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Introduction
The modern world would not be able to function without electronic systems. Using a
variety of teaching material, including videos and interactive activities, this free course,
Electronic applications, will show you how electronic systems can be found everywhere in
communications, control and signal processing. It focusses on electronic filters,
particularly digital filters.
Note that the interactive activities have been designed to work in the Firefox and Chrome
browsers, so you will need to use one of these browsers if you want to access the
interactive content.
This OpenLearn course is an adapted extract from the Open University course
T312 Electronics: signal processing, control and communications

Introduction
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Learning Outcomes
After studying this course, you should be able to:
● understand the mathematical representations and techniques for manipulating of signals in the time and

frequency domains
● explain the application, benefits and limitations of communications, control and signal processing techniques in

real world applications
● select and apply appropriate techniques to the analysis of time-varying signals represented in both the time and

frequency domain
● use a digital filter to remove Gaussian noise from a signal.



1 Electronics everywhere
Begin by considering the following situation:

You are sitting at home watching the television, and a woman in a diving suit,
surrounded by sharks is speaking directly to you, live on television from the
Caribbean (Figure 1).

Figure 1 Swimming with sharks

It is possible to take this type of situation for granted, but when thinking about it more
closely you might wonder how this is possible. How can someone swimming underwater
in the Caribbean be seen and heard by you in your house in the UK?
In this course you will start thinking about everything that’s involved in these electronic
systems – from signal processing to control and communications – which allow you to
watch a live broadcast from the Caribbean.
If you have studied some electronics before, you may be familiar with analogue
components such as resistors, capacitors and inductors, as well as more complex
components such as the operational amplifier. You may also know something about digital
circuits, which include logic gates, microprocessors and even software. And you may be
aware of some of the fundamental principles that describe the way that voltages and
currents in a circuit are related, including Ohm’s law and Kirchhoff’s voltage and current
laws.
Whilst all of this is necessary to understand electronics, it doesn’t really explain how
electronics allows you to watch a live broadcast from the Caribbean. In part, this is due to
the sheer scale of electronic systems. A typical computer in 2020 has around
10 000 000 000 (or 10 billion) transistors. Nobody could sit down and design such a
computer armed with Ohm’s and Kirchhoff’s laws alone. Electronic systems have to be
broken down into subsystems, and these subsystems in turn have to be broken down into
further subsystems. Go far enough and you’ll find that you can explain what is going on
using Ohm’s and Kirchhoff’s laws, but that’s a long way down.
At a higher level, when designing subsystems, descriptions like ‘the control subsystem’ or
‘the communications subsystem’ are used. These are designed using principles that
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describe the function of the subsystem. An electronics engineer would use these system-
level principles to design the subsystem, then implement it electronically.
So, what are the systems and subsystems that allow you to watch someone swimming
with sharks live on television?

1.1 Three key subsystems
In order to watch someone swimming with sharks live on television somebody or
something must be operating the camera and recording the sounds. The images and
sounds are converted into electronic signals; these signals are then sent as
electromagnetic waves, via satellite, to your satellite dish at home. This then delivers the
electronic signals to your television, which converts them back into images and sounds.
As you can see, there are several subsystems involved:

● sensors – converting images and sounds into electronic signals
● processors – converting the electronic signals into a form that can be stored and

transmitted as radio waves
● communication – actually transmitting the waves, and receiving them at the

other end
● processors – converting the waves back into images and sounds
● display – your television.

These components can be broadly categorised into signal processing and communica-
tions.

● Signal processing explains how signals are manipulated electronically to filter out
noise and to alter the signals so that they can be communicated.

● Communications looks at how the communication subsystems work, showing how
the electronic signals are converted to radio waves for transmission and reception.

Are there any other possible sub-systems?
Yes, there are many, but the one other major area of electronics is control. In the scenario
above, it’s not obvious how control comes into it, however there are probably control
systems involved, carrying out tasks such as the auto-focusing function on the cameras.
Another and perhaps more obvious way you could introduce control would be to make
your viewing experience more interactive. What if you could control the camera remotely
so that you decide what you want to see? Is that so far-fetched? There are already
systems which allow you to control your home from your phone – you can adjust the
heating, switch on lights, and even see who is at the door. So why not have the full
interactive experience of seeing and hearing what you want to see and hear by controlling
the live camera equipment through your television?
What has been described here so far is mainly for entertainment. However, the same
principles can be applied to other systems, such as a Mars rover (Figure 2). This is a
vehicle that travels around the surface of Mars semi-autonomously, collecting samples
and analysing them, then sending the data back to Earth. Such a system is clearly making
use of signal processing and communication, but it is also using control subsystems to
move the vehicle around.
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Figure 2 Mars Rover

Systems that use signal processing, control and communications are not just found on
other planets. On Earth there are similar systems, including semi-autonomous delivery
robots that can bring goods to homes or places of work (Figure 3).

Figure 3 Delivery robot
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For the rest of this course you will focus on one of these three subsystems: signal
processing. You will look at some of the basic principles of signal processing and how it is
implemented.

1 Electronics everywhere
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2 Signal processing
Signal processing is a branch of electronics concerned not just with the properties of
signals, but also with the properties of the devices and systems that carry the signals. The
objective of signal processing is to optimise the recovery of some particular aspect of the
signal that is of most interest, or to optimise the use of a communication medium.
Signal processing usually means filtering a signal. This could be to reduce or remove
interference; it might mean changing the signal so that the communication channel can be
used more economically or more efficiently; or it might mean processing a signal so that it
can be sampled satisfactorily in an analogue-to-digital converter.

What is filtering?
In the context of electronic signals, filtering means altering the signal so that some
aspects of the signal are removed while other parts of the signal remain. In this section
you will learn about the difference between ‘ideal’ filters and real filters. You will also look
at different types of filters and their characteristics and a type of graph used to show the
frequency-dependent gain of a filter.
One of the most common uses of filters is to reduce the intrusion of unwanted signals, or
noise, into wanted signals. A common example of filtering is radio and television tuning.
Here, the antenna picks up multiple transmissions being broadcast on different
frequencies; the tuning circuit ideally passes the wanted broadcast to the output and
blocks all the others, which are on different frequencies from the wanted broadcast.
Filters can be analogue or digital. Analogue filters use components such as inductors,
capacitors, resistors, and sometimes operational amplifiers (op-amps). Digital filters
are basically computers and achieve their filtering effects through mathematical
operations on the sample values of a digitised signal. You will look at these more closely in
Section 3. In this section, however, you will focus only on analogue filters.

2.1 Frequency-dependent gain
In Figure 4, the box in the middle represents a device with frequency-dependent gain – in
other words, a filter. Here the symbol is being used to represent angular frequency,
measured in radians per second.

Figure 4 Filter with input amplitude and output amplitude

A sinusoidal input signal with amplitude is applied to the filter, and the output is a
sinusoidal signal with amplitude . The voltage gain of the filter at the frequency in
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question is – in other words, it is the ratio of the output voltage amplitude to the input
voltage amplitude. So, at any particular frequency,

The voltage gain can be expressed simply as a number or fraction (or decimal). For
example, a gain of 2 means that the output amplitude is twice the input amplitude. A gain
of (or 0.25) means that the amplitude of the output is one-quarter that of the input.
The above gain is referred to as ‘voltage gain’ because gain is sometimes expressed as a
ratio of output and input powers. In this course this way of expressing gain will be referred
to as power gain. As power ratios can be expressed in decibels, so power gains are
almost invariably given in decibels.
For the time being you will only consider sinusoidal inputs and outputs, as these have a
single frequency. This limitation to a single frequency helps to clarify what a filter does. In
practice, though, a filter would typically operate on a complex waveform consisting of
many frequency components. In such a case, the inputs and outputs would themselves be
functions of frequency.

Although two different types of gain have been mentioned (voltage gain and power
gain), you will often just see the word gain used by itself. If the gain is given as an
ordinary numerical value (such as 2, 10, 3000 or 0.001), voltage gain is almost
invariably indicated. If the numerical value is in decibels, power gain is being
represented.

The output of a filter differs from the input not only in amplitude but (usually) also in phase.
You will look more closely at the question of phase later in the course. However, for now
you will continue to focus on gain. Complete Activity 1 to test your understanding so far.

Activity 1
Allow about 5 minutes

a. A passive filter has an input signal of volts. The steady-state output is volts. What
is the gain as a voltage ratio?

b. The input to the filter in part (a) remains unchanged in amplitude, but its frequency
changes. The steady-state output is now found to be volts. What is the new gain
as a voltage ratio?

Answer

a. Here , the amplitude of , is 10 V and , the amplitude of , is 2 V. Therefore the gain
is , or 0.2.

b. is still 10 V and is now 5 V. Therefore the gain is now , or 0.5.

In the next section you will discover the characteristics of an ideal filter.

2.2 Gain functions of ideal filters
Figure 5 shows some common types of ‘ideal’ filter. Ideal filters are sometimes
characterised as ‘brick-wall’ filters because graphs of their gain functions have perfectly
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horizontal or vertical lines. In practice, such brick-wall gain functions can never be
achieved.

Figure 5 Four types of ideal filter: (a) low-pass filter; (b) high-pass filter; (c) band-pass
filter; (d) band-stop (notch) filter

Notice that each of the four types of filter has a name summarising what it does. For
example, the low-pass filter (Figure 5(a)) passes all frequencies below the cut-off
frequency and blocks all frequencies above it.
In all the filters, a frequency band where the signal is passed is called a passband, and a
frequency band where the signal is blocked is called a stop band. All the filters in Figure 5
have one or more passbands, one or more stop bands, and one or more cut-off
frequencies.
In all the passbands shown, the voltage gain is 1, but this is a convention for this type of
diagram. The actual passband gain depends on various factors such as whether the filter
is passive (that is, consists only of passive components, such as resistors, capacitors and
inductors) or active (that is, includes amplification as well as passive components).
Similarly, all the stop bands are shown with a voltage gain of 0. In practice, the gain is
likely to be above 0. However, provided the stop-band gain is several orders of magnitude
below the passband gain, the term ‘stop band’ is reasonable.
In the next section you will see what is meant by interference and noise, which is what is
trying to be removed from a signal using a filter.

2.3 Types of interference
In the same way that Figure 5 shows simplified models of filters, there exist simplified
models of the type of signals and noise we might want to apply filters to.
A common type of interference is adjacent channel interference, in which the interfering
signal is in a frequency band above or below that of the wanted signal, as shown in
Figure 6.
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Figure 6 Adjacent channel interference: (a) below wanted signal; (b) above wanted signal

In each case, an appropriate filter can be used to reduce the interference. For example,
you can see that in the case of Figure 6(b), where the adjacent channel interference is
above the wanted signal, a low-pass filter can be used, with the passband coinciding with
the wanted signal and the stop band coinciding with the interference. With this
arrangement an ideal filter could, in principle, remove the interference altogether.
(However, as you will see later, the reality is somewhat different.)
Life is trickier when the signal and interference overlap in frequency, as in the narrowband
interference and wideband interference shown in Figure 7. Here, no form of filtering can
give us what we would like, which is a noise-free signal with no adverse effect on the
signal.

Figure 7 (a) Narrowband interference; (b) wideband interference

Note that, just as brick-wall filters are unachievable in practice, the brick-wall frequency
bands and signal strengths of these various types of interference are not achievable in
practice. In real-world situations, the boundaries are less clearly defined.
Now complete Activity 2 and apply the correct filter to the interference type.

Activity 2
Allow about 5 minutes

For each of the following types of interference, suggest a suitable filter to improve the
signal-to-noise ratio, and say how the passbands and stop bands should be arranged.
Explain any drawbacks.

a. Narrowband interference
b. Wideband interference

Answer

a. For narrowband interference you can use a band-stop filter, with the stop band
centred on the interference and of an equal width. This could in principle remove
the interference. The drawback is that the stop band also removes some signal
power.

b. When you have wideband interference, a suitable remedy is to use a band-pass
filter with the passband centred on the wanted signal and equal in width to the
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bandwidth of the signal. However, although this gives the best signal-to-noise
ratio, it cannot remove all the interference.

Having seen the characteristics of ideal filters and the sorts of interference that you want
to remove, the next section will look you what real filters are like.

2.4 First-order filters
In addition to the filter categories already introduced (low-pass, band-pass, etc.), filters
are categorised by their order. The order of a filter is determined by the form of the
differential equation governing the filter’s behaviour. The simplest type of filter, with the
simplest equation, is called a first-order filter. Higher-order filters are more complex than
first-order filters, both in their circuitry and in the differential equation that governs them.
The higher the order, the more effective the filter.
An example of a first-order filter is the simple circuit in Figure 8.

Figure 8 First-order filter

Activity 3
Allow about 5 minutes

Which of the four categories of filter shown in Figure 5 does the filter in Figure 8 belong
to? You should be able to work it out from the behaviour of the capacitor at low
frequencies and high frequencies. Explain your answer.
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Figure 5 (repeated) Four types of ideal filter: (a) low-pass filter; (b) high-pass filter; (c)
band-pass filter; (d) band-stop (notch) filter

Answer
It is a low-pass filter.
At 0 Hz, or DC, the capacitor is open circuit. Under those circumstances, all the input
voltage would appear on the output. At high frequencies, the capacitor becomes
increasingly like a short circuit, and the output voltage decreases as frequency
increases. Therefore low frequencies are passed and high frequencies are (to some
extent) blocked.

Low-pass and high-pass filters can be first-order, second-order, third-order, and so on.
However, band-pass filters and band-stop filters must be second-order or higher, although
it is possible to achieve their effect by combining two first-order filters.
Despite being the simplest type, a first-order filter is not simple to analyse mathematically,
as its behaviour is governed by a first-order differential equation. This is what the voltage
gain function of the filter in Figure 8 turns out to be:

You could plot a graph of the gain function against frequency from this equation, but the
details would depend on the choice of and . However, irrespective of the values chosen
for and , the general shape and certain other properties of the gain function would be the
same for any first-order low-pass filter. Therefore, rather than show how the gain function
changes with frequency for particular values of and , in the next section you will look at a
‘normalised’ version of the gain function. (Normalisation is the presentation of information
in a generalised way that can easily be adapted to specific cases.)

2.5 Normalised first-order low-pass filters
A graph of gain function against frequency is called a frequency response or a Bode
plot. A normalised first-order low-pass frequency response (or Bode plot) is shown in
Figure 9.
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Figure 9 Normalised first-order low-pass frequency response

You can see in the graph that on the horizontal axis, the frequency scale is in a form that is
known as logarithmic. What this means is that at equally spaced points instead of having
1, 2, 3 Hz etc., you have 1 , 10, 100 Hz etc. The frequency increases by a factor of 10 at
each interval.
Secondly, the vertical axis shows the power gain, but is measured in decibels. This again
is a logarithmic measure which is designed to measure the ratio of powers, but is probably
more commonly known in the measurement of sound.

The reason logarithmic axes are used is so that the shape of the graph is very nearly
made up of a horizontal straight line in the pass band, and a sloping straight line in the
stop band.

Just from the shape of the graph, it is clear that this gain function of a real filter is very
different from the idealised ones that you saw earlier. For example, there is no sharp
distinction between the passband and the stop band, and consequently no distinct cut-off
frequency. By convention, the frequency at which the power gain drops 3 dB below the
passband gain (or, in terms of voltage ratio, falls to 0.707 times the passband gain) is
called the cut-off frequency, and this is true also for an active filter where the passband
gain is likely to be other than 1.
In this normalised graph, the frequency axis is the normalised part. Notice that the
frequency axis has no units, and the numbers on it are relatively low. (In electronics, such
apparently low frequencies are seldom of interest; instead typically frequencies ranging
from hundreds of hertz to gigahertz are more often used.) The normalised frequencies
have been calculated by dividing actual frequencies by the cut-off frequency. This is why
the cut-off point sits at 1 on the normalised frequency axis.
Dividing one frequency by another results in a pure number (that is, one without units),
which is why the normalised frequency axis has no units. Similarly, dividing an output
voltage by an input voltage produces a gain figure that also has no units. If the gain is
converted to a decibel value, then strictly speaking that too has no units, although in
Figure 9 ‘dB’ has been added after the number as though it were a unit as a reminder of
the logarithmic nature of the function used.
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As an example of how to translate normalised frequencies to actual frequencies, suppose
a practical low-pass filter had a cut-off frequency of 10!Warning! inherit not

supported4 radians per second. Simply multiplying all the numbers on the horizontal axis
of the normalised graph by 10!Warning! inherit not supported4 and giving the unit as
‘radians per second’ would transform the graph into one showing gain against actual
frequency for that particular filter. If the cut-off frequency were 10!Warning! inherit not

supported4 Hz (rather than radians per second), the procedure would be just the same:
multiply all the numbers on the axis by 10!Warning! inherit not supported4 and give the
unit as Hz.
All first-order low-pass filters have a gain function of this shape and with these slopes. The
passband gain might differ if the filter is active (that is, if it incorporates amplification). For
first-order passive filters (that is, those without amplification) the passband gain cannot
exceed 1.

Activity 4
Allow about 10 minutes

An alternating voltage source is connected to the input of a low-pass filter. What power
is drawn from the output of the filter if the voltage source operates:

a. well below the cut-off frequency of the filter and supplies 0.2 W to the input of the
filter?

b. at the cut-off frequency of the filter and supplies 0.1 W to the input of the filter?

Answer

a. Well below the cut-off frequency, the gain of the filter is 0 dB, which is a power
ratio of 1:1. Hence the power drawn from the output of the filter is the same as
that supplied at the input, 0.2 W.

b. At the cut-off frequency, the power gain is −3 dB or a half. Hence the output power
is half the input power, or 0.05 W. The difference between the input power and the
output power is also 0.05 W, which is dissipated as heat.

Notice that as you move right along the frequency axis, the gain never reaches zero (that
is, zero as a voltage ratio rather than as a decibel number). Zero gain would correspond to
a negatively infinite number of decibels.
All real first-order filters (as opposed to ideal ones) lack a sharp cut-off frequency; in
addition, low-pass filters never fully cut off, although if the gain is low enough you can
regard it as having fallen to 0. Higher-order filters can give a sharper cut-off than a first-
order filter, but the brick-wall cut-off of an ideal filter can never be achieved in practice.
As you move left along the frequency axis, each division is one-tenth of the one before,
and this can continue indefinitely. A logarithmic frequency scale therefore never reaches a
frequency of 0.
The steepness of the gain in the stop band is referred to as the filter’s roll-off. All first-
order filters have a 20 dB/decade roll-off. The same roll-off can also be specified as 6 dB/
octave. An octave is a term borrowed from music and represents a doubling of frequency.
(It is so called because the frequency span in a doubling of frequency is divided into the
eight notes of a musical scale.) Higher-order filters have a steeper roll-off. For second-
order filters it is 40 dB/decade (or 12 dB/octave) and for third-order filters it is 60 dB/

2 Signal processing

17 of 47 Wednesday 15 July 2020



decade (or 18 dB/octave). Each successive order adds a further 20 dB/decade (or 6 dB/
octave) to the roll-off.
Note that at the first decade above the cut-off frequency, the gain of a first-order filter is
20 dB below the passband gain, not 20 dB below the gain at the cut-off frequency.
Now have a go at Activity 5.

Activity 5
Allow about 10 minutes

A first-order low-pass filter has a cut-off frequency of 6.28 × 10!Warning! inherit not

supported3 radians per second.

a. What is the cut-off frequency in hertz? (Round your answer to 2 significant
figures.)

b. What is the gain at 1 kHz? Express your answer in decibels.
c. What is the gain at 100 kHz? Express your answer in decibels.

Answer

a. Angular frequency , where is the frequency in hertz. So

To 2 significant figures, = 103 Hz. So the cut-off frequency is 103 Hz or 1 kHz.
b. 1 kHz is the cut-off frequency, so the gain here is −3 dB.
c. 100 kHz is two decades above the cut-off frequency, so the power gain is −40 dB.

As you saw earlier, filters affect the gain and phase of a signal. In the next section you will
see how you can show this in the Bode plot.

2.6 The full Bode plot: gain and phase
In Section 2.5, you heard how a full Bode plot would show not only how the gain changes
with frequency, but also how the phase difference between output and input changes with
frequency. Conventionally the phase plot is put under the gain plot, with their respective
frequency axes aligned, as in Figure 10. This example is for a first-order low-pass filter.

2 Signal processing

18 of 47 Wednesday 15 July 2020



Figure 10 Normalised first-order low-pass frequency response showing gain and phase

Figure 10 shows that in the passband, the output is virtually in phase with the input. As
frequency increases towards the cut-off frequency (1 on the normalised frequency axis), a
phase difference opens between the output and the input, with the output lagging the input
(the negative values of phase angle indicate lagging phase). At the cut-off frequency, the
phase difference is −45°. This means that for a sinusoidal input, the output lags the input
by 45°. By the time you are well into the stop band, the phase difference levels off at −90°.
That concludes the discussion of first-order filters. To end Section 2 you will consider
some commonly found higher-order filters and have a look at their characteristics.

2.7 Chebyshev and Butterworth filters
The design of higher-order filters is a specialist area, and mathematically complex, so in
this section you will look at gain functions of just two celebrated types. The first is the
Butterworth filter. The gain function of a Butterworth filter has the familiar flat passband
and roll-off you would expect. However, this filter comes in various orders, such as 2, 4, 6,
8 and 10, depending on how steep the roll-off needs to be.
Figure 11 shows the normalised responses of first-order, second-order and eighth-order
low-pass Butterworth filters. As the order of the filter increases, it approximates more
closely the ideal brick-wall response.
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Figure 11 Normalised Butterworth magnitude response curves

Steeper roll-offs than those of a Butterworth filter can be had if other desirable features of
a filter are compromised. The Chebyshev filter has a steeper roll-off, but at the price of a
passband response that is not flat. Figure 12 compares seventh-order normalised
Chebyshev and Butterworth filters. Notice the ripple in the Chebyshev filter’s response in
the passband. (There is another type of Chebyshev filter that has a flat response in the
passband and ripples in the stop band.)

Figure 12 Comparison of seventh-order Butterworth and Chebyshev gain

That concludes the introduction to filters and, in particular, analogue filters. In Section 3
you will learn about digital filtering, which is currently a more popular approach to filtering.
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3 Digital signal processing
Digital signal processing has developed rapidly over the last 50 years: digital signal-
processing circuits have become faster and cheaper, and memory storage capabilities
have increased dramatically. One result of these developments is a migration from
analogue to digital circuits for some types of signal processing, and digital filters are an
example of this trend.
Digital filters have some advantages over analogue filters. They are programmable, so
their operation is determined by a program stored in a processor’s memory. This means a
digital filter can easily be changed without affecting the hardware. Also, digital filters are
extremely stable with respect to both time and temperature. For complex filters, the
hardware requirements are relatively simple and compact in comparison to the equivalent
analogue circuitry.
The design of a digital filter is complicated and involves quite advanced mathematics, so
software tools that produce a filter design from your specification of filter characteristics
are commonly used. However, as you may know from the use of software tools such as
circuit simulators, you need to be very wary of using a software design tool to create
circuits without having a good understanding of the electrical characteristics of the circuit
that you want to create and the parameters used in the design process. A good
understanding of how digital filters work will help at every stage of filter design.
For the remainder of the course you will find out about various aspects of filtering a signal
digitally. First you will see how a continuous-time signal is converted to produce the digital
discrete-time signal used as input to the filter. Then you will find out how mathematical
operations applied to the discrete-time signal can remove or diminish unwanted aspects
of the signal.
To get started, Figure 13 shows the basic set-up of a digital filter. Don’t worry too much
about the detail at this point – it will be covered later. As part of the filtering process, the
continuous input signal must be sampled and digitised using an analogue-to-digital
converter (ADC) to produce a sampled discrete signal. The resulting binary numbers,
representing successive sampled values of the input signal, are transferred to the
processor, which carries out numerical calculations on them. These calculations typically
involve multiplying the input values by constants and adding the products together. If
necessary, the results of these calculations, which now represent sampled values of the
filtered signal, are output through a digital-to-analogue converter (DAC) to convert the
signal back to continuous form. Given that the continuous input signal and the filtered
continuous output signal are continuous in time, they are often referred to as continuous-
time signals. Similarly, the sampled discrete signal and the digitally filtered signal are often
referred to as discrete-time signals. (Here the word ‘discrete’ means ‘consisting of
separate parts’ as opposed to the word ‘discreet’ which means ‘unobtrusive’).
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Figure 13 Digital filtering of a sampled signal

In the next section you will see an example of a digital filter being used as part of a
medical system to illustrate the component parts.

3.1 Digital filters
You read about analogue filters in Section 2, so you know that they are electronic circuits
made up of components such as resistors, capacitors and inductors connected together
to produce the required filtering effect. In comparison, a digital filter uses a digital
processor to perform numerical calculations on sampled values of the signal to be filtered.
The processor could be a general-purpose computer such as a PC, but it is much more
likely to be a specialised digital signal processor (DSP) chip, which is designed to carry
out the intensive mathematical operations used in digital signal processing quickly and
with low power consumption. The low power consumption is important because it means
that purpose-designed DSP chips can be used in mobile devices such as phones and
tablets.
A potential use for a digital filter with low power consumption is described by Asgar and
Mehrnia (2017), who propose using a digital filter in an electrocardiogram (ECG) heart-
monitoring system. Figure 14 is a block diagram of the system, taken from their paper. It
shows a sensor connected to the surface of the user’s skin to monitor their heart function.
This signal is then conditioned. Typical actions here might be to amplify and remove
aliases from the signal; then an analogue-to-digital (ADC) converter is used to change the
signal from analogue to digital form prior to it being filtered.

Figure 14 Block diagram of the ECG heart-monitoring system

In the paper, the authors describe six different sources that can cause noise to
contaminate the measured signal. Three of these sources are as follows:

● electrode contact noise, which is due to electrode ‘popping’ or a loose contact with
the skin
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● instrumentation noise, which is due to radio-frequency interference from other
equipment (e.g. implanted devices such as pacemakers)

● electromyographic (EMG) noise, which is induced by electrical activities of skeletal
muscles during periods of contraction.

This shows the variety of noise sources that are associated with specific applications and
the insights that are needed to understand the noise sources in any filter application. The
filtering solution proposed by the authors uses a low-complexity, linear-phase digital filter
design.
The next section will describe in more detail the signals that are found in digital systems.

3.2 Characteristics of discrete-time and continuous-
time signals
A continuous-time signal is shown in Figure 15(a). The signal is continuous because it has
a value at any instance of time – that is, for any value of , it is possible read a value of from
the graph. Most signals in the real world are continuous in time. For example, if you were
monitoring the temperature of a room, you would be able to take a measured value of
temperature at any time.

Figure 15 (a) Continuous-time signal; (b) discrete-time signal

A discrete-time signal (sometimes referred to as a time-discrete signal or simply a discrete
signal) is shown in Figure 15(b). In the rest of this course the standard convention of
drawing the vertical lines in a discrete-time signal with a round dot on the end will be used;
these lines-with-dots are often called ‘lollipops’. The signal in Figure 15(b) is discrete
because it only has a value at fixed points placed at discrete time intervals seconds apart
along the -axis. is called the sampling interval. Values of can be found for the integer
values of , such as , , etc., but there is no value for the signal at, say, . Thus represents the
number of the sample.
It is hard to think of examples of real-world discrete-time signals, since most real-world
signals are continuous; however, if you took the temperature reading of a room every day
at the same time, the result would be a discrete-time signal. Most discrete-time signals
come from sampling continuous-time signals to get them into a digitised form that can be
processed by digital computers.

3 Digital signal processing

23 of 47 Wednesday 15 July 2020



Activity 6
Allow about 5 minutes

State whether the following are discrete-time signals or continuous-time signals, giving
a reason for each answer:

a. the wind speed across the blades of a wind turbine
b. the position of a robotic arm as it picks items from a conveyor belt
c. the total distance travelled by the robotic arm each hour over a 24-hour period.

Answer

a. The wind speed is a continuous-time signal, because you can take a reading at
any time.

b. The robotic arm always has a position – even if it is in a resting position, you know
where it is – so this is a continuous-time signal.

c. The total distance travelled by the robotic arm is recorded just once in each hour,
so this is a discrete-time signal. Over a 24-hour period there will be 24 discrete
values recorded.

In the next section you will learn how a continuous signal is converted to a discrete signal.

3.3 Sampling a continuous-time signal
To convert a continuous-time signal into its discrete-time signal equivalent, you need to
sample the waveform. To ensure the discrete-time signal contains the full range of
frequencies in the continuous-time signal, the continuous-time signal normally needs to
be sampled at a rate that is greater than twice the highest frequency component
contained in the signal. The lowest sampling frequency that can fully reconstruct the
continuous-time signal is called the Nyquist frequency after Harry Nyquist (1889–1976), a
Swedish-born American engineer who made important contributions to communications
theory.
What happens if the sample rate is equal to or less than twice the highest frequency in the
signal – or, to express this another way, if the continuous-time signal is sampled twice or
less than twice within each cycle of the highest frequency component contained in the
signal? Figure 16(a) shows a sine wave (solid line) that is being sampled less than twice
each cycle. The samples are represented by blobs. However, another sine wave with a
lower frequency can be drawn through these samples. It is shown as a dashed sine wave.
This lower-frequency wave is called an alias of the original sine wave. The way to avoid
aliases is to sample more frequently, as in Figure 16(b). Here there are twice as many
samples as in Figure 16(a). Now the alias from (a), also shown dashed in (b), misses
some of the samples in (b). There is no waveform of a lower frequency than the sampled
waveform that can be fitted to all the samples.
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Figure 16 (a) More than one sine wave can be drawn through these samples, so there is
a low-frequency alias of the original wave; (b) with more samples, there is no alias that
can be fitted to all the samples

The way to eliminate the possibility of an alias is either to have greater than two samples
per cycle or, conversely, to ‘band-limit’ the signal to make sure that there are no
frequencies equal to or higher than one half of the sampling frequency. This is done by
including an analogue filter before the sampler in the analogue-to-digital converter that
removes all frequencies higher than a certain frequency. As such, a filter is designed to
stop any chance of aliasing occurring, it is sometimes called an anti-aliasing filter.
After sampling the signal, the samples need to be converted to a digital signal. The next
section describes how this is done.

3.4 Quantisation of a signal
When a continuous-time signal is sampled, the amplitude of each sampled point
undergoes quantisation which means that it is forced to have only certain discrete values.
The amplitude of each sample is represented by a digital binary code, and the word length
of the code will be a fixed number of digital bits. Representing the amplitude of the
samples in this way means the value is represented by a binary number, so it is truncated
or quantised to its closest binary equivalent.
A 1-bit binary number can represent two levels because it can only take a value of 0 or a
value of 1. A 2-bit binary number represents four levels, where each level takes one of the
values 00, 01, 10 or 11. Figure 17 shows a discrete-time signal whose values are limited
to a 3-bit binary number, which represents eight possible combinations of 0s and 1s –
each possible combination is shown on the -axis of the figure. Note that each sampled,
digitised signal is a binary representation of the analogue value, so in conversion to these
binary representations some rounding of the signal values has occurred: some sampled
values are just above and some just below the continuous-time signal.
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Figure 17 Sampled and quantised signal

Any binary word will always give an even number of quantisation levels. In general, a
binary word with bits gives quantisation levels – hence a 3-bit word gives 8 levels, a 4-bit
word gives 16 levels, a 5-bit word gives 32 levels, etc.
Figure 18 shows a sine wave along with a set of quantisation levels. Here the 0 or
midpoint of the sine wave occurs at a midpoint between the 011 and 100 levels. The gaps
between the quantisation levels are called the quantisation intervals. Sometimes a
quantisation level is assigned to the 0 or midpoint, which means that on one side of the 0
there is one more level than on the other side.

Figure 18 A sine wave and a set of quantisation levels

The larger the quantisation intervals, the more error will be introduced into the sampled
signal. The quantisation error for a sample is the difference between the value of the input
signal and the resultant quantised signal, with the maximum quantisation error being half
the quantisation interval. Quantisation errors can be reduced by increasing the number of
levels; however, as the number of levels increases, so does the number of bits needed to
represent each sample.
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Activity 7
Allow about 15 minutes

An electrocardiogram (ECG) signal contains useful information in frequencies up to
400 Hz.

a. At what rate must the signal be sampled to ensure that no information is lost in
sampling?

b. If a 3-bit quantiser is used to represent the signal, how many bits of data are
generated per second if the sampling rate is set to 1000 Hz?

c. If the signal range from the ECG extends from +7 V to −7 V, where 7 V equates to
the highest quantisation level and −7 V to the lowest quantisation level, what is
the quantisation interval and what is the maximum quantisation error in the
system?

d. If the quantiser is changed to a 4-bit system, what happens to the maximum
quantisation error?

Answer

a. The signal must be sampled at greater than twice the maximum frequency of the
signal, so the minimum sampling rate is 800 Hz.

b. With a 3-bit quantiser each sample point uses three bits of data, so the number of
bits of data generated is 3 × 1000 = 3000 bits per second.

c. With a 3-bit quantiser there are a total of eight levels and seven quantisation
intervals in the system. If the voltage range covers 14 V, then each quantisation
interval is 2 V. The maximum quantisation error is half this quantisation interval,
or 1 V.

d. A 4-bit system has 16 quantisation levels and 15 quantisation intervals, so each
quantisation interval is

This reduces the maximum quantisation error to

In the next section you will return to digital filtering and how they work in the time domain.

3.5 Digital filtering in the time domain
A simple form of digital filter is the three-term averaging filter, in which the output value is
equal to the average of three successive signal sample values. In Figure 19(a), which
shows a discrete-time signal applied to a digital three-term averaging filter, the output is
given by

The signals and are spaced seconds apart in time, where is the sampling interval.
Similarly, and are spaced seconds apart.
Figure 19(b) shows the values of the input signal that will be applied to the filter input.
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Figure 19 (a) Three-term averaging filter; (b) input signal to the three-term averaging filter

The values of and are listed in Table 1. Assume that for any and .

Table 1 Values of and from
Figure 19(b)

−3 −2 −1 0 1 2 3 4 5

0 0 −1 2 4 6 4 0 0

For the output to be calculated, the values of , and must be stored in memory and
accessible to the processor performing the calculation. The order of a digital filter is the
number of previous inputs (stored in the processor’s memory) used to calculate the
current output, so this three-term averaging filter is second-order.
For values of the output will be 0, so the calculations below start at .
For you can substitute in values to give .
For you get .
For you get .
Table 2 shows the results of all calculations for , shown as decimal values to 2 significant
figures. Note that you can stop at , since above this the output will be 0 again.

Table 2 Results of calculations for
−3 −2 −1 0 1 2 3 4 5

0 0 −1 2 4 6 4 0 0

0 0 −0.33 0.33 1.67 4.00 4.67 3.33 1.33

The resulting output discrete-time waveform is given in Figure 20.

Figure 20 Filter output in response to the input in Figure 19(b)
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Figure 21 shows the same filter applied to an input that has more noise in the signal and a
longer sequence.

Figure 21 Longer sequence filtered by the three-term averaging filter (Wickert, 2011, p. 7)

Activity 8
Allow about 5 minutes

Looking at Figure 21, describe the effect that the three-term averaging filter has on the
output. What kind of filter is this?

Answer
The three-term averaging filter has removed the short-term fluctuations in the signal to
show the longer-term trend. This is akin to removing higher-frequency noise from a
signal, so it is operating like a low-pass filter.

This digital filter is an example of a system that is both linear and time-invariant,
sometimes referred to as an LTI system.
You can see that the three-term averaging filter is a low-pass filter, but it is difficult to
characterise its response. For example, what frequencies is the filter eliminating from the
signal? Earlier in this course, you saw how analogue filters can be designed to give a
desired frequency response; now you will look at how digital filters can also be designed
in the frequency domain.
Filters are usually described in terms that make sense in the frequency domain, e.g. a low
pass filter allows the parts of the signal with low frequencies to pass. In the following
section you will see how a digital filter is designed in the frequency domain.

3.6 Designing a digital filter in the frequency domain
Most digital filters are designed in the frequency domain. Input signals are characterised
by their frequency spectrum and design filters to modify that spectrum by, for example,
removing high-frequency noise with a low-pass filter.
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Figure 22 shows the four basic filter structures in the frequency domain. These ideal filters
are identical for both analogue and digital filters (you have already seen them earlier in the
course in Section 2.2).

Figure 22 Ideal filter responses: (a) low-pass; (b) high-pass; (c) band-pass; (d) band-stop
(repeat of Figure 5)

In the design process, the aim is to produce a filter frequency response that best matches
the profile of the filter; however, compromises have to be made. You have already seen
how the order of the design of the filter affects the roll-off, so decisions are made in the
design of these analogue filters to best match the filter to the ideal response.
Figure 23 shows some of the characteristics of a typical low-pass digital filter. In
comparison to the ideal shape (shown in red), there is a transition region between the
passband and stop-band sections, and also a ripple in both the passband and the stop
band. These effects can be altered by changing various parameters in the design.

Figure 23 Typical low-pass digital filter response

When designing a digital filter in the frequency domain, software tools are most often used
to generate the mathematical expression for the filter. This expression is in the form of a
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difference equation – an equation involving combinations of samples at specific times.
You have already seen a difference equation in this section: the equation = for the three-
term averaging filter. As another example, the following difference equation contains five
terms:

In a digital filter design, the number of terms in the difference equation is often referred to
as the number of taps, and is specified as a design parameter. A larger number of taps
may give a filter design that more closely matches the desired specification; however,
more taps will mean that it takes longer to compute the filter outputs.
There are two main classes of LTI (linear time-invariant) digital filter: the finite impulse
response (FIR) filter and the infinite impulse response (IIR) filter. An IIR filter requires
fewer computations to achieve the same performance as an FIR filter, so has a speed
advantage. However, an IIR can have stability issues and also non-linear phase issues
(where signals of different frequencies are delayed by different amounts, resulting in a
distortion of the output signal). The difference between an FIR filter and an IIR filter is that
the FIR filter uses only the filter inputs when generating its output, whereas an IIR filter
uses both the filter inputs and past filter outputs – in other words, it uses feedback. The
difference equation above is for an FIR filter. The difference equation below has four
terms and the final term is an output value, so it is an IIR filter:

To calculate the output of an IIR filter, both previous input samples and previous output
samples are stored in the processor’s memory. The order of the IIR filter is the larger of
the number of input values stored and the number of output values stored. In the above
example, the filter is second-order, since two previous input values are stored but only one
previous output value.
Before you look at a filter being designed, you need to know a little more about the
relationship between the time domain and the frequency domain. You will cover this next.

3.7 Fourier transforms and the sinc pulse
You saw earlier (Figure 5) that the ideal frequency responses shown in Figure 22 are
sometimes referred to as brick-wall filters because of the sharp transitions between
passbands and stop bands. In other words, they are rectangular functions. However,
whilst it is possible to use a rectangular function in the frequency domain to specify the
filter, you must perform the calculations to implement the filter in the time domain. To do
this, you need to translate between the time and frequency domains; in particular, for a
brick-wall filter, you need to know what a rectangular function in the frequency domain
looks like in the time domain. For a continuous-time system, you would use a Fourier
transform to do this; for a discrete-time system, you use a corresponding discrete-time
Fourier transform.
You can perform mathematical calculations on paper to work out the Fourier transform of
a signal in either the time or the frequency domain. Under those circumstances, you would
use the formula for either the discrete or the continuous transform, depending on the type
of system you were dealing with. However, the majority of Fourier transforms will be
carried out by a computer system – even if the system is dealing with continuous-time
signals as input and output, the signal processing will be happening in the discrete-time
domain of the computer. There is a particular algorithm called the fast Fourier transform
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(FFT) that is used to carry out Fourier transforms efficiently. Such was the need to perform
these calculations at great speed that the FFT was included in a list of the top 10
algorithms of the twentieth century by the IEEE journal Computing in Science &
Engineering in the year 2000 (Dongarra and Sullivan, 2000).
Using the discrete-time Fourier transform, you can see that the time-domain
representation of a rectangular function in the frequency domain is the sinc pulse, as
shown in Figure 24.

Figure 24 Fourier transform pair: a rectangular function in the frequency domain is
represented as a sinc pulse in the time domain

Mathematically, a sinc pulse or sinc function is defined as sin(x)/x.
Figure 25(a) and Figure 25(b) show a sinc envelope producing an ideal low-pass
frequency response. However, there is an issue because the sinc pulse continues to both
positive and negative infinity along the time axis. Whilst mathematically you can readily
take the Fourier transform of a sinc pulse, it can’t be computed because of the extension
to infinity. The obvious solution is to truncate the sinc response as in Figure 25(c), so that
the ripples no longer extend to infinity. Now that the pulse is finite, it can be shifted so that
it only has positive sample numbers. The effects of this in the frequency domain are
shown in Figure 25(d) – ripples in the passband and the stop band. In essence this shows
why you can never have the perfect ideal or ‘brick-wall’ filter.

Figure 25 (a) Ideal sinc function in the time domain; (b) frequency response of the ideal
sinc function; (c) abruptly truncated sinc function in the time domain; (d) frequency
response of the truncated sinc function
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A technique for dealing with the truncated sinc is to apply a window function that brings
the endpoints of the truncated sinc to zero. Figure 26(a) shows a suitable shape of
window, Figure 26(b) shows the effects of applying the window to the truncated sinc and
Figure 26(c) shows the resultant frequency response.

Figure 26 Using windowing to compensate for a truncated sinc pulse: (a) suitable window
shape; (b) window applied to the truncated sinc; (c) resultant frequency response

When a window function is applied, it is effectively ‘multiplied’ with the sinc function. The
process used to do this is called convolution. Convolution is outside the scope of this
course, but when applied, what is left is where the signals overlap. You can think of this as
a ‘view’ through the window function.
There are various shapes of window that can be applied. Two common shapes are the
Blackman window and the Hamming window, although there are others (such as Kaiser,
Bartlett and Hann). The Hamming window gives a better transition response, but the
Blackman window has better stop-band gain and lower passband ripple.
You are now ready to design a digital filter and try it out.

3.8 A low-pass filter design
You will now look at a real example of low-pass filter design. For this, a software package
called Signal Wizard has been used. You are not required to download Signal Wizard, but
for information, it is a free package that can be installed on your computer. Details of the
Signal Wizard and where to find it are given can be found here: Installing Signal Wizard
for use in offline mode.
Figure 27 shows a screenshot from Signal Wizard which shows the input signal waveform
both in the time domain (the ‘Time Waveform’) and in the frequency domain (the
‘Frequency Spectrum’). The aim is to remove any frequencies in this waveform above
5000 Hz, so a low-pass filter with a 5000 Hz cut-off frequency is required.
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Figure 27 Characteristics of the input signal

The specification of an FIR low-pass filter with a gain of 1 and a cut-off frequency of
5000 Hz is entered into the filter design interface. The graphical interface windows in
Figure 28 all show the ‘brick-wall’ specification in red with the implementation in black.
These designs all use a rectangular window, which gives an abruptly truncated sinc
function. The first design uses 15 taps (Figure 28(a)), the second uses 63 taps (Figure 28
(b)) and the third uses 127 taps (Figure 28(c)). All other parameters are unchanged. As
the number of taps in the design increases from the top image to the bottom, the transition
zone narrows and the designed filter more closely matches the filter specification.
However, the amplitude of the ripples in the passband and the stop band remains
unchanged, although the frequency increases as the number of taps increases.
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Figure 28 Digital filter design with a rectangular window: (a) 15 taps; (b) 63 taps; (c) 127
taps

The next set of designs, in Figure 29, keeps the number of taps at 127 and varies the
window function used. The design implemented in Figure 29(a) uses a Blackman window,
while the design implemented in Figure 29(b) uses a Hamming window. You can see that
both have reduced the ripples in the passband.
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Figure 29 Filter designs with different window functions: (a) 127 taps with Blackman
window; (b) 127 taps with Hamming window

Figure 30 zooms in on sections of the transition band and passband to see the effects in
more detail. Comparing Figure 30(a) and Figure 30(c) shows that the transition zone of
the Hamming window is narrower than that of the Blackman window. Comparing
Figure 30(b) and Figure 30(d) shows that the Blackman window has reduced the ripples in
the passband more than the Hamming window. These results confirm that the Hamming
window gives a better transition response, while the Blackman window has lower
passband ripple.
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Figure 30 Details of the Blackman and Hamming windows: (a) 127 taps with Blackman
window, transition zone; (b) 127 taps with Blackman window, passband; (c) 127 taps with
Hamming window, transition zone; (d) 127 taps with Hamming window, passband

The input signal was filtered using the 127-tap Hamming window design, and the output
response is shown in the ‘Time Waveform’ and ‘Frequency Spectrum’ charts in Figure 31.
The frequency spectrum shows that the filter has indeed taken out the redundant higher-
order frequencies above 5000 Hz.

Figure 31 Filter response output

When a digital filter such as the one above is being implemented, the mathematical
calculations will be defined in a software program, which will then run on some digital
hardware. The basic processes taking place in the digital hardware are adding and
subtracting; these processes will occur thousands, probably millions of times in the
filtering of a sampled signal. Digital signal processor (DSP) chips are designed
specifically to carry out these calculations, and their internal structure (referred to as their
architecture) has been optimised to do so – thus it is different from that of a general-
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purpose processor used in a computer. There are several major DSP chip manufacturers,
including Texas Instruments and Analog Devices.
You’ve therefore seen that usually a digital filter is designed using a software package. To
finish this course, you will have a chance to explore digital filtering using an interactive
resource. The next section introduces this resource.

3.9 Digital filtering in practice
You are now going to use an interactive resource to add Gaussian noise to a noise-free
(or ‘clean’) data signal. The noisy data signal is passed to a detector, which determines
whether received samples are binary zeros or ones. The added noise causes the detector
to make mistakes; hence there are bit errors. Using a finite impulse response (FIR) digital
filter, you will ‘clean up’ the noisy data signal and thereby reduce the bit-error rate.
Right-click on the image or link below to open Interactive 1 in a new tab or window so you
can continue to work through the course and activities with the interactive alongside. The
interface consists of four equally sized zones: top left, top right, bottom left and bottom
right. Note that depending on the browser you are using, the sliders and other
components in the interface may have a different visual appearance from those shown in
the screenshots in this document, but the functionality will be the same.

Interactive content is not available in this format.
Interactive 1 FIR filter

The top left zone shows the signal, whether it is clean or noisy. When the interactive
resource is launched, the noise level is at zero and the signal is clean. The data signal is
shown as a single step from 0 to 1, but there are 10 000 samples for this data signal, half
of which are from the 0 part of the signal and half of which are from the 1 part. Noise is
added by sliding the Noise level (V) slider to the right and clicking on Apply.
The top right zone displays a histogram of the signal. As there is an equal number of zeros
and ones in the signal, the probability of each is 0.5. The detected probabilities of zeros
and ones in the received signal are shown by the vertical red lines situated at 0 and 1.
Without added noise, perfect detection can be achieved.
The top right zone allows the decision level at the detector to be set using the Decision
level (V) slider, and also the degree of low-pass filtering to be set using the FIR filter
width (number of samples) slider. Finally, the top right zone also gives statistics about
the number of true and false detections. Figure 32 explains how to interpret this data.
Before noise is added, all samples are correctly identified, so False detections should be
at 0 to start with.
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Figure 32 Interpreting the statistics

Note in Figure 32 that if the correct detection of data 1s were to drop below 50%, the
deficit would appear as an increase in the false detection of data 0s. Similarly, if the
correct detection of data 0s drops below 50%, the deficit should appear as an increase in
the false detection of data 1s. Thus the diagonal pairs of statistics in Figure 32 should
always add up to 50% – or approximately 50%, given the possibility of rounding errors in
the calculation.
The bottom left zone shows the effect of filtering applied to a noisy signal. The bottom right
zone is similar to the top right zone, showing a signal histogram and false detection
statistics; however, these are after filtering, whereas the top right zone is before filtering.
In the next section you will have a go at adding noise to the data signal in the interactive.

3.10 Adding noise
After familiarising yourself with the interface in Interactive 1, try adding noise in the top left
zone. The Noise level (V) slider is not calibrated, except for having a minimum value of 0
and a maximum of 1. Judging by eye, set the slider to around 0.1 V and click on Apply.
You can hear what the noisy signal sounds like by going to Audible signal with noise
and clicking on the Play (triangle) icon. The top part of the interface should resemble
Figure 33.
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Figure 33 Noise applied to the data signal

Activity 9
Allow about 5 minutes

Why has the display in the top right zone changed? What is the display now showing?

Answer
The effect of the added noise is to change the voltages representing 0 and 1 randomly
around the mean values of 0 and 1. The display shows a histogram of the probabilities
of particular signal voltages. Voltages close to the mean are most likely, so the
histogram has peaks at 0 and 1; voltages further away are possible, but less likely the
further you go from the mean values.

Next you will look at changing the decision level.

3.11 Changing the decision level
Again, using the interactive in Section 3.9 you will now look at changing the decision level.
The decision level is represented by the right-hand vertical edge of the grey area on the
histogram display. Use the Decision level (V) slider to set the decision level midway
between 0 and 1. You will have to judge its position by eye. Click on Apply to implement
the decision level and look at the statistics.

Activity 10
Allow about 5 minutes

a. Why are there are false detections?
b. Why are the detection rates (correct and false) practically the same for 0 and 1?

Answer

a. The effect of noise is to take the signal occasionally over the decision level, so
that a 0 is detected as a 1 and vice versa.
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b. The percentages of correct and false detections are virtually the same for 0s and
1s because of the symmetry of the situation. The noise affects the 0s and 1s
equally, and the decision level is symmetrically placed between 0 and 1.

The symmetrical arrangement that you have used so far, with the decision level halfway
between the two binary symbols, is typical of much practical implementation of binary
signal detection, but looking at an asymmetrical arrangement is instructive.
Use the Decision level (V) slider to place the decision level asymmetrically between 0
and 1 (that is, much closer to 1 than to 0, or vice versa), then click on Apply.

Activity 11
Allow about 10 minutes

Explain, in general terms, the correct and false detection statistics that have resulted
from your asymmetrical placement. You will not be able to give a precise account, but
you might be able to explain the relative sizes of the statistics.

Answer
You may have got something similar to Figure 34, with the decision level fairly close
to 1.

Figure 34 Asymmetrical decision level
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Because the decision level is so close to 1, noise-affected 0 signals very rarely go
beyond the decision level. This is why false detections of 1 are at 0%, as this statistic
reflects 0s that are wrongly detected as 1s. As there are no false detections of 0s, all
detections of 0 must be correct, which is why correct detections of 0 are shown at 50%.
With the decision level close to 1, noise-affected 1s quite often drop below the decision
level and are detected as 0s. This is why the false detection rate for 0 is relatively high,
at almost 14%. Correspondingly, the correct detection rate for 1 is relatively low, at just
above 36%. These two statistics add to approximately 50%.

Now you have explored how adding noise and changing the decision level affects the data
signal, to end this course you will apply the FIR filter.

3.12 Applying the FIR filter
Use the Decision level (V) slider to return the decision level to midway between 0 and 1,
then click on Apply. Confirm that the statistics are as would be expected; that is, correct
detections of 1s and 0s are at approximately the same percentage. The correct detection
percentages do not need to be identical, but try to get them to within about 1% of each
other by adjusting the detection level.
You are now going to apply the FIR filter. In the top right zone, set the FIR filter width
(number of samples) slider by eye to around 30–40 samples, then click on Apply.

Activity 12
Allow about 5 minutes

a. Compare the top right zone (histogram and statistics before filtering) to the
bottom right zone (histogram and statistics after filtering). What effect has the filter
had on the statistics for correct detection?

b. Explain any difference in detection statistics between those beneath the unfiltered
signal and those beneath the filtered signal.

Answer

a. The filter increases the correct detection rate.
b. The filter reduces the spread of values around the mean, which is shown by the

fact that the histogram peaks are narrower than in the unfiltered histogram. The
reduced spread of values reduces the probability of sample values crossing the
decision level.

Some points to consider as a result of your work with the FIR filter interactive resource are
as follows:

● Noise causes the actual voltages for 1s and 0s to be distributed around the intended
voltage.

● The distribution of voltages can cause errors when, for example, the voltage
representing a 1 is closer to 0 than to 1.
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● The wider the distribution (that is, the noisier the signal), the more likely errors
become.

● Filtering can reduce the width of the distribution of voltages, thereby reducing the
error rate.
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Conclusion
In this course you have learned about discrete-time signals and the discrete-time systems
that use them. In doing so, you have focused on digital filtering and found out why
advances in digital computer processing have allowed digital filtering to be used in
scenarios where analogue filters would once have been the only viable solution. You have
seen how relatively simple averaging filters can remove high-frequency noise, and also
that more complex filters are designed.
This completes your study. You should now be able to:

● understand how filtering of discrete-time signals can be achieved by mathematical
processes such as averaging

● understand how mathematical operations applied to a discrete-time signal in the time
domain can result in the removal or reduction of unwanted aspects of the signal

● explain why filters are designed in the frequency domain, and specify a digital filter to
achieve a desired filtering effect.

This OpenLearn course is an adapted extract from the Open University course
T312 Electronics: signal processing, control and communications

Glossary
alias

An error appearing in a sampled signal when the bandwidth of the signal is greater than
half the sampling frequency (that is, when the sampling frequency is lower than the
Nyquist frequency). Such effects are also referred to as artefacts or ghosts.

anti-aliasing filter
A low-pass filter that is able to remove aliasing in sampled signals by cutting all the
spectral components that are greater than or equal to half the sampling frequency.

Bode plot
Loosely, a graph of the frequency response of a device or system. Strictly, a pair of
graphs showing frequency response and phase response over the same span of
frequencies.

convolution
A mathematical operation that combines two signals to produce a third signal. When
two signals are convolved, the resultant third signal expresses how the shape of one
signal is modified by the other.

decibel
A logarithmic way of expressing a power ratio. For powers P1 and P2, their ratio in
decibels is defined as 10 log10 (P1/P2). The symbol for decibels is dB. Strictly the
decibel is not a unit, as any ratio must be a pure (that is, dimensionless) number.
However, it is often regarded as a unit.

difference equation
An equation in which all variables have been sampled at fixed intervals, and these
variables are multiplied by some coefficient.
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differential equation
A mathematical equation in which one or more terms contains a mathematically
differentiated variable.

digital signal processor (DSP)
A semiconductor device similar to a microprocessor. Whilst a microprocessor is a
general-purpose device, a DSP has been optimised to carry out the computations used
for processing discrete signals.

first-order
As applied to a filter, the simplest type of filter, having in its passive form a single
reactive element (a capacitor or an inductor) and a roll-off of 20 dB/decade, or 6 dB/
octave.As applied to a differential equation, such an equation in which the main
variable is differentiated once. Any system that can be modelled with such a differential
equation would be referred to as a first-order system.

Fourier transform
A transformation that extends the concept of the Fourier series to non-periodic signals.
It allows us to estimate the spectrum of a signal and perform a frequency analysis.

frequency response
The response of a system (e.g. a filter) when we input sine waves at different
frequencies (but equal amplitude). It tells us how the system will modify the spectrum of
any input signal we feed to the system.

gain
In amplification, a measure of how many times the input signal amplitude is increased.
It is generally measured as the ratio between the input signal amplitude and the output
signal level. If a gain value is given as just a number (i.e. with no units), the gain is likely
to be a ratio of voltages; if the value is given in decibels, it is a ratio of powers. See also
voltage gain and power gain.

octave
The span of frequencies covered by a doubling of frequency, or by a halving of
frequency. For example, the frequency span from 500 Hz to 1000 Hz is an octave, as is
the span from 500 Hz to 250 Hz. In music, the eight notes of a diatonic scale (that is,
doh, re, me … ti, doh) cover an octave; hence the name ‘octave’ for this span of
frequencies.

operational amplifier
A general-purpose analogue amplifier intended to be used as a component in other
electronic circuits, and usually supplied as a multi-pin integrated-circuit device with two
inputs and a single output. Typically an op-amp is a differential amplifier (that is, it
amplifies the difference between its two inputs) and has an unusably high gain and
extremely high input impedance. To give useful and predictable behaviour, external
feedback circuitry must be applied. This circuitry determines essential parameters such
as input impedance, output impedance, overall gain and frequency response, and also
whether the circuit operates as a single-input amplifier or a differential amplifier.

order
A numerical classification for filters (e.g. ‘first order’, ‘second order’, ‘third order’, etc.).
The order is determined by the differential equation of the filter. For a first-order filter,
the highest differential coefficient in the equation is first-order (e.g. dv/dt); for a second-
order filter, the highest differential coefficient is second-order (e.g. d2v/dt2). The higher
the order, the steeper the roll-off and the sharper the cut-off between passband and
stop band. Increasing the order by one adds 20 dB/decade to the filter’s roll-off.

passband
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The band or bands of frequencies passed by a filter with least attenuation, or no
attenuation. Frequencies outside the passband are cut off, or stopped, by the filter.
Passband is the counterpart of stop band.

power gain
The ratio of output power to input power. It is usually expressed in decibels (dB). A
power gain of 0 dB means that the output power is the same as the input power. A
power gain of 3 dB (or, more exactly, 3.0103 dB) means that the output power is double
the input power.

quantisation
Conversion of an analogue quantity, which could take any value within a range, to one
of a set of discrete values.

roll-off
The steepness of a filter’s attenuation in a stop band. Also, the steepness of the
attenuation of any device that produces attenuation (for example, a linear amplifier at
the extremes of its operating-frequency range).

stop band
The band or bands of frequencies stopped, or cut off, by a filter. The counterpart of the
passband.

taps
In a digital filter, the number of taps is the number of terms in the mathematical
expression that describes the filter. This expression is given in the form of a difference
equation. In digital filter design, the maximum number of taps to be used in the
implementation is required as part of the design specification.

voltage gain
For a sinusoidal input and output, voltage gain is the ratio of the output voltage’s
amplitude to that of the input voltage. It has no units.

window function
In signal processing, a mathematical function that is zero-valued outside some chosen
interval. When a signal is convolved with a window function, the resultant signal is also
zero-valued outside the chosen interval, so it is the original signal viewed through the
window function.
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