
Introduction to computational thinking

About this free course

This free course is an adapted extract from the Open University course M269 Algorithms, data structures
and computability http://www3.open.ac.uk/study/undergraduate/course/m269.htm.

This version of the content may include video, images and interactive content that may not be optimised
for your device.

You can experience this free course as it was originally designed on OpenLearn, the home of free
learning from The Open University:
www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0.

There you’ll also be able to track your progress via your activity record, which you can use to
demonstrate your learning.

Copyright © 2019 The Open University

Intellectual property

Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence
v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University
interprets this licence in the following way:
www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and
rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open
University. Please read the full text before using any of the content.

We believe the primary barrier to accessing high-quality educational experiences is cost, which is why
we aim to publish as much free content as possible under an open licence. If it proves difficult to release
content under our preferred Creative Commons licence (e.g. because we can’t afford or gain the
clearances or find suitable alternatives), we will still release the materials for free under a personal end-
user licence.

This is because the learning experience will always be the same high quality offering and that should
always be seen as positive – even if at times the licensing is different to Creative Commons.

When using the content you must attribute us (The Open University) (the OU) and any identified author in
accordance with the terms of the Creative Commons Licence.

The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed
content which is not subject to Creative Commons licensing. Proprietary content must be used (retained)
intact and in context to the content at all times.

The Acknowledgements section is also used to bring to your attention any other Special Restrictions
which may apply to the content. For example there may be times when the Creative Commons Non-
Commercial Sharealike licence does not apply to any of the content even if owned by us (The Open
University). In these instances, unless stated otherwise, the content may be used for personal and non-
commercial use.

We have also identified as Proprietary other material included in the content which is not subject to
Creative Commons Licence. These are OU logos, trading names and may extend to certain
photographic and video images and sound recordings and any other material as may be brought to your
attention.

Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or
intellectual property laws.

We reserve the right to alter, amend or bring to an end any terms and conditions provided here without
notice.

All rights falling outside the terms of the Creative Commons licence are retained or controlled by The
Open University.

Head of Intellectual Property, The Open University

2 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www3.open.ac.uk/study/undergraduate/course/m269.htm?utm_source=openlearn&utm_campaign=ou&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB
http://www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Contents
Introduction 4
Learning Outcomes 5
1 Computational thinking and automation 6

1.1 Automation 8
2 Computational thinking and abstraction 9

2.1 Models 10
2.2 Encapsulation 12
2.3 Encapsulation in computing 13
2.4 Why modelling and encapsulation matter 15
2.5 Computational thinking: the overview diagram 16
2.6 Varieties of abstraction 17
2.7 Virtual worlds 20

3 Computational thinking everywhere 22
3.1 Machine learning 22

Conclusion 24
Glossary 24
References 24
Acknowledgements 25

3 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Introduction

One can major [i.e. graduate] in computer science and do anything. One can
major in English or mathematics and go on to a multitude of different careers.
Ditto computer science. One can major in computer science and go on to a
career in medicine, law, business, politics, any type of science or engineering,
and even the arts.

Jeannette M. Wing, Professor of Computer Science at Carnegie Mellon University (United
States) and Head of Microsoft Research International

Sounds great that ‘One can major [i.e. graduate] in computer science and do anything’,
doesn’t it? Then again, isn’t this miles away from the view of computing as a training
ground for programmers and system builders? The good news is that one doesn’t
necessarily need to exclude the other! The grand vision behind this quote is that learning
to program, build large systems, and so on, allows you to develop something which is
much more valuable than any of these on their own, namely the ability to think like a
computer scientist. Over the past decade or so, Jeannette Wing has been popularising
this view under the banner of computational thinking.

Figure 1 Abstraction, a recurring theme in this course, illustrated by four representations
of a cow by Theo van Doesburg, 1917, 1918

Much of the material in this course is organised around video clips from a presentation
that Wing gave in 2009 entitled ‘Computational Thinking and Thinking About Computing’
(Wing, 2009). The presentation builds on Wing’s influential 2006 ‘Computational Thinking’
paper in which she set out to ‘spread the joy, awe, and power of computer science, aiming
to make computational thinking commonplace’ (Wing, 2006, p. 35).
In this course you will learn more about what computational thinking is and why it is such a
desirable skill – arguably the skill for the twenty-first century.
This OpenLearn course is an adapted extract from the Open University course
M269 Algorithms, data structures and computability.

Introduction

4 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.ac.uk/courses/modules/m269
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Learning Outcomes
After studying this course, you should be able to:
● describe the skills that are involved in computational thinking
● define and use the concepts of abstraction as modelling and abstraction as encapsulation
● understand the distinctive nature of computational thinking, when compared with engineering and mathematical

thinking
● be aware of a range of applications of computational thinking in different disciplines.

1 Computational thinking and automation
To state more precisely what computational thinking is, we need to consider the ideas of
an algorithm and a computational problem. We will think about these ideas in the next
activity.

Activity 1 Algorithms and computational problems
Look at Figure 2. This shows page 18 of John Gough’s Practical Arithmetick in Four
books, which is a tutorial maths book first published in 1767. The text under the
heading ‘General Rule’ gives a description of a process for adding together three non-
negative integers, each written as a finite sequence of digits. (The fact that three
numbers are added is rather arbitrary: the process would work just as well for adding
together two numbers or indeed any number of numbers.)

Figure 2 Instructions for column addition (Gough, 1767)

Explain whether this textual description is an algorithm according to the following
description of an algorithm.
An algorithm is a solution to a problem which has three properties:

● an algorithm consists of a step-by-step list of instructions
● an algorithm is a finite process (this means it is guaranteed to finish at some

point)
● the algorithm should solve any instance of the problem that might arise.

Discussion
First, we need to consider whether the text describes a step-by-step list of instructions.
This is not always obvious. At some points it does and at some points it doesn’t.
At many points the text does provide instructions to be carried out sequentially,
such as:

● ‘place the numbers so that each figure may stand directly underneath (…) the
figures of the same value’

● ‘begin the addition at the first place’.

Although other parts of the instructions are not explicitly presented as a list of
instructions, it is easy to see how the textual passage could be mapped onto such a
list. In that list, certain instructions would be repeated for each of the columns involved
(‘then proceed in the same manner … from place to place to the last’).

1 Computational thinking and automation

6 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

So, let’s assume that the text does have the first property. Does it also have the other
two properties?
According to the second property, the process should be finite. This is indeed the case.
The numbers being added will each have a finite number of digits, so only a finite
number of columns will be involved, and the process only requires a small number of
steps at each column.
Finally, the process does apply to any instance of the problem, where the ‘instances of
the problem’ are all combinations of three integers, each represented by a finite
sequence of digits in the range 0–9. The text leaves it implicit what instances the
algorithm is intended to apply to.
The precise specification of the ‘instance of the problem’ can be thought of as part of
the task of formulating a problem as a computational problem. By a computational
problem, we mean "a problem that is stated sufficiently precisely such that one can
attempt to write an algorithm to solve it."

Figure 3 (a) Human computers working on test flight calculations at the predecessor of
NASA in 1949 (b) two NASA employees in 1990 programming a computer so it can
automatically calibrate aircraft equipment

Having met the ideas of algorithms and computational problems, let us state what
computational thinking is not: computational thinking is not about us humans following an
algorithm when carrying out the task of adding numbers on paper or in our head. It is not
about thinking like a computer - rather, computational thinking is first and foremost
thinking about computation. In particular, computational thinking consists of the skills to:

● formulate a problem as a computational problem
● construct a good computational solution (i.e. an algorithm) for the problem, or explain

why there is no such solution.

A computational thinker can take a problem and state it sufficiently precisely for it to be
potentially solvable by an algorithm. Once the problem has been stated in the right way, a
computational thinker tries to construct an algorithm that solves it. A computational thinker
won’t, however, be satisfied with just any solution: the solution has to be a ‘good’ one. We
will discuss two specific properties of a good solution later on in this course: efficiency and
correctness. Finally, computational thinking goes beyond finding solutions: if no good
solution exists, one should be able to explain why this is so. This topic, however, takes us
beyond the scope of this course into computability and computational complexity theory.

Most of the activities in this course involve watching extracts from Wing’s presentation
‘Computational Thinking and Thinking About Computing’. Remember to read through
the activity before watching the video.

1 Computational thinking and automation

7 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

1.1 Automation

Activity 2 Automation, abstraction and modelling
5 minutes

After you’ve watched the following extract of Wing’s talk, complete this activity.

Video content is not available in this format.
Automation, abstraction and modelling

The aim of this activity is to get you to think about what Wing is saying in the following,
rather long but important, sentence: ‘… this feedback loop that one has when you’re
abstracting from some physical-world phenomenon, creating a mathematical model of
this physical-world phenomenon, and then analysing the abstraction, doing sorts of
manipulations of those abstractions, and in fact automating the abstraction, that then
tells us more about the physical-world phenomenon that we’re actually modelling.’
Place the following labels in the correct positions of the diagram below. (Note: the
diagram will not work with Internet Explorer 8, if this is your usual browser you will need
to use an alternate browser to view the diagram.)

Interactive content is not available in this format.

Discussion
It is important to have a good grasp of this diagram. It provides a high-level overview of
the key ingredients of computational thinking and how they are related to each other. In
the remainder of this course, we will flesh out some of the details that lie behind this
diagram.

1 Computational thinking and automation

8 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

2 Computational thinking and abstraction
In the next activity you will see Wing explain how computational thinking involves the
process of abstraction.

Activity 3 Abstraction
8 minutes

Watch the video and then complete this activity.

Video content is not available in this format.
Abstraction

Wing talks about abstractions as a means of ignoring detail that is not of interest.
Consider the following description of an algorithm for searching a paper and ink
dictionary.

Given:

i. a dictionary
ii. a headword W which appears in the dictionary

to find the definition of W:

Begin the search with an entry that appears (roughly) in the middle of the
dictionary. Then there are three possibilities:
1. The current entry’s headword is W. In this case, the definition of W is the

definition of the current entry.
2. W appears alphabetically before the current entry’s headword. In this

case, the entry with headword W must appear in the first half of the
dictionary. Look for the word W, following the same approach, in the first
half of the dictionary.

3. W appears alphabetically after the current entry’s headword. In this case,
the entry with headword W must appear in the second half of the
dictionary. Look for the word W, following the same approach, in the
second half of the dictionary.

This is an informal description of an algorithm, but the steps are sufficiently precise
that a human should have no problem following them. This algorithm depends crucially
on the fact that the words in a dictionary are alphabetically ordered. It also, however,
ignores some of the details of paper and ink dictionaries. Can you list of few of these?

Figure 4 A dictionary

2 Computational thinking and abstraction

9 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Discussion
Details of a paper and ink dictionary that come to mind include: the size and thickness
of its pages, the colour of its cover and the size of the printed font. None of these
played a role in the algorithm that is described above. Perhaps the most salient
abstraction relates to the fact that paper and ink dictionaries are made of pages. They
are not simply a list of words and definitions. Rather, the words are distributed across
the pages of the dictionary. The algorithm doesn’t take into account the distribution of
the words in a dictionary across pages: for example it would work equally well with a
dictionary printed on a single, enormously long paper scroll.

Wing’s discussion of abstraction draws on a wide variety of concepts. You have come
across phrases such as ‘ignoring’ and ‘hiding information’, ‘levels’ and ‘layers’, ‘models’
and ‘implementation’. It has been left somewhat in the air how these all hang together. So
next, we will make the relations between them explicit. To do so, we will distinguish
between two kinds of abstraction:

● abstraction as modelling
● abstraction as encapsulation.

Although Wing deals in great detail with the idea of abstraction as modelling, she only
hints at the concept of abstraction as encapsulation. Both are, however, at play in
computing. Distinguishing between them will give you a better understanding of the
remainder of Wing’s story.

2.1 Models

Figure 5 Abstraction and automation

Let us think more generally about the abstraction depicted in Figure 5. For this purpose,
we will be using the diagram in Figure 6. Instead of Wing’s somewhat unwieldy
expressions ‘mathematical model’ and ‘physical-world phenomenon’, we will use the
shorthands ‘model’ and ‘part of reality’.
The diagram in Figure 6 shows that abstraction as modelling can be understood in terms
of the relationship between a part of reality and a model which represents the details of
interest of this reality. For this reason, models are sometimes also referred to as
representations.

Figure 6 Diagrammatic representation of abstraction as modelling

For the purpose of the current example, the part of reality that we’re interested in is the
paper and ink dictionary of Activity 3. The algorithms in Section 1 for looking up words

2 Computational thinking and abstraction

10 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

work with a model of a dictionary as an alphabetically sorted list of headwords, each
paired with its definition. The model corresponds to how the data that the algorithm works
with are structured. This model captures the essentials (i.e. that the dictionary consists of
an alphabetically sorted list of words and their definitions) and ignores certain details (for
example, that a physical dictionary is divided into pages of a certain size and has a cover
to protect it). In other words, the irrelevant details are not reflected by the structure of the
data that the algorithm works with.

Activity 4 Representations
Representations, including paintings and drawings, are models. This is brilliantly
illustrated by René Magritte’s famous painting of a pipe with the words ‘Ceci n’est pas
une pipe’ (‘This is not a pipe’) underneath (Figure 7). Explain how this painting brings
home the point that modelling involves two levels: the abstraction and the reality which
the abstraction models.

Figure 7 René Magritte’s painting The Treachery of Images (1928–9)

Discussion
When looking at this painting, my initial thought was: ‘Look, a pipe – why does it say in
French that this is not a pipe?’ Then it dawned on me that of course this is indeed not a
pipe: it’s merely a painting of a pipe. With this painting, Magritte reminded me that
representations usually involve two levels: in this case the painting of a pipe and a real
pipe on which the painting is based. The former is an abstraction which ignores some
of the properties of actual pipes (for example, that they have a smell, usually of
tobacco). Interestingly, the title of this painting is La trahison des images (The
Treachery of Images).

The part of reality for which one creates a model or representation doesn’t need to be a
static object such as a pipe or dictionary. It can also be a process or system which

2 Computational thinking and abstraction

11 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

changes over time. In that case, the model will not only have to capture any enduring
properties of interest, but also any changes in time that are of interest. For example, in
astronomy there is a rich tradition of building such models of the solar system (see
Figure 8). The purpose of such a model, known as an orrery, is to represent the position of
the planets relative to each other over time.
The invention of the orrery is usually attributed to George Graham (1673–1751). Graham
worked on this with the support of the 4th Earl of Orrery, which explains the name. The
tiny crank on the side of the central cylinder in Figure 8 allows the model to be animated.
Turning the crank causes the (representations of the) planets to follow a path around the
(representation of the) Sun at the centre of the model. Usually such an animated model is
referred to as a simulation.

Figure 8 An orrery (a mechanical model of the solar system)

As with any model, an orrery ignores certain details of the part of reality that it models. For
example, compared with the scale of the distances between the planets, the planets are
too large. The relationship between the solar system and an orrery is as depicted in
Figure 9.

Figure 9 Relationship between an orrery and the solar system

2.2 Encapsulation
The model of the solar system in Figure 10 also illustrates the second type of abstraction:
abstraction as encapsulation. The brass cylinder in the middle of the device encloses a
clockwork of cogwheels similar to the one in Figure 10.

Figure 10 The inside of an orrery

This mechanism causes the small spheres representing the planets to rotate around the
centre at a velocity that is proportional to the speed of the actual planets. The mechanism
is hidden from view for the casual user, who is only interested in the movement of the
planets. Figure 11 illustrates this other view of the orrery in terms of two layers.

2 Computational thinking and abstraction

12 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Figure 11 The orrery as two layers

Generally, abstraction as encapsulation involves the two layers shown in Figure 12.

Figure 12 The two layers involved in abstraction as encapsulation

The layer through which the user interacts with the model is called the interface. It hides
the detailed workings of the model from the user. The interface sits between the user and
the layer at which the model is implemented. The latter is responsible for making the
model do what it is supposed to do. This is where the automation of the model takes
place.

2.3 Encapsulation in computing
Abstraction as encapsulation is common everywhere in computing. Sometimes it is
referred to as ‘abstraction as information hiding’ (instead of encapsulation).
Let us consider an example. Our example will make use of the Python programming
language. This language is used throughout M269 Algorithms, data structures and
computability on which this OpenLearn course is based. It was chosen because it is
eminently suitable for learning the basic concepts of computer science and programming.
It allows you to write concise, easily understood programs. You should be able to follow
most of the following discussion if you have had some experience with an imperative
programming language.
The incredibly short Python program below will display the date and current time (see
Figure 13). It depends on a built-in Python module which is imported in the first line.

import time
print(time.ctime())

Figure 13 Execution of the small program above in the Python Interactive Shell

How does time.ctime() work? We don’t know and we don’t need to know! Someone
has written the time module and documented its interface, which contains the function
ctime(). We can just use the function without any knowledge whatsoever of its
implementation.
However, under the bonnet the time module is itself a program, written in C, another
high-level programming language! The programmers of the module, when they wrote it,
only needed to know C. They were able to ignore the details of the low-level machine
language that the C program would get translated into.
So now we have three layers of programming abstraction (Figure 14).

2 Computational thinking and abstraction

13 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Figure 14 Three layers of abstraction as encapsulation

Think about it: if layers of encapsulation did not exist, the short and easily understood
program to display the time (above) would be impossible. We would have to deal directly
with instructions written in machine language. There would be many of them and they
would be in a language which is very hard for humans to understand.
Programming abstraction doesn’t stop there. We can define new abstractions of our own.
For example the following function prints the n times table up to 9 times n.”

def timesTable(n):
for m in range(1, 10):
print(m, 'times', n, 'is', m*n)

Once this function is defined we can call it whenever we like without having to bother
again with the details.

timesTable(9)
In fact we can create a Python module that encapsulates this function, so the detail is
completely hidden! Suppose we name the module demo. Then the timesTable function
can be used from a different Python program, like this:

from demo import timesTable
timesTable(7)

But now we can define a new function that depends on timesTable. The function
printUsersTimesTable below prompts the user for a number and then uses timesTable to
print the corresponding times table (see Figure 15).

Figure 15 The result of the function printUsersTimesTable() when user enters the
number 6

def printUsersTimesTable():
aNumber = input('Please enter your number: ')
timesTable(int(aNumber))

So we can build a hierarchy with any number of layers of abstraction, with the detail of
each layer hidden from those above and each layer – apart from the bottom one –
interacting with the layer below via its interface.

2 Computational thinking and abstraction

14 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Figure 16 A hierarchy of layers of abstraction (as encapsulation)

The overall picture that emerges is one of a hierarchy of layers. As illustrated in Figure 14,
in such a hierarchy Layer 0 hides its details from Layer 1 above it, Layer 1 hides its details
from Layer 2, etc. Conversely, Layer 1 depends on Layer 0, Layer 2 depends on
Layer 1, etc.
Figure 14 also shows that such a hierarchy eventually bottoms out at Layer 0. That is the
layer at which the abstraction is implemented in physical reality, i.e. a substrate/hardware.
This physical layer constrains what is possible at the layers that are built on top of it.
Nowadays, most computers are built using electronic components. This is, however, by
no means the only possible physical substrate. When Charles Babbage (1791–1871)
designed the first programmable computer, he came up with a steam-powered machine
built of brass and iron. Babbage never finished his machine, but recently part of it has
been constructed using Meccano (see Figure 17).

Figure 17 Part of Babbage’s Analytical Engine constructed from Meccano

Without going into detail, the idea of layers of abstraction in computing is not restricted to
programming languages. It extends, for example, to operating systems and computer
networks. In both, a distinction is made between physical and logical layers. Actual
devices (e.g. hard drives and computers) and networking hardware (e.g. copper wires)
are part of the physical layer. The logical layer contains abstractions (such as IP
addresses and protocols).

2.4 Why modelling and encapsulation matter
Both abstraction as modelling and abstraction as encapsulation allow us to manage
complexity:

● In the case of modelling, this is done by discarding information: we abstract away all
that is irrelevant, to leave a model that contains only what is actually of interest.

● In the case of encapsulation it is done by hiding information: we encapsulate the
details of an implementation/automation (of a model) behind an interface.

These strategies are utterly essential to all computer modelling. Without modelling we
would be swamped by the complexity of the real world and it would be impossible to

2 Computational thinking and abstraction

15 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

define the problem precisely enough to allow it to be solved using an algorithm. Without
encapsulation we would be swamped by the detail of the ‘computer world’ and would find
it impossible to deal with the complexity required to implement algorithms as computer
programs.

Activity 5 Modelling and encapsulation
In answer to Activity 2 you were asked to construct the diagram in Figure 18. Describe
where modelling and encapsulation fit into this diagram.

Figure 18 Abstraction and automation

Discussion
Modelling is involved when one creates an abstraction for a physical-world
phenomenon. Modelling results in a mathematical model which can then be
automated. To deal with the complexity of automating a model, one can use
encapsulation.

2.5 Computational thinking: the overview diagram
The aim of this subsection is to draw together some of the concepts you have
encountered so far. Consider once more the diagram illustrating some of Wing’s ideas
(Figure 19).

Figure 19 Abstraction and automation

The three main components in the diagram are:

● a physical-world phenomenon
● a mathematical model
● an automaton.

How do these relate to the concepts you met in Section 1, namely:

● real-world problem
● computational problem
● algorithm and data structures?

Let us start with Wing’s use of the term ‘mathematical model’. As we will now explain,
Wing’s notion of a mathematical model is linked to that of a computational problem.
According to Wing, a mathematical model is an abstraction of the physical-world

2 Computational thinking and abstraction

16 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

phenomenon of interest. It ignores irrelevant detail. It also is the point of departure for
automation. The fact that it is a mathematical model means that it is sufficiently precise to
be used as a starting point for creating an automaton. Now, you may recall that we defined
a computational problem as a problem that is expressed sufficiently precisely that it is
possible to attempt to build an algorithm to solve it. In other words, Wing’s mathematical
model is nothing other than a computational problem.
Wing’s physical-world phenomenon is abstracted by the mathematical model, just like a
computational problem provides an abstraction of a real-world problem.
Algorithms and data structures form the link between a computational problem and its
automation. Finding algorithms and data structures is part of automating. When these are
then implemented as a program and executed, they provide a machine that solves the
problem. In Wing’s words, the resulting machine – or automaton – automates the
abstraction.
The complexity of the machine, as we have just discussed, is managed by having a series
of encapsulated layers.
To sum all this up, we can refine the diagram of Figure 19 as shown in Figure 20.

Figure 20 Computational thinking overview diagram

Whereas the core of this diagram represents artefacts (real-world and computational
problems, machines) and their relations (models, solves, and expresses), the green
arrows indicate the actions that a computational thinker engages in (i.e. create, transform,
implement and learn).

2.6 Varieties of abstraction
In the next video clip, Wing compares and contrasts abstraction in computational thinking
with abstraction in mathematics and engineering. In the following activity you will make
these comparisons explicit.

Activity 6 Computational, mathematical and engineering thinking
20 minutes

Parts 1-8

Watch the video and complete the activity by ticking the appropriate boxes.

Video content is not available in this format.
Computational, mathematical and engineering thinking

2 Computational thinking and abstraction

17 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Part 1

1. Which of the following use formal notation?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
In all three disciplines, the use of formal/mathematical notation is common:

Part 2

2.Which of the following involve at least two layers?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
Mathematics typically works only with a single layer: there is no distinction between the
‘properties of interest’ and the ‘ignored detail’. The abstraction is studied in its own
right, without reference to some other layer which it represents. Of course, this is an
idealisation. Many areas of mathematics did start as a representation of some aspect
of the real world. For example, geometry began with Euclidean geometry, which was
intended as a model of physical space.
Both engineering and computing rely on at least two layers. At the basis, there is a
layer grounded in the real world. This is the layer in which the problem of interest lies
(for example a bridge or car in engineering). In addition to this layer, there is at least
one further layer which ignores certain of its details. For instance, an engineer may use
mechanics to calculate the forces operating on a bridge when a car crosses it. In doing
so, the engineer will abstract away (or ignore), the colour in which the bridge is
painted, the brand of the car, and many other things that are not relevant for calculating
the forces in question. We’ve seen that a computer scientist who simulates a dictionary
may, similarly, ignore certain properties of a physical dictionary.

Part 3

3. For which of the following are beauty and elegance measures of goodness?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
In all three disciplines, beauty and elegance are criteria that are used to compare
competing abstractions. These are, however, more central in mathematics, where the
abstraction is often judged in its own right, without reference to an underlying reality
that it represents.

Part 4

4. For which of the following is correctness a measure of goodness?
o Computational thinking

2 Computational thinking and abstraction

18 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

o Mathematical thinking
o Engineering thinking
Discussion
In connection with this criterion, Wing asks in particular: ‘Does it do the right thing?’
and ‘Does it do anything?’ These questions are clearly relevant for both computational
and engineering abstractions. It is perhaps less clear what they mean in the context of
mathematics. Arguably, since mathematics is about the abstraction itself, one can’t
really distinguish correct from incorrect abstractions because there is nothing to
compare them with. However, even when dealing with pure abstractions, we may want
to make sure that they are consistent. A mathematical theory that states that a
mathematical object both does and does not have some property would be in violation
of this criterion (e.g. a theory which says that two lines cross and do not cross each
other).

Part 5

5. For which of the following is efficiency a measure of goodness?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
In connection with computing, Wing mentions three dimensions of efficiency: time
(how fast?), space (how much space?) and energy (how much power?). Each of the
three efficiency criteria can also be applied in engineering contexts (e.g. how fast can
the engine run, how much space does it occupy, and how much energy does it
consume?). None of these considerations has a clear equivalent in mathematics.

Part 6

6. For which of the following are usability, modifiability, maintainability and cost
measures of goodness?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
All of these practical considerations are important in both engineering and computing
contexts. They are not directly applicable to mathematics.

Part 7

7. Which of the following are constrained by physics?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
Both engineering and computing are constrained by physical reality. For example, the
classical model of computing uses the bit (0 or 1) as the basic unit of information. It is
constrained by whichever physical means is used to represent a bit (whether it be an

2 Computational thinking and abstraction

19 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

electrical current or, for instance, the position of a mechanical lever). The physical
hardware constrains, among other things, how quickly the state of a bit can be
changed (from 0 to 1 or vice versa).

Part 8

8. Which of the following can go beyond physics?
o Computational thinking
o Mathematical thinking
o Engineering thinking
Discussion
Mathematics, as the study of pure abstractions, is independent of physical reality.
Computing, though always constrained by the physical layer at which the hardware
operates, allows us to build on top of the hardware layer software layers that model
non-existent realities. By automating these virtual realities, it allows us to see and even
experience realities that go beyond what is physically possible.

2.7 Virtual worlds
Though engineering and computing have much in common, Wing argues that one big
difference between the two is that computing allows us to escape from the constraints of
the physical world. First, however, she points out that automatons (i.e. entities that carry
out automation) are constrained by physics in the sense that they require a physical
substrate/hardware to exist and work. In the end, any algorithm can only run on a real
machine – a machine made of hardware – whether it comprises electronic components,
brass and iron, or brain tissue.
Let us pursue the idea of how computing allows us to step outside the realm of physical
constraints. For that we need to revisit the idea of abstraction as modelling. You have
seen that algorithms can work with abstractions of real things such as paper and ink
dictionaries. Perhaps more spectacularly, algorithms can also work with abstractions of
things that do not exist, at least not in the physical world around us.

Activity 7 Abstractions of the non-physical
Can you give an example of an algorithm that works with abstractions of non-physical
things? Hint: You can find such an example in Section 1 of this course.
Discussion
You saw an example in Section 1 when you learned about the algorithm for column
addition. This algorithm works with non-negative integers. At first sight, it might seem
that integers are physical objects. After all, can’t we write them down using pen and
paper? Recall, however, Activity 4 (Ceci n’est pas une pipe). In that activity you studied
the distinction between representations/abstractions and the reality they model. When
you write down a ‘2’ (or any other number) on a piece of paper, this is a representation
of the number 2, not the actual number. Why? Suppose that what you wrote down was
the number 2 itself. In that case, if you erased it, 2 would cease to exist, and if you
copied it, you would have created another number 2. That would be absurd! When you

2 Computational thinking and abstraction

20 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

write down a ‘2’, this is merely a representation, not the actual number. Other people
can write down a ‘2’ as well, and thereby talk about the same number that you’re
talking about when using a ‘2’.
Perhaps this has set you wondering what numbers are, if they aren’t physical objects.
Unfortunately, philosophers have been at loggerheads about this question since the
ancient Greeks started discussing it. Many mathematicians subscribe to a view
championed by the philosopher Plato (429–347 BCE), who proposed that numbers
exist, but not in space and time; rather they inhabit what is known as ‘platonic heaven’.

Wing gives a further example of abstractions in computing that model something
(physically) non-existent. She discusses virtual worlds, such as Second Life, a three-
dimensional virtual world populated by avatars. Avatars are computer-animated
characters that are controlled by real people – computer users. The avatars can do many
things that we are familiar with in the real world, including walking around, talking to
people, and interacting with objects. They can, however, also do things that are not
possible in the real world, such as teleport from one location to a geographically distant
other location. This is another instance where the automation of abstractions allows us to
go beyond the things that can exist in the physical world. Note the big difference here
between computing and conventional engineering. Engineers are generally interested in
creating artefacts that are physically possible – what would be the point of designing a
bridge that cannot be built?

2 Computational thinking and abstraction

21 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

3 Computational thinking everywhere
At the very beginning of this course, computational thinking was presented as a desirable
skill – arguably the skill for the twenty-first century. Why? Well, in recent years,
computational thinking has led to exciting developments and discoveries in a number of
fields. This has caused a demand for people with computational thinking skills to move
these fields forward even further. In this section, you will encounter some of these
applications of computational thinking. Watch the videos, but don’t worry if you can’t follow
all of it. We want you to get a feel for the big picture – you’re not expected to remember
everything in detail.

Activity 8 Computational biology
4 minutes

Watch the following video.

Video content is not available in this format.
Computational biology

Activity 9 Model checking
8 minutes

Watch the following video.

Video content is not available in this format.
Model checking

3.1 Machine learning
Machine learning is a technique for automatically finding patterns in large amounts of
data. Watch the following video extract in which Wing discusses several applications of
machine learning.

Activity 10 Machine learning
15 minutes

Video content is not available in this format.
Machine learning

3 Computational thinking everywhere

22 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Wing gives the example of basketball coaches who use machine learning to find out
which skills distinguish good players. Once they know this, they can teach those skills
to their own players. Machine learning makes this possible by automatically finding
patterns in the behaviour of professional players from a large collection of video
recordings.
Describe this use of machine learning in terms of abstraction as modelling.
Discussion
One can view this use of machine learning as an attempt to automatically build a
model of a good basketball player. Such a model is an abstraction that needs to
capture the skills that distinguish a good player and ignores anything else. At a
different level, machine learning is itself based on a model of learning by humans or
animals. Being an abstraction, it ignores many of the details of human and animal
learning, while preserving some key properties (in particular, the idea that one can
learn from examples).

Activity 11 Chemistry, physics, economics …
6 minutes

Watch the following video.

Video content is not available in this format.
Chemistry, physics, economics...

3 Computational thinking everywhere

23 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Conclusion
The underlying theme of this course has been ‘computational thinking’. We’ve defined this
as consisting of the skills to:

● formulate a problem as a computational problem
● construct a good computational solution (an algorithm) for the problem, or explain

why there is no such solution.

We introduced the idea of an algorithm with two examples: an algorithm for addition and
one for dictionary search. You learned about the concept of abstraction and its two
varieties: abstraction as modelling and abstraction as encapsulation. We contrasted and
compared computational thinking with both mathematical and engineering thinking. You
have also been shown the ‘bigger picture’: the way that computational thinking is shaping
research in many disciplines, ranging from biology and physics to economics and sport
science.

Glossary
abstraction
provides a handle on complexity by either ignoring detail by means of a model, or
hiding detail through the use of encapsulation.

algorithm
A precisely stated, step-by-step list of instructions.

data structure
A way of organising data for use by an algorithm.

encapsulation
Hiding details of an implementation from users. This is achieved through an interface
that sits between the user (or client) and the implementation.

interface
An interface sits between a user (or client) and an implementation. It hides the details of
the implementation from the users or clients of the implementation. (See encapsula-
tion.)

model
A representation or abstraction of a part of reality which ignores certain details.

simulation
A working model of a process or a system which changes over time.

References
Gough, J. (1767) Practical Arithmetick in Four books, Dublin.

Conclusion

24 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

Miller, B. N. and Ranum, D. L. (2011) Problem Solving with Algorithms and Data
Structures using Python, 2nd edn, Sherwood, Oregon, Frankin, Beedle & Associates.
Wing, J. M. (2006) ‘Computational Thinking’, Communications of the ACM, vol. 49, no. 3,
pp. 33–5; also available online at http://www.cs.cmu.edu/~wing/publications/Wing06.pdf
(Accessed 20 December 2012).
Wing, J. M. (2009) ‘Computational Thinking and Thinking About Computing’, Evening
Lecture Series, 2 September 2009, Florida Institute for Human and Machine Cognition,
Florida, US [Online]. Available at http://www.youtube.com/watch?v=C2Pq4N-iE4I (Ac-
cessed 20 December 2012).

Acknowledgements
This course was written by Paul Piwek (with input from Alistair Willis for Activities 1 and 3).
Except for third party materials and otherwise stated (see terms and conditions), this
content is made available under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.
The material acknowledged below is Proprietary, used under licence and not subject to
Creative Commons licence. See terms and conditions. Grateful acknowledgement is
made to the following sources for permission to reproduce material in this course:
Course image: Creativity103 in Flickr made available under
Creative Commons Attribution 2.0 Licence.
Photograph of Jeannette Wing in Sections 2 and 3 from:
www.cmu.edu/news/archive/2010/May/may12_wingtoleadcsd.shtml
Figure 1: Theo van Doesburg:
http://commons.wikimedia.org/wiki/File:Theo_van_doesburg_de_koe.jpg
Figure 3a: NASA
Figure 3b: NASA
Figure 7: © ADAGP, Paris and DACS, London 2013
Figure 8: Professor Mark E. Bailey / Armagh Observatory
Figure 10: Courtesy of Dr David Goodchild
Figure 17: Courtesy of Tim Robinson
Videos of Jeannette Wing’s lecture in Section 3: © Florida Institute for Human & Machine
Cognition (IHMC)
Every effort has been made to contact copyright owners. If any have been inadvertently
overlooked, the publishers will be pleased to make the necessary arrangements at the
first opportunity.
Don't miss out:
If reading this text has inspired you to learn more, you may be interested in joining the
millions of people who discover our free learning resources and qualifications by visiting
The Open University - www.open.edu/openlearn/free-courses

Acknowledgements

25 of 25 http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-
thinking/content-section-0?utm_source=openlearnutm_campaign=olutm_medium=ebook

Tuesday 9 April 2019

http://www.cs.cmu.edu/~wing/publications/Wing06.pdf
http://www.youtube.com/watch?v=C2Pq4N-iE4I
http://www.open.ac.uk/conditions
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.flickr.com/photos/creative_stock/
https://creativecommons.org/licenses/by/2.0/
http://www.cmu.edu/news/archive/2010/May/may12_wingtoleadcsd.shtml
http://commons.wikimedia.org/wiki/File:Theo_van_doesburg_de_koe.jpg
http://www.open.edu/openlearn/free-courses?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook
http://www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0?utm_source=openlearn&utm_campaign=ol&utm_medium=ebook

