provision of services. There are, of course, quite
 a lot of details that are not covered here. How resources are charged for, made secure, ‘cleaned’ after use, etc. are just
 some of the aspects that need to be considered.

 Activity 3 Benefits and potential problems of using cloud architecture

 Allow 30 minutes to complete this activity

 Take a look at the Amazon Web Services (AWS) website What is Cloud Computing?

 What do you see as the benefits and potential problems of using cloud architecture?

 View answer - Activity 3 Benefits and potential problems of using cloud architecture

 Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable hardware, software
 and network computing resources and services that can be rapidly provisioned and released with minimal management effort or
 service provider interaction.

 NIST (2013) defines five essential characteristics:

 	On-demand self-service – A consumer can automatically and unilaterally provision computing capabilities such as server time and network storage
 as needed, without requiring human interaction with each service provider.

 	Broad network access – Capabilities are available over the network and accessed through standard mechanisms that promote use by heterogeneous
 thin or thick client platforms (e.g. mobile phones, tablets, laptops, and workstations).

 	Resource pooling – The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant model, with different physical
 and virtual resources dynamically assigned and reassigned according to consumer demand. There is a sense of location independence
 in that the customer generally has no control or knowledge over the exact location of the provided resources but may be able
 to specify location at a higher level of abstraction (e.g., country, state, or data enter). Examples of resources include
 storage, processing, memory, and network bandwidth.

 	Rapid elasticity – Capabilities can be elastically provisioned and released, in some cases automatically, to scale rapidly outward and inward
 commensurate with demand. To the consumer, the capabilities available for provisioning often appear to be unlimited and can
 be appropriated in any quantity at any time.

 	Measured service – Cloud systems automatically control and optimize resource use by leveraging a metering capability at some level of abstraction
 appropriate to the type of service (e.g. storage, processing, bandwidth, active user accounts). Resource usage can be monitored,
 controlled, audited, and reported, providing transparency for both the provider and consumer of the utilized service.

 NIST (2011) defines three service models:

 	Software as a Service (SaaS) – provides applications designed for end-users, delivered over the web.

 	Platform as a Service (PaaS) – provides tools and services for developing and deploying applications.

 	Infrastructure as a Service (IaaS) – provides servers, storage, network services and virtual machines.

 As these service models offer increasing levels of abstraction they are often depicted as a stack of service layers – infrastructure,
 platform, and software-as-a-service layers – though they may not be physically implemented by a tiered architecture (Figure
 3).

 [image:]

 Figure 3 Cloud computing depicted as a stack of service providing layers

 View description - Figure 3 Cloud computing depicted as a stack of service providing layers

 Software as a Service (SaaS)

 NIST (2011) defines SaaS as:

 The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure. The applications
 are accessible from various client devices through either a thin client interface, such as a web browser (e.g. web-based email),
 or a program interface. The consumer does not manage or control the underlying cloud infrastructure including network, servers,
 operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific
 application configuration settings.

 With SaaS, a service provider licenses an application to customers either as a service on demand, through a subscription,
 as a ‘pay-as-you-go’ model, or (increasingly) at no charge when there is opportunity to generate revenue from streams other
 than from the user, such as from advertisements. SaaS is a rapidly growing market and it is expected that SaaS will soon become
 commonplace within most organisations.

 Advantages of SaaS include:

 	the provision of software that would be normally installed on users’ computers (e.g. Microsoft Office) as web applications

 	users are not required to implement software upgrades and patches

 	the provider can provide scalable web applications using a multi-tiered architecture, implemented on a high-performance infrastructure

 	the entire application and hosting infrastructure is the responsibility of the service provider (Figure 4).

 [image:]

 Figure 4 Cloud computing service models depicted as a stack of component layers

 View description - Figure 4 Cloud computing service models depicted as a stack of component layers

 With SaaS a significant amount of the processing occurs on service providers’ computers and not on the service consumers’
 computers.

 There are numerous examples of SaaS available, many based on subscription fees like Netflix and DropBox. Organisations can
 also use the SaaS model to provide email, word processing and other ‘office’ tools for their employees. A recent trend is
 for application developers to convert from stand-alone applications to a web-based SaaS delivery model. For example, Microsoft
 Office 365 is a group of software and service subscriptions which together provide access to Microsoft Office applications
 and cloud storage services to subscribers. The SaaS model gives the developer greater control since they deploy to a known
 environment in the cloud rather than distributing thousands of copies to individual users.

 Platform as a Service (PaaS)

 NIST (2011) defines PaaS as:

 The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications
 created using programming languages, libraries, services, and tools supported by the provider. The consumer does not manage
 or control the underlying cloud infrastructure including network, servers, operating systems, or storage, but has control
 over the deployed applications and possibly configuration settings for the application-hosting environment.

 PaaS provides an infrastructure for developing web applications. PaaS is analogous to SaaS except that, rather than being
 software delivered over the web, it is a platform for the creation of software, delivered over the web.

 Features of PaaS include:

 	Services to develop, test, deploy, host and maintain web applications in the same integrated development environment.

 	Web based user interface creation tools help to create, modify, test and deploy graphical user interfaces (GUIs).

 	Support for development team collaboration – a multi-user environment to allow several users to work on the same application
 concurrently.

 	Integration with web services and databases.

 PaaS is especially useful in any situation where several developers are working on the same development project. It also is
 useful where developers wish to automate testing and deployment services.

 Infrastructure as a Service (IaaS)

 NIST (2011) defines IaaS as:

 The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources
 where the consumer is able to deploy and run arbitrary software, which can include operating systems and applications. The
 consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, and
 deployed applications; and possibly limited control of select networking components (e.g. host firewalls).

 IaaS delivers a cloud computing infrastructure – servers, storage, network services and virtual machines – as services. Rather
 than purchasing these infrastructure components, clients instead purchase access to these components as services.

 Using IaaS is particularly suitable for situations including:

 	new organisations without the capital to invest in hardware

 	organisations that are growing rapidly but purchasing additional hardware would be prohibitive

 	speculative development of new lines of business without the need to invest in infrastructure components.

 Examples of IaaS providers include Amazon Elastic Compute Cloud (EC2) and Google Compute Engine.

 Amazon Elastic Compute Cloud (EC2) forms a central part of Amazon’s cloud-computing platform, Amazon Web Services (AWS), which
 supports both Amazon’s retail services and cloud services.

 Google Compute Engine is the IaaS component of Google Cloud Platform which is built on the global infrastructure that runs
 Google’s search engine, Gmail, YouTube and other services.

 We have seen that cloud computing provides three service models: laaS as the underlying infrastructure; PaaS as a web application
 development environment; and SaaS which replaces stand-alone applications with web applications. These three service models
 are key to understanding how the cloud has evolved, so it is important that you appreciate the key differences between them.

 Cloud computing brings with it a number of key benefits, as well as risks, that should be carefully examined by any organisation
 looking to move to cloud computing. It is important for organisations to understand the different aspects of cloud computing
 and to assess their own requirements before deciding which service models are appropriate for their unique needs. Cloud computing
 is a rapidly accelerating revolution within IT and is likely to become the default method of IT service delivery in the future.

 Conclusion

 This free course, An introduction to web applications architecture, has given you a taster for the full Open University course, which is TT284 Web technologies.

 Web Applications Architecture concerns the design and implementation of computer software that runs on web servers, instead
 of running solely on desktop computers, laptops or mobile devices.

 You explored ‘client–server’ and ‘multi-tier’ approaches to web applications architecture, which represent mainstream common
 ‘tried and tested’ approaches, and then ‘network type’ approaches - Service-Oriented Architecture (SOA) and cloud architecture,
 which represent more recent developments

 This OpenLearn course is an adapted extract from the Open University course TT284 Web technologies.

 References

 Achimugu, P., Babajide, A., Oluwaranti, A., Gambo, I. and Oluwagbemi, O. (2010) ‘Software architecture and methodology as
 a tool for efficient software engineering process: a critical appraisal’, Journal of Software Engineering & Applications, vol. 3, no. 10, pp. 933–38 [Online]. DOI: 10.4236/jsea.2010.310110 (Accessed 17 April 2018).

 Brown, S. (2012) Software Architecture for Developers [Online]. Available at http://leanpub.com/software-architecture-for-developers (Accessed 17 April 2018).

 Booch, in Buschmann, F., Henney, K., Schmidt, D.C. (2007) Pattern-Oriented Software Architecture, Volume 4, A Pattern Language for Distributed Computing, Chichester, Wiley.

 Erl, T. (2007), SOA: Principles of Service Design, New Jersey, Prentice Hall.

 Fowler, M. (2002) Patterns of Enterprise Application Architecture, Boston, Addison-Wesley Longman Publishing.

 Kruchten et al., Microsoft (2009), Chapter 1: What is Software Architecture?, [Online]. Available at https://msdn.microsoft.com/en-gb/library/ee658098.aspx (Accessed 17 April 2018).

 NIST (2011) The NIST Definition of Cloud Computing, [Online], Gaithersburg, Maryland, National Institute of Standards and Technology. Available at http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (Accessed 17 April 2018).

 NIST (2013) NIST Cloud Computing Standards Roadmap (Special Publication 500-291, Version 2), [Online], Gaithersburg, Maryland, NIST Cloud Computing Standards Roadmap Working
 Group, National Institute of Standards and Technology. Available at https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf (Accessed 17 April 2018).

 Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging Discipline, New Jersey, Prentice Hall.

 Further reading

 A range of links are given below if you have wish to learn more about some of the technologies or products mentioned in this
 course.

 Amazon Elastic Compute Cloud (EC2) (2017) [Online]. Available at https://aws.amazon.com/ec2/ (Accessed 29 May 2017).

 Google Compute Engine (n.d.) [Online]. Available at https://cloud.google.com/compute/ (Accessed 29 May 2017).

 REST (2015) Representational State Transfer [Online]. Available at https://developer.ibm.com/articles/ws-restful/ (Accessed 15 March 2017).

 Service-oriented architecture (SOA) standards (2012), IBM DeveloperWorks [Online]. Available at https://www.ibm.com/developerworks/library/ws-soa-standards/ (Accessed 28 May 2017).

 SOAP (2004) Simple Object Access Protocol, [Online]. Available at http://www.w3.org/TR/soap/ (Accessed 15 March 2017).

 Acknowledgements

 This free course was written by Peter Thompson, Soraya Kouadri Mostéfaoui and Steven Self.

 Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.

 The material acknowledged below is Proprietary and used under licence (not subject to Creative Commons Licence). Grateful
 acknowledgement is made to the following sources for permission to reproduce material in this free course:

 Course image: © Pixabay.com This file is licensed under the Creative Commons Attribution-Share Alike Licence http://creativecommons.org/licenses/by-sa/3.0/

 Figure 1: Unknown

 Figure 2: © The Open University

 Figure 3: © The Open University

 Figure 4: © The Open University

 Every effort has been made to contact copyright owners. If any have been inadvertently overlooked, the publishers will be
 pleased to make the necessary arrangements at the first opportunity.

 Don’t miss out

 If reading this text has inspired you to learn more, you may be interested in joining the millions of people who discover
 our free learning resources and qualifications by visiting The Open University – www.open.edu/openlearn/free-courses.

 Activity 1 Defining ‘system architecture’

 Answer

 A ‘system architecture’ can be defined as the configuration of hardware, network and software components of a computer system
 which satisfies the requirement for the provision a particular application or service.

 As with a ‘software architecture’, it also relates to the decisions that are taken about the design and composition of the
 overall system, how it is broken down into components and how these components cooperate. A ‘system architecture’ holds the
 key to success or failure of a system every bit as much as the ‘software architecture’ does for the software.

 Back

 Activity 2 SOA

 Answer

 Here’s one possible list – you may have come up with something different.

 	Business and technology integration, with close alignment between software services and business processes.

 	Flexibility in responding to changes in customer requirements, to new business opportunities or to competitor threats, because
 services can easily be re-assembled or new services combined or incorporated into existing applications.

 	Reuse, as a service can be packaged and made available for reuse in different parts of a business which require the same function.

 	Integration of legacy applications, as legacy software can be wrapped as a service and made to interoperate with other applications.

 	Potential development–cost savings, as systems can easily incorporate functions (such as credit card validation or online
 payment) provided as services by external suppliers.

 	Interoperability and technology independence, as services written in different languages can interoperate using standard protocols.

 Back

 Activity 3 Benefits and potential problems of using cloud architecture

 Answer

 Benefits of the cloud

 There are numerous benefits claimed for the cloud. Here’s one possible list – you may have come up with something different.

 1 Cost

 A major benefit claimed by many cloud service providers is cost. Data centres are expensive to build and operate, and cloud
 technology can result in significant reduction in the infrastructure (capital expenditure) and operational costs.

 For example, if an IT project requires significant investment in equipment, or investment in a building to house the equipment,
 the organisation will have to make a case for the capital expenditure and approve funding. It could take months just to get
 approval and then the actual work must be completed. The cloud alternative could be set up within a few days and be paid for
 from an operational budget. For a small organisation the running costs could be covered by the cash flow generated by the
 application.

 2 Elasticity

 One of the core benefits of the cloud is elasticity – that is, the ability to automatically expand resources as demand increases
 and shrink resources as demand wanes. The expectation is that cloud applications and services are continuously monitored to
 ensure they are responding to requests and that they perform within operational limits. Should applications or service fail
 to respond to a request, or should it exceed its performance limits, a new instance of that applications or service will be
 launched, either to replace the failed instance or to supplement the existing one.

 3 Resilience

 Another one of the core benefits of the cloud is resiliency – that is, the ability of cloud applications and services to recover
 quickly and continue operating even when there has been an equipment failure, power outage or other disruption. Such failures
 may originate at any of the major components in a cloud architecture: (1) the servers hosting the application or service;
 (2) the network interconnecting them, local or wide-area connections; or (3) the application or service itself.

 Resiliency is often achieved through the use of redundant components, subsystems, systems or facilities. When one element
 fails or experiences a disruption, the redundant element takes over seamlessly and continues to support computing services
 to the user base. Ideally, users of a resilient system should not be aware that a disruption has even occurred.

 Risks of the cloud

 Moving applications, services and data from a closed private environment onto the public cloud presents a complex set of issues
 for developers. Instead of dedicated IT equipment under close supervision, applications, services and data are hosted on shared
 resources with little direct control of where those resources are located.

 Arising from this move to shared resources, here’s one possible list of risks – you may have come up with something different.

 1 Unauthorised access to applications, services and data

 Once an organisation moves applications, services and data onto a public cloud, they now have to worry about not only unauthorised
 access by their own staff but also the vendor’s staff. More people have access to the applications, services and data, and
 systems that support these, which means the organisation has to extend trust to people they have no control over.

 The risk of intrusion by other organisations resulting in the loss or theft intellectual property, for example, also increases
 when they use a public cloud.

 2 Legislation and regulation

 Organisations that are subject to data security legislation are required not only to protect the data, but also typically
 required to know: (1) Where the data resides; (2) Who is allowed to access it; and (3) How it is protected.

 If an organisation moves the processing and storage of data that it is required to protect onto a public cloud, then it is
 relying on a cloud service provider to maintain their compliance. If the organisation does not have adequate legal protections,
 then it may be liable when there is a data breach at the cloud service that exposes the organisation’s data.

 In other words, although an organisation’s data is residing on a provider’s cloud, the organisation is still accountable to
 their clients for any security and integrity issues that may affect their data and therefore the organisation must know the
 standards and procedures the provider has in place to mitigate the organisation’s risk.

 Back

 Figure 1 Simple client–server application

 Description
A diagram explaining simple client-server application. At the centre, there is a cloud shape, with 2 arrows, both sides, coming
 in and out of the cloud. From the left-hand side, there is a box, with the text inside: client (browser). The two arrows then
 link the box to the cloud. The top arrow goes away from the box, into the cloud, and the arrow beneath points away from the
 cloud into the box. On the right-hand side of the cloud, this is similar with the same style of box but with the following
 text inside: server application (book catalogue, pricing and stock). The top arrows either side of the cloud are labelled
 book information requests and the bottom arrows are labelled book lists and descriptions. Below the cloud, there is a double-ended,
 dashed-line arrow that runs horizontally, labelled network. On the left, the arrow points towards a box with the text: user’s
 own machine, and on the right the arrow points towards a box labelled: company’s server machine.
 Back

 Figure 2 Example of multi-tier architecture

 Description
This is a diagram demonstrating an example of multi-tier architecture. From the left, there are three rounded boxes, placed
 vertically above one another. They all have the same text inside: client (browser). Below these, there is a rectangle, with
 text that reads client tier. There are three arrows coming from the right, pointing towards the three rounded boxes. From
 this, the line goes into one and comes from a cloud shape. Below the cloud, there is a rectangle with the text: internet.
 Pointing to the right, there is an arrow coming out of the cloud and pointing towards a rounded box, with the text inside:
 web server. There is a rectangular box below it, with the text: server tier. On the right side of the rounded box, there is
 a double ended arrow pointing to the current rounded box and another rounded box on the right. The rounded box on the right
 of this has the text: business logic and a rectangular box below it, with the text: middle tier. To the right of the rounded
 box there is a double ended arrow, going to another set of arrows which point towards two further rounded boxes. The first
 one, at the top, has the text: sales records database, and the second one, below it, has the text: stock level database. Below
 this is a rectangular box that has the text: data tier.
 Back

 Figure 3 Cloud computing depicted as a stack of service providing layers

 Description
This is a diagram containing four rounded rectangles, placed vertically above one another. From the top, the first one has
 the following text inside: cloud clients. Web browsers and web/mobile applications. This rectangle has a double ended arrow
 below it. Below this the next rectangle reads: Software as a Service (SaaS). Application accessible from Cloud clients. The
 next rectangle below it reads Platform as a Service (PaaS). Runtime environment, middleware and operating system. The final
 rectangle at the bottom reads: Infrastructure as a Service (IaaS). Virtual machines, servers, storage and networking.
 Back

 Figure 4 Cloud computing service models depicted as a stack of component layers

 Description
A diagram of four vertical columns of rounded boxes stacked on top of one another. From the left, the first column has 9 boxes,
 with the following text inside: traditional software, application, runtime environment, middleware, operating system, virtual
 machines, servers, storage, networking. There is an arrow running vertically along all of these, labelled client manages.
 The second column has another 9 boxes, with the following text: infrastructure as a service (IaaS), application, runtime environment,
 middleware, operating system. These boxes have an arrow running vertically alongside them, with the label: client manages.
 The remaining four boxes in this column have the following text: virtual machines, servers, storage, networking, and these
 have an arrow running alongside them with the label vendor manages. The third column from the left has 9 boxes, with the following:
 Platform as a service (PaaS), application, runtime environment, middleware, operating system, virtual machines, servers, storage,
 networking. There is an arrow running from the application box to the last box, with the label vendor manages. The final column
 on the right has 9 boxes. There is an arrow running along all of them, with the label vendor manages. The boxes have the following
 text: Software as a service (SaaS), application, runtime environment, midleware, operating system, virtual machines, servers,
 storage, networking.
 Back

 OPS/assets/watermark.png

OPS/assets/_7cfa956d9a1d8babd6910fec5e31b78e43f839ff_tt284_blk02_pt01_f03.eps.png
Cloud dlients

Web browsers and web/mobile applications

Software as a Service
(saas)

Application accessible from Cloud clients

Platform as a Service
(Pass)

Runtime environment, middleware and operating system

Infrastructure as a Service
(12as)

Virtual machines, servers, storage and networking

OPS/assets/_9b8f2864bde2bb4ca1d0461b4d9993dd66a50f03_tt284_b2_p1_f03.eps.png
t
(browser) sales records
database
t business
(browser) logic
stock level
database

(browser)
client tier internet servertler middle tler data tier

OPS/assets/_b3943981a7bd9e7f8598d3d089c8d39f3731c558_tt284_b2_p1_f02.eps.png
book information requests

server application
(book catalogue,
pricing and stock)

machine otk server machine

OPS/assets/_c203215e3f60fa3d2a97026b76d233e61ecabdc6_tt284_blk02_pt01_f04.eps.png
Traditional
software
Application

Runtime
environment

Middleware

Client

Operating
manages

system

Virtual
machines

Servers

Storage

Networking

Infrastructure as
a senice
(1aaS)

Application

Client
manages.

Runtime
environment

Middleware

Operating
CELD \Vendor

manages
Virtual

machines

Servers
Vendor
manages.

Storage.

Networking

Platform as a
service
(Paas)

Application

Runtime
environment

Middleware
Operating
system
Virtual
machines
Servers

Storage.

Networking

Software as a
service
(saas)

Application

Runtime
environment

Middleware

Vendor

Operating
manages|

system
Virtual

machines
Servers

Storage

Networking

OPS/assets/_7cb85e6ddefb171d659ed12048e5d30535dd24be_tt284_epub_1400x1200.jpg
An Introduction to web

applications architecture

pntainer'>
=" row'">
class="col-md-6 col-1g-8"> <!--
nav id="nav" role="navigation"s
<>
Home</11>
Home Events</:></
Multiple Colum
<li class="has-children"> <a hrefs"#" =" curt
 .
Tal
Inage Logo<
<li class="active"><a | ="tall-10go./

</

<

=m4>Carousels</

> .
4:“;:‘Lme:m="has—ch11dren"> <

nrof="variable-width-sLicE"

OpenlLearn fesmerer,

