Manufacturing
Manufacturing

This free course is available to start right now. Review the full course description and key learning outcomes and create an account and enrol if you want a free statement of participation.

Free course

Manufacturing

2.8 Casting our gearwheel

Let's now consider the problem of how best to make the food mixer gearwheel we discussed in Section 1. Could it be made by any of these casting processes? Since it is a simple solid object the answer must be yes, of course, but which processes are feasible? If the gearwheel is to be made from metal then we can consider all of the casting processes we have described:

  1. sand casting;

  2. gravity-die casting;

  3. pressure-die casting.

Let's consider each of these in turn.

Sand casting is unattractive for volume production of this shape and size. The cast wheel would have a rough surface which would need to be machined, and a new sand mould would be needed for every product. Because the wheel is such a small component, there would be a lot of scrap, and so this makes the process rather expensive and time consuming when you need to produce of the order of 100,000 gearwheels. However, sand casting can be used for mass production of parts such as engine blocks for cars, where it is more economical than other processes. We can probably rule it out for production of the gearwheel, though!

Gravity-die casting gives a better surface finish and the die is reusable almost indefinitely. However, even this surface would need some machining in order to achieve the required accuracy of tooth shape of the gear, and to remove the runner and any little sheets of extra material ('flash') at the splits in the mould. In addition, it is a slow process, so gravity-die casting is probably not the best option.

Pressure-die casting looks promising. Here the as-cast surface needs little or no finishing, and provided the casting has the required strength for the application then this would a feasible option.

Next we consider injection moulding. Provided a thermoplastic is acceptable for the gearwheel, this process can be used. It produces an excellent surface finish (better than pressure-die casting) and has a short cycle time. Again, provided the moulding is strong enough, then injection moulding is a feasible option. So at this point in our analysis the first two candidate processes to manufacture our gearwheel are pressure-die casting and injection moulding.

T173_2

Take your learning further

Making the decision to study can be a big step, which is why you'll want a trusted University. The Open University has 50 years’ experience delivering flexible learning and 170,000 students are studying with us right now. Take a look at all Open University courses.

If you are new to university level study, find out more about the types of qualifications we offer, including our entry level Access courses and Certificates.

Not ready for University study then browse over 900 free courses on OpenLearn and sign up to our newsletter to hear about new free courses as they are released.

Every year, thousands of students decide to study with The Open University. With over 120 qualifications, we’ve got the right course for you.

Request an Open University prospectus