
An introduction to web applications

architecture

About this free course

This free course is an adapted extract from the Open University course TT284 Web technologies:
http://www.open.ac.uk/courses/modules/tt284.

This version of the content may include video, images and interactive content that may not be optimised
for your device.

You can experience this free course as it was originally designed on OpenLearn, the home of free
learning from The Open University – An introduction to web applications architecture.

There you’ll also be able to track your progress via your activity record, which you can use to
demonstrate your learning.

Copyright © 2018 The Open University

Intellectual property

Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence
v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University
interprets this licence in the following way:
www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and
rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open
University. Please read the full text before using any of the content.

We believe the primary barrier to accessing high-quality educational experiences is cost, which is why
we aim to publish as much free content as possible under an open licence. If it proves difficult to release
content under our preferred Creative Commons licence (e.g. because we can’t afford or gain the
clearances or find suitable alternatives), we will still release the materials for free under a personal end-
user licence.

This is because the learning experience will always be the same high quality offering and that should
always be seen as positive – even if at times the licensing is different to Creative Commons.

When using the content you must attribute us (The Open University) (the OU) and any identified author in
accordance with the terms of the Creative Commons Licence.

The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed
content which is not subject to Creative Commons licensing. Proprietary content must be used (retained)
intact and in context to the content at all times.

The Acknowledgements section is also used to bring to your attention any other Special Restrictions
which may apply to the content. For example there may be times when the Creative Commons Non-
Commercial Sharealike licence does not apply to any of the content even if owned by us (The Open
University). In these instances, unless stated otherwise, the content may be used for personal and non-
commercial use.

We have also identified as Proprietary other material included in the content which is not subject to
Creative Commons Licence. These are OU logos, trading names and may extend to certain
photographic and video images and sound recordings and any other material as may be brought to your
attention.

Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or
intellectual property laws.

We reserve the right to alter, amend or bring to an end any terms and conditions provided here without
notice.

All rights falling outside the terms of the Creative Commons licence are retained or controlled by The
Open University.

Head of Intellectual Property, The Open University

2 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.ac.uk/courses/modules/tt284?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Contents
Introduction 4
Learning Outcomes 5
1 Architecture 6

1.1 Client–server architecture 8
1.2 Multi-tier architecture 10

2 Network and distributed architectures 11
2.1 Service-oriented architecture (SOA) 11
SOA principles 11
Web services 14
2.2 Cloud architecture 14

3 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Introduction
This free course, An introduction to web applications architecture, provides an overview of
the design and implementation of computer software that runs on web servers, instead of
running solely on desktop computers, laptops or mobile devices.
Web applications are software which can be accessed via a network using a web browser.
Websites such as Amazon and eBay, forums and online banking systems are examples of
web applications. Web services describes a standardised way of integrating web
applications using the internet standards and protocols.
This OpenLearn course is an adapted extract from the Open University course
TT284 Web Technologies.

Introduction

4 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.ac.uk/courses/modules/tt284?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Learning Outcomes
After studying this course you should be able to:
● understand the development of web application architecture leading to a more modular approach
● sketch out the components that would be used in a range of approaches to web application architecture
● outline a range of benefits and potential problems associated with a specific approach to web application

architecture
● contrast developments in architecture (SOA, Cloud) with more traditional tiered approaches.

1 Architecture
‘Architecture’ is a term normally associated with the design of buildings. In the
construction industry, architecture is often taken to relate to the style and structure of
buildings. In the context of the architecture of web applications we will focus on structure,
both in the terms of their physical components, the ‘system architecture’, and software
(the programs making up an application), the ‘software architecture’.
Let’s first define what we mean by ‘software architecture’ by considering the following
interpretations.
According to Shaw and Garlan in Software Architecture: Perspectives on an Emerging
Discipline, (1996):

The architecture of a software system defines that system in terms of
computational components and interactions among those components.

The Microsoft Application Architecture Guide (2009) cites Kruchten et al’s definition of
architecture based on the work by Shaw and Garlan:

Software architecture encompasses the set of significant decisions about the
organization of a software system including the selection of the structural
elements and their interfaces by which the system is composed; behaviour as
specified in collaboration among those elements; composition of these
structural and behavioural elements into larger subsystems; and an architec-
tural style that guides this organization. Software architecture also involves
functionality, usability, resilience, performance, reuse, comprehensibility,
economic and technology constraints, tradeoffs and aesthetic concerns.

In Patterns of Enterprise Application Architecture, Fowler (2002) states:

‘Architecture’ is a term that lots of people try to define, with little agreement.
There are two common elements: One is the highest-level breakdown of a
system into its parts; the other, decisions that are hard to change.

In Pattern-Oriented Software Architecture, Volume 4, A Pattern Language for Distributed
Computing, Buschmann et al. (2007) cite the following quote from Booch (2007, p. 214)
which emphasises that design and architecture cannot be divorced from one another:

All architecture is design but not all design is architecture. Architecture
represents the significant design decisions that shape a system, where
significant is measured by cost of change.

In Software Architecture for Developers, Brown (2012) describes architecture more
widely:

So, we can see that the word ‘architecture’ means many different things to
many different people and there are many different definitions floating around
the internet. For me, architecture is comprised of four things:

● Structure – the building blocks (components) and how they relate to and/or
interact with one another.

1 Architecture

6 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

● Foundations – a stable basis on which to build something.
● Infrastructure services – the essential services that are an integral part of

whatever is being built. With a building, this might be power, water,
cooling, etc. With software, this might be security, configuration, error
handling, etc.

● Vision – it is crucial that you understand what it is you are building and how
that process will be undertaken. Vision can take the form of blueprints,
guidelines, leadership, etc.

There are quite a few other descriptions of architecture which, like those from Shaw and
Garlan and Microsoft , focus on components and have similar wording to Achimugu et al.
(2010):

The foundation for any software system is its architecture. Software
architecture is a view of the system that includes the system’s major
components, the behaviour of those components as visible to the rest of the
system, and the ways in which the components interact and coordinate to
achieve the overall system’s goal. Every efficient software system arises as a
result of sound architectural basement. This requires the use of good
architecture engineering practices and methods.

In summary, a ‘software architecture’ relates to the arrangement of software components
and the interactions between these components. It also relates to the decisions that are
taken about the design and composition of the overall system, how it is broken down into
components and how these components interact. This type of structuring reflects high-
level decisions that are difficult to change later because they determine software-level
decisions. It is thus difficult to change the architecture of a system without starting the
design from the beginning.

Activity 1 Defining ‘system architecture’
Allow 15 minutes to complete this activity

Produce your own definition in answer to the question ‘What is system architecture?’
To do this, consider the definitions of a software architecture given above, and briefly
research definitions for ‘system architecture’ and ‘design’ yourself using an internet
search engine.

Answer
A ‘system architecture’ can be defined as the configuration of hardware, network and
software components of a computer system which satisfies the requirement for the
provision a particular application or service.
As with a ‘software architecture’, it also relates to the decisions that are taken about
the design and composition of the overall system, how it is broken down into
components and how these components cooperate. A ‘system architecture’ holds the
key to success or failure of a system every bit as much as the ‘software architecture’
does for the software.

We will look at ‘client–server’ and ‘multi-tier’ approaches, which represent mainstream
common ‘tried and tested’ approaches, and then ‘network type’ approaches, which
represent more recent developments that many organisations are using because these

1 Architecture

7 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

developments have been shown to have additional benefits over the established
approaches.
By looking at the development of architecture it is possible to understand the potential
benefits of adopting one approach to application design over another, and to understand
why a specific architecture itself imparts specific qualities that can lead to a better (or
worse) solution.

1.1 Client–server architecture
A client–server architecture (Figure 1) divides an application into two parts, ‘client’ and
‘server’. Such an application is implemented on a computer network, which connects the
client to the server. The server part of that architecture provides the central functionality: i.
e., any number of clients can connect to the server and request that it performs a task.
The server accepts these requests, performs the required task and returns any results to
the client, as appropriate.
Consider an online bookstore as an example. The application allows a user to search and
look at the details of a large range of books, and then to order a book. The application
software provides an interface and a means of selecting or finding a book’s details, as well
as displaying book information and allowing a book order to be generated.
The application could take the form of a single ‘chunk’ of software downloaded from the
web. However, if the software is one monolithic item, then every time anything is changed
or updated, the entire application has to be redistributed again. Obviously this would not
work well in this example because the catalogue of books will change regularly. An
improvement might be to split the application into two parts. One part, the client, can
provide the interface for users and be distributed to them. The other part can be kept and
run on the company’s own server machine (Figure 1). The client application can display
information and be used to pass information to the server for searching, such as the title of
a book. This client application, or software, is quite commonly called the ‘presentation’
layer or tier.

client
(browser)

book information requests

server application
(book catalogue,
pricing and stock)

book lists and descriptions

user’s own
machine

company’s
server machinenetwork

Figure 1 Simple client–server application

In this client–server model, many clients can connect to the server application and request
information about books. The server has to process these requests and send the
response to the client that originated the request and not to any other client. As long as
the network is working well and the server can keep up with responding to all the requests
it receives, such a ‘split’ application will provide much the same level of service as the
monolithic version. This simple client–server architecture is also commonly called ‘two-tier
architecture’.

1 Architecture

8 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

The catalogue of book information can be held centrally on the server and then be easily
updated. This allows other ‘centralised’ information to be maintained and sent to clients,
such as the stock level of each book. Users of the client will find it much simpler and
smaller to work with than the complete application. At the same time the company will
have better control and be able to, for example, monitor usage of the server application
itself. A common client used to access applications is a web browser that accesses server
applications (such as applications on websites) using HTTP. The use of a web browser as
the client end of an application is interesting because, for most applications, the browser
is provided by a third party. This means that application builders must rely on agreed
standards for the behaviour of the client component.
There are also different distributions of functionality across a two-tier architecture. For
instance, suppose you have a client that accesses your bank account online. If that client
is a web browser, for example, it can be used to request and display your accounts’
statements from the bank’s server. The information you may obtain is restricted to the pre-
defined views of the information provided by the server. So, while the server’s information
might include your account balance, if you want to find out the total payments in and out
over the last week or year, then you will still have to calculate it yourself, based on the
figures the server provides. Alternatively, you might access your bank server over the
internet using another, ‘more intelligent’ client, such as a mobile app. This client might
include a facility to extract figures from your bank statements and to perform whatever
calculations you require. Such a client might also create bar or pie charts that display your
income and expenditure across different categories that you define.
The web browser client in the example of the online bank simply displays the information
that the server provides. The ‘more intelligent’ mobile app client allows you to take the
information the server provides and to manipulate and display it in various ways according
to your own personal needs. The web browser with little functionality of its own is often
termed a thin client while the more intelligent client is usually termed a thick (or
‘thicker’) client.
We have seen that a two-tier approach seems to have some advantages, at least for
applications that operate over networks. The client that is distributed to users may
change, while the server part can be a centralised component that maintains dynamic,
global data in a consistent and secure way for the organisation and for users to access
and use. If a third party component, such as a web browser, provides the functionality
required to support the application, then it can be adopted as part of the solution, with a
significant saving of development effort. There is a potential disadvantage from splitting
the application across a network in that data has to be transmitted over what may be a
slow or unreliable connection.
There are other, slightly less obvious advantages in breaking the application into
components in this way. We shall look at some of these in more detail shortly, but let’s look
at one advantage now. This is an advantage from which you will have benefited if you
have ever decided to change your web browser. You might have changed from Internet
Explorer to Mozilla Firefox, for example, just as a personal preference. When you did this
you changed the client component of all the online applications you use. This is only
possible because web browsers are based largely on common standards and because
they are not realised as an intrinsic or built-in part of any of the applications you use; in
other words, the client is loosely coupled to the server application.

1 Architecture

9 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

1.2 Multi-tier architecture
The approach of splitting an application into tiers can be taken further. Both the client and
the server parts can be further subdivided if this is appropriate for the application. The
client, for example, may be responsible both for some processing of data received and for
the presentation of information. In the example of a bookshop, we may need to calculate
the total cost of an order and display sample content of books. These two functions might
be separated into two tiers at the client end.
The server software might include one or more data stores (for instance, in the form of a
database system). In the example of a bookshop, one data store might include the
images, cost and reviews of a book; another might be used to store more dynamic
information, such as the current stock levels or order time for each book. Splitting data up
in this way would, for example, allow occasional backups of the more static data with
more frequent backups of the dynamic data.
So, an architecture used over the internet might look in outline like that shown in Figure 2.
Here we have added two more tiers on the server side: a data tier and another tier that
handles interactions with the data tier, such as retrieving requested information or
validating data that is put into the data stores. This tier, between the data tier and the
server tier, is sometimes termed the ‘middle tier’ or middleware. An application that uses
middleware to handle data requests between a user and a database is said to employ
multi-tier architecture.

client
(browser)

client
(browser)

client
(browser)

web
server

business
logic

sales records
database

stock level
database

client tier internet server tier middle tier data tier

Figure 2 Example of multi-tier architecture

Quite commonly, ‘multi-tier architecture’ refers to what should more specifically be called
three-tier architecture (client, server and data tiers). More tiers than this, however, can be
used (as in Figure 2) and so the term ‘N-tier architecture’ is used generally to mean any
architecture that has more than two tiers.
As in the two-tier approach, there are advantages to breaking down the application into
multiple tiers. Each tier can be changed more easily as it is less dependent on the precise
details of the other tiers with which it interacts. This again depends on how careful we are
to adopt an approach that ensures the tiers or components are truly loosely coupled.
Simply breaking the application into chunks doesn’t guarantee this; we also need to adopt
suitable standards, and specify precise and limited interactions between the tiers. N-tier
architecture has almost become an all-pervasive approach, and is certainly very
mainstream. Many more clients besides web browsers are now available that can
realistically be interchanged without prohibitive effort, including databases and web
servers.

1 Architecture

10 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

2 Network and distributed architectures
As our description has moved from monolithic applications to client–server and then to N-
tier, the application has been broken down into more and more parts. This trend has been
extended in a modern approach called service-oriented architecture (SOA). SOA is based
around the idea of breaking down an application into a set of much smaller tasks that can
be performed by small independent, ‘software components’, each performing a discrete
task commonly called a service. Service-oriented architecture (SOA) will be explained in
the next section.

2.1 Service-oriented architecture (SOA)
SOA is the architectural solution for integrating diverse systems by providing an
architectural style that promotes loose coupling and reuse. The software components
provide services to other components via a communications protocol, typically over a
network. The party offering the service is known as a service provider (a server), and the
party invoking the service a service consumer (a client).
A service is some functionality, typically a business process, which is packaged as a
reusable software component that is:

● well-defined – a software component with a clearly specified interface and outcome
● self-contained – the implementation of the service is complete and independent of

any product, vendor or technology
● a black-box – the implementation of the service is hidden (encapsulated) from the

service consumer.

Examples of services might be:

● Currency conversion – a service that converts a sum of money from one currency to
another might be used in a wide range of circumstances. It might be used, for
example, to convert all the prices on a website store to a customer’s local currency.

● Customer credit checks – a service that provides the credit rating for a given
customer.

● Provision of weather data – a service that provides selected weather data for a given
geographical area and time period.

● Data storage – a service that allows data to be stored and later retrieved, perhaps
with a range of capacities, costs and timescales on offer.

SOA principles
SOA is governed by a number of design principles (adapted from Erl, 2007):

Interoperability: services implemented in different systems, locations or even
business domains, and using diverse technologies – ranging from program-
ming languages to platforms – need to work together to allow diverse
consumers and providers to communicate. For this to happen effectively,
services must rely on internationally agreed communication standards. Many of

2 Network and distributed architectures

11 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

the current standards were developed for communication over the web –
although SOA is in fact technology-agnostic, so that its principles apply
regardless of which communication standard is actually used.

Location transparency: consumers should be able to make use of a service
without necessarily knowing where the service is located, that is, on which
machine or even in which business organisation. Service consumer and
provider are only loosely bound together, with the consumer having no
knowledge of the service implementation or its platform, and consumer and
provider communicating solely through messages.

Discoverability: the consumer must be able to find out about relevant
services, which usually involves access to appropriate metadata about
services. Discovery is often done through registries: a service registry will
contain metadata and references to services. The actual services are often
contained in inventories: a service inventory is collection of complementary
services within a boundary of the provider, an enterprise or even a meaningful
segment of an enterprise. We distinguish between run-time and design-time
discovery. In run-time (or dynamic) discovery, the consumer first queries the
registry for a service that matches the consumer’s criteria; if such a service
exists, the registry provides the consumer with the location of the service
provider; the consumer can then bind dynamically with the service provider and
invoke the service. This model of service collaboration is known as the ‘find,
bind and invoke’ cycle. While this model is of historical and theoretical
significance, it has yet to become mainstream in practice despite much
research and development effort in both academia and industry. This is due to
the intrinsic difficulty of specifying semantic information which may allow one to
reliably predict the interaction of a potentially unlimited number of diverse
services. Instead, current discovery mechanisms support primarily design-
time discovery – that is, they’re aimed at developers who are trying to find out
about relevant services in the planning stage of a SOA application
development.

Loose coupling and encapsulation: coupling between service providers and
consumers should be low, and confined to reliance to service public interfaces,
with an understanding that such interfaces should disclose as little as possible
of the underlying implementation details, which is known as encapsulation. The
interfaces should be based on standard communication protocols, rather than
proprietary ones, with open standards recommended to foster the highest
degree of interoperability.

Abstraction: both the encapsulated implementation, the implementation
technology and the physical location of services should be fully transparent to
consumers, which should be reliant solely on public interfaces, service contract
descriptions and SOA infrastructures to locate and invoke required services.

Autonomy: the more autonomous a service is, the more control it will have
over its own implementation and run-time environment, and so the greater will
be its flexibility and potential for evolution. Both implementation and run-time
environment can be modified without affecting consumers.

Statelessness: excessive state information can compromise the availability of
a service and limit its scalability; hence, services should remain stateless as far
as is realistic to allow them to do their work.

2 Network and distributed architectures

12 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Standardised interfaces and contracts: to support the service collaboration
model and automate service interaction, services need to be described in a
similar way using commonly understood standards. In particular, a service
description may include descriptions of the service technical interface (that is,
the operations which can be invoked and their parameters), the quality of
service provided, and a service-level agreement which details both service
characteristics (e.g. response time or availability) and cost to the consumer of
invocation. Additional metadata may cover a range of information, for instance
including user satisfaction rating or future development plans.

Reusability: services must be designed with reuse in mind, so generality of the
service in terms of potential reuse across projects and systems is an important
design principle. This impacts on both the granularity of the service (the service
should strive to support generic business processes and tasks and close
alignment with the business) and on the choice of standards and implemen-
tation technology, which should foster the highest possible degree of
interoperability.

Dynamic reconfiguration: service-based systems should be configurable and
reconfigurable dynamically by discovering and incorporating existing services,
but while maintaining coherence and integrity. This should be supported by
metadata, which underlie the discovery of existing services, coupled with
contract agreement descriptors.

Activity 2 SOA
Allow 15 minutes to complete this activity

Given what you’ve just learnt about services and SOA design principles, which do you
think are the advantages of developing business applications based on SOA?

Answer
Here’s one possible list – you may have come up with something different.

● Business and technology integration, with close alignment between software
services and business processes.

● Flexibility in responding to changes in customer requirements, to new business
opportunities or to competitor threats, because services can easily be re-
assembled or new services combined or incorporated into existing applications.

● Reuse, as a service can be packaged and made available for reuse in different
parts of a business which require the same function.

● Integration of legacy applications, as legacy software can be wrapped as a
service and made to interoperate with other applications.

● Potential development–cost savings, as systems can easily incorporate functions
(such as credit card validation or online payment) provided as services by
external suppliers.

● Interoperability and technology independence, as services written in different
languages can interoperate using standard protocols.

2 Network and distributed architectures

13 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Web services
When a service is made available over the internet, it is then usually termed a web
service, which describes the service that a client can access from a server over the
internet, utilising web protocols and standards to enable the exchange of data between
them.
The main protocols and standards employed are XML (eXtensible Markup Language),
SOAP (Simple Object Access Protocol), REST (Representational State Transfer) and
JSON (JavaScript Object Notation) based.
Discussion of these protocols and standards is beyond the scope of this course, but you’ll
find articles on these topics in the Further reading section.
The main point to make here is that web services based on the SOA design principles
described above will ensure that web applications written in various programming
languages can run on various platforms, and can use web services to exchange their data
across computer networks in a manner similar to inter-process communication on a single
computer.

2.2 Cloud architecture
SOA is well placed to take advantage of a recent development known as ‘cloud
technology’ based on what is often termed ‘the cloud’. Cloud technology has changed
how organisations use technology to provide computing services. However, there is a lack
of clarity as to what the term will really come to mean. Some definitions restrict the cloud
to mean that virtual servers are made available and used over the internet, but more
generally the cloud is seen as consisting of a wide range of different resources.
The National Institute of Standards and Technology (NIST, 2013) provided a wider
definition of cloud computing:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources
(e.g. networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction.

Cloud computing is the practice of delivering computing services – servers,
storage, databases, networking, software, analytics and more – on-demand
over the Internet. It is a means of providing computing services as a utility to
consumers in the same way as other utilities such as gas and electricity.
Companies offering these computing services typically charge for cloud
computing services based on usage.

You might take the view that whereas SOA provides services on a network, the cloud
extends the principle to other resources such as processing power and storage facilities
and is not limited to the provision of services. There are, of course, quite a lot of details
that are not covered here. How resources are charged for, made secure, ‘cleaned’ after
use, etc. are just some of the aspects that need to be considered.

2 Network and distributed architectures

14 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

Activity 3 Benefits and potential problems of using cloud architecture
Allow 30 minutes to complete this activity

Take a look at the Amazon Web Services (AWS) website What is Cloud Computing?
What do you see as the benefits and potential problems of using cloud architecture?

2 Network and distributed architectures

15 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

https://aws.amazon.com/what-is-cloud-computing/
http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

2 Network and distributed architectures

16 of 16 http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0 Tuesday 5 February 2019

http://www.open.edu/openlearn/science-maths-technology/web-applications-architecture/content-section-0

