Engineering: The challenge of temperature
Engineering: The challenge of temperature

This free course is available to start right now. Review the full course description and key learning outcomes and create an account and enrol if you want a free statement of participation.

Free course

Engineering: The challenge of temperature

3.3 Thermal stresses

When the temperature of an object increases (say, by ΔT) it expands. According to the linear model of thermal expansion the length increase is described by

What if there is a temperature change, but some constraint prevents the proper thermal size changes? The constraint has to exert a force to prevent the change of size, so a thermal stress will be induced. There are many situations where thermal stress is made use of (for example, thermostat switches, toughened glass) or has to be worried about (cracked welds, bent rails, gas-tight seals).

Every case is in itself a problem of stress analysis, but there are essentially three kinds of situation – look at each, keeping in mind our interest in effects that might be used to make a thermal switch:

  • A homogeneous body (i.e. all the same stuff) subject to external constraint (fixed in some way) suffers a uniform change of temperature (it all gets hot together). This situation can cause buckling of railway lines and cracking of welds – see Box 4 Homogeneous body, uniform ΔT, external constraint.

  • A composite body (i.e. made of at least two different materials) whose constituents have different properties generates internal constraint (each material interferes locally with the other) when T changes. Glass-to-metal seals needed in vacuum technology have to overcome this problem, as do pottery glazes – see Box 5 Composite body, uniform ΔT, internal constraint.

  • A homogeneous body again, but with non-uniform temperature change (i.e. different bits at different temperatures). When the temperature change is rapid the body is said to suffer thermal shock. This is what cracks glass bottles when you try to sterilise them by pouring in boiling water. How does your ceramic hob get on when your pour cold water on it? – see Box 6 Homogeneous body, non-uniform ΔT.

There are more complex cases as well – see Box 7 What about welding? for example.

T207_2

Take your learning further

Making the decision to study can be a big step, which is why you'll want a trusted University. The Open University has 50 years’ experience delivering flexible learning and 170,000 students are studying with us right now. Take a look at all Open University courses.

If you are new to university level study, find out more about the types of qualifications we offer, including our entry level Access courses and Certificates.

Not ready for University study then browse over 900 free courses on OpenLearn and sign up to our newsletter to hear about new free courses as they are released.

Every year, thousands of students decide to study with The Open University. With over 120 qualifications, we’ve got the right course for you.

Request an Open University prospectus