

 M269_1

 Introduction to computational thinking

 About this free course

 This free course is an adapted extract from the Open University course M269 Algorithms, data structures and computability http://www3.open.ac.uk/study/undergraduate/course/m269.htm.

 This version of the content may include video, images and interactive content that may not be optimised for your device.

 You can experience this free course as it was originally designed on OpenLearn, the home of free learning from The Open University:
 www.open.edu/openlearn/science-maths-technology/computing-and-ict/introduction-computational-thinking/content-section-0.

 There you’ll also be able to track your progress via your activity record, which you can use to demonstrate your learning.

 Copyright © 2019 The Open University

 Intellectual property

 Unless otherwise stated, this resource is released under the terms of the Creative Commons Licence v4.0 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_GB. Within that The Open University interprets this licence in the following way: www.open.edu/openlearn/about-openlearn/frequently-asked-questions-on-openlearn. Copyright and rights falling outside the terms of the Creative Commons Licence are retained or controlled by The Open University.
 Please read the full text before using any of the content.

 We believe the primary barrier to accessing high-quality educational experiences is cost, which is why we aim to publish as
 much free content as possible under an open licence. If it proves difficult to release content under our preferred Creative
 Commons licence (e.g. because we can’t afford or gain the clearances or find suitable alternatives), we will still release
 the materials for free under a personal end-user licence.

 This is because the learning experience will always be the same high quality offering and that should always be seen as positive
 – even if at times the licensing is different to Creative Commons.

 When using the content you must attribute us (The Open University) (the OU) and any identified author in accordance with the
 terms of the Creative Commons Licence.

 The Acknowledgements section is used to list, amongst other things, third party (Proprietary), licensed content which is not
 subject to Creative Commons licensing. Proprietary content must be used (retained) intact and in context to the content at
 all times.

 The Acknowledgements section is also used to bring to your attention any other Special Restrictions which may apply to the
 content. For example there may be times when the Creative Commons Non-Commercial Sharealike licence does not apply to any
 of the content even if owned by us (The Open University). In these instances, unless stated otherwise, the content may be
 used for personal and non-commercial use.

 We have also identified as Proprietary other material included in the content which is not subject to Creative Commons Licence. These
 are OU logos, trading names and may extend to certain photographic and video images and sound recordings and any other material
 as may be brought to your attention.

 Unauthorised use of any of the content may constitute a breach of the terms and conditions and/or intellectual property laws.

 We reserve the right to alter, amend or bring to an end any terms and conditions provided here without notice.

 All rights falling outside the terms of the Creative Commons licence are retained or controlled by The Open University.

 Head of Intellectual Property, The Open University

 978-1-4730-1811-2 (.kdl)
978-1-4730-1043-7 (.epub)

 Contents

 	Introduction

 	Learning outcomes

 	1 Computational thinking and automation

 	

 	1.1 Automation

 	2 Computational thinking and abstraction

 	

 	2.1 Models

 	2.2 Encapsulation

 	2.3 Encapsulation in computing

 	2.4 Why modelling and encapsulation matter

 	2.5 Computational thinking: the overview diagram

 	2.6 Varieties of abstraction

 	2.7 Virtual worlds

 	3 Computational thinking everywhere

 	

 	3.1 Machine learning

 	Conclusion

 	Glossary

 	References

 	Acknowledgements

 Introduction

 One can major [i.e. graduate] in computer science and do anything. One can major in English or mathematics and go on to a
 multitude of different careers. Ditto computer science. One can major in computer science and go on to a career in medicine,
 law, business, politics, any type of science or engineering, and even the arts.

 Jeannette M. Wing, Professor of Computer Science at Carnegie Mellon University (United States) and Head of Microsoft Research
 International

 Sounds great that ‘One can major [i.e. graduate] in computer science and do anything’, doesn’t it? Then again, isn’t this
 miles away from the view of computing as a training ground for programmers and system builders? The good news is that one
 doesn’t necessarily need to exclude the other! The grand vision behind this quote is that learning to program, build large
 systems, and so on, allows you to develop something which is much more valuable than any of these on their own, namely the
 ability to think like a computer scientist. Over the past decade or so, Jeannette Wing has been popularising this view under the banner of computational thinking.

 [image:]

 Figure 1 Abstraction, a recurring theme in this course, illustrated by four representations of a cow by Theo van Doesburg, 1917, 1918

 View description - Figure 1 Abstraction, a recurring theme in this course, illustrated by four representations ...

 Much of the material in this course is organised around video clips from a presentation that Wing gave in 2009 entitled ‘Computational
 Thinking and Thinking About Computing’ (Wing, 2009). The presentation builds on Wing’s influential 2006 ‘Computational Thinking’
 paper in which she set out to ‘spread the joy, awe, and power of computer science, aiming to make computational thinking commonplace’
 (Wing, 2006, p. 35).

 In this course you will learn more about what computational thinking is and why it is such a desirable skill – arguably the skill for the twenty-first century.

 This OpenLearn course is an adapted extract from the Open University course M269 Algorithms, data structures and computability.

 Learning outcomes

 After studying this course, you should be able to:

 	describe the skills that are involved in computational thinking

 	define and use the concepts of abstraction as modelling and abstraction as encapsulation

 	understand the distinctive nature of computational thinking, when compared with engineering and mathematical thinking

 	be aware of a range of applications of computational thinking in different disciplines.

 1 Computational thinking and automation

 To state more precisely what computational thinking is, we need to consider the ideas of an algorithm and a computational
 problem. We will think about these ideas in the next activity.

 Activity 1 Algorithms and computational problems

 Look at Figure 2. This shows page 18 of John Gough’s Practical Arithmetick in Four books, which is a tutorial maths book first published in 1767. The text under the heading ‘General Rule’ gives a description of
 a process for adding together three non-negative integers, each written as a finite sequence of digits. (The fact that three
 numbers are added is rather arbitrary: the process would work just as well for adding together two numbers or indeed any number
 of numbers.)

 [image:]

 Figure 2 Instructions for column addition (Gough, 1767)

 View description - Figure 2 Instructions for column addition (Gough, 1767)

 Explain whether this textual description is an algorithm according to the following description of an algorithm.

 An algorithm is a solution to a problem which has three properties:

 	an algorithm consists of a step-by-step list of instructions

 	an algorithm is a finite process (this means it is guaranteed to finish at some point)

 	the algorithm should solve any instance of the problem that might arise.

 View discussion - Activity 1 Algorithms and computational problems

 [image:]

 Figure 3 (a) Human computers working on test flight calculations at the predecessor of NASA in 1949 (b) two NASA employees in 1990
 programming a computer so it can automatically calibrate aircraft equipment

 View description - Figure 3 (a) Human computers working on test flight calculations at the predecessor ...

 Having met the ideas of algorithms and computational problems, let us state what computational thinking is not: computational
 thinking is not about us humans following an algorithm when carrying out the task of adding numbers on paper or in our head. It is not about
 thinking like a computer - rather, computational thinking is first and foremost thinking about computation. In particular, computational thinking consists of the skills to:

 	formulate a problem as a computational problem

 	construct a good computational solution (i.e. an algorithm) for the problem, or explain why there is no such solution.

 A computational thinker can take a problem and state it sufficiently precisely for it to be potentially solvable by an algorithm.
 Once the problem has been stated in the right way, a computational thinker tries to construct an algorithm that solves it.
 A computational thinker won’t, however, be satisfied with just any solution: the solution has to be a ‘good’ one. We will
 discuss two specific properties of a good solution later on in this course: efficiency and correctness. Finally, computational
 thinking goes beyond finding solutions: if no good solution exists, one should be able to explain why this is so. This topic,
 however, takes us beyond the scope of this course into computability and computational complexity theory.

 Most of the activities in this course involve watching extracts from Wing’s presentation ‘Computational Thinking and Thinking
 About Computing’. Remember to read through the activity before watching the video.

 1.1 Automation

 Activity 2 Automation, abstraction and modelling

 5 minutes

 After you’ve watched the following extract of Wing’s talk, complete this activity.

 Video content is not available in this format.

 Automation, abstraction and modelling

 View transcript - Automation, abstraction and modelling

 The aim of this activity is to get you to think about what Wing is saying in the following, rather long but important, sentence:
 ‘… this feedback loop that one has when you’re abstracting from some physical-world phenomenon, creating a mathematical model
 of this physical-world phenomenon, and then analysing the abstraction, doing sorts of manipulations of those abstractions,
 and in fact automating the abstraction, that then tells us more about the physical-world phenomenon that we’re actually modelling.’

 Place the following labels in the correct positions of the diagram below. (Note: the diagram will not work with Internet Explorer 8, if this is your usual browser you will need to use an alternate browser
 to view the diagram.)

 Interactive content is not available in this format.

 View discussion - Activity 2 Automation, abstraction and modelling

 2 Computational thinking and abstraction

 In the next activity you will see Wing explain how computational thinking involves the process of abstraction.

 Activity 3 Abstraction

 8 minutes

 Watch the video and then complete this activity.

 Video content is not available in this format.

 Abstraction

 View transcript - Abstraction

 Wing talks about abstractions as a means of ignoring detail that is not of interest. Consider the following description of
 an algorithm for searching a paper and ink dictionary.

 Given:

 	a dictionary

 	a headword W which appears in the dictionary

 to find the definition of W:

 	Begin the search with an entry that appears (roughly) in the middle of the dictionary. Then there are three possibilities:

 	The current entry’s headword is W. In this case, the definition of W is the definition of the current entry.

 	W appears alphabetically before the current entry’s headword. In this case, the entry with headword W must appear in the first half of the dictionary. Look for the word W, following the same approach, in the first half of the dictionary.

 	W appears alphabetically after the current entry’s headword. In this case, the entry with headword W must appear in the second half of the dictionary. Look for the word W, following the same approach, in the second half of the dictionary.

 This is an informal description of an algorithm, but the steps are sufficiently precise that a human should have no problem
 following them. This algorithm depends crucially on the fact that the words in a dictionary are alphabetically ordered. It
 also, however, ignores some of the details of paper and ink dictionaries. Can you list of few of these?

 [image:]

 Figure 4 A dictionary

 View description - Figure 4 A dictionary

 View discussion - Activity 3 Abstraction

 Wing’s discussion of abstraction draws on a wide variety of concepts. You have come across phrases such as ‘ignoring’ and ‘hiding information’, ‘levels’ and
 ‘layers’, ‘models’ and ‘implementation’. It has been left somewhat in the air how these all hang together. So next, we will
 make the relations between them explicit. To do so, we will distinguish between two kinds of abstraction:

 	abstraction as modelling

 	abstraction as encapsulation.

 Although Wing deals in great detail with the idea of abstraction as modelling, she only hints at the concept of abstraction
 as encapsulation. Both are, however, at play in computing. Distinguishing between them will give you a better understanding
 of the remainder of Wing’s story.

 2.1 Models

 [image:]

 Figure 5 Abstraction and automation

 View description - Figure 5 Abstraction and automation

 Let us think more generally about the abstraction depicted in Figure 5. For this purpose, we will be using the diagram in
 Figure 6. Instead of Wing’s somewhat unwieldy expressions ‘mathematical model’ and ‘physical-world phenomenon’, we will use
 the shorthands ‘model’ and ‘part of reality’.

 The diagram in Figure 6 shows that abstraction as modelling can be understood in terms of the relationship between a part
 of reality and a model which represents the details of interest of this reality. For this reason, models are sometimes also referred to as representations.

 [image:]

 Figure 6 Diagrammatic representation of abstraction as modelling

 View description - Figure 6 Diagrammatic representation of abstraction as modelling

 For the purpose of the current example, the part of reality that we’re interested in is the paper and ink dictionary of Activity 3.
 The algorithms in Section 1 for looking up words work with a model of a dictionary as an alphabetically sorted list of headwords,
 each paired with its definition. The model corresponds to how the data that the algorithm works with are structured. This
 model captures the essentials (i.e. that the dictionary consists of an alphabetically sorted list of words and their definitions) and ignores certain details (for example, that a physical dictionary is divided into pages of a certain size and has a cover to protect it). In other
 words, the irrelevant details are not reflected by the structure of the data that the algorithm works with.

 Activity 4 Representations

 Representations, including paintings and drawings, are models. This is brilliantly illustrated by René Magritte’s famous painting
 of a pipe with the words ‘Ceci n’est pas une pipe’ (‘This is not a pipe’) underneath (Figure 7). Explain how this painting
 brings home the point that modelling involves two levels: the abstraction and the reality which the abstraction models.

 [image:]

 Figure 7 René Magritte’s painting The Treachery of Images (1928–9)

 View description - Figure 7 René Magritte’s painting The Treachery of Images (1928–9)

 View discussion - Activity 4 Representations

 The part of reality for which one creates a model or representation doesn’t need to be a static object such as a pipe or dictionary.
 It can also be a process or system which changes over time. In that case, the model will not only have to capture any enduring
 properties of interest, but also any changes in time that are of interest. For example, in astronomy there is a rich tradition
 of building such models of the solar system (see Figure 8). The purpose of such a model, known as an orrery, is to represent
 the position of the planets relative to each other over time.

 The invention of the orrery is usually attributed to George Graham (1673–1751). Graham worked on this with the support of
 the 4th Earl of Orrery, which explains the name. The tiny crank on the side of the central cylinder in Figure 8 allows the
 model to be animated. Turning the crank causes the (representations of the) planets to follow a path around the (representation
 of the) Sun at the centre of the model. Usually such an animated model is referred to as a simulation.

 [image:]

 Figure 8 An orrery (a mechanical model of the solar system)

 View description - Figure 8 An orrery (a mechanical model of the solar system)

 As with any model, an orrery ignores certain details of the part of reality that it models. For example, compared with the
 scale of the distances between the planets, the planets are too large. The relationship between the solar system and an orrery
 is as depicted in Figure 9.

 [image:]

 Figure 9 Relationship between an orrery and the solar system

 View description - Figure 9 Relationship between an orrery and the solar system

 2.2 Encapsulation

 The model of the solar system in Figure 10 also illustrates the second type of abstraction: abstraction as encapsulation.
 The brass cylinder in the middle of the device encloses a clockwork of cogwheels similar to the one in Figure 10.

 [image:]

 Figure 10 The inside of an orrery

 View description - Figure 10 The inside of an orrery

 This mechanism causes the small spheres representing the planets to rotate around the centre at a velocity that is proportional
 to the speed of the actual planets. The mechanism is hidden from view for the casual user, who is only interested in the movement
 of the planets. Figure 11 illustrates this other view of the orrery in terms of two layers.

 [image:]

 Figure 11 The orrery as two layers

 View description - Figure 11 The orrery as two layers

 Generally, abstraction as encapsulation involves the two layers shown in Figure 12.

 [image:]

 Figure 12 The two layers involved in abstraction as encapsulation

 View description - Figure 12 The two layers involved in abstraction as encapsulation

 The layer through which the user interacts with the model is called the interface. It hides the detailed workings of the model from the user. The interface sits between the user and the layer at which the
 model is implemented. The latter is responsible for making the model do what it is supposed to do. This is where the automation
 of the model takes place.

 2.3 Encapsulation in computing

 Abstraction as encapsulation is common everywhere in computing. Sometimes it is referred to as ‘abstraction as information
 hiding’ (instead of encapsulation).

 Let us consider an example. Our example will make use of the Python programming language. This language is used throughout
 M269 Algorithms, data structures and computability on which this OpenLearn course is based. It was chosen because it is eminently suitable for learning the basic concepts of
 computer science and programming. It allows you to write concise, easily understood programs. You should be able to follow
 most of the following discussion if you have had some experience with an imperative programming language.

 The incredibly short Python program below will display the date and current time (see Figure 13). It depends on a built-in
 Python module which is imported in the first line.

 import time
print(time.ctime())

 [image:]

 Figure 13 Execution of the small program above in the Python Interactive Shell

 How does time.ctime() work? We don’t know and we don’t need to know! Someone has written the time module and documented its interface, which contains the function ctime(). We can just use the function without any knowledge whatsoever of its implementation.

 However, under the bonnet the time module is itself a program, written in C, another high-level programming language! The programmers of the module, when they
 wrote it, only needed to know C. They were able to ignore the details of the low-level machine language that the C program
 would get translated into.

 So now we have three layers of programming abstraction (Figure 14).

 [image:]

 Figure 14 Three layers of abstraction as encapsulation

 View description - Figure 14 Three layers of abstraction as encapsulation

 Think about it: if layers of encapsulation did not exist, the short and easily understood program to display the time (above)
 would be impossible. We would have to deal directly with instructions written in machine language. There would be many of
 them and they would be in a language which is very hard for humans to understand.

 Programming abstraction doesn’t stop there. We can define new abstractions of our own. For example the following function
 prints the n times table up to 9 times n.”

 def timesTable(n):
 for m in range(1, 10):
 print(m, 'times', n, 'is', m*n)

 Once this function is defined we can call it whenever we like without having to bother again with the details.

 timesTable(9)

 In fact we can create a Python module that encapsulates this function, so the detail is completely hidden! Suppose we name
 the module demo. Then the timesTable function can be used from a different Python program, like this:

 from demo import timesTable
timesTable(7)

 But now we can define a new function that depends on timesTable. The function printUsersTimesTable below prompts the user
 for a number and then uses timesTable to print the corresponding times table (see Figure 15).

 [image:]

 Figure 15 The result of the function printUsersTimesTable() when user enters the number 6

 def printUsersTimesTable():
 aNumber = input('Please enter your number: ')
 timesTable(int(aNumber))

 So we can build a hierarchy with any number of layers of abstraction, with the detail of each layer hidden from those above
 and each layer – apart from the bottom one – interacting with the layer below via its interface.

 [image:]

 Figure 16 A hierarchy of layers of abstraction (as encapsulation)

 View description - Figure 16 A hierarchy of layers of abstraction (as encapsulation)

 The overall picture that emerges is one of a hierarchy of layers. As illustrated in Figure 14, in such a hierarchy Layer 0
 hides its details from Layer 1 above it, Layer 1 hides its details from Layer 2, etc. Conversely, Layer 1 depends on Layer 0,
 Layer 2 depends on Layer 1, etc.

 Figure 14 also shows that such a hierarchy eventually bottoms out at Layer 0. That is the layer at which the abstraction is
 implemented in physical reality, i.e. a substrate/hardware. This physical layer constrains what is possible at the layers
 that are built on top of it. Nowadays, most computers are built using electronic components. This is, however, by no means
 the only possible physical substrate. When Charles Babbage (1791–1871) designed the first programmable computer, he came up
 with a steam-powered machine built of brass and iron. Babbage never finished his machine, but recently part of it has been
 constructed using Meccano (see Figure 17).

 [image:]

 Figure 17 Part of Babbage’s Analytical Engine constructed from Meccano

 View description - Figure 17 Part of Babbage’s Analytical Engine constructed from Meccano

 Without going into detail, the idea of layers of abstraction in computing is not restricted to programming languages. It extends,
 for example, to operating systems and computer networks. In both, a distinction is made between physical and logical layers.
 Actual devices (e.g. hard drives and computers) and networking hardware (e.g. copper wires) are part of the physical layer.
 The logical layer contains abstractions (such as IP addresses and protocols).

 2.4 Why modelling and encapsulation matter

 Both abstraction as modelling and abstraction as encapsulation allow us to manage complexity:

 	In the case of modelling, this is done by discarding information: we abstract away all that is irrelevant, to leave a model
 that contains only what is actually of interest.

 	In the case of encapsulation it is done by hiding information: we encapsulate the details of an implementation/automation
 (of a model) behind an interface.

 These strategies are utterly essential to all computer modelling. Without modelling we would be swamped by the complexity
 of the real world and it would be impossible to define the problem precisely enough to allow it to be solved using an algorithm.
 Without encapsulation we would be swamped by the detail of the ‘computer world’ and would find it impossible to deal with
 the complexity required to implement algorithms as computer programs.

 Activity 5 Modelling and encapsulation

 In answer to Activity 2 you were asked to construct the diagram in Figure 18. Describe where modelling and encapsulation fit
 into this diagram.

 [image:]

 Figure 18 Abstraction and automation

 View description - Figure 18 Abstraction and automation

 View discussion - Activity 5 Modelling and encapsulation

 2.5 Computational thinking: the overview diagram

 The aim of this subsection is to draw together some of the concepts you have encountered so far. Consider once more the diagram
 illustrating some of Wing’s ideas (Figure 19).

 [image:]

 Figure 19 Abstraction and automation

 View description - Figure 19 Abstraction and automation

 The three main components in the diagram are:

 	a physical-world phenomenon

 	a mathematical model

 	an automaton.

 How do these relate to the concepts you met in Section 1, namely:

 	real-world problem

 	computational problem

 	algorithm and data structures?

 Let us start with Wing’s use of the term ‘mathematical model’. As we will now explain, Wing’s notion of a mathematical model
 is linked to that of a computational problem. According to Wing, a mathematical model is an abstraction of the physical-world
 phenomenon of interest. It ignores irrelevant detail. It also is the point of departure for automation. The fact that it is
 a mathematical model means that it is sufficiently precise to be used as a starting point for creating an automaton. Now, you may recall
 that we defined a computational problem as a problem that is expressed sufficiently precisely that it is possible to attempt
 to build an algorithm to solve it. In other words, Wing’s mathematical model is nothing other than a computational problem.

 Wing’s physical-world phenomenon is abstracted by the mathematical model, just like a computational problem provides an abstraction
 of a real-world problem.

 Algorithms and data structures form the link between a computational problem and its automation. Finding algorithms and data
 structures is part of automating. When these are then implemented as a program and executed, they provide a machine that solves
 the problem. In Wing’s words, the resulting machine – or automaton – automates the abstraction.

 The complexity of the machine, as we have just discussed, is managed by having a series of encapsulated layers.

 To sum all this up, we can refine the diagram of Figure 19 as shown in Figure 20.

 [image:]

 Figure 20 Computational thinking overview diagram

 View description - Figure 20 Computational thinking overview diagram

 Whereas the core of this diagram represents artefacts (real-world and computational problems, machines) and their relations
 (models, solves, and expresses), the green arrows indicate the actions that a computational thinker engages in (i.e. create, transform, implement and learn).

 2.6 Varieties of abstraction

 In the next video clip, Wing compares and contrasts abstraction in computational thinking with abstraction in mathematics
 and engineering. In the following activity you will make these comparisons explicit.

 Activity 6 Computational, mathematical and engineering thinking

 20 minutes

 Parts 1-8

 Watch the video and complete the activity by ticking the appropriate boxes.

 Video content is not available in this format.

 Computational, mathematical and engineering thinking

 View transcript - Computational, mathematical and engineering thinking

 Part 1

 1. Which of the following use formal notation?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 1

 Part 2

 2.Which of the following involve at least two layers?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 2

 Part 3

 3. For which of the following are beauty and elegance measures of goodness?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 3

 Part 4

 4. For which of the following is correctness a measure of goodness?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 4

 Part 5

 5. For which of the following is efficiency a measure of goodness?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 5

 Part 6

 6. For which of the following are usability, modifiability, maintainability and cost measures of goodness?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 6

 Part 7

 7. Which of the following are constrained by physics?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 7

 Part 8

 8. Which of the following can go beyond physics?

 Computational thinking

 Mathematical thinking

 Engineering thinking

 View discussion - Part 8

 2.7 Virtual worlds

 Though engineering and computing have much in common, Wing argues that one big difference between the two is that computing
 allows us to escape from the constraints of the physical world. First, however, she points out that automatons (i.e. entities
 that carry out automation) are constrained by physics in the sense that they require a physical substrate/hardware to exist
 and work. In the end, any algorithm can only run on a real machine – a machine made of hardware – whether it comprises electronic
 components, brass and iron, or brain tissue.

 Let us pursue the idea of how computing allows us to step outside the realm of physical constraints. For that we need to revisit
 the idea of abstraction as modelling. You have seen that algorithms can work with abstractions of real things such as paper
 and ink dictionaries. Perhaps more spectacularly, algorithms can also work with abstractions of things that do not exist,
 at least not in the physical world around us.

 Activity 7 Abstractions of the non-physical

 Can you give an example of an algorithm that works with abstractions of non-physical things? Hint: You can find such an example
 in Section 1 of this course.

 View discussion - Activity 7 Abstractions of the non-physical

 Wing gives a further example of abstractions in computing that model something (physically) non-existent. She discusses virtual
 worlds, such as Second Life, a three-dimensional virtual world populated by avatars. Avatars are computer-animated characters
 that are controlled by real people – computer users. The avatars can do many things that we are familiar with in the real
 world, including walking around, talking to people, and interacting with objects. They can, however, also do things that are
 not possible in the real world, such as teleport from one location to a geographically distant other location. This is another
 instance where the automation of abstractions allows us to go beyond the things that can exist in the physical world. Note
 the big difference here between computing and conventional engineering. Engineers are generally interested in creating artefacts
 that are physically possible – what would be the point of designing a bridge that cannot be built?

 3 Computational thinking everywhere

 At the very beginning of this course, computational thinking was presented as a desirable skill – arguably the skill for the
 twenty-first century. Why? Well, in recent years, computational thinking has led to exciting developments and discoveries
 in a number of fields. This has caused a demand for people with computational thinking skills to move these fields forward
 even further. In this section, you will encounter some of these applications of computational thinking. Watch the videos,
 but don’t worry if you can’t follow all of it. We want you to get a feel for the big picture – you’re not expected to remember
 everything in detail.

 Activity 8 Computational biology

 4 minutes

 Watch the following video.

 Video content is not available in this format.

 Computational biology

 View transcript - Computational biology

 Activity 9 Model checking

 8 minutes

 Watch the following video.

 Video content is not available in this format.

 Model checking

 View transcript - Model checking

 3.1 Machine learning

 Machine learning is a technique for automatically finding patterns in large amounts of data. Watch the following video extract
 in which Wing discusses several applications of machine learning.

 Activity 10 Machine learning

 15 minutes

 Video content is not available in this format.

 Machine learning

 View transcript - Machine learning

 Wing gives the example of basketball coaches who use machine learning to find out which skills distinguish good players. Once
 they know this, they can teach those skills to their own players. Machine learning makes this possible by automatically finding
 patterns in the behaviour of professional players from a large collection of video recordings.

 Describe this use of machine learning in terms of abstraction as modelling.

 View discussion - Activity 10 Machine learning

 Activity 11 Chemistry, physics, economics …

 6 minutes

 Watch the following video.

 Video content is not available in this format.

 Chemistry, physics, economics...

 View transcript - Chemistry, physics, economics...

 Conclusion

 The underlying theme of this course has been ‘computational thinking’. We’ve defined this as consisting of the skills to:

 	formulate a problem as a computational problem

 	construct a good computational solution (an algorithm) for the problem, or explain why there is no such solution.

 We introduced the idea of an algorithm with two examples: an algorithm for addition and one for dictionary search. You learned
 about the concept of abstraction and its two varieties: abstraction as modelling and abstraction as encapsulation. We contrasted
 and compared computational thinking with both mathematical and engineering thinking. You have also been shown the ‘bigger
 picture’: the way that computational thinking is shaping research in many disciplines, ranging from biology and physics to
 economics and sport science.

 Glossary

 	abstraction

 	provides a handle on complexity by either ignoring detail by means of a model, or hiding detail through the use of encapsulation.

 	algorithm

 	A precisely stated, step-by-step list of instructions.

 	data structure

 	A way of organising data for use by an algorithm.

 	encapsulation

 	Hiding details of an implementation from users. This is achieved through an interface that sits between the user (or client)
 and the implementation.

 	interface

 	An interface sits between a user (or client) and an implementation. It hides the details of the implementation from the users
 or clients of the implementation. (See encapsulation.)

 	model

 	A representation or abstraction of a part of reality which ignores certain details.

 	simulation

 	A working model of a process or a system which changes over time.

 References

 Gough, J. (1767) Practical Arithmetick in Four books, Dublin.

 Miller, B. N. and Ranum, D. L. (2011) Problem Solving with Algorithms and Data Structures using Python, 2nd edn, Sherwood, Oregon, Frankin, Beedle & Associates.

 Wing, J. M. (2006) ‘Computational Thinking’, Communications of the ACM, vol. 49, no. 3, pp. 33–5; also available online at http://www.cs.cmu.edu/~wing/publications/Wing06.pdf (Accessed 20 December 2012).

 Wing, J. M. (2009) ‘Computational Thinking and Thinking About Computing’, Evening Lecture Series, 2 September 2009, Florida Institute for Human and Machine Cognition, Florida, US [Online]. Available at http://www.youtube.com/watch?v=C2Pq4N-iE4I (Accessed 20 December 2012).

 Acknowledgements

 This course was written by Paul Piwek (with input from Alistair Willis for Activities 1 and 3).

 Except for third party materials and otherwise stated (see terms and conditions), this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence.

 The material acknowledged below is Proprietary, used under licence and not subject to Creative Commons licence. See terms
 and conditions. Grateful acknowledgement is made to the following sources for permission to reproduce material in this course:

 Course image: Creativity103 in Flickr made available under Creative Commons Attribution 2.0 Licence.

 Photograph of Jeannette Wing in Sections 2 and 3 from: www.cmu.edu/news/archive/2010/May/may12_wingtoleadcsd.shtml

 Figure 1: Theo van Doesburg: http://commons.wikimedia.org/wiki/File:Theo_van_doesburg_de_koe.jpg

 Figure 3a: NASA

 Figure 3b: NASA

 Figure 7: © ADAGP, Paris and DACS, London 2013

 Figure 8: Professor Mark E. Bailey / Armagh Observatory

 Figure 10: Courtesy of Dr David Goodchild

 Figure 17: Courtesy of Tim Robinson

 Videos of Jeannette Wing’s lecture in Section 3: © Florida Institute for Human & Machine Cognition (IHMC)

 Every effort has been made to contact copyright owners. If any have been inadvertently overlooked, the publishers will be
 pleased to make the necessary arrangements at the first opportunity.

 Don't miss out:

 If reading this text has inspired you to learn more, you may be interested in joining the millions of people who discover
 our free learning resources and qualifications by visiting The Open University - www.open.edu/openlearn/free-courses

 Activity 1 Algorithms and computational problems

 Discussion

 First, we need to consider whether the text describes a step-by-step list of instructions. This is not always obvious. At
 some points it does and at some points it doesn’t.

 At many points the text does provide instructions to be carried out sequentially, such as:

 	‘place the numbers so that each figure may stand directly underneath (…) the figures of the same value’

 	‘begin the addition at the first place’.

 Although other parts of the instructions are not explicitly presented as a list of instructions, it is easy to see how the
 textual passage could be mapped onto such a list. In that list, certain instructions would be repeated for each of the columns
 involved (‘then proceed in the same manner … from place to place to the last’).

 So, let’s assume that the text does have the first property. Does it also have the other two properties?

 According to the second property, the process should be finite. This is indeed the case. The numbers being added will each
 have a finite number of digits, so only a finite number of columns will be involved, and the process only requires a small
 number of steps at each column.

 Finally, the process does apply to any instance of the problem, where the ‘instances of the problem’ are all combinations
 of three integers, each represented by a finite sequence of digits in the range 0–9. The text leaves it implicit what instances
 the algorithm is intended to apply to.

 The precise specification of the ‘instance of the problem’ can be thought of as part of the task of formulating a problem
 as a computational problem. By a computational problem, we mean "a problem that is stated sufficiently precisely such that
 one can attempt to write an algorithm to solve it."

 Back

 Activity 2 Automation, abstraction and modelling

 Discussion

 It is important to have a good grasp of this diagram. It provides a high-level overview of the key ingredients of computational
 thinking and how they are related to each other. In the remainder of this course, we will flesh out some of the details that
 lie behind this diagram.

 Back

 Activity 3 Abstraction

 Discussion

 Details of a paper and ink dictionary that come to mind include: the size and thickness of its pages, the colour of its cover
 and the size of the printed font. None of these played a role in the algorithm that is described above. Perhaps the most salient
 abstraction relates to the fact that paper and ink dictionaries are made of pages. They are not simply a list of words and
 definitions. Rather, the words are distributed across the pages of the dictionary. The algorithm doesn’t take into account
 the distribution of the words in a dictionary across pages: for example it would work equally well with a dictionary printed
 on a single, enormously long paper scroll.

 Back

 Activity 4 Representations

 Discussion

 When looking at this painting, my initial thought was: ‘Look, a pipe – why does it say in French that this is not a pipe?’
 Then it dawned on me that of course this is indeed not a pipe: it’s merely a painting of a pipe. With this painting, Magritte
 reminded me that representations usually involve two levels: in this case the painting of a pipe and a real pipe on which
 the painting is based. The former is an abstraction which ignores some of the properties of actual pipes (for example, that
 they have a smell, usually of tobacco). Interestingly, the title of this painting is La trahison des images (The Treachery of Images).

 Back

 Activity 5 Modelling and encapsulation

 Discussion

 Modelling is involved when one creates an abstraction for a physical-world phenomenon. Modelling results in a mathematical
 model which can then be automated. To deal with the complexity of automating a model, one can use encapsulation.

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 1

 Discussion

 In all three disciplines, the use of formal/mathematical notation is common:

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 2

 Discussion

 Mathematics typically works only with a single layer: there is no distinction between the ‘properties of interest’ and the
 ‘ignored detail’. The abstraction is studied in its own right, without reference to some other layer which it represents.
 Of course, this is an idealisation. Many areas of mathematics did start as a representation of some aspect of the real world.
 For example, geometry began with Euclidean geometry, which was intended as a model of physical space.

 Both engineering and computing rely on at least two layers. At the basis, there is a layer grounded in the real world. This
 is the layer in which the problem of interest lies (for example a bridge or car in engineering). In addition to this layer,
 there is at least one further layer which ignores certain of its details. For instance, an engineer may use mechanics to calculate
 the forces operating on a bridge when a car crosses it. In doing so, the engineer will abstract away (or ignore), the colour
 in which the bridge is painted, the brand of the car, and many other things that are not relevant for calculating the forces
 in question. We’ve seen that a computer scientist who simulates a dictionary may, similarly, ignore certain properties of
 a physical dictionary.

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 3

 Discussion

 In all three disciplines, beauty and elegance are criteria that are used to compare competing abstractions. These are, however,
 more central in mathematics, where the abstraction is often judged in its own right, without reference to an underlying reality
 that it represents.

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 4

 Discussion

 In connection with this criterion, Wing asks in particular: ‘Does it do the right thing?’ and ‘Does it do anything?’ These
 questions are clearly relevant for both computational and engineering abstractions. It is perhaps less clear what they mean
 in the context of mathematics. Arguably, since mathematics is about the abstraction itself, one can’t really distinguish correct
 from incorrect abstractions because there is nothing to compare them with. However, even when dealing with pure abstractions,
 we may want to make sure that they are consistent. A mathematical theory that states that a mathematical object both does
 and does not have some property would be in violation of this criterion (e.g. a theory which says that two lines cross and
 do not cross each other).

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 5

 Discussion

 In connection with computing, Wing mentions three dimensions of efficiency: time (how fast?), space (how much space?) and
 energy (how much power?). Each of the three efficiency criteria can also be applied in engineering contexts (e.g. how fast
 can the engine run, how much space does it occupy, and how much energy does it consume?). None of these considerations has
 a clear equivalent in mathematics.

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 6

 Discussion

 All of these practical considerations are important in both engineering and computing contexts. They are not directly applicable
 to mathematics.

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 7

 Discussion

 Both engineering and computing are constrained by physical reality. For example, the classical model of computing uses the
 bit (0 or 1) as the basic unit of information. It is constrained by whichever physical means is used to represent a bit (whether
 it be an electrical current or, for instance, the position of a mechanical lever). The physical hardware constrains, among
 other things, how quickly the state of a bit can be changed (from 0 to 1 or vice versa).

 Back

 Activity 6 Computational, mathematical and engineering thinking

 Part 8

 Discussion

 Mathematics, as the study of pure abstractions, is independent of physical reality. Computing, though always constrained by
 the physical layer at which the hardware operates, allows us to build on top of the hardware layer software layers that model
 non-existent realities. By automating these virtual realities, it allows us to see and even experience realities that go beyond
 what is physically possible.

 Back

 Activity 7 Abstractions of the non-physical

 Discussion

 You saw an example in Section 1 when you learned about the algorithm for column addition. This algorithm works with non-negative
 integers. At first sight, it might seem that integers are physical objects. After all, can’t we write them down using pen
 and paper? Recall, however, Activity 4 (Ceci n’est pas une pipe). In that activity you studied the distinction between representations/abstractions
 and the reality they model. When you write down a ‘2’ (or any other number) on a piece of paper, this is a representation
 of the number 2, not the actual number. Why? Suppose that what you wrote down was the number 2 itself. In that case, if you
 erased it, 2 would cease to exist, and if you copied it, you would have created another number 2. That would be absurd! When
 you write down a ‘2’, this is merely a representation, not the actual number. Other people can write down a ‘2’ as well, and
 thereby talk about the same number that you’re talking about when using a ‘2’.

 Perhaps this has set you wondering what numbers are, if they aren’t physical objects. Unfortunately, philosophers have been
 at loggerheads about this question since the ancient Greeks started discussing it. Many mathematicians subscribe to a view
 championed by the philosopher Plato (429–347 BCE), who proposed that numbers exist, but not in space and time; rather they inhabit what is known as ‘platonic heaven’.

 Back

 Activity 10 Machine learning

 Discussion

 One can view this use of machine learning as an attempt to automatically build a model of a good basketball player. Such a
 model is an abstraction that needs to capture the skills that distinguish a good player and ignores anything else. At a different
 level, machine learning is itself based on a model of learning by humans or animals. Being an abstraction, it ignores many
 of the details of human and animal learning, while preserving some key properties (in particular, the idea that one can learn
 from examples).

 Back

 Figure 1 Abstraction, a recurring theme in this course, illustrated by four representations of a cow by Theo van Doesburg,
 1917, 1918

 Description

 The figure comprises four artworks: two drawings at the top and two paintings beneath. Starting at the top left-hand image
 and moving clockwise the pieces demonstrate increasing abstraction.

 The top left-hand artwork is an outline sketch of a cow, and appears unfinished. The second drawing is more abstract and has
 rectangles superimposed on the cow’s body.

 The first painting (at the bottom right-hand side of the figure) depicts a cow on a green background, but the cow is composed
 of blocks (mostly rectangular) of solid colour.

 The final painting is comprised entirely of different-sized blocks of solid colour. Four blocks are green and represent the
 background. The cow depicted in the earlier pieces is represented by strategically arranged blocks of blue, black, red and
 yellow.

 Back

 Figure 2 Instructions for column addition (Gough, 1767)

 Description

 The figure shows a scan of page 18 of John Gough’s textbook Practical Arithmetick in Four books. The text reads:

 Addition

 20. Addition is the joining or collecting several numbers into one, or finding a number which shall be equal to any given
 numbers together.

 General Rule

 Let the numbers marked A B C, be given to be added.

 54327 A

 8062 B

 5041 C

 67430

 Place the numbers so that each figure may stand directly underneath (or in the same perpendicular row with) the figures of
 the same value, that is: units under units, tens under tens, hundreds under hundreds, &c.

 Then drawing a line under them; begin the Addition at the first place (or units) and add together all the figures in that
 place, and if their sum be under ten, set it down below the line underneath its own place; but if their sum be more than ten,
 set down only the overplus above the ten (or tens) and so many tens as the sum of these units amount to, carry to the place
 of tens, adding them and the figures which stand in the place of tens together; then proceed in the same manner to the third
 place or hundreds, and so from place to place to the last, and set down the whole sum of the last place.

 Back

 Figure 3 (a) Human computers working on test flight calculations at the predecessor of NASA in 1949 (b) two NASA employees
 in 1990 programming a computer so it can automatically calibrate aircraft equipment

 Description

 The left-hand side of this figure is a black-and-white photograph of human computers sitting behind desks doing calculations
 by hand with pen and paper.

 The right-hand side shows a colour photograph of two NASA employees. One is sitting behind a desktop computer while the other
 is standing next to an array of electronic equipment.

 Back

 Figure 4 A dictionary

 Description

 The figure shows a photograph of the top half of page 37 of Collins English Dictionary. The photograph illustrates that each page of the dictionary consists of a list of entries, with the headword of each entry
 in bold font, and the definition of the term in normal font.

 Back

 Figure 5 Abstraction and automation

 Description

 Three rectangles are laid out as a triangle with one rectangle at the top and two at the bottom. Arrows link the rectangles
 in a clockwise direction.

 The rectangle at the bottom left contains the words ‘physical-world phenomenon’ and is linked via an arrow to the top rectangle
 called ‘mathematical model’. The arrow between them is labelled ‘create an abstraction’.

 The rectangle at the top, labelled ‘mathematical model’, is connected via an arrow to the third rectangle at the bottom right,
 which is called ‘automation’. The arrow between them is labelled ‘automate’.

 Finally, the ‘automation’ rectangle at the bottom right is linked to the ‘physical-world phenomenon’ rectangle at the bottom
 left via an arrow. The arrow is labelled ‘tells us more about’.

 Back

 Figure 6 Diagrammatic representation of abstraction as modelling

 Description
This figure contains two rectangles. The one at the top is labelled ‘model’. The one at the bottom is labelled ‘part of reality’.
 An arrow labelled ‘represented/modelled by’ goes up from the ‘part of reality’ rectangle to the ‘model’ rectangle. Another
 arrow, labelled ‘ignores detail of’, goes down from the ‘model’ rectangle to the ‘part of reality’ rectangle.
 Back

 Figure 7 René Magritte’s painting The Treachery of Images (1928–9)

 Description
Magritte’s painting comprises a realistic image of a smoking pipe with the French words ‘Ceci n’est pas une pipe.’ underneath
 it.
 Back

 Figure 8 An orrery (a mechanical model of the solar system)

 Description
A photograph of an orrery, which is a mechanical model of the solar system. This orrery consists of a brass cylinder on a
 three-legged stand. There is a small crank on the side of the central cylinder. From the middle of the cylinder a short rod
 sticks up vertically. At the end of this rod is a brass sphere representing the Sun. Several further long horizontal rods
 are connected to the short vertical rod. Each of the horizontal rods has a short upward-pointing rod at the end with a sphere
 on top. These spheres represent the planets. Some of the vertical rods for the planets have further short horizontal rods
 at the end of which are upward-pointing rods that support moons.
 Back

 Figure 9 Relationship between an orrery and the solar system

 Description
This figure contains two rectangles. The one at the top is labelled ‘orrery’. The one at the bottom is labelled ‘solar system’.
 An arrow labelled ‘represented/modelled by’ goes up from the ‘solar system’ rectangle to the ‘orrery’ rectangle. Another arrow,
 labelled ‘ignores detail of’, goes down from the ‘orrery’ rectangle to the ‘solar system’ rectangle.
 Back

 Figure 10 The inside of an orrery

 Description
A photograph of the inside of an orrery. It consists of a complex jumble of cogwheels.
 Back

 Figure 11 The orrery as two layers

 Description
This figure contains two rectangles. The one at the top is labelled ‘the interface of the orrery: moving spheres that represent
 the sun and the planets’. The one at the bottom is labelled ‘the hidden/encapsulated mechanism that drives the movement of
 the spheres’. An arrow labelled ‘hides detail from’ goes up from the bottom rectangle to the top rectangle. Another arrow,
 labelled ‘depends on’, goes down from the top rectangle to the bottom rectangle.
 Back

 Figure 12 The two layers involved in abstraction as encapsulation

 Description
This figure contains two rectangles. The one at the top is labelled ‘the interface: a layer through which users interact with
 the model’. The one at the bottom is labelled ‘the implementation: a layer that implements the model’. An arrow labelled ‘hides
 detail from’ goes up from the bottom rectangle to the top rectangle. Another arrow, labelled ‘depends on’, goes down from
 the top rectangle to the bottom rectangle.
 Back

 Figure 14 Three layers of abstraction as encapsulation

 Description

 In this figure the three layers of programming abstraction are represented by three rectangles. The top rectangle is labelled
 ‘the Python program for printing the current date and time’. The rectangle just below it is labelled ‘the Python time module
 written in C’. The rectangle below that is labelled ‘the machine code program that will actually run on the computer’.

 Each rectangle is linked to the one below it with two arrows: the arrow on the left points upwards and is labelled ‘hides
 detail from’, the arrow on the left points downwards and is labelled ‘depends on’.

 Back

 Figure 16 A hierarchy of layers of abstraction (as encapsulation)

 Description

 This figure represents a hierarchy of layers, although because the structure of the hierarchy is repetitive, three dots are
 used to indicate that some of the layers have been deliberately left out.

 The top rectangle is labelled ‘Layer n’ and is linked to the rectangle below by two arrows. The left-hand arrow points up
 from the rectangle below and is labelled ‘hides detail from’. The right-hand arrow points down to the rectangle below and
 is labelled ‘depends on’. This pattern continues, represented by three dots. At the bottom of the figure Layer 1 and Layer 0
 are shown.

 Back

 Figure 17 Part of Babbage’s Analytical Engine constructed from Meccano

 Description
A photograph of part of Babbage’s Analytical Engine constructed from Meccano. Green metal strips are used to create a frame
 inside of which are a number of rods and wheels.
 Back

 Figure 18 Abstraction and automation

 Description

 Three rectangles are laid out as a triangle with one rectangle at the top and two at the bottom. Arrows link the rectangles
 in a clockwise direction.

 The rectangle at the bottom left contains the words ‘physical-world phenomenon’ and is linked via an arrow to the top rectangle
 called ‘mathematical model’. The arrow between them is labelled ‘create an abstraction’.

 The rectangle at the top, labelled ‘mathematical model’, is connected via an arrow to the third rectangle at the bottom right,
 which is called ‘automation’. The arrow between them is labelled ‘automate’.

 Finally, the ‘automation’ rectangle at the bottom right is linked to the ‘physical-world phenomenon’ rectangle at the bottom
 left via an arrow. The arrow is labelled ‘tells us more about’.

 Back

 Figure 19 Abstraction and automation

 Description

 Three rectangles are laid out as a triangle with one rectangle at the top and two at the bottom. Arrows link the rectangles
 in a clockwise direction.

 The rectangle at the bottom left contains the words ‘physical-world phenomenon’ and is linked via an arrow to the top rectangle
 called ‘mathematical model’. The arrow between them is labelled ‘create an abstraction’.

 The rectangle at the top, labelled ‘mathematical model’, is connected via an arrow to the third rectangle at the bottom right,
 which is called ‘automation’. The arrow between them is labelled ‘automate’.

 Finally, the ‘automation’ rectangle at the bottom right is linked to the ‘physical-world phenomenon’ rectangle at the bottom
 left via an arrow. The arrow is labelled ‘tells us more about’.

 Back

 Figure 20 Computational thinking overview diagram

 Description

 This figure is a diagram with three principal items that are arranged as sitting at the corners of a triangle. At the bottom
 left is a cloud labelled ‘REAL-WORLD PROBLEM’. At the top is a rectangle labelled ‘COMPUTATIONAL PROBLEM’. At the bottom right
 is a rectangle labelled ‘MACHINE’.

 Additionally, in between the ‘COMPUTATIONAL PROBLEM’ and ‘MACHINE’ rectangles sits an item labelled ‘algorithms and abstract
 data types’. From each of these three items an arrow labelled ‘models’ points to the ‘REAL-WORLD PROBLEM’ cloud.

 The ‘MACHINE’ rectangle is linked with the ‘algorithms and abstract data types’ item with an arrow labelled ‘expresses’.

 There is also an arrow from the ‘algorithms and abstract data types’ item pointing to the ‘COMPUTATIONAL PROBLEM’ rectangle.
 This arrow is labelled ‘solves’.

 Inside the ‘MACHINE’ rectangle is number of items arranged in a hierarchy. At the top is a ‘program’ and at the bottom is
 ‘hardware’. The bit in between is not fully specified, as indicated by three vertical dots, but includes ‘machine code’. Each
 pair of items in the hierarchy is linked with an upward-pointing arrow labelled ‘hides detail from’ and a downward-pointing
 arrow labelled ‘depends on’.

 Finally, moving back to the top level of the diagram, a set of green arrows link some of the items. A green arrow labelled
 ‘create an abstraction’ points from the ‘REAL-WORLD PROBLEM’ cloud to the ‘COMPUTATIONAL PROBLEM’ rectangle. A green arrow
 labelled ‘transform’ leads from ‘COMPUTATIONAL PROBLEM’ to ‘algorithms and abstract data types’. From ‘algorithms and abstract
 data types’ a green arrow labelled ‘implement’ points to the ‘MACHINE’ rectangle. Finally, a green arrow labelled ‘learn more
 about’ goes from the ‘MACHINE’ to the ‘REAL-WORLD PROBLEM’ cloud.

 Back

 Automation, abstraction and modelling

 Transcript

 Computing! Let's first talk about computing. Computing is what I like to call the automation of abstraction. This is quite
 abstract and I will try and explain what I mean by this but I like to think about computing with these two ‘A’s: automation
 and abstraction. It really is this feedback loop that one has when you are abstracting from some physical-world phenomenon
 creating a mathematical model of the physical-world phenomenon and then analysing the abstraction doing some manipulations
 of the abstraction and in fact automating the abstraction, which then tells us more about the physical-world phenomenon that
 we are actually modelling. When I talk about automation and this is the whole of the talk that I am going to give so I am
 just going to give this as a side note. When I talk about automation I am very careful to include that the automaton can be
 a human or it can be a machine. After all humans compute, we may not be as fast as machines but in fact there is some ways
 humans are much, much better computers, than machines. In other words there are still some tasks that humans can solve better
 than machines. Vision is one example. Speech, natural language processing. A lot of challenges of artificial intelligence
 are put forth for us as scientists because machines still can’t do them as well as humans but that is just a base case. I
 would also like to talk about humans and machines, together, in fact, networks of humans and machines together as an automaton.
 So think now that you can bring together the intelligence of a human with the intelligence of a machine, networks of them,
 that itself is collective intelligence, that could be an automaton in my world of automation. This is quite a powerful notion,
 very unusual. Save that thought because I am going to come back to it at the end of my talk. As I said that is just part of
 the picture with respect to computing and computer science but that is really not what I am going to talk about for the most
 of my talk. I am really going to focus on the abstraction part of computing.

 Back

 Abstraction

 Transcript

 Computational thinking is all about the process of abstraction. Let me explain what I mean by that. First of all, it is choosing
 the right abstraction. Not every abstraction is going to be appropriate for the problem you are trying to solve. So first
 you choose an abstraction and then by definition of abstraction are ignoring irrelevant detail and encapsulating in this abstract
 model the details of importance. That means I’m immediately talking about at least two levels of interest. The level I am
 ignoring the detail from and the level of interest so the abstraction process immediately means that you are talking about
 at least two levels of abstraction, and in fact the way in which computer scientists deal with scale and complexity in the
 kind of artefacts that we build and design is through layers of abstraction. That allows us to focus at each layer only on
 the properties or behaviours of interest and then we build these complex systems by layering or other means of composition.
 So when we talk about abstraction it’s not just the abstraction or the particular model. It’s the layers and also the relationships
 between the layers and because we usually define these abstract models in very precise terms, mathematical terms, we are able
 to define the relationships between these layers also precisely in mathematics. In fact all of what I said is as we do in
 mathematics. After all it is not that computer scientists invented abstraction. Mathematicians and scientists use abstractions
 all the time. What’s different is that in computing we are always operating at least two layers of abstraction at the same
 time and we are very formal about the relationship between the two layers.

 Back

 Computational, mathematical and engineering thinking

 Transcript

 So this isn’t anything new from what mathematicians do but in computing we don’t just invent abstractions for the beauty and
 elegance of the abstraction as mathematicians tend to strive for. We have other concerns that constrain the abstractions we
 choose. So in particular I would like to talk about the measures of a good abstraction in computational thinking. The first
 and foremost typical question a computer scientist would ask is, ‘how efficient is this. Is this the most efficient way to
 solve the problem’, and when I talk about efficiency I talk about it in terms of space and time. Is this the fastest way to
 get from here to there? Is this a procedure which is going to require the least amount of space for that space and time? And
 I think what is most interesting right now is there is a lot of interest in what I would call the third dimension of analysing
 the complexity of the kinds of abstractions that we invent and that has to do with energy. There is so much interest now in
 a society and the administration on energy and I think of computing as a discipline needs to revisit a lot of the abstractions
 we have invented already in terms of this third dimension. So for those of you who are researchers in computer science I advocate
 that we are going to have to throw out all our algorithm text books and rewrite them all in terms of these three dimensions
 now. The other measure of goodness for the abstractions that computer scientists like to invent is correctness. After all
 when you are writing a program or building a system you want it to do the right thing and so we always ask not only how fast
 does this, say algorithm, perform but does it do the right thing? And what does, does it do the right thing mean? We usually
 ask does the program compute the right answer and asking that question alone opens up a lot of research questions. But we
 also wanted it to do something useful so it is not enough that it does the right thing we actually want the answer to be spit
 out eventually and that is the question, does the program produce an answer? There are complexity results that show that this
 is not always an easy question to answer, and then of course there is the other ‘ilities’ if you will when we look at a particular
 abstraction and judge whether it is good or not. Simplicity and elegance as we have for mathematics, usability, modifiability,
 maintainability, cost and so on. Now if you look at this list you will say, well that is no different from good engineering,
 and so in fact computational thinking or computing very much draws on mathematical thinking and draws from engineering thinking
 and comes together in terms of the automation of the kinds of abstractions we build. What I would like to … I promise that
 I will say a few more high level remarks and then I will get into some concrete examples. But I like to think that computational
 thinking really does draw on mathematical and engineering thinking, it draws on mathematics certainly as its foundation but
 we in computing are unconstrained by the physics of the underlying … we are constrained by the physics of the underlying machines.
 So, in the end there is going to be some machine or there is going to be some human brain and we are in terms of what we can
 execute or automate are going to be constrained. So a typical computer like this is going to have finite memory, it can only
 go so fast and so it is constrained by the physics of this device. The brain scientists are trying to understand the physical
 and intellectual limitations of our brain as an automaton. Computational thinking certainly draws on engineering since our
 systems interact with the real world. However we in computing can build virtual worlds, worlds that are unconstrained by physical
 reality and so when you interact in a virtual world. So how many people have heard of second life. Second Life is a virtual
 world which you can enter and this virtual world defies the laws of physics. You have avatars who fly around, you have corpse-like
 beings that die and come alive again. That’s not like in the real world so what is it in computing that enables this kind
 of defying the laws of nature, building worlds that are virtual. It’s the software. Software enables these physical devices
 to be beyond the real world. When I talk about computational thinking, I really mean the concept and not the artefact that
 computer scientists produce. This is a little abstract, I promise to get a little more concrete. And finally, I talk about
 computational thinking as being something for everyone everywhere. It will be a reality when it is so integral to our endeavours
 that it disappears as an explicit philosophy. So being more specific, here is unfortunately a laundry list of what I would
 say computational thinking concepts and those of you who are computer scientists or engineers or mathematicians will recognise
 many of these classes of abstractions. What I mean by putting this list down is not for all you to understand all this of
 this, but just to say that I distinguish between computational thinking and computer literacy, that is how to use Word, or
 Excel, PowerPoint. Computational thinking is not that and I distinguish between computational thinking and computer programming
 because computing is a lot more than computer programming. Ideally I could come up with a better list if you will rather than
 this potpourri of concepts. I’m actually working on that as I speak.

 Back

 Computational biology

 Transcript

 So now what I wanted to do is convince you that computational thinking has already influenced other disciplines. So let’s
 start with one discipline influenced by many different computational methods or concepts. So who can guess what that discipline
 might be? Don’t be shy. Scream out the answer, scream out any answer. Yes sir – that is an interesting answer. I’ll come back
 to that one. Medicine – is close to my answer. Biology, biology – that is my answer. It is just an answer. Computational thinking
 has greatly influenced biology to the point now that we have biology and computer sciences working together hand-in-hand but
 more than that we have now started to produce a new generation of computational biologists. Hold on, you are now answering
 my next question. My next question is; what was the tipping point, at which point did the biologist look over their shoulder
 and say, ‘you computer scientists have something to bring to the table. You computer scientists are making me think differently,
 making me approach my problem in a new way.’ Answer is … right, it was the shotgun algorithm that expedited the sequencing
 of the human genome that all of a sudden caused a lot of interest by the biologists, by the whole medical and biological communities
 who said hey there is something to computer science, to algorithms, more than just processing power. That is the point I am
 trying to make. That computing is more than just about devices and horsepower, and supercomputers, and this particular algorithm
 was what I think the tipping point when biology and computer science came together. Since then, there have been many, many
 examples of different kinds of computational methods, different kinds of computational models, different kinds of computational
 languages, different kinds of computational approaches for understanding biology. I have just listed a few. A lot of this
 is just buzzwords, if you will.

 Back

 Model checking

 Transcript

 I want to be slightly a little more technical in this part of my talk that’s not the shotgun algorithm, so I am going to go
 through one example that is not the shotgun algorithm to show a different kind of computational model and thinking that has
 influenced biology, and this is very recent work. So to do that you have to bear with me for a few slides because I am going
 to go into a slightly more technical part of my talk and I going to do a primer on this particular computational method, and
 its called model checking. I always in my talk at this point ask the audience … how many people have heard of model checking?
 I am surprised. After this slide you will all know what model checking is, at least in the abstract. OK, so let me go through
 it. There is a black box, it’s called the ‘model checker’ and it has two inputs. One is a finite state machine – what that
 means is that there are states and those are circles and there are transitions between the states, those are the state transitions,
 the lines, the arrows. And, what makes this a finite state machine is that there are a finite number of circles, finite number
 of states. OK, so that is one input and that is critical for this technique that it be finite. The second input is a property
 that we would normally write in English but, because computers can’t understand English well enough yet we write it in a more
 formal language. I picked this particular logic, its called Temporal Logic, it doesn’t matter, it is a formal language, a
 mathematical language that can reason about the ordering of events. So basically you have these two inputs, and what happens
 is, you describe the system of interest using this input and you describe a desirable property using this input. So you might
 want to say something like … when you go to the ATM machine, eventually I get my money out. So you would say … describe the
 ATM machine in terms of the finite state machine and all the kinds of things you could with it. Like; put your card in, punch
 buttons, deposit money, withdraw money and you would describe the property of ‘eventually getting my money out’ in terms of
 here and ideally for any ATM machine you would like to know that this property holds. OK ideally. That’s how we like to design
 our systems. Of course we know in reality there are always bugs. OK so those are the two inputs. The output is ‘yes’, every
 single ATM is designed, will always give your money back but, more realistically you will say ‘no’, here is a bug in this
 ATM machine, not only is there a bug but here is an example of a sequence of steps that you will take in terms of that machine
 where you are not going to get your money back. OK and that is called the Counter Example. So that is my primer on model checking.
 Basically it has two inputs, you press the button and out will say, yes, every single time you interact with the ATM machine
 this property will hold or, no, you will get into trouble if you do this sequence of events. OK? That is a particular computation
 model, computational concept, computational approach and it has been used in fact very successfully for hardware design, companies
 like Intel, HP, Fujitsu, IBM, they all use this kind of technique for verifying and debugging hardware/processor design. This
 is almost a ‘bread and butter’ kind of technique in computing. Let me … I’m going to skip that … for those of you who are
 interested in the formal definitions that is what it looks like. OK there are many efficient algorithms and many efficient
 data structures that allow us to push a button and get that black box answer. What does that have to do with biology? Well
 for the face of it absolutely nothing! It certainly wasn’t invented because there was a biological problem to solve. But it
 turns out that when you put computer scientists and biologists together or when you have a person trained in both biology
 and computer sciences sparks will fly and that is exactly what happened to that particular person who worked in this intersection
 of computer science and biology, particular model checking and protein folding and he represents a protein that has three
 residues in this particular case in terms of this very simplistic finite state machine where you could imagine where this
 state with three zeros (000) represents the folded state and this state with the three ones (111) represents the unfolded
 state and these numbers in parenthesis represent how much energy does it take to go from this state to this state, where you
 are unfolding one of the residues. OK, and so the question is what are all the paths, the ways in which this protein can unfold
 itself and what are the paths in which the protein can unfold itself using the least amount of energy. So now this is a very
 simple example, you can probably figure this out in your head, right, but suppose you had 76 residues? You couldn’t even write
 that out on a piece of paper! There is actually where the scale of computers come in handy because they can do that sort of
 calculation, no problem. So in fact they show that you can use this modelling checking technique to explore state spaces as
 large as 2 to the 76th using this kind of particular model-checking algorithm/model-checking approach, and this technique,
 it’s a pretty recent result, you see its 2007, with 14 orders of magnitude greater than comparable techniques. So this is
 already new stuff that we are talking about protein folding and so on but here is where you can see sparks fly when you bring
 computational methods to these kinds of biological problems. OK, so I promise this is the most technical part of my presentation.
 So that’s one discipline, many methods …

 Back

 Machine learning

 Transcript

 So let’s flip it. How about one method that has influenced many disciplines? So I actually have to call on any computer scientists
 in the audience to help me answer this one, because I doubt the general public would know the answer. But I know there are
 some computer scientists in the audience so I challenge you. What method do you think has influenced so many disciplines today?
 – conceptional modelling – Of course I have the answer I want you to say. The answer is ‘machine learning’. How many people
 have heard of ‘machine learning’? More people have heard about ‘machine learning’ than ‘model checking’ so that’s good. So
 machine learning has completely transformed the whole field of statistics. In fact there is a whole department of machine
 learning at Carnegie Mellon, if you can believe that within the school of Computer Science and it’s made of faculties from
 Computer Science and Statistics and what they really do is Statistical Machine Learning. Another example is that there are
 departments of statistics now at universities for instance Purdue which has an excellent Statistics department who are hiring
 computer scientists because they see their future as in this combination of statistics and computing particularly in Statisitical
 Machine Learning. So we are seeing this in the next generation if you will. So let me give you some examples of where machine
 learning has influenced many, many fields. So in the sciences it is a technique that has been used to discover new brown dwarfs
 and fossil galaxies. This is really new scientific discoveries because of this particular technique. In medicine it has been
 used for discovering and inventing these kinds of drugs and uses in these applications. In meteorology: for tornado formation.
 In the neurosciences for understanding the brain, so I should at least give you a one sentence definition of Machine Learning
 given that many people may not know it. What it is, it’s a technique that allows you to analyse huge data sets, large amounts
 of data and find patterns and clusters in large amounts of data. So in this particular case what you feed this algorithm is
 lots and lots of fMRI scans, (scans of your brain). What they are able to do through using Machine Learning is to find out
 what part of your brain lights up when a subject sees a noun versus a verb or this kind of adjective versus that kind of adjective
 and it’s looking at lots and lots of fMRI scans that allow you to see those clusters, those patterns. Machine learning has
 been used beyond science and engineering, so for instance it is used in detecting credit card fraud. It’s used on Wall Street,
 (the answer from the back of the room). When you go to the supermarket and you hand the clerk your Safeway card, your affinity
 cards, they are tracking your purchases and the coupon you get out after your receipt, is using that kind of analysis of large
 amounts of data. Recommendation Systems and Reputation Systems like Netflix when you go to Travelocity to find out what customers
 use and so on. Machine learning is even used in sports, so I don’t know what basketball player this, is but maybe you do,
 but what they did was videotape lots of professional basketball players and then the coaches would use Machine Learning to
 find out what are the skills of these professionals so they can teach those skills to their own students. This is Lance Armstrong
 who used Machine Learning to analyse the kind of data he kept of himself. As you know, he is a machine – and he was quite
 mathematical and analytical in his training so that he could really hone his skills.

 Back

 Chemistry, physics, economics...

 Transcript

 In chemistry computational methods, computational concepts have been used to actually invent new molecular structures that
 would have desired chemical properties. In physics, (this is one of my favourite examples), I am going to labour on this a
 little bit in quantum computing. There is a very young professor in MIT who works in quantum computing, he’s actually in the
 Computer Science department but he works as a physicist. In computer science, there is a kind of quantum computer where you
 can represent the problem in terms of a, let’s call it a graph, but you can solve the problem if you can morph this graph
 into some other representation/other graph. You can solve it more easily in this second representation, and so the idea is
 then how can you get this graph to be morphed into this graph. There is a procedure that you can use that would allow you
 to make manipulations of each graph until you finally come in the middle, and have that intermediate. Physicists know about
 this kind of quantum computer. So, the question that quantum scientists asks, is how fast you can do this? This is something
 that computer scientists ask all the time, how fast can you do it, right? I already said that is the question they always
 ask about efficiency in terms of space and time. The physicist never asks that question of themselves, they just know that
 there exists some path such that you can do that, but they didn’t ask, how fast can you do it? Now again, for the computer
 scientists in the audience, the reason this was such a tantalising question to answer, is, if it turns out that the convergence
 is polynomial it means that you might have an answer to the P=NP question. So you can see why this young computer scientist
 at MIT would very much like to know the answer to that convergence question, and it turns out that it goes really, really,
 really fast until this very small window where it is exponential. Even so it was a very interesting question to pose and now
 he tells me that the physicists are going around asking how fast on all their convergence questions. This to me is a deep
 way of computational thinking influencing other people’s thinking because you ask these basic questions that we would ask,
 and had the answer being polynomial then wow!, what a break through in computer science. We see it in Mathematics, we see
 it in Engineering and I think we are going to see more of it in all other fields. In society like Economics, right now, in
 fact tomorrow and Friday there is a workshop at Cornell on computer science and economics that an assessor is helping to sponsor
 and we are seeing a lot of the theories of economics and models of economics. In fact, we already know that some of them are
 not applying to our real world, but they are certainly not necessarily applicable to say to the internet and internet economics,
 and so there is all of a sudden this new interest, completely new interest, in revisiting economic models and theories in
 terms of computing models and vice versa. So for instance we are very much using game theoretic models in looking at lots
 of problems in computer science, game theory from economics, but many of the direct relationships between economics and computer
 science has to do with things like added placement and keyword auctions and so on. So for instance when you type into Google
 and you do a search, maybe you realise to the right of your search you have all these ads, well companies actually bid on
 where they want their company to be listed in that list of ads. You pay a lot to be listed number 1. But maybe it doesn’t
 matter to be listed number 1 or 2, you pay a little less to be listed number 2, you are still number 2, you are up there,
 right so that the kind of game theoretic thinking that people are doing in computer science. In Law we are seeing computational
 thinking and in the Humanities. Again in the sense of digging into the data challenge is analysing lots and lots of data.

 Back

 OEBPS/Images/image00054.jpeg

OEBPS/Images/image00053.gif

OEBPS/Images/image00052.gif

OEBPS/Images/image00051.jpeg

OEBPS/Images/image00050.gif

OEBPS/Images/image00049.jpeg

OEBPS/Images/image00048.gif

OEBPS/Images/image00047.jpeg

OEBPS/Images/image00046.gif

OEBPS/Images/image00045.gif

OEBPS/Images/image00044.jpeg

OEBPS/Images/image00043.gif

OEBPS/Images/image00042.jpeg

OEBPS/Images/image00041.jpeg

OEBPS/Images/image00040.gif

OEBPS/Images/cover00055.jpeg

OEBPS/Images/image00039.gif

OEBPS/Images/image00038.jpeg

OEBPS/Images/image00037.jpeg

OEBPS/Images/image00036.gif

OEBPS/Images/image00035.jpeg

OEBPS/Images/image00034.gif

