
Approaches to software development

About this free course

This free course is an adapted extract from the Open University course TM354 Software engineering:
http://www.open.ac.uk/courses/modules/tm354.

This version of the content may include video, images and interactive content that may not be optimised
for your device.

You can experience this free course as it was originally designed on OpenLearn, the home of free
learning from The Open University –

Approaches to software development

There you’ll also be able to track your progress via your activity record, which you can use to
demonstrate your learning.

Copyright © 2018 The Open University

Intellectual property

Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence
v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University
interprets this licence in the following way:
www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and
rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open
University. Please read the full text before using any of the content.

We believe the primary barrier to accessing high-quality educational experiences is cost, which is why
we aim to publish as much free content as possible under an open licence. If it proves difficult to release
content under our preferred Creative Commons licence (e.g. because we can’t afford or gain the
clearances or find suitable alternatives), we will still release the materials for free under a personal end-
user licence.

This is because the learning experience will always be the same high quality offering and that should
always be seen as positive – even if at times the licensing is different to Creative Commons.

When using the content you must attribute us (The Open University) (the OU) and any identified author in
accordance with the terms of the Creative Commons Licence.

The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed
content which is not subject to Creative Commons licensing. Proprietary content must be used (retained)
intact and in context to the content at all times.

The Acknowledgements section is also used to bring to your attention any other Special Restrictions
which may apply to the content. For example there may be times when the Creative Commons Non-
Commercial Sharealike licence does not apply to any of the content even if owned by us (The Open
University). In these instances, unless stated otherwise, the content may be used for personal and non-
commercial use.

We have also identified as Proprietary other material included in the content which is not subject to
Creative Commons Licence. These are OU logos, trading names and may extend to certain
photographic and video images and sound recordings and any other material as may be brought to your
attention.

Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or
intellectual property laws.

We reserve the right to alter, amend or bring to an end any terms and conditions provided here without
notice.

All rights falling outside the terms of the Creative Commons licence are retained or controlled by The
Open University.

Head of Intellectual Property, The Open University

2 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.ac.uk/courses/modules/tm354?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Contents
Introduction 4
Learning Outcomes 5
1 Software and software engineering 6

1.1 What is a system? 6
1.2 The nature of software 8
1.3 Characteristics of a software system 9
1.4 Maintainability and other software problems 11
1.5 Divide and conquer? 13
1.6 Architecture 19
1.7 Summary of Section 1 23

2 An introduction to software development 24
2.1 Software development as an engineering activity 24
2.2 The role of development processes 26
2.3 Choosing an appropriate process 32
2.4 Traceability 36
2.5 Summary of Section 2 41

3 Modelling in software development 41
3.1 Importance of modelling 42
3.2 Models illustrate points of view 45
3.3 Introducing the Unified Process 46
3.4 Activities and artefacts in the development process 48
3.5 Summary of Section 3 53

Conclusion 54
References 54
Acknowledgements 56

3 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Introduction
This free course, Approaches to software development, presents an engineering
approach to the development of software systems – a software engineering approach,
paying particular attention to issues of software quality, in terms of both product (what is
built) and process (how we build it).
The material is organised in a distinctive way. We adopt an object-oriented approach to
software development and assume you are familiar with the basic concepts of objects.
This approach uses a fairly standard set of development techniques. We take a broad
view, and techniques are discussed fairly independently of exactly where and when they
would be used.
There has always been debate in the computing industry about just how useful any
particular development technique is. We believe that the techniques introduced over the
last 30 years or so, and many others currently being researched, are important because
they address fundamental issues concerning software quality. You are probably already
familiar with some of the techniques used in this course. Studying these techniques is
more about how to use them to address the quality issues of what you are developing and
how you are developing it, rather than about how to use them in practice.
In this course you will see a precise way of applying techniques, but we will also discuss,
in parallel, a more light-weight approach to software development. You will become
familiar with the purpose of utilising these techniques and will also develop an
understanding of when their systematic use may or may not be appropriate. With
experience you will be able to make decisions on which is the right combination of
techniques for a particular project.
Software systems are built to meet requirements. (This leads to the developer’s mantra,
‘Software must be delivered on time, to budget and to specification.’ You may know it in
another form.) A successful software project must:

l resolve the diverse and possibly conflicting needs of users in a disciplined way
l satisfy the users’ expectations
l have been developed and delivered in a timely and economical manner
l be resilient to the changes that will be introduced during its operational lifetime
l demonstrate good overall system quality.

This is a daunting prospect for those developing and maintaining software. A central aim
of this course is to give you the intellectual tools to cope with the challenge.
This course provides an introduction to software engineering. Assuming you already have
some experience of software development, some of this material will be familiar to you,
though your existing knowledge will be consolidated and will begin to be extended to more
advanced areas. We discuss some of the ideas that underpin software development in
Section 1, and consider the basic activities of software development in Section 2.
Section 3 looks at the role of models and modelling languages, introduces a well-known
software development process.
This OpenLearn course is an adapted extract from the Open University course
TM354 Software engineering.

Introduction

4 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.ac.uk/courses/modules/tm354?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Learning Outcomes
After studying this course you should be able to:
l describe the essential characteristics, and identify, using examples, the connections between the characteristics

of a good software system
l describe the elements of a basic software development process and illustrate the variety of different life cycles
l understand the motivation for, and best practices of, an agile approach to software development
l explain the benefits of the Unified Modeling Language (UML) as a standard notation for modelling
l identify the different kinds of model used in the development of software and describe the relationship between

models, viewpoints and software development.

1 Software and software engineering
This section describes the basic characteristics of a ‘good software system’, and
considers how such software systems may be developed. Once built, software rarely
remains static and can change on a regular basis, so maintaining software is a key activity
in software engineering.

1.1 What is a system?
The word system is in regular everyday use. We talk about the social-security system, the
telephone system, computing systems and even ‘The System’. The trouble is that our
everyday language is often imprecise, and people use the same word to mean different
things (that is one reason why software development can be an arduous process).
The word system is derived from the Greek word meaning ‘to set up’.

Definition
We define a system as ‘an assembly of components that are connected together in an
organised way’. The term ‘organised’ is important here. For example, it tells us that
components are affected by being part of a system.

Example 1
A pile of old telephones, exchange-switching gear and wiring that are awaiting disposal
may once have been a system. But heaped together, they are not a system. Both the
organisation and the connections have been lost.

A system, therefore, is greater than the sum of its parts, and it has properties that cannot
be deduced or predicted by examining any one of its components in isolation (or even all
of its components, if they are not organised and connected). From the above example,
could you deduce the properties of the telephone system by examining a single,
disconnected telephone (or even a big pile of disconnected telephones)? No, because it
no longer works as expected, even though it has not changed physically (it is not broken).
The assembly of components that forms a system does something, it carries out some
process. This process will work on inputs, carry out transformations and produce outputs
in order to achieve a goal. If you view your body as a system, it consists of organs, it takes
oxygen and food as inputs, and does transformations that keep you alive. As a system, it
has a well-defined boundary and a control mechanism that will keep it adapting to
changes in the environment.

Software systems
This course is specifically about software systems, systems where software plays a major
role. However, software does not do anything without the hardware where it is installed
and running, and software systems are usually part of a much wider context that involves
not only other technical components, but also people, organisations and other social
structures. The ‘whole’ of all these components is also known as a sociotechnical

1 Software and software engineering

6 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

system. Sociotechnical systems are complex systems that need to be understood as a
whole rather than as a sum of their isolated components.
In focusing on the software we will therefore be ignoring many other components of the
whole system in which software is just a part. However, as a software engineer you will
need to be aware of how software is used and the interactions with hardware, people and
organisations. The popular press is full of reports of software failures, many of which may
relate directly to problems with the software but may also relate to other issues of the
wider sociotechnical systems context, as in Example 2.

Example 2
You may find it interesting to read about other examples of software failures, such as the
Therac 25 software-controlled radiation therapy machine, which was responsible for the
death of several patients in the late 1980s (Leveson and Turner, 1993).

One well-studied case is that of the unmanned European Ariane 5 rocket, which failed on
its launching flight due to a software problem. During the launch one of its computers
stopped working due to a variable exceeding a limit – a data conversion resulted in an
overflow software exception.

There is some controversy about where the exact blame should fall for the problems that
occurred, but there is an agreement that they were related to the reuse of a module from a
previous rocket without proper enforcement of constraints. This case became well known
due to the huge expense of the rocket ($500 million), the amount of time it took to develop
(10 years) and what it meant for European space projects (Lions, 1996).

Viewpoints
A system can be, and often is, a personal ordering of reality, the result of seeing some
degree of orderly interconnectedness in some part of the world. So a system can be many
different kinds of system simultaneously, depending on who is studying it and why.
Different viewpoints of a system correspond to different sets of users and therefore
different purposes. In this sense, it is a subjective ordering of reality.

Example 3
A telephone system is a communications system to its users. For the engineers who set it
up and maintain it, it is a technical system (that is linked to an employment system – a job
– in their view). Similarly someone who designs telephone switches considers each
switch as a system in its own right – a switch can record usage data as well as route your
calls.

As Example 3 shows, there is a notion of what is included within a system, and what is
excluded. Naturally this notion depends on the stakeholders involved in the modelling and
development of the system and the viewpoints that they have over it. Identifying the scope
of a system is an essential step in the development process.

System boundaries
The system boundary is a conceptual line that divides the system that you want to study
from ‘everything else’. It is useful to think of a system’s environment as being made up of
those things that are not part of the system, but can either affect the system or be affected

1 Software and software engineering

7 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

by it. Example 4 takes you into a particular area of interest, which is known as a domain,
to look at system boundaries and how they can change.

Example 4
A hospital is a domain where software is put to a variety of uses. A hospital might, for
example, join together a series of patient-monitoring systems with the database
management system that manages medical records, creating a larger system with a
different scope. A forward-looking hospital might wish to go further and add weather-
forecasting software. This extension would allow planners to deal with the variations in
flow of patients that arise according to the season. Beds may be allocated and other
resources, such as drugs, bought in preparation.

Activity 1 Combining systems
Allow approximately 10 minutes.

In Example 4, we suggested that two systems, for patient monitoring and managing
medical records, might be combined into a single system. Suggest an additional
function that might be possible with the combined system that would not have been
possible with either of the two original systems alone. What can you say about the
boundary of the combined system compared with the boundaries of the original
separate systems?

Answer
Suppose the monitoring system detected that a patient taking a common drug had a
heart problem. If the two systems were combined, it would be possible to automatically
check whether the heart problem might be due to a known allergy recorded in the
patient’s record.
The boundary of the combined system encompasses a wider scope than the
combined boundaries of the separate systems because the combination of patient
monitoring and medical records supports a wider range of verifications.

1.2 The nature of software
Software is often spoken of as being invisible or intangible, and hence is thought of as
being different from physical artefacts, which can be measured, touched, broken, and so
on. This invisibility can lead to unrealistic expectations concerning the capabilities of
software, which in turn may contribute to some of the myths that surround software and its
development, for example, that accommodating change is straightforward.
Software can, and does, contain errors. There are three important characteristics of
software that affect its development and the likelihood of errors:

l Malleability. Software is easy to change (programmers are often tempted to tweak
their code). This malleability creates a constant pressure for software to be changed
rather than replaced. Every change introduces the possibility of new errors.

l Complexity. Software is often complex. Complexity can usually be recognised, but it
is less easy to define. One item of software can be considered more complex than
another if it requires more explanation. Part of that complexity arises from the

1 Software and software engineering

8 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

potential variety of pathways between the components of a system. The number of
errors is likely to depend on the complexity of a system.

l Size. It is likely that there will be more errors in a large piece of software than in a
small one.

You have already encountered an aspect of the intangible nature of software if you have
programmed in, for example, Java. The instructions and statements that you write in Java
are translated into bytecode, which you do not see.
You might think that, because it is ‘invisible’, software is inherently more difficult to
develop than a physical artefact. However, various techniques can be used to model
software and its behaviour – just as an industrial designer uses geometric abstractions
and other tools to model a physical product before it is built.

Activity 2 Problems with software systems
Allow approximately 15 minutes.

For each of the three characteristics of software mentioned above, explain why errors
might arise in a piece of developed software.

Answer
Malleability. As change is easy to make, often changes are introduced without
thorough consideration of the full consequences of each new change introduced.
Complexity. The more complex a piece of software becomes, the more chances there
are of a change affecting other parts of the software.
Size. The greater the number of lines of code in a piece of software, the greater the
number of likely errors.

1.3 Characteristics of a software system
Having considered the basic terms ‘system’ and ‘software’, we can move on to the notion
of a software system. There are two important questions that we want to address.

l What characteristics should we be looking for in a software system so that we can
develop one that meets the needs of all its users?

l What attributes should a software system have in order to be of high quality?

We develop a software system in response to an identified need. For the purpose of this
course, we assume a software system is to solve a customer’s problem – this is not
always the case as software can be developed without a specific customer, in the hope
that someone will buy or use it in the future. The contract between customer and
developer, as provider, includes the requirements specification, which identifies what the
software should do and the environment in which it must work. We expect a software
system to be useful, as otherwise it cannot meet the needs of its users.
To its users, the user interface represents the software system. No matter what
functionality is contained in the software, it cannot be used to its full potential if that
interface is difficult to use. We expect a software system to be usable – otherwise the user
is hindered in their use of the software to carry out tasks.

1 Software and software engineering

9 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

We expect a software system to be reliable, in that errors are minimised, as otherwise its
users will not be able to perform those tasks that need its support.
While developers are busy constructing a software system, it is probable that the users’
needs will change. In addition new requirements are likely to be identified once a software
system becomes operational. It is also possible that the developer may miss a
requirement during the specification process. We expect a software system to be flexible,
because it is important to be able to change it easily as time goes by. In addition, a flexible
software system makes it easy to correct errors.
In order to operate in its target environment, any design solution to a requirements
specification must be turned into machine-readable code. No matter how useful or usable
a software system might be, we expect it to be available in the target environment, offering
continually available services in the customer’s environment.
The contract between the customer and the developer will also include delivery dates and
costs. Whatever process is used, the developer is expected to meet such contractual
constraints. We could also say that the developer’s working practices affect the availability
of a software system, including its initial delivery and any subsequent changes. From the
customer’s point of view, the software system must be affordable to buy and maintain.
From the developer’s point of view, there must be a way of keeping control of a project.
Labour resources are the most significant component of a developer’s contract, and often
become the two-edged sword that leads to the success or failure of a software
development project.
Software development is concerned with the activities that lead to a useful software
system – techniques that will help you to define a requirements specification and then
produce a design solution to the problem contained in the specification.

Activity 3 Good software systems
Allow approximately 20 minutes.

(a) What is the defining quality of a good software system, and what are its main
characteristics?

(b) How might greater flexibility make a software system more affordable over its
whole life?

(c) Give two reasons why a delivered software system might not meet its users’
needs.

Answer

(a) A good software system is one that meets its users’ needs. We can characterise a
good software system as useful, usable, reliable, flexible, available and
affordable.

(b) Users’ needs will change over time. The time taken to implement the changes in
requirements in a flexible system is less than for less flexible software. As labour
costs are the most significant component of software costs, flexible software is
more affordable.

(c) Software systems are usually out of date even as they are being developed
because:
l some needs are often missed during requirements capture
l users’ needs change with time.

1 Software and software engineering

10 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

1.4 Maintainability and other software problems
A software system should be both available, so that users can decide whether or not it still
meets their needs, and flexible, so that the developer can change it to meet its users’
needs. Maintenance is the key activity for the coordination and control of changes to a
software system. In order to be maintainable, a software system should be written and
documented in such a way that changes can readily be made. This means that we must
take into account the process used to develop a software system. What the developer
does during development affects the ease with which it can be maintained. If a change is
easy to make, the cost of that change (labour) can be minimised so that the software
system continues to be affordable. The maintainability of software is greatly influenced
by how software is designed, written and documented.
Problems of maintenance also apply to software that is purchased as an off-the-shelf
package, or software that is offered as a service by another provider.

Example 5
For anything you buy and use, there are costs associated with its purchase and with the
maintenance required for its continued operation. For example, there are costs
associated with buying a car and with its continued operation. As the vehicle ages, the
costs of maintenance rise, and there comes a point when you have to decide whether it
would be preferable to buy a new car or continue with the existing one. Perhaps
surprisingly, there are similarities between the maintenance of vehicles and the
maintenance of software.

Legacy systems
A significant problem relates to software systems that have been in operation for some
time. If a particular software system continues to meet its users’ needs, there may be little
or no motivation to replace it, especially if that software is associated with a critical service
within a company. Such systems are called legacy systems and typically have the
following characteristics:

l old
l large
l developed using outdated techniques
l implemented with old programming languages
l critical to the business
l changed a number of times since their inception
l difficult to understand because of either a lack of documentation about their internal

structure or a lack of experience within the group responsible for them
l difficult to maintain because of the above factors.

One option would be to replace an ageing software system with a new one. But the
change from old to new can have serious implications for the company involved. It is not
just the users who need to be retrained to use the new software. In some companies the
whole internal organisation is based around their major software systems. Changing
these may require a costly company-wide reorganisation to reflect the new software
systems more accurately. There is also the issue of maintaining continuity of service

1 Software and software engineering

11 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

during the changeover and the risk that the new and therefore unknown system may not
work – in contrast, the legacy system is a known quantity.
There is an additional twist that makes the problem of legacy systems worse. Staff
turnover may mean that there is no one left in the company that developed the software
who understands the legacy system enough to continue maintaining it. Even if those who
developed the original software system have not left, they may be working on other
projects or be unwilling to look after an old system. When faced with the choice of working
on a new or an old system, many people prefer to produce something new.
There is every chance that tomorrow’s legacy systems are being built today. We might say
that today’s solutions are tomorrow’s problems.

Unsuccessful software systems
Unfortunately, successful software systems rarely make the news. Example 6 illustrates
the kind of failure that does break through into the public domain (in this case, the failure
became a series of headline stories).

Example 6
In 1992, the London ambulance service commissioned a computer-aided dispatch (CAD)
system for getting ambulances and their crews to reported incidents. It was intended to
replace an existing paper-based system. There were two notable failures of the new
system in November 1992 that resulted in severe delays in ambulances reaching certain
incidents.

The final report on the system failures (South West Thames Regional Health
Authority, 1993) identified a number of major management problems with the project. A
technical audit revealed that the CAD system was incomplete and not fully tested. Its
ability to deal with heavy loads had not been tested and nor had a backup service been
tested. There were also outstanding problems with the accuracy of the information
needed to initiate each dispatch (South West Thames Regional Health Authority, 1993).

The London ambulance service had a software system that was lacking in usefulness,
usability, reliability and availability.
This discussion of software problems has probably given you a rather pessimistic view of
software development. You must not forget that many software systems work, and work
well, given the fact that they are used in every aspect of modern life. However, the rate at
which the role of software is evolving is so fast that there must be practices involved in
developing software that can cope effectively with this expansion.

Activity 4 Maintainability
Allow approximately 20 minutes.

(a) Suggest a means of measuring the maintainability of a software system.
(b) What can we learn from legacy systems about developing a good software

system?
(c) Suggest a reason why legacy systems will always be a problem.

1 Software and software engineering

12 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Answer

(a) We could measure the effort required by a developer to locate and implement a
given change to a software system. That effort can be classified in two
components – the effort needed to locate and fix errors (bugs), and the effort
needed to adapt the software system to meet its users’ needs.

(b) A legacy system may have started out with all the characteristics of a good
software system, yet those characteristics may have changed over time, resulting
in a less flexible and maintainable product. As change is inevitable, the right
processes should be in place to make change happen in a more controlled way.
This requires the adoption of standards and documentation conventions that help
decision making on changes and how to introduce them. Any changes need to be
well documented so that software is still understandable and less dependent on
the people initially involved with developing and maintaining the software.

(c) The inherent malleability of software makes it easy to change. You have already
seen that a legacy system is lacking in flexibility as a result of the number of
changes made to it during its operational lifetime. (The analogy with metalworking
through malleability is useful. Once a blacksmith forms some component, usually
in iron, there is a limit to the number of times that it can be heated, formed and
cooled before that component becomes brittle and hence liable to failure.)This
explains why our ability to bolt features and fixes onto a legacy system means
that it will eventually become too fragile, and it will become precarious to go any
further. The staff issues mentioned in (b) compound these problems.

1.5 Divide and conquer?
As computing technology has improved, we have tried to construct software systems that
can deal with larger and more complex problems. In order to provide such solutions, the
software systems themselves have become larger and more complex. Unfortunately
there is a limit to how much we can take in and understand at any one time. The Romans
had a strategy called divide et impera – divide and rule. However this covered the idea
that it was easier to rule over groups in conflict with each other.
How can we cope with tricky problems or situations where there is just too much
information? The main technique for dealing with such messy situations is decomposi-
tion. We can decompose a problem into smaller and smaller parts or chunks until each
one can be comprehended or dealt with by an individual. In terms of our earlier definition
of a system, we are looking for patterns and/or components within a system and creating
internal boundaries around them to identify smaller subsystems, sometimes referred to as
modules. We will expose some form of hierarchy in our attempt to simplify a complex
system.
The concept of decomposition can also be applied to the way you develop a software
system. As you will see in Section 2, you can identify a number of different activities or
tasks that an individual or group of individuals might perform in a software development
project.
An individual can successfully build small software systems because it is possible for that
person to understand all that is needed about the problem and its solution. There is a long
history of individuals attempting to develop more complex systems – so-called heroic

1 Software and software engineering

13 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

programming – where success has been less certain. Sometimes the circumstances
resulting from poor planning lead to a situation where it is the only way out to achieve a
piece of workable software. However there are systems that are so large and complex,
such as those that monitor and control air traffic, that they cannot be built by a single
individual. The development of such a software system requires a team of people whose
work must be well coordinated and managed. There must be a well-defined process if
they are to produce an appropriate solution – a software system that is useful, usable,
reliable, flexible, available and affordable. In practice, the process of software
development is partitioned to enable individuals to specialise in different development
activities such as analysis, design and implementation.

Problem and solution
By dividing one large problem into a set of smaller sub-problems, we might expect to
reach a point where we can capture, understand and describe each sub-problem. But
there are two difficulties.

l How do we know that each identified sub-problem is any easier to understand and
solve than the original problem?

l How do we know that all of our sub-problems will fit back together again and recreate
that original problem?

The key to finding sub-problems that you recognise and understand is prior knowledge
and experience. As a developer, you may know how to create a good design or a good
program, but you may not be familiar with the problem domain.
As a developer, the problem that you face is in the world outside the computing system,
where you aim to provide a solution. The software that you construct can provide solutions
to problems because they are connected to the world outside, as illustrated in Figure 1.

the problem is in
the world outside

computing system

connections between the world
and the computing system

Figure 1 Separating a problem from its solution

The main issue that you as a developer should focus on is solving the problems identified
by the users, rather than worrying about how to write the program code. When projects fail
it may be because of mistakes that were made quite early on in the design stage, often
resulting from poor understanding of the problem domain, not because of what happens
at the coding stage.

Example 7
One way to find out whether you have a good solution to a problem is to consider the
kinds of complaint you would receive from users if your software did not work properly. For

1 Software and software engineering

14 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

example, suppose someone had made a reservation to stay in a hotel but when they
arrived, the receptionist told them that there was no reservation in their name. In another
case, they might have reserved rooms for six people only to find that there was only room
for one.

By doing such thought experiments you may often be able to spot flaws in your solution,
although of course there may always be situations you have overlooked, so you can never
be completely certain that your solution is comprehensive.

Modules and interfaces
In software development, there is a long history of decomposing a system into smaller
modules. This modularisation is the standard technique for dealing with large and
complex systems. The modules partition the system design or code. Some typical
examples of modules are:

l whole programs or applications
l software libraries
l classes, in an object-oriented language such as Java.

Although modules may appear as self-contained elements, because they are all parts of a
larger whole there must always be relationships between them that need to be taken into
account, as Example 8 shows.
These relationships limit the ability to change one module without affecting other modules.

Example 8
In developing a software system for a typical manufacturing business, we can identify a
number of possible subsystems – areas for development, such as systems to deal with
customers, production, accounts (payments) and deliveries. While we might want to treat
these areas as independent (as partitions), there are connections between them. For
example, customers are expected to pay for the goods that they have ordered from the
business, and the deliveries department is expected to deliver to the customer. Similarly in
the production subsystem, the progress of each customer’s order would be tracked
through the factory and on to the delivery of the completed goods to the customer.

In general, we say that the interface to a module defines how other modules can use that
module. Sometimes, you can define more than one interface for a module to allow
yourself to be more precise about which services will be offered to different kinds of client.
An interface is the means of connecting one module to another. It tells you what to expect
about the behaviour of a given module and what services it will provide, without telling you
how those services will be provided. For example, the interface can define how a bank
accounts module will respond to queries about the balance of an account or the types of
accounts available.
The interface of a module is a description of all the externally visible operations and what
other modules need to know and do to make use of them, but without any details of how
the operations are implemented internally. From an object-oriented point of view, we say
that the interface to the bank accounts module is an encapsulation of what we know
about accounts in a bank.
A module that provides services to other modules may in turn need to use the services of
yet other modules. These required services are called its context dependencies. A

1 Software and software engineering

15 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

module’s context dependencies and its interface, including any requirements that
prospective clients need to meet, form a sort of contract with clients. The contract
describes what the module does and what needs to be true for the module to do it. Clients
can assume that if the necessary conditions are met, the module will fulfil its specified
responsibilities.
The concept of an interface helps the developer to be more productive. If you can rely on
the specification contained in another module’s interface, there is less for you to
understand because you do not need to know how it works. Furthermore, you have a
better chance of understanding your part of the software system because you can focus
on the things you need to perform your task. A side effect of this added understanding is
that you are less likely to introduce errors. Furthermore, if a module is hidden behind an
interface it is potentially replaceable.
Once your software system contains a set of modules that are well understood, each with
its own interface and context dependencies, you can consider whether any of them can be
reused. It may be that a popular set of modules is adopted as a standard.
The ability for different computing systems to communicate over a network has developed
because of the adoption of such a standard set of modules. Control over the complexity of
computer communications has been gained by decomposing the problem into a number
of layers. Each layer has a well-defined interface through which the layer above it
accesses its services.

Abstraction
Abstraction is a particular way of viewing a complex problem to arrive at some useful
decomposition of that problem. The idea is to group together similar objects or situations
and, while ignoring their differences, focus on one particular and common aspect of the
problem that all these objects/situations possess and/or reflect. The key task in
developing a software system is to decide upon the most suitable abstractions in the
problem domain.
We can say that we have achieved a useful abstraction in a particular module if the
potential software clients of that module do not need to know more than is contained in its
interface. For example, a dedicated module to deal with date handling is a useful
abstraction. The fact that it may be complex to implement is immaterial to clients that use
the services defined in its interface.

Coupling and cohesion
As Example 8 shows, developers need to deal with the dependencies that arise as a
result of their decomposition of a problem and its solution into a number of modules. We
say that a module of a system depends on another if it is possible that a change to one
module requires a change to another. For example, if a business changes its production
methods this may cause a consequent change in the way it calculates the payments
required for the goods it produces.
A developer must not only deal with the nature of each dependency but also the number
of dependencies. In software engineering, ‘coupling’ is used to refer to the degree of
interdependence among the different parts of a system. It is easy to see that certain
systems can have chains of interdependent modules where, for example, module A
depends on module B, which depends on module C, and so on. In some cases these
chains may join up and create a circular dependency, which is a particular form of strong
(or high) coupling.

1 Software and software engineering

16 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Developers try to construct loosely coupled systems because they are easier to
understand and maintain. So a good software system has low coupling, which means that
changes to one part are less likely to propagate through the rest of the system. A further
benefit of low coupling is that components are easy to replace and, potentially, reuse.
Whatever the level of coupling in a software system, it is important to know which modules
are coupled. If there were no records of the coupling between modules, a developer would
have to spend time working through the modules to determine whether or not each was
affected by a change. The result would be a lot of effort spent on checking, even if no
changes were needed. Example 9 illustrates the danger of having more than one module
making use of common or shared data.

Example 9
Date handling has always been a problem for software developers. For applications of a
certain age, the most applicable storage format for representing a year was a number
between 0 and 99. It made sense because 1966 was stored as 66, 1989 as 89, and so on,
therefore less space was needed to store just two digits. Furthermore, if dates were stored
as numbers, tasks that involved sorting by date order were simple – 22 January 1989
stored as 890122, is after 22 December 1966 stored as 661222.

Unfortunately, a number of these applications were still in use as the year 2000
approached, so every module in every application that used the short form of year had to
be investigated.

A major aspect of the problem in Example 9 was that different developers had different
ways of reading and manipulating the values stored in variables that used the six-figure
date format. This increased the effort required to resolve the so-called millennium bug. If
developers had had a consistent way to manipulate dates that did not rely upon the
storage format, the millennium bug would not have been an issue of concern.
Cohesion is a way of describing how closely the activities within a single module are
related to each other. Cohesion is a general concept – for example, a department in an
organisation might have a cohesive set of responsibilities (accounts, say), or not
(miscellaneous services). In software systems, a highly cohesive module performs one
task or achieves a single objective – ‘do one thing and do it well’ is a useful motto to apply.
A module should implement a single logical task or a single logical entity.
Low coupling and high cohesion are competing goals. If every module does only one thing
at a low level of abstraction, we might need a complex edifice of highly coupled modules
to perform an activity at higher levels of abstraction. A developer should try to achieve the
best balance between the levels of coupling and cohesion for a software system. For
example, hotels generate income by letting out their rooms to guests. The concept of
room is likely to be represented somewhere in the software system for reservations for a
hotel. It may be convenient to use a module or class representing the concept of room to
collect and store data about the income generated by letting rooms. However, a better
solution is to have a separate bill or payment module, because it is more cohesive,
especially when a hotel generates income in other ways, for example, from serving meals
to people who are not resident guests.

Activity 5 Divide and conquer
Allow approximately 20 minutes.

(a) Why might you consider splitting up a large project into smaller chunks?

1 Software and software engineering

17 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

(b) How does the complexity of a software system affect the maintenance task?
(c) What is a module?
(d) Why does it help to have low coupling in a software system?
(e) Give examples of the kinds of information that would be valuable when

considering a change to a given module.
(f) What are the context dependencies of a module? How do they relate to a

module’s interface?
(g) What are the benefits of using modules with defined interfaces?
(h) Why does it help to have high cohesion in the modules of a software system?
(i) What characteristics should a module display that will help to ensure that it is

easy and cheap to develop and maintain, and that errors are kept to a minimum?
(j) Why is it important to achieve a balance between coupling and cohesion?

Answer

(a) There is a limit to how much one person can understand at any one time. So there
is a limit to the size of a software system that any one person can deal with. By
splitting a large project into smaller chunks, it is possible to identify a number of
more manageable tasks for those involved.

(b) It is essential to be able to make a change to a software system without having to
know all about that system. Each change becomes difficult when the flow of
control and dependencies within programs are complex. The greater the number
and nature of the dependencies, the harder it is to maintain a software system.

(c) A module is any identifiable part of a software system that is considered
separately. For example, modules may be subroutines (in a procedural language
equivalent to methods), classes (in an object-oriented language), library functions
or other constructs that may be treated independently.

(d) With low coupling, there are few dependencies between modules. Therefore
changes made to one part (one or more modules) of a software system are less
likely to propagate throughout the whole system. (A clear record of the
dependencies between modules helps you to predict the impact of a proposed
change to a software system.)

(e) There are two kinds of information that contribute to the analysis of a proposed
change:
l Which modules are clients of the module in question? This information

indicates how far a change may propagate through the software system.
l What assumptions have been made in client modules of the module in

question? An understanding of the expected services of a module will help
assess the risks associated with a particular change.

(f) The context dependencies for a module are the services of other modules that the
module needs in order to work correctly. You can express the context
dependencies for a module in terms of other interfaces. In effect, you can express
the responsibilities of a module in terms of its interface and context
dependencies. If the context provides the services that the module needs and
clients meet any conditions specified in the interface, the module can guarantee
the provision of the services described in its interface.

(g) The benefits are as follows:

1 Software and software engineering

18 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

l Developers will need to know only about the module’s interface (its syntax
and what it requires and achieves – its semantics), not how it provides those
services. Consequently developers can be more productive.

l Developers can understand aspects of the software system more
thoroughly, so fewer bugs will be introduced.

l It should be easier to find bugs, as irrelevant modules are avoided.
l The possibility of module reuse is increased once it is known what that

module provides and requires.
(h) With high cohesion, a module carries out a sensible set of operations or activities.

Ideally high cohesion implies just one major abstraction per module. The interface
abstracts away from what a developer must know in order to use a module. This
makes it easier for developers to understand the purpose of the module and how
to use it. In addition high cohesion tends to make a module more reusable in other
applications, because it provides a set of operations that sit naturally together.

(i) A module should have low coupling and high cohesion, represent a good
abstraction, and have a well-defined interface that is an encapsulated abstraction
of a well-understood concept.

(j) In constructing a system, you may have a choice between a smaller set of loosely
coupled, less cohesive modules, or a larger set of tightly coupled, more cohesive
modules. In the former case each module may be difficult to understand, while in
the latter case the relationships between them may be over-complex. You need to
strike an appropriate balance.

1.6 Architecture
In software development the term architecture is associated with the overall structure of
a software system or, at a higher level, a family of software systems. For this course, we
will adopt the following definition, taken from Bass et al (2012).

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations among
them, and properties of both.

It is important to understand the software architecture because it tells the developer,
among other interested parties, about the overall shape of the actual or proposed
software system. It explains how the development team can use various technologies to
construct or assemble a software system.
Software requirements come in all shapes and sizes, so developers need to consider
what the most appropriate process to develop an architecture is for a given context.
Choosing a software architecture, or at least part of it, is one of the earliest decisions a
development team has to make. There is always something that can be called a software
architecture, whatever software system is being developed. Even a basic software system
has an architecture.
Architecture serves as a main guide for developers but it is also of importance to other
stakeholders in software development, all of whom will have different concerns about the
software. For example:

1 Software and software engineering

19 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

l users may be concerned with how easy it is to use and learn
l the customer is interested in how much it will cost and when it will be delivered
l software maintainers will be thinking about how easy it is to modify and understand

the repercussions when a change is required to one of the modules.

The architecture will therefore embody many decisions that will affect how the concerns of
the many stakeholders are dealt with. It will also serve as an important means of
communication between the different groups of stakeholders. It is the role of the software
architect to balance these different concerns and reach compromises among competing
concerns.

Activity 6 Architecture
Allow approximately 10 minutes.

Suggest some similarities and differences between software architecture and building
architecture.

Answer
They are both abstractions of the structure of a system. They represent decisions that
will affect concerns of different stakeholders. They are used as a communication
vehicle with different stakeholders.
Changing a building once complete is expensive, whereas changing details or internal
decoration is quite cheap but may incur costs in wastage in materials. Software has
different properties from building components, in particular its malleability and
complexity. Reworking the whole architecture of a software system is also expensive
because of the complexity involved – making internal changes does not incur costs in
wastage of materials, as software is malleable, but it incurs other costs in terms of time
and work invested.

Layers
A software architecture identifies a set of rules for decomposition – the assumptions used
to modularise a software system. A major aspect of the architecture is the identification of
the different partitions into which you can put the various pieces of software that are going
to be used to provide your solution to a problem. Any proposed change to a system will
have a different impact, depending on the software architecture chosen. Here we look at
three ways of decomposing an architecture, with layers, with components and with
services.
Figure 2 illustrates one instance of a layered architecture that can be found in distributed
computing systems. The top layer concentrates on the presentation aspects concerned
with the user interface, which are more prone to change than the rest of a software
system. (It is natural to expect a number of requests from users to make a software
system more usable.)
The application domain is concerned with support for the way a user performs a given
task, such as the processing of a customer’s order. A business may redesign the tasks
that its employees perform, but perhaps not as often as amendments will be made to the
user interface. Unless a business makes a radical shift in its core business concepts and
transformations, the business services are less prone to change than the user interface.

1 Software and software engineering

20 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

The infrastructure contains the system support that usually includes the operating system
and the databases, which allows the system to be more easily ported to new platforms.

present at ion

applicat ion
domain

infrast ruct ure
(OS, dat abases, et c)

Figure 2 Three-layered architecture

Reuse is one strategy to deal with increased complexity of software and it addresses the
concerns of maintainability, minimising costs, short delivery times and quality of software.

Components
We use the term component to denote a unit of reuse or replacement in a software
system. A component could be a module or class with certain properties that make it
reusable or replaceable in a given software architecture and it may depend on other
components. Components are well understood, each with its own interface and context
dependencies (see Figure 3 for representations of a component). It may be that a popular
set of components is adopted as a standard. What is important is to have one, or possibly
more than one, standard in mind when you are deciding whether or not a particular
module or class is a component. Enterprise Java Beans (EJB), .Net and CORBA are
examples of standards for components. The user of a component needs to adopt the
same technology as that with which the component was developed.

provided interface

required interface

graphical stereotype

IProvided

IRequired

MyComponent «provided»
IProvided

«component»
MyComponent

«required»
IRequired

(a) (b)

Figure 3 Two graphical representations of a component

Services
A similar concept is that of a service. A service is also a unit of reuse corresponding to a
piece of functionality, described in a standard language, with published interfaces through
which the service execution can be requested. A service, however, is technology-neutral
in the sense that it can be invoked using standard communication protocols, while a
component is usually technology-dependent as a client needs to use the same technology
as the component.

1 Software and software engineering

21 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

A service is also discoverable, meaning that it can be used by clients independently of
where it is located – service repositories can be accessed to locate services according to
their definitions. A service-oriented architecture (SOA) structures software as a set of
services.
The notion of services being accessed remotely through a web browser – software as a
service (SaaS) – is popular now with systems such as those provided by Google (for
example, Gmail and Google Docs).
Services may not be owned by the organisation developing the software systems that use
them. They come with a service description and reside in a provider server. Programmers
(consumers) who use them in their systems do not have access to the code that
implements them – they need to find them in a registry of service descriptions and once
found they can invoke them (see Figure 4).

consumer registry

provider

find

bind and invoke publish

service

service
description

service
description

Figure 4 Services

Components tend to relate to entities, while services relate to processes. Components are
assembled together through connectors (usually called glue) that are static structures,
while services are bound at run-time in a dynamic way when they are discovered (Mašek
et al, 2009).
Layers, components and services are different ways of structuring an architecture. They
can also be used in conjunction with each other.

Activity 7 Reuse
Allow approximately 20 minutes.

(a) What are the characteristics of a component?
(b) How does the concept of an architecture contribute to component reuse?
(c) Which form of decomposition might be used in a software architecture?
(d) What are the similarities and differences between components and services?

Answer

(a) A component is a module that is considered to be a sufficiently good abstraction
for the problem in hand. A component should be capable of being reused in future
projects having the same software architecture, or being easily replaced at a later

1 Software and software engineering

22 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

date within the existing software system. As with all modules, a good component
has a well-defined interface and is an encapsulated abstraction of a well-
understood concept, with strong cohesion and low coupling.

(b) The architecture of a software system embodies high-level decisions about the
overall structure of the system, and this architecture may apply to more than one
system.

(c) The basic form of decomposition used in a software architecture is partitioning to
meet a number of separate concerns, each concern being addressed by a
subsystem. For example, you might want to separate the user interface layer from
the core business services layer, or you may decide to build or reuse components
and/or services for some of the partitions.

(d) There are similarities between a service and a component. They both promote
reuse and flexibility. They both use public interfaces to allow requesters to make
use of their functionality without relying on their implementation.
There are differences too. A component is usually implemented in a specific
object-oriented technology, therefore only clients compliant with that technology
can easily communicate and integrate with it. In contrast, a service uses
communication standards that allow the interoperation of diverse technologies.
Finally, components tend to be associated with business entities, while services
tend to be associated to business processes – they may realise part or the whole
of the functions within such a process and may involve several business entities.
Be aware that although this is a widely accepted classification, not everyone
follows it, and you may see components called services and vice versa.

1.7 Summary of Section 1
This section has briefly examined the nature of software, and identified the desirable
characteristics of a software system. You have seen:

l that a good software system is one that meets its users’ needs
l examples that illustrated the connections between the usefulness, usability,

reliability, flexibility, availability and affordability of a software system
l that a software system can soon be out of date, as users’ needs change with time,

and that needs can often be missed during requirements capture
l that modularisation is the main method of dealing with the size and complexity of a

software system
l the problems that arise with legacy systems
l the significance of maintenance
l the importance of software architecture.

Software systems are becoming all-pervasive in our society, and the demand for new
systems is growing rapidly. There are significant risks associated with software systems
when they are critical to a business. This all points to the need for software development
processes that will deliver software systems that are easy to maintain and reliable, while
at the same time ensuring that the systems serve some useful purpose for their users.

1 Software and software engineering

23 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Good development processes will produce well-engineered components based on
reusable architectures.

2 An introduction to software development
In this section we will introduce the basic activities involved in the development of
software. Then, we will consider the general concept of a life cycle for software
development and discuss examples of different life cycles. At the same time, we will
consider the importance of models as part of software development.

2.1 Software development as an engineering activity
Software development has a great deal in common with the discipline of engineering, from
which the term software engineering arose, and is said to be:

1 The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the
application of engineering to software.

2 The study of approaches as in (1).

(IEEE, 1990)

Carrying out a systematic, disciplined and quantifiable approach implies management,
and assumes that project management is a necessary activity within the discipline of
software development.
As discussed in Section 1, words such as reliable, flexible and maintainable (among
others) describe characteristics of software systems. They are all aspects of software
quality. To obtain a high-quality software product requires a well-managed development
process.
But the term engineering for software development is also associated with a few other
factors:

1 Developers are concerned with meeting a set of requirements – there is usually an
identifiable problem that they can solve.

2 There is a defined process that can be used to produce a solution and, within that
process, there are a number of identifiable phases or activities.

3 There are tasks to be done in each phase that result in one, or possibly more than
one, artefact related to the final product (software, hardware or document).
Developers undertake different roles to perform such tasks (designer, programmer,
tester and so on).

4 The quality of both the products and the processes by which they are made is
important: the right product is being built (validation), the product is built in the right
way (verification), and the product is behaving as expected (testing).

5 There are tools to improve the effectiveness and efficiency of the tasks performed by
developers in their various roles.

2 An introduction to software development

24 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

6 There is a body of knowledge that developers might use and/or add to. There are
ways of working to support the previous five factors (such as standards and rules for
decomposition in a given context).

7 There is a recognised professional activity with its own code of practice and legal
framework.

You might like to look at some dictionary definitions of the term engineering and see how
the above observations fit them.
While there is considerable argument about the term software engineering, there is no
doubt that software development does require certain skills and knowledge of certain
ideas and principles. This section looks at what is needed to ‘engineer software’. What
should a developer do in order to produce a software system that meets the needs of its
users?
In Section 1, you saw that there are three characteristics of software that affect its
development and use – malleability, complexity and size – and that these all contribute to
the likelihood of errors. Issues arising from size and complexity are addressed through
modularisation. In order to ensure that the introduction of errors is minimised whenever a
change occurs, you need to pay special attention to the development process.
Software development is a human activity. Software systems are developed by one group
of people for another group of people to use. The success or failure of a project is
determined by social as well as technical factors.
Users want a system that does what they need and that they can use. One that is
technically superior but does not meet these criteria will fail. Users will resent, ignore or, in
the worst case, completely reject it.

Activity 8 Software development
Allow approximately 15 minutes.

Give the characteristics of an engineering approach that support the argument that
software development is an engineering discipline.

Answer
Software development follows an engineering approach provided that the following
conditions are met:

l it is concerned with meeting a set of requirements that are defined as clearly as
possible

l it uses a defined process with clear activities, each of which has at least one
identifiable end product

l developers can apply their skills and experience to the tasks demanded of them
l validation and verification are regarded to be as essential as building the software

itself
l it makes sensible use of tools and standards
l it follows a code of practice.

2 An introduction to software development

25 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

2.2 The role of development processes
A development process is a set of rules that defines how a software development
project should be carried out, and a set of software engineering activities associated with
the development of software. Each activity undertakes some clearly defined process,
starting with a number of inputs from any preceding activities. On completion of an activity
there may be one or more outputs, which are known as deliverables.
The order in which these activities are carried out is called a life cycle or process model,
and outlines an overall process for the development of a software system. Project
management and quality management activities permeate the life cycle of software
development. A complete life cycle takes us from the first ideas about the need for a
software system to its final withdrawal.
This approach of following a well-defined process has been promoted as the best way to
meet the potential diversity of users’ needs, and the primary mechanism to understand
and harmonise conflicting demands on the development process. However, this approach
has also been contested as too prescriptive, heavy on documentation, and not helping to
meet the expectations of customers. In this section, we will start by presenting a well-
defined process for software development but will also discuss some lighter-weight
alternatives.
In Section 1, we introduced the notion that a good software system is one that meets its
users’ needs. In general, we will identify a customer as someone who pays for a software
system, in contrast to the people who use it on a day-to-day basis – the users (although a
customer may also be one of the intended users). A successful development project will
deliver a product that meets, or even exceeds, the customer’s expectations.
Software can also be developed without an identified customer – in that case it is
successful if it can find someone who will become a customer and buy it.
We will assume that a customer (or someone acting as a customer) has assessed the
feasibility of some initial ideas with a potential group of users and has decided that a
software system may be required.

Typical technical activities for the development of software
There are many and varied methods used to develop software. However each one
typically includes activities that can be roughly classified as follows:

l Domain modelling. Understanding the environment in which a system may be
introduced – the business processes and rules. This is typically an activity that
precedes a decision to develop a software system.

l Requirements (also known as requirements engineering). A set of steps including
requirements elicitation, where you identify the problem, and requirements analysis,
where you categorise, prioritise and model requirements. This defines what the
system is to do.

l Design. Determining how you will solve the problem.
l Implementation. Acting upon the decisions made at the design stage.
l Testing. Testing what you have done so that you can determine whether or not you

have solved the problem.

Different methods may subdivide the above activities or use different terminology. A
specific approach, the Unified Process (UP), will be introduced in Section 3. By

2 An introduction to software development

26 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

themselves, however, these activities are not enough to develop a good software system.
Other activities are needed to a greater or lesser extent depending on the context, as you
will see in this section.
You are likely to break up most problems into smaller, more manageable chunks, and deal
with each one separately. It will then be necessary to bring the chunks together into a
unified whole. This process is known as integration and is sometimes identified as a
separate activity. Sometimes delivery of the software system is also identified separately,
especially when there are contractual implications such as payment.
A software system is likely to change during its operational lifetime. This is the
maintenance activity, which allows a software system to evolve in order to:

l correct errors
l adapt to a changing environment
l introduce enhancements required by the customer
l improve the software in anticipation of future changes.

The four activities of analysis (analysis is often used as a generic term for the activities
that precede design), design, implementation, and testing are the ones you will see most
often in diagrams depicting the process model of software development.
It is important to recognise that they are not the only activities involved in the process of
developing a good software system. Project management and quality management are
the two additional activities that hold the process of development together – the all-
important glue for software engineering activities. Maintenance will inevitably involve the
activities of requirements, design, implementation and testing, and will itself need to be
managed, as illustrated in Figure 5.

quality
management

project
management

maintenance

analysis

testing design

implementation

Figure 5 Activities for the development of a good software system

2 An introduction to software development

27 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

An overall process model
A process model (or life cycle) is a description of all the events and activities in the life of a
software system or product and the sequence in which they happen. So you can choose
how to connect the activities together to form a process model, which you can then use to
elaborate a process for developing software. For example, if you arrange the five activities
of requirements, design, implementation, testing and maintenance into a single
sequence, you have the classic waterfall model.
However, in practice it is not usually possible to complete each activity correctly in one
attempt. In addition, as development proceeds, the products of earlier stages become
dated, as your understanding of both the software and its environment evolves.
If projects use a strictly sequential process model, a working version of the software
system will not be available until late in the testing activity. This will represent a long wait
for both customer and users, who won’t be able to see a working response to their
requirements until the final product is finished. In addition, any errors detected in the
working version of the software could be disastrous as it would be too late to correct them.
Real projects rarely follow a purely sequential process model. The act of reviewing is an
important activity when testing the quality of any development process and its resulting
products.
An alternative process model is to iterate around one or more of the activities. Iteration
allows the developers to improve the outputs from a given set of activities and get
feedback before moving on to the next activity. In particular, iteration allows a group of
people, usually developers, to perform a review of a sequence of activities, or of an
activity and its outputs.
In general, reviewing a proposed solution provides the feedback necessary to modify it
and improve the solution. Think what happens when you need to tune a guitar or violin.
You pluck a string, a note sounds, and you adjust the tension on that string. You repeat the
process until you get the desired pitch.
It is often difficult to identify all requirements and state them explicitly at the outset of a
development project. It is a good idea to start with a subset of the requirements and
incrementally grow the system with feedback from each iteration. This approach is known
as iterative and incremental development. As shown in Figure 6, each iteration is a
complete, small project, with a short, fixed timeframe (timeboxed), consisting of
requirements, design, implementation, testing and integration, and resulting in a partially
working system. Each of these repeated short iterations adds complexity until the final
system is produced.

2 An introduction to software development

28 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

requirements

design

implementation and
test and int egrat ion

and more design

final int egrat ion
and syst em t est

iterations are fixed in
length, or timeboxed

the syst em grows
incrementally

feedback from
iteration n leads

to refinement and
adaptation of t he
requirements and
design in iteration

n+1

requirements

design

implementation and
test and int egrat ion

and more design

final int egrat ion
and syst em t est

time

3 weeks (for example)

Figure 6 Iterative and incremental development process (Larman 2005, p. 20)

In an iterative and incremental development, users obtain useful and usable software
quickly. This method also enables the developers to take on board feedback from users
as the software develops – an increment may simply be an enhancement of the previous
version. Increments can be developed sequentially or in parallel, depending on
circumstances. For example, a small team might choose to develop increments
sequentially, according to a priority agreed with the users.

Activity 9 Development process
Allow approximately 20 minutes.

(a) What is a development process?
(b) What should the role of project management be with respect to the deliverables of

a development project?
(c) What is the difference between a customer and a user?
(d) Suggest a reason why maintenance is a core activity in the development of a

good software system.
(e) What additional task is needed when the development of a software system is

partitioned into a number of increments?
(f) What are the assumptions on which the waterfall model is based?

Answer

(a) A development process is a set of rules that defines how a software development
project should be carried out. It incorporates a number of activities, and a process
model (or life cycle) that indicates how these activities are ordered.

(b) A good software system must be affordable and available within an appropriate
timeframe. Each deliverable uses resources, such as developers’ time, that add
to its cost. Project management involves the identification of the appropriate
deliverables for a given set of requirements and controlling the cost of producing
them. Project management also involves ensuring that deliverables are produced
on time and taking steps to cope with any delays.

2 An introduction to software development

29 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

(c) A customer is the person who pays for a software system, whereas a user is
someone who will use that system on a day-to-day basis. A customer will also be
a user when the proposed software system is intended to support their job.

(d) Maintenance allows a software system to evolve over its operational lifetime so
that it continues to be useful.

(e) A task devoted to the integration of the increments to form the final software
system will be needed.

(f) There is an assumption that once a particular activity or phase is finished, it is not
re-entered, and that the activities do not overlap but follow each other in a
sequential life cycle. There is no need for reviewing or reworking. All this
presupposes that an end point for each activity can be identified.

Agile development
Agile development has become, in the last 20 years, a popular approach to software
development. It is an umbrella term used to describe a variety of (agile) methods that
promote a set of practices that encourage simpler, more light-weight, faster and nimbler
software development that can adapt to the inevitable changes in customer requirements.
The continual realignment of development goals with the needs and expectations of the
customer aims at software that better serves its purpose.
As seen below in the manifesto, agile development is an approach to software
development that puts people and working software at the forefront of the development
process.
The movement towards a more agile way of developing software has been gathering
momentum for a long time. Many of its proponents were associated, throughout the
1990s, with several approaches known as light-weight in opposition to more prescriptive
approaches to software development. In 2001, leading proponents of the agile approach
got together and wrote a manifesto (Figure 7).

2 An introduction to software development

30 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

© 2001, the above authors
this declaration may be freely copied in any form,
but only in its entirety through this notice.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn
Ward Cunningham

Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

Figure 7 Manifesto for agile software development

Agile practices of simpler, lighter-weight, faster and nimbler software development that
can adapt to change are best practices that are not new. Iterative and incremental
development, for example, has been promoted for a long time in the short history of
software development and adopts some of these practices. However what the agile
approach does is to promote the implementation of those practices with well-defined
rules. The emphasis on the people involved in the development is also common to all
agile approaches and is the basis of the sense of fun, motivation and productivity usually
associated with it.
The agile movement also has its deprecators and critiques, one of them being that agile
methods do not scale up to larger systems. It is however accepted that some old practices
of software development sometimes lead to problems and agile practices, although not a
panacea, may bring better ways of working.
Extreme programming (XP) (Beck, 2004) is one of the best-known agile methods. It is a
light-weight method, based on intensive testing and incremental development. It defines a
series of practices about how individuals and teams should work, how the environment
should be set up, and how the work should be carried out. These practices include
incremental design, test-first programming, programming in pairs, continuous integration,
planning for the week, and so on. Scrum (Schwaber and Sutherland, 2011), which is also
a popular agile approach, defines a set of roles, events, artefacts and rules. All events are
timeboxed and have well-defined rules – scrum events comprise:

l the sprint – a development phase, no longer than a month, that has as a deliverable
a useable working increment

l the sprint planning meeting – lasts no more than eight hours
l the daily scrum – a daily meeting, no longer than 15 minutes, looking at what has

been done and planning the work for the next 24 hours.

2 An introduction to software development

31 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Many of the agile practices are geared to better communication and collaboration among
developers.
Several agile practices have been recognised and incorporated in other more prescriptive
development processes, in particular the emphasis on people as opposed to process,
short iterations and the acceptance that systems change. The term agile can be found
now in many contexts, and it is interesting to see, for example, a report from a UK
government agency, the National Audit Office, on Governance for Agile Delivery (National
Audit Office, 2012).
An agile approach requires experience to be able to pick, choose and adapt the elements
of a development process that best suit a real situation. This is often what happens in
practice and many development processes get adapted rather than used as mandated.
By learning a set of techniques and a process to apply them, and by discussing possible
alternatives you will be in a better position to make these decisions. Software
development is not an exact science and many factors, such as context, the organisation
and the problem will dictate how development proceeds.
We will be using the term agile (with a small ‘a’) to refer to best practices, as opposed to
Agile (with a big ‘A’) to refer to specific agile methods. We will use the term plan-driven
development to distinguish traditional, more prescriptive approaches to software
development from agile development approaches.

2.3 Choosing an appropriate process
By definition, a good software system must be fit for its intended purpose. It should
therefore be evident that because software is needed for such a variety of purposes; there
is no single development process that will suit all purposes. Consider the following
reasons for building systems:

l to control a series of gates at level crossings
l to control a manufacturing process for chemicals
l to manage an international stock market
l to manage a supermarket
l to manage a public lending library
l to administer the activities of a university
l to help you manage your personal finances
l to control your television and video recorder
l to play a game on a mobile phone
l to manage electronic funds stored on a smartcard.

The people who use these systems will have different views about what it means to have
a software system that is useful, usable, reliable, flexible, available and affordable. So it
should be no surprise that there are different development processes for different types of
system. Indeed software companies often specialise in developing software for specific
kinds of business, such as banking or manufacturing.

Choosing the appropriate level of formality
The following two examples illustrate how the amount of formality in a development
process varies.

2 An introduction to software development

32 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Example 10
Government legislation often requires software systems to be built to support new
administrative functions. When developers compete to supply such software systems,
they are asked to conform to government-approved standards. One of those standards is
known as PRINCE, which stands for ‘PRojects IN Controlled Environments’ and relates to
the management of projects and the quality of the developed software.

Commonly, developers must be able to show that their development process conforms to
the regulations set out in PRINCE. In addition, developers may be required to adopt an
approved process for their analysis and design activities. The most common of these for
use with PRINCE is known as the structured software analysis and design methodology
(SSADM).

Example 11
In certain financial areas, being first to offer some new service is the way to make the
most profit. In other words, time-to-market is critical because if you miss out your
competitor takes the spoils. When there is a need for a software system to support such a
service, development is almost a race against time. Every aspect of the development
process has to be tuned to meet the time-to-market.

So the aim is to do the simplest things needed that could possibly work when delivered. It
also means that communication overheads must be minimised, so there will be few
developers (say, two) who work to a minimal set of agreed procedures. Also, if the amount
of actual code produced is small, the chance of introducing errors is reduced.

Of course, there must still be testing to ensure that the software performs its intended
purpose, but if the complexity of the software is also minimal, there will be fewer tests
to do.

Examples 10 and 11 show that there is no single development process that is appropriate
to all kinds of software product. The amount of information recorded during development
may be different in the two examples.
Example 10 illustrates the need for a formal development process. Although it is a slow
and deliberate course of action, the resultant software system must be able to deal with all
the nuances of the legislation. The developers must be able to show that each aspect of
the legislation has been incorporated into the final software system. Software
configuration management is the discipline of managing and controlling change in the
evolution of software systems (IEEE, 1990, p. 20).
The control and maintenance of the integrity of a project’s deliverables (ensuring that they
do not become corrupted or inconsistent) is the responsibility of the configuration
management activity, which is related to the need for integration.
In contrast, Example 11 relates to software that is required for a specialised purpose with
a minimal development time. The developers have the benefit of a narrow scope for the
software system, and the short development time means that it is unlikely that the users
will request many changes, further reducing the demands on development.
In general, the size of a project influences the choice of development process. As
illustrated in Example 11, the amount of formality in the process can be minimal. Small
teams of up to 10 people can communicate and respond to changes informally.
In larger projects, such as in Example 10, a well-defined procedure for controlled
development is necessary – an informal communication network on its own is not enough.
One approach to the solution of the problem of large projects is to split the group into

2 An introduction to software development

33 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

smaller teams according to the responsibilities set out in a given development process.
Just as modularisation is the way to deal with the complexity of a software system,
developers can be assigned different activities and deliverables within a given project.
This partitioning allows developers to specialise and become analysts, designers,
programmers and so on.
Agile development encourages collaborative development to reduce the problems of
communication that can arise in large projects. XP promotes pair programming where the
code is written by pairs of programmers to encourage communication, feedback,
encouragement (Beck, 2004), and in Scrum the daily scrum meeting promotes team
awareness, with every member of the team knowing what others are doing. In
Example 11, developers may opt for an agile approach with pair programming, as in XP,
and quickly deliver an initial version that is then updated on short iteration cycles.
At some point, a software system will have outlived its usefulness. The developers should
consider the expected lifetime of the prospective software when they assess the risks of
producing a successful product. In Example 11, the time-to-market is a significant factor,
but the expected lifetime is likely to be short because of the nature of financial markets. So
a slow and deliberate development process is inappropriate.

Dealing with risk
A software solution to a problem needs to be considered in the broad context of the
domain to allow you to manage the risks associated with a development project. For
example, if delays cause the team in Example 11 to miss the market ‘window’, it does not
matter how much software has been developed, because it is no longer of benefit to the
customer and users. Assessing risks and taking steps to reduce them are important
activities in software development – this is known as risk management.
In a typical project, the major risks are around the requirements. Do you understand
them? Have you got them all? Are they changing too frequently? Anything that you can do
to increase your confidence that the requirements you have are both necessary and
sufficient can reduce the risk of project failure. In general, for every decision you make
there is a risk that your decision is wrong, or at least inappropriate, and you should
consider identifying and reviewing major decisions. If the risks cannot be overcome, the
project is unlikely to succeed.
An agile approach takes the view that requirements will change during development, and
therefore they should be under continuous review. By involving customers throughout
development it is easier to address changes in requirements and reduce the risk of
making the wrong decision.
In any project there is likely to be a trade-off between what can be delivered in a given
time to a specified budget and the functionality of the software system. Often the number
of desirable features of a solution exceeds those that can be delivered for a given price
and within a given timescale, so choices have to be made. One way to make such choices
is to estimate the risk of not delivering each feature. That is, if a feature were not to appear
in the final product, what effect would this have on such things as the usability, usefulness,
reliability and flexibility of the product?
Figure 8 illustrates a simple spiral process that deals with risk explicitly and can be used in
the development of a software system. (There are many interpretations and variations
upon Barry Boehm’s original spiral (Boehm, 1986).) There are four steps that are
repeated with each iteration of the spiral:

l determine the objectives, the alternatives and the constraints

2 An introduction to software development

34 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

l evaluate the objectives and identify and resolve the associated risks
l develop and verify a (partial) solution or product
l review that solution, and plan the activities for the next iteration.

review that solution and plan
the activities for the next iteration

evaluate the objectives;
identify and resolve the

associated risks

determine the objectives, the
alternatives and the constraints

develop and verify a (partial)
solution or product

Figure 8 Spiral process to deal with risk

The spiral process starts when it is recognised that a particular organisational process can
be improved or supported with the aid of a software system. The distance from the origin
is intended to show how many resources have been used, the cumulative cost of a
project.
There is no need for a complete solution to be produced by the end of the first iteration of
the spiral. For example, the first iteration could focus on the question ‘Can we build an
acceptable software system with the resources that can be brought to bear?’ After each
iteration of the spiral, new risks come to light and plans are made for the next iteration in
order to resolve those risks. With successive progressions, you should reach a point
where your review indicates that you have an acceptable solution – a software system
that meets the needs of its users.
Agile development follows, loosely speaking, a spiral approach and has mitigation of risks
as an important concern. There are however some indicators that would distinguish an
agile process from the generic spiral model. In agile development the short timeboxed
iterations, for example, result in partially working systems, and an iteration would,
typically, be no longer than 1 month.
Such a risk-driven model is also helpful when developing large software systems or
systems where the developers have little experience of the problem domain. In both
cases there is a high risk of failure. For example, if you have never built a real-time
system, you need to gain some understanding of the scheduled execution of tasks.

2 An introduction to software development

35 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Activity 10 Issues in software development
Allow approximately 20 minutes.

(a) Why might a software development company specialise in a certain kind of
customer, such as those in banking or health care?

(b) In which of the activities in Figure 5 would you expect to do your configuration
management during a project?

(c) Why are there additional risks when developing large projects?
(d) What is added to a development process with the introduction of risk manage-

ment?

Answer

(a) Through specialisation, a software development company can foster experience
in a given domain, whether it is banking, health care or any other field of interest.
The developers in that company would have (or would hope to gain) sufficient
knowledge to understand the problems raised by the users and therefore be able
to present solutions in a form that can be understood by those users. In addition,
the company may develop and use a consistent development process that is
appropriate to the set of customers in that domain.

(b) Maintenance deals with change. Configuration management is the discipline of
managing and controlling change, and so you would expect maintenance to be
where you would perform many of the configuration tasks. However there is a role
for configuration management during the development process in, for example,
ensuring the consistency of models. Quality management is the activity in which
you would perform these tasks.

(c) The chances of failure increase as the size of a software project increases, as
more errors are likely to be introduced. Effective communication between the
members of a large team also becomes more difficult.

(d) The most important additional aspect is the use of the identification, evaluation
and reviewing of risks that are carried out with each iteration of the development.
These steps introduce feedback into the process to help ensure that the
deliverables at each stage are leading in a timely manner towards the correct
product, and risks are controlled.

2.4 Traceability
The need for a software system often comes from a set of potential users, who may not be
employed in the same company as the developers of the software system. Sometimes
software development has no clearly identified customer other than the developer.
Software is developed hoping that someone will buy it.
Initially developers must find out about the users’ domain and express their understanding
of the problem in a form that is appropriate for the proposed development process.
If a plan-driven process is followed, early in the process developers produce a
requirements specification document that identifies what the proposed software system
should do and the environment in which it must work. It relates what the users want to
what the developers aim to provide. This implies that there is a need to record more than

2 An introduction to software development

36 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

just the requirements. It allows for the tracing of the history of each requirement from its
origin in the problem domain, through the various intermediate activities, so that it is
possible to reconstruct the significant events that led to the final operational software
system.
The ability to trace the history of each requirement is known as traceability. Among other
things, traceability is essential for dispute resolution (knowing what was agreed during a
project), for seeing the effect later in the project of changing or deleting requirements, and
for demonstrating that you have dealt with each requirement. The chosen development
process will determine which events can be reconstructed and hence determine the level
of traceability. It is important to recognise that the amount of documentation should be
commensurate with the desired level of traceability – neither too much nor too little.
Agile approaches are sometimes identified with the demise of documentation. The agile
manifesto contrasts working software with comprehensive documentation and agility has
emerged as a reaction to heavy documentation as required in rigorous management
methods (such as the capability maturity model).
However, agile approaches take a pragmatic approach to documentation and traceability
(see Example 12). They emphasise the balance between the amount of documentation
and the pay-off it brings. Heavy documentation is difficult to keep updated and is
sometimes never used. Agile documentation should be simple to understand, have a well-
defined purpose and should maximise the pay-off of the effort that is put into it. The
involvement of stakeholders in an agile project will help determine the amount of
documentation required.

Example 12
An agile project has documentation in the form of user stories and tests. A user story
describes some functionality required by a user, while a test is an executable form of a
user story and therefore directly related to it. Tests are written before coding and are also
directly related to the code produced. Changes over time can therefore be tracked
through with the help of a tool that manages source code, and traceability can be
preserved.

On a given project, there may be a number of deliverable documents that record your
activities. You should treat your documents as part of the explanation of what is done.
When you write down what you know about a problem, it helps to clarify your
understanding of that problem and helps you to communicate with others and share the
same mental model. Furthermore, writing and drawing helps you to explore the problem
and the potential solutions.

Project notebook
Remember that the program code is a necessary but not a sufficient deliverable if there is
a need to understand decisions taken. Documentation adds to your explanation. However
the main purpose of software development is to produce quality software and
documentation should serve that purpose. The approach taken to software development,
the problem being addressed, contractual obligations and other factors will determine how
much to document and what to document.
Keeping a project notebook is a disciplined approach to organising your thoughts and
actions as a software developer. Your project notebook is a record of notes, thoughts,
drawings, ideas and decisions (and the reasons for taking those decisions) as you work

2 An introduction to software development

37 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

on a project. In its simplest form a project notebook will be paper based, but it could be
recorded in files on a personal computer.
For it to be effective, you should keep your project notebook with you at all times, so that
you can use it, save it and review it. There is no limit to what you can record in the
notebook. For example, you can note down what your users say about their needs, make
some preliminary sketches of models or even record telephone numbers and URIs that
may be useful while at work.
Whatever you record, you should date-stamp your notes, and review them on a regular
basis to ensure that your questions have been addressed and that you have extracted the
information that is useful on a given project. You must keep accurate dates and times for
the information recorded in your notebook for the following three reasons (all of which
relate to traceability):

l your project notebook may be required as evidence in some enquiry or even in a
court of law

l it helps you to review what you have done and how long you took to do some task
l it facilitates learning.

Activity 11 Traceability
Allow approximately 30 minutes.

Part A

(a) Why is traceability important to the development of software?
(b) How does documentation contribute to traceability within a development project?
(c) Which activity or activities in the development process (shown in Figure 5) are

most affected by poor documentation?
(d) For what kind of software system might you minimise or even avoid any

documentation?
(e) How would you characterise agile documentation?
(f) Why is it important to review the contents of your project notebook?

Answer

(a) Traceability is important for the reconstruction of significant events. In software
development it should be possible to follow all the activities undertaken in
response to a proposed change. In particular, you should be able to trace
backwards from an implemented component or components, through their
design, to a given requirement.

(b) Within a development project, documentation records the progress from
requirements to implementation (and beyond). It is possible to identify each
requirement and follow the actions taken to implement a solution to that
requirement. You might, quite simply, be required to show that you have
implemented each requirement correctly.

(c) All seven activities will be affected by poor documentation. The maintenance and
quality management activities will be most affected because they rely on the
existence of traceability within the outputs of a development activity. (You saw this
problem earlier when we looked at legacy systems.)

2 An introduction to software development

38 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

(d) If a proposed software system is likely to have a short lifetime and will be
discarded after use, it may be acceptable to minimise or avoid the task of
documentation.

(e) Agile documentation should be gathered with a purpose, should be easy to use
and above all should justify the effort put into gathering it. There is no reason why
this shouldn’t apply to any kind of documentation but often software development
produces heavy documentation that is rarely used.

(f) The act of reviewing your notes helps you to identify what worked and what did
not, as long as the notebook records accurately what you did and when. A review
helps you to trace the events that led to the decisions you made since your
previous review. Regularly reviewing your notes also enables you to check that
you have followed up on all the decisions that you made.

Part B

What are the main problems associated with the development of software? You should
be able to identify at least six.

Answer
Here is our list of problems that affect software development (you may have identified
others):

l difficulty in capturing all the user requirements
l difficulties in managing and developing large and complex systems
l not meeting users’ requirements and avoiding dissatisfaction with the completed

software
l continual changes in user requirements (often referred to as requirements creep)
l maintaining poorly documented software
l the presence of errors introduced unknowingly during development
l a changing world leading to changes in the needs of the users and decreasing the

usefulness of the software
l low productivity of those developing software, and difficulties in measuring that

productivity
l ensuring the quality of a software system.

Part C

(a) How do you think a large-scale project differs from a small-scale project in terms
of the management of the development team?

(b) What management steps might be taken to tackle the problems that arise in a
large-scale project?

Answer

(a) As the size of a project increases, so does the number of people involved, and
consequently the complexity of the interactions involved, and the difficulty of
managing the team. As with programs, the greater the complexity of interaction,
the greater the chance of errors occurring due to poor communication.

2 An introduction to software development

39 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

(b) One of the functions of software project management is to manage project
complexity. One way to achieve this aim is to modularise project teams by
splitting them up into a number of groups. Each group performs a specific task
and communicates with the other groups through one person (for example, the
head of the group). Another way, encouraged by an agile approach to
development, is to encourage practices of communication and cooperation in
development, such as working in pairs and having daily short meetings.

Part D

Process models sometimes show only the software-creation activities and exclude
software maintenance. What problems are associated with the use of such models?

Answer
If maintenance is not mentioned, it is likely that it will not be considered to be an
integral part of the overall software process model. This may result in a design that
does not take the needs of maintenance into account, and hence a product that is
difficult and expensive to change. This is especially likely if time and/or budget are
already tight.

Part E

What kinds of software system would be best suited to an iterative and incremental
development process?

Answer
Software systems where the problem can grow incrementally or where it falls naturally
into partitions, each of which represents a fairly self-contained unit that could be
developed and delivered on its own to provide the users with a useful chunk of
functionality, would be well suited to this model. An iterative and incremental approach
allows several design issues to be tackled simultaneously and enables the system to
be implemented in relatively small steps in order to contain the complexity. Of course,
this assumes that the design can be partitioned.

Part F

Figure 8 shows a spiral process for software development. Into which quadrant of that
figure does each of the seven technical activities of Figure 5 fit? Notice that there is not
a one-to-one match.

Answer
The analysis, design, implementation and testing activities all fit into the ‘develop and
verify a (partial) solution or product’ segment. The analysis activity also overlaps the
evaluation quadrant where objectives and risks are analysed. The testing activity
overlaps the ‘review and plan’ quadrant. The maintenance, project management and
quality management activities (including configuration management) operate in all four
quadrants.

2 An introduction to software development

40 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Part G

It has been said that ‘the maintenance activity begins with the first deliverable of a
development project’. What does this imply about the maintenance activity?

Answer
This refers to the fact that there could be deliverables, such as requirements
documents, that exist prior to any software being built, and these also require
maintenance. For example, you might detect errors or inconsistencies in a document
that lists the important terms in your users’ domain, or you might have to respond to
changes in the environment, which may be due to new regulations or market forces.

2.5 Summary of Section 2
This section considered how you might approach the development of a good software
system as follows.

l Large software projects are prone to problems because of their size and complexity.
l Software is inherently easy to change, and this makes it easy to introduce new errors

(‘break’ it).
l Software development is similar to engineering when it involves a defined process

with clear activities, each of which has one or more products that can be tested
against the users’ requirements.

l A basic process for the development of software is a set of rules that define how a
software development project should be carried out. It incorporates a number of
activities, and a life cycle (or process model) that indicates how these activities are
ordered. It helps to coordinate and control the use of those methods and any tools
that support them.

l Process models can be sequential, iterative, incremental or some combination of
these.

l A disciplined approach to software development implies that you must make some
effort to record your activities from both a personal view and a project view. It means
that documentation is an important task for all those who work on a project. In
particular, it must be sufficient for the level of traceability required.

l An agile approach to software development puts an emphasis on people rather than
on process or documentation, on short iterations and quickly working software, and
on the acceptance that systems change. It also encourages practices that promote
cooperative work in software development.

3 Modelling in software development
In this section we will consider the importance of models as part of software development,
present a popular software development process and introduce one approach to the
software development process.

3 Modelling in software development

41 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

3.1 Importance of modelling
Modelling is a way of thinking about things and ideas in the ‘real world’. A model is an
abstract representation of a situation in reality, or of a system from a particular point of
view. In effect a model is a way of expressing a particular view of an identifiable system of
some kind.
In terms of the development of software systems, models are:

l a way of understanding the problems involved
l an aid to communication among those involved, especially between the developer

and the user, as part of some deliverable
l a component of the processes used in development activities such as analysis and

design.

A good model is an abstraction, which allows those involved to concentrate on the
essentials of a (complex) problem by keeping out non-essential details. Previously, you
saw that there is a limit to how much a person can understand at any one time. So we
build models to help us in activities such as the development of software systems. For
example, developers build different models at different stages during the development
process in order to confirm that the eventual software system will meet the users’
requirements.
Models contain a representation of the significant states, objects and events in a real-
world situation or within a software system. In one respect models are an idealisation,
because they are less complicated than reality, and so they are easier to use for software
development. The benefit arises from the fact that only the relevant properties of the
outside world are represented. For example, a road map is a model of a particular part of
the earth’s surface. We do not show things like birds’ nests as they are not relevant to the
map’s purpose. We use a road map to plan our journeys from one place to another, and
so the map should contain only those aspects of the real world that serve the purpose of
planning journeys.
When we model, we are trying to show or reveal what something is like. Models can do
more than this because they can help us explain the past and the present (the problem),
and they can help us predict and control the future (the solution – a software system).
However remember that the model and the real world are alike in some ways, but different
in others. For example, road maps are helpful because they represent distances between
(and relative positions of) places, as well as routes between them. They use the relevant
properties of the real thing with just a change in scale – one centimetre on the road map,
for instance, may be equivalent to one kilometre on the ground. They may however be
unhelpful if they show only major roads.
We can also use one property in a model to represent another in the real world. In the
case of the road map, we can use different colours to represent different classes or types
of road. Such a road map should have a key or legend so that those who read the map
can understand what the different coloured lines are intended to represent. On a road
map, a blue line might represent a motorway, and a yellow line a narrow track.
Models of a problem situation are only an approximate representation of that situation.
The real-world situation is normally complex – so much so that an exact representation is
likely to be impossible to achieve. The problem therefore confronting a developer is to find
some way of achieving an acceptable balance between completeness and manageability.

3 Modelling in software development

42 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

In a software development project, there will be a number of practical considerations that
result in some compromise in completeness.
If the constructed model is so complex that the developer (or other team members) cannot
use it, it is of little or no value. So the model must simplify the reality a good deal. However
the developer should make explicit all simplifying assumptions for a given model, as well
as their consequences. At some point in a development project, any of these assumptions
may need to be justified.
Models are subject to change. At the very least, they require some form of periodic testing
so that a model can maintain its correspondence with reality. As towns and cities expand
and contract, a road map must be changed to reflect the new situation. In the worst case,
a change in scope necessitates a whole new model. For example, if there were a need to
reflect the current status of roads and the traffic density on them, a simple road map would
be inadequate.

Agile modelling
Agile modelling is Scott Ambler’s approach to lighter modelling (Ambler, 2002). It
proposes a set of values, principles and practices to help software developers become
agile modellers. These are mostly common sense but reinforce the alignment of modelling
with an agile approach. Modelling should not be seen as a routine exercise that has to be
done independently of how models are going to be used. Models should only be done with
a purpose and up to the point where they stop being useful. There is no justification in
spending too much time in getting a model right (consistent, complete, accurate) if the
only aim is to communicate an overview of the structure that is in the developer’s mind. A
typical activity of an agile modeller is to stand up with others in front of a whiteboard,
sketch a few models, discuss these sketches, and then discard them if they serve no
further need.
It requires practice to be able to pick, choose and adapt the modelling techniques that
best suit a real situation. But that is often what happens in practice and many software
organisations adapt development processes to their needs rather than using them as
mandated. However there are also situations when it is not easy to assess how much
effort should be put into a development activity, and in that case it is worth carrying
modelling through in a systematic way to achieve a more complete view.
There are also tools to help in the creation of models from existing software. They can be
used to document a piece of code that has not been modelled throughout development.

A standard notation
In developing a software system, a developer will not just use a single ‘catch all’ model – a
set of related models is more likely. It would be preferable to have a consistent way of
representing each of the different models for a given software system. A modelling
language allows the developer to make useful connections between those different
models. In software development, a modelling language is often based on diagrams and
their construction, meaning and use. There are two sets of rules within a diagram-based
modelling language:

l one that determines what diagrams exist and what symbols are used on each one –
its syntax

l one that determines what the diagrams and symbols mean – its semantics.

3 Modelling in software development

43 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

What should you look for when choosing a modelling language? On any given
development project there are decisions to be made about every model. You should
favour a modelling language that:

l allows you to express the many facets of the subject of your model
l helps you to resolve misunderstandings rather than introducing new ones
l is easy to learn and use – you want to make progress quickly
l is supported by tools that allow you to use your modelling skills rather than your

drawing skills
l is widely used and is accepted within the industry.

It is advantageous if a modelling language is widely used. If you leave one team of
developers and join another that uses the same modelling language, you need only learn
about the new problem situation. The advantage is amplified if you move to a new team in
a new company. Naturally, the team that you join will expect you to be more productive
than you would be if you had to learn a completely new modelling language.
Unified Modeling Language (UML) is now accepted as the standard object-oriented
modelling language. It is intended to be a general-purpose language for software
development. It is not meant to be a complete language for modelling all aspects of all
systems.
Its success is partly due to its separation from any particular method. It is available for
anyone to include in their own method for software development. The Object Manage-
ment Group (OMG), an industry consortium for modelling and integration standards, has
adopted UML and is the main body responsible for its development.
UML is predominantly diagrammatic, but does allow developers to add text in appropriate
places.

Activity 12 Modelling
Allow approximately 15 minutes.

(a) What is a model?
(b) What is a ‘good model’?
(c) What are the two kinds of rule that govern the use of a modelling language?
(d) Does a modelling language need to be associated with a particular development

process?
(e) What are the required characteristics of a standard modelling language?
(f) How does a standard modelling language contribute to software development?

Answer

(a) A model, in terms of software development, is an abstract representation of a
specification, a design or a system, from a particular point of view. In general, it is
a simplification of reality, created in order to understand an aspect or viewpoint of
the system in question.

(b) A ‘good model’ is an abstraction that allows those involved to concentrate on the
essentials of a complex problem by excluding non-essential details while
capturing those of interest.

(c) A modelling language is normally diagrammatic, although it can be textual. In
common with natural language, there are two distinct kinds of rule:

3 Modelling in software development

44 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

l those that determine whether or not a diagram is legal – the syntax of a
diagram

l those that define what a legal diagram means – the semantics of a diagram.
(d) No, a modelling language does not dictate how it should be used and it is up to a

development process to define which notations are appropriate and how they
should be used. With experience practitioners tend to pick and mix from different
modelling languages and use the notations that are most appropriate to the task –
most modelling languages do not provide notations for all types of tasks.

(e) When choosing a modelling language, it should be:
l sufficiently expressive
l easy to learn and use
l unambiguous
l widely used
l supported by suitable tools.

(f) A standard modelling language helps when new people join a project – a common
modelling language reduces the time needed to enable them to become
productive team members. Also, when a modelling language is widely used, it is
likely that project components will have been constructed using that language.
This makes the software easier and cheaper to maintain.

3.2 Models illustrate points of view
To understand the architecture of a software system, you will need a number of
complementary and related views. If the main influence is the users, a view that
expresses their requirements is essential. This is quite normal. Every development
process you will encounter will encompass one or more views of the software systems
within its scope.
During software development, you will be interested in different aspects or views of the
problem, and its solution at different times. It follows that you will construct different
models to suit those aspects. As mentioned above, it is unrealistic to expect to put
everything into just one model. Too much detail in a model can only be a distraction.
When it comes to the development of an object-oriented software system, there are two
distinct kinds of model:

l structural (or static) models, which describe the objects in the real world or in a
(software) system and their relationships to other objects

l behaviour (or dynamic) models, which describe the behaviour in the real world or
of a (software) system over time.

In practice, such a simple partition of a software system is not enough. For example, in a
distributed system a developer must also consider the potential location of the modules
(or classes). So the overall process of software development takes a number of different
views into account. When developing the software architecture you will be identifying the
differing views. In practice, the developers are likely to produce a system architecture for
the software system during certain project activities such as analysis or design. Each view

3 Modelling in software development

45 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

can be thought of as a model that expresses a particular aspect of the overall system –
each one is an abstraction. The views interact with each other.

Activity 13 Models
Allow approximately 15 minutes.

(a) Should you try to capture everything about a design in a single model?
(b) What is the difference between a structural and a behaviour model?
(c) Do the models used in a given development project need to be consistent?

Answer

(a) No, because you will be interested in different aspects of a design at different
times, and different models of your design will be built to reflect your
interpretations of users’ needs.

(b) A structural model describes the elements of the system and their relationships to
other elements. A behaviour model describes the behaviour of a system over a
period of time.

(c) Yes, the whole set of diagrams should contain the different aspects of a single
software system, so they should not contradict one another. For example, there
must be some consistency checking between the static and dynamic models.
This can be automated by a suitable tool.

3.3 Introducing the Unified Process
The Unified Process (UP) (Jacobson et al, 1999) has emerged as a popular iterative and
incremental development process for building enterprise systems based on an object-
oriented approach, and using UML. It promotes a set of best practices, namely that
development should be organised in short timeboxed iterations and that it should be
adaptive to accommodate inevitable change. A commercial version of the UP, the
Rational Unified Process (RUP) (Krutchen, 1999), is its most well-known implementation
although there are many others around. RUP was developed by Rational, which was
acquired by IBM in 2003. We will, from here onwards, be talking about the UP but the
characteristics of the process that are mentioned are also present in the RUP.
Timeboxingmeans that a (usually) short fixed period – for example, three to four weeks –
is devoted to each iteration. Consequently, at each iteration only a small set of
requirements is considered and progressed to the implementation and testing stages.
Each iteration results in a working but possibly not yet complete system that normally
delivers an increment of functionality on the previous incomplete system. Typically many
iterations with progressive integration of increments are required before the product can
be delivered.
Being adaptive means that adjustments are allowed at each iteration. The motivation for
this is the recognition that requirements may change throughout development, and that
such changes should be welcome rather than resisted. By involving customers and users
at each iteration, feedback can be gained quickly and the required adjustments made
within the next iteration. So each iteration may provide an increment over the previous
one, or simply revisit its output.

3 Modelling in software development

46 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Other best practices promoted by UP are:

l dealing with high-risk issues in early iterations
l prioritising the user’s perspective by involving users in requirements, evaluation and

feedback
l building a view of the system’s architecture in early iterations.

A UP project is organised into four major phases:

1 Inception. The business case is developed, together with an idea of the scope of the
system and a rough estimate of the effort required.

2 Elaboration. The core of the system is developed in an iterative fashion. In this
phase all major risks are addressed and resolved, most of the requirements are
identified and dealt with, and a more realistic estimate of the effort required is made.

3 Construction. The final product is constructed, including the remaining lower-risk
and easier elements of the system, again in an iterative fashion.

4 Transition. This includes beta testing and deploying the system.

Within the UP phases, development work is organised within many disciplines, the UP
term for development activities such as requirements, analysis, design and testing. An
example of disciplines and their relationship to UP phases is shown in Figure 9.

UP phases

iterationsUP disciplines

requirements

business modelling

analysis and design

implementation

testing

project management

deployment

constructionelaborationinception transition

Figure 9 UP phases and disciplines

The figure illustrates what a UP project might look like. The columns represent iterations.
For each discipline, the relative effort is represented throughout the UP phases and their
iterations. For instance, most of the domain modelling (referred to as business
modelling in the UP) occurs in the early iterations of the inception and elaboration
phases, while most of the implementation occurs within the construction phase.

3 Modelling in software development

47 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Views in the UP
The UP was developed by the same people who originally specified UML, and UML is its
modelling language. A system’s architecture includes models that address five different
views:

l The use case view contains the basic scenarios that describe the users and the tasks
that they need to perform with the aid of a software system.

l The logical view is concerned with the functional requirements of the software
system. What should the software do for its intended users? Typically this involves
the construction models that represent the main elements of a system and how they
interact.

l The implementation view is concerned with the organisation of the code modules
that comprise a software system. Typically it addresses the management of source
code, data files and executables.

l The deployment view is concerned with the relationship between the various
executables (and other run-time components) and their intended computer systems.

l The process view is concerned with aspects of concurrency. What are the processes
and threads? How do they interact? It deals with such things as response time,
deadlock and fault tolerance.

Figure 10 shows that the central use case view relates to the other four views.

logical
view

deployment
view

use case view

process
view

implementation
view

Figure 10 Five views of a software system’s architecture

Agile UP
The UP was never intended to be a heavy process and some of its practices are also
promoted by agile developers, notably iterative and incremental development, time-
boxing, dealing with requirements change and being itself an adaptive process. It is
possible to apply the UP in an agile manner and it is often the context in which it is used –
the will and experience of developers will dictate whether an agile development takes
place.

3.4 Activities and artefacts in the development
process
The techniques used in the UP are also in other iterative and incremental processes
based on an object-oriented approach to software.

3 Modelling in software development

48 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Here, we identify the core activities to develop software. This will give you an initial
understanding of how the activities you will learn about contribute to the overall
development process. As mentioned earlier, different ways of subdividing the develop-
ment process and different terminology may be used elsewhere.
Our core activities follow the UP disciplines:

l domain modelling – modelling what already exists in the domain
l requirements – identifying, categorising, prioritising and modelling what the system

must do
l analysis – modelling how the structure and behaviour of the system will meet its

specification from a user’s perspective, moving from the domain to a software
solution

l design – deciding on the distribution of responsibilities to fulfil that specification
l implementation – producing code that will meet the user requirements
l testing – ensuring that the software does meet its requirements
l deployment – configuring the code to give a runnable system.

It therefore makes sense to talk of models corresponding to each of these activities. So
we have a domain model, a requirements model, an analysis model and so on. However
these models generally need to cover a number of views of the system. For example in
the previous subsection we talked about structural and behaviour models. A domain
model, for example, will usually include both of these. A design model typically consists of
a number of more specific models.
There will be other documents that accompany the models, and so we will use the term
artefact to refer to both models and other documents. The artefacts from the activities
earlier in the list above feed into the activities that follow.

Domain modelling
Our starting point will be to document and model the structure and processes of the
organisation’s business. Starting from some description of the problem, the initial problem
statement, you will learn how to identify elements of the real-world problem and their
properties, and build corresponding structural and dynamic models. The emphasis at this
stage is on understanding the current domain situation.
The behaviour model provides descriptions of business processes and behavioural
aspects of the domain. You will meet modelling techniques such as activity diagrams.
Business rules are used to express constraints on the dynamic model. For example,
given a behaviour model describing aspects of a library, there might be a business rule
determining the limit on the number of books an individual member can borrow. A
structural domain model, also called the conceptual model, describes the significant
concepts in the domain and how they are related.
A glossary of relevant terms and definitions is also produced. This textual document
grows throughout the duration of the project.
Some artefacts involved in domain modelling (as well as some used in other phases) are
shown in Figure 11.

3 Modelling in software development

49 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

*

*

requirements

analysis

design

– navigability
– qualified associations
– class operations

problem
statement

use case
model

make a reservation

cancel a reservation

check-in guest

check-out guest
receptionist

elaborated use
cases

identifier and Name

initiator

goal

pre-condition

post-condition

functional and non-
functional software

requirements

SF12: UC_1, Step 7

description: the system shall assign a unique number for a reservation

design structural modelbehaviour model
(interaction diagrams)

analysis structural model
– analysis classes
– constraints
–

–

*

*

system operations

context
pre: ...
post: ...

glossary

identifier and Name

initiator

goal

pre-condition

post-condition

glossary

identifier and Name

initiator

goal

pre-condition

post-condition

glossary

identifier and Name

initiator

goal

pre-condition

post-condition

*

*

domain
modelling

business
processes

industry copy
of rules

industry copy
of rules

industry copy
of rules

industry copy
of rules

industry copy
of rules

business
rules

domain structural model
– conceptual classes and
 associations
– conceptual attributes
– no operations or interfaces
 as yet

glossary

identifier and name

initiator

goal

pre-condition

post-condition

problem
statement

Figure 11 Some development artefacts

Activity 14 Domain modelling
Allow approximately 15 minutes.

(a) What is the purpose of domain modelling?
(b) What is the role of each of the artefacts produced during domain modelling?

3 Modelling in software development

50 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Answer

(a) Domain modelling is concerned with gaining an understanding of the environment
in which any system that is designed must operate.

(b) During domain modelling, we produce the following artefacts:
l initial problem statement – a description of the problem
l behaviour model – a description of the business processes and behaviour of

the domain
l business rules – constraints on the way the behaviour model operates
l glossary – definitions of relevant terms
l structural domain model – an initial structural model representing the

concepts relevant to the domain.

Requirements
The next step is to gather and document the requirements for your system and to model
what the system is intended to do. Requirements are the expression of the things the
system must do or the qualities the system must have in order to meet the stakeholders’
needs. Starting from some description of the problem, you will learn how to systematically
record requirements information.
Some artefacts involved in requirements are shown in Figure 11.

Activity 15 Requirements
Allow approximately 15 minutes.

What is the purpose of the requirements phase?

Answer
The requirements phase is concerned with establishing and modelling what a software
system must do.

Analysis
During analysis, with both use cases and software requirements, you start looking at a
system to be implemented, and build both structural and behaviour models. The structural
model evolves from that of the domain – it no longer represents concepts from the
domain, but rather entities in a software solution. This is usually called the analysis
model. Use cases and software requirements lead to the specification of what is expected
from the system from the user perspective. The system operations show how this
behaviour can be carried out by the entities chosen.
It is at this stage also that architectural decisions are taken in terms of the overall structure
of the system.
Some artefacts involved in analysis are shown in Figure 11.

3 Modelling in software development

51 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Design
During design, your goal will be to decide how the expected functionality is to be allocated
to each part of the system. You need to make choices about which classes the system
operations should be allocated to. These decisions can be explored and documented
using further behaviour models. UML uses interaction (sequence and communication)
diagrams that show a set of classes and the messages between them.
During design both structural and behaviour models are elaborated. In fact you will see
that behaviour models are used for both external and internal behaviour of objects.
Some artefacts involved in design are shown in Figure 11.

Activity 16 Analysis and design
Allow approximately 15 minutes.

(a) What is the purpose of analysis?
(b) What is the purpose of design?
(c) What is the role of each of the artefacts produced during design?

Answer

(a) Analysis starts modelling the structure and behaviour of a software solution from
a user’s perspective.

(b) Design is concerned with making decisions concerning how a system will meet its
specification.

(c) During design you produce the following artefacts:
l structural model, an updated version of the one produced during analysis but

with its operations specified
l behavioural models, showing how objects in the system will interact and

behave internally, and also how functionality will be distributed across the
system.

Implementation
The implementation model is a description of the assembled components that comprise
the working version of the software. It describes how classes are packaged together, and
shows some of the relationships between such packages of classes. These relationships
are modelled using a component diagram.

Testing
The implementation needs to be tested against its requirements to ensure that it meets
them. Tests will be drawn up based on the requirements, and held in a test document.
Notice therefore that tests can be drawn up as soon as you know the requirements.
In fact there is a trend towards test-driven design. In this approach, the tests for a system
are drawn up before design and automated testing procedures are set up. An initially
empty implementation can be run against the tests and the subsequent failure can be
used to drive design. As time goes on, this process is repeated as the implementation is

3 Modelling in software development

52 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

built up, until no tests fail. This is the approach followed by some agile approaches such
as XP.

Deployment
Many significant computer systems will consist of a variety of software components
located on a number of machines communicating via a variety of hardware and software
mechanisms. A deployment model records how various components are to be mapped
onto different machines and how they will communicate. This can be represented using a
deployment diagram.

Activity 17 Modelling languages
Allow approximately 20 minutes.

Suppose you and a colleague used UML on a particular development project. What
would be the consequences of introducing symbols or notations that were not defined
in UML?

Answer
Such an extension would incur costs as well as offering potential benefits. The costs
include the need to communicate the syntax and semantics of your new symbols or
notation to other developers. The benefits include the ability to express concepts
specific to your project that could be more meaningful in your context.

In the past, there have been many attempts to standardise modelling notations and
languages. How might the choice of modelling language affect the maintenance of a
software system?

Answer
Every time a new standard notation or language is defined, it allows new software
systems to be built using that standard. It can only help with existing software
retrospectively. For example, a developer might use the new standard to express a
proposed change to the software.
There is no guarantee that an existing software system used any modelling language
at all, let alone any agreed standard for one. Even if a standard was used, new staff
arriving on the team for the purpose of maintenance might not know about it. Each
variety of standard would affect the organisation of a component library. For example,
if components using a particular standard were to be put in a library, the descriptions
would be likely to require some maintenance as that standard changes over time.

3.5 Summary of Section 3
As you become more familiar with the activity of modelling, it should become apparent
that there is considerable flexibility in the construction of models. There is no guarantee
that different developers, when confronted by the same problem, will select the same
things to model, and even if they do, will produce identical models, although there should
be a great deal of similarity in most cases.

3 Modelling in software development

53 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

This section considered the role of modelling in the development of a good software
system:

l A model is an abstract representation of a concept, a specification, a design or a
system from a particular point of view of either the user or the developer. In general, it
is a simplification that is used to understand an aspect of the system in question.

l A standard modelling language helps those involved in software development
projects to communicate effectively. If the standard is widely used, it will reduce the
time taken for developers to become familiar with a new project.

l The Unified Modeling Language (UML) is a useful standard because it is easy to use,
sufficiently expressive, unambiguous and widely used. There are also a variety of
tools that support UML.

l During software development, there may be many models made from a variety of
viewpoints. They must not contradict each other, that is, they must be consistent.

The UP is a popular iterative and incremental development process. It defines a series of
timeboxed iterations and promotes a set of best practices that are high-risk driven, user
centred and architecture focused. It is possible to take an agile approach to the UP as
many of its practices are also supported by agile developers.

Conclusion
In this free course, Approaches to software development, you have extended your
knowledge of the important ideas in software development. We investigated the
characteristics of a good software system, and considered what a development process
would need to include to build such software. You saw that there is no single development
process to suit the variety of users’ requirements. However there must be a disciplined
approach to software development, especially in the case of large projects.
We introduced the notion that it is good practice to split a project into smaller, more
manageable activities. When developing good software systems, you should focus on the
users’ needs and, wherever possible, make use of replaceable and reusable modules –
components. The overall software architecture should be constructed around the users’
requirements.
We then introduced the role of modelling in the development of software. In particular, the
concepts of object orientation allow us to represent users’ requirements in a way that
reflects our natural tendency to view the world around us in terms of objects. The way we
relate the various activities of software development and associated artefacts (including
models) was then described.
This OpenLearn course is an adapted extract from the Open University course
TM354 Software engineering.

References
Ambler, S. (2002) Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process [Online], New York, John Wiley & Sons. Available at http://libezproxy.

Conclusion

54 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.ac.uk/courses/modules/tm354?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

open.ac.uk/login?url=http://open.eblib.com/patron/FullRecord.aspx?p=131031 (Ac-
cessed 6 November 2015).
Bass, D.L., Clements, D.P. and Kazman, D.R. (2012) Software Architecture in Practice,
3rd edn, Upper Saddle River, NJ, Addison Wesley [Online]. Available at http://libezproxy.
open.ac.uk/login?url=http://proquestcombo.safaribooksonline.com/book/software-engi-
neering-and-development/9780132942799 (Accessed 6 November 2015).
Beck, K. (2004) Extreme Programming Explained: Embrace Change, Upper Saddle River,
NJ, Addison Wesley [Online]. Available at www.open.ac.uk/libraryservices/resource/
ebook:0321278658/provider/ProQuest_Safari_Tech_Books_Online (Accessed 6 No-
vember 2015).
Boehm, B. (1988) ‘A spiral model of software development and enhancement’, Computer,
vol. 21, no. 5, pp. 61–72 [Online]. Available at http://ieeexplore.ieee.org.libezproxy.open.
ac.uk/xpls/abs_all.jsp?arnumber=59 (Accessed 6 November 2015).
IEEE (1990) 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology,
IEEE [Online]. Available at http://libezproxy.open.ac.uk/login?url=http://ieeexplore.ieee.
org/servlet/opac?punumber=2238 (Accessed 6 November 2015).
Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development
Process, Upper Saddle River, NJ, Addison Wesley.
Krutchen, P. (1999) The Rational Unified Process: An Introduction, Upper Saddle River,
NJ, Addison Wesley.
Larman, C. (2005) Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and iterative Development, Pearson [Online]. Available at http://
proquestcombo.safaribooksonline.com.libezproxy.open.ac.uk/book/software-engineer-
ing-and-development/agile-development/0131111558 (Accessed 6 November 2015).
Leveson, N. and Turner, C. (1993) ‘An investigation of the Therac-25 accidents’,
Computer, July, pp. 18–41 [Online]. Available at http://ieeexplore.ieee.org.libezproxy.
open.ac.uk/stamp/stamp.jsp?tp=&arnumber=274940&isnumber=6812 (Accessed 6 No-
vember 2015).
Lions, J.L. (1996) ARIANE 5 Flight 501 Failure, Report by the Inquiry Board [Online].
Available at www.di.unito.it/~damiani/ariane5rep.html (Accessed 6 November 2015).
Mašek, K., Hnetynka, P. and Bureš, T. (2009) ‘Bridging the component-based and service-
oriented worlds’, 2009 35th Euromicro Conference on Software Engineering and
Advanced Applications, Patras, August 27–29 2009. IEEE, pp. 47–54 [Online]. Available
at http://ieeexplore.ieee.org.libezproxy.open.ac.uk/stamp/stamp.jsp?tp=&arnum-
ber=5349894&isnumber=5349835 (Accessed 6 November 2015).
National Audit Office (2012) Governance for Agile Delivery [Online]. Available at www.
nao.org.uk/publications/1213/governance_for_agile_delivery.aspx (Accessed 6 No-
vember 2015).
South West Thames Regional Health Authority (1993) Report of the Inquiry into the
London Ambulance Service [Online]. Available at www0.cs.ucl.ac.uk/staff/a.finkelstein/
las/lascase0.9.pdf (Accessed 6 November 2015).
Schwaber, K. and Sutherland, J. (2011) The Scrum Guide [Online]. Available at
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf (Accessed 24
May 2018).

References

55 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

Acknowledgements

Acknowledgements

This free course was written by Leonor Barroca.
Except for third party materials and otherwise stated (see terms and conditions), this
content is made available under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.
The material acknowledged below is Proprietary and used under licence (not subject to
Creative Commons Licence). Grateful acknowledgement is made to the following sources
for permission to reproduce material in this free course:
Course image: © istock.com/duncan1890
Figure 1 © The Open University
Figure 2 © The Open University
Figure 3 © The Open University
Figure 4 © The Open University
Figure 5 © The Open University
Figure 6 © Larman C., (2005) ‘Applying UML and Patterns’ 3rd Edition, Prentice Hall Inc.
Figure 7 © Ward Cunningham et al (2001) http://agilemanifesto.org/
Figure 8 © The Open University
Figure 9 © The Open University
Figure 10 © The Open University
Figure 11 © The Open University
Section 2.3 SE-Radio, “Episode 188: Requirements in Agile Projects”, 12 Septem-
ber 2012, http://creativecommons.org/licenses/by-nc-nd/2.5/
Every effort has been made to contact copyright owners. If any have been inadvertently
overlooked, the publishers will be pleased to make the necessary arrangements at the
first opportunity.
Don't miss out
If reading this text has inspired you to learn more, you may be interested in joining the
millions of people who discover our free learning resources and qualifications by visiting
The Open University – www.open.edu/openlearn/free-courses.

Acknowledgements

56 of 56 http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0 Monday 18 June 2018

http://www.open.ac.uk/conditions?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/free-courses?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/approaches-software-development/content-section-0

