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        Introduction

        It is common in engineering for physical phenomena to be represented as vector fields. A vector field is a mathematical representation
          of a system that describes how a quantity, such as a force, changes over an interval of time, or an area or volume of space.
          Figure 4.1, for example, illustrates vector fields created by magnets (in part (a)) and fluid flow (in part (b)). A vector
          field can be thought of as a graph where every coordinate has not only a position, but also a magnitude and direction. In
          the images in Figure 4.1, these are represented by small arrows, with each individual arrow indicating the direction and magnitude
          of a force at a specific position. 
        

        
          [image: ]

          Figure 4.1 Examples of models of vector fields: (a) model of a vector field created by a bar magnet; 
(b) model of a vector field created by flow around a cylinder 
          

        

        When viewed as a collection of individual vectors, vector fields can be very complex and difficult to understand, but when
          viewed holistically, patterns emerge that give insight into physical phenomena. 
        

        The examples in Figure 4.1 result from mathematical models, but accurately reflect the real-world situations they model. The
          first image is a diagram showing the magnetic field generated by a bar magnet, and accurately reflects the patterns created
          physically by iron filings when acted on by such a magnet, as illustrated in Figure 4.2(a). The image in Figure 4.1(b) is
          the result of a computational simulation of the fluid flow around a submerged cylinder, and is a representation of the real-world
          situation illustrated in Figure 4.2(b), which was created by smoke filaments in a wind tunnel. This representation is less
          accurate, with a difference in the flow to the right of the cylinder: in the physical example the smoke filaments become turbulent
          and messy as a result of the vortices formed in the wake of the cylinder, but in the simulation the flow remains smooth. This
          difference is a consequence of assumptions made in the mathematical model describing the flow. Assumptions have been made
          to make the mathematics more manageable by neglecting the complexity that gives rise to the vortices. 
        

        
          [image: ]

          Figure 4.2 Physical examples of vector fields: (a) magnetic field created by a bar magnet acting on iron filings; (b) turbulence created
            by flow around a cylinder 
          

        

        Vector fields are beyond the scope of this module, but you are likely to encounter them later in your studies. In preparation
          for this we will explore the mathematics of vectors, building on what we learned in Chapter 1. 
        

        In Section 4.1 we explore how vectors are used to model force and motion, and consider how problems involving vectors can
          be solved using geometry and trigonometry. In Section 4.2 we explore how to work with vectors represented in component form.
          Section 4.3 is concerned with vector algebra, and considers how equations involving vectors can be solved. Finally, Section 4.4
          introduces the scalar product of vectors, a multiplication operation that takes into account direction as well as magnitude.
          
        

      

    

  
    
      
        4.1 Modelling with vectors

        In Chapter 1, we used arrow representations to introduce the concept of vector quantities, and to explore some of the ways
          in which vectors can be manipulated and combined in order to solve models of engineering systems. Vector quantities are different
          from scalar quantities because they describe direction as well as magnitude. For this reason the arrow representation is useful
          to visually represent vector quantities. 
        

        
          4.1.1 Modelling motion with perpendicular vectors

          Let’s reconsider the example from Chapter 1, where two people, Alice and Bob, are pushing a block of ice, which has a mass
            of a metric tonne (). Alice and Bob each push on a different face of the block, as illustrated in Figure 4.3, and the direction in which the
            block moves is a consequence of the combination of the forces they apply. If Bob applies a force of 130﻿ ﻿N to the left face
            of the block, and Alice applies a force of 110﻿ ﻿N to the bottom face, what is the combined force applied to the block, and
            what is the acceleration of the block? 
          

          
            [image: ]

            Figure 4.3 Alice and Bob pushing different sides of a block of ice 
            

          

          
            Calculating the magnitude of a combined force

            In Chapter 1, we found we could determine the net effect of these two forces by combining them visually using arrows, as illustrated
              in Figure 4.4. Figure 4.4(a) shows an abstraction of the drawing in Figure 4.3, with Alice and Bob replaced by arrows representing
              the forces applied by Alice and Bob to the block of ice. Here,  represents the force applied by Alice, who is below the block, and  represents the force applied by Bob, who is to the left of the block. Notice that the vectors are shown to be acting on the
              centres of the faces of the block. This is because if forces are applied away from the centres, this can create a rotation,
              and that is a more complicated situation to model. Such rotational effects are outside the scope of this module.
            

            
              [image: ]

              Figure 4.4 Combining the vectors  and  
              

            

            Figure 4.4(b) shows the result of visually adding the vectors  and . This follows the method of adding vectors that we identified in Chapter 1. In this example,  and  are perpendicular, so the triangle formed by ,  and the resultant  is a right-angled triangle, with  as the hypotenuse. So we can use Pythagoras’ theorem to find the magnitude of , written , from the magnitudes of  and , written  and .

            
              
                Activity 4.1

              

              
                
                  If  is a positive vertical vector that has magnitude 110﻿ ﻿N and  is a positive horizontal vector that has magnitude 130﻿ ﻿N, what is the magnitude of the resultant  to two decimal places? 

                  
                    [image: ]

                  

                

              

            

          

          
            Calculating direction of motion of a combined force

            Using the fact that ,  and the resultant  form a right-angled triangle, we can also use trigonometric functions to find the direction of . This is illustrated in Figure 4.5, where the direction of  is represented by the angle . But  is outside the triangle formed by ,  and , so we can’t directly calculate its size using trigonometry; we also need to use our knowledge of angles and triangles. 

            
              [image: ]

              Figure 4.5 Finding the direction of the resultant 
              

            

            In particular, we can use the properties of angles on lines, as summarised here.

            
              
                Opposite, corresponding and alternate angles

              

              
                Where two lines intersect, opposite angles are equal. This is commonly referred to as the X-angles rule. For example, in the following diagram, . 
                

                
                  [image: ]

                

                Where a line intersects parallel lines:

                
                  	Alternate angles are equal. This is commonly referred to as the 
Z﻿-﻿angles rule.  For example, in the diagram below, .
                  

                

                
                  	Corresponding angles are equal. This is commonly referred to as the F-angles rule. For example, in the diagram below, .
                  

                

                
                  [image: ]

                

              

            

            For example, to find the angle  in Figure 4.5, we can use alternate angles (Z-angles). So in Figure 4.6, angles  and  are equal, and to find  we use trigonometry, e.g. the tangent function. 

            
              [image: ]

              Figure 4.6 Identifying corresponding angles 
              

            

            
              
                Activity 4.2

              

              
                
                  In Figure 4.6, if  is a positive vertical vector that has magnitude 110﻿ ﻿N 
and  is a positive horizontal vector that has magnitude 130﻿ ﻿N, what is the direction of the resultant  to one decimal place? Use the fact that  and  are alternate angles to help you.
                  

                

              

            

          

          
            Calculating acceleration from a combined force

            With the magnitude and direction of the resultant vector  now calculated, we can use Newton’s second law to determine the acceleration of the block. Recall that Newton’s second law
              states that 
            

            
              

            

            The block has a mass of a metric tonne () and because it is made of ice we will ignore any forces due to friction. The force applied by Alice and Bob is , which has the magnitude calculated in Activity 4.1 and the direction calculated in Activity 4.2.

            
              
                Example 4.1 Finding acceleration from a combined force

              

              
                A block of ice has a mass of a metric tonne (). If Bob applies a force of 130﻿ ﻿N to the left face of the block while Alice applies a force of 110﻿ ﻿N to the bottom face,
                  what is the acceleration of the block? Give the magnitude of the acceleration to two decimal places and the angle to one decimal
                  place.
                

                Solution

                Newton’s second law gives us 

                
                  

                

                so acceleration is given by

                
                  

                

                In the following calculations we will use the vector  to represent acceleration, to avoid confusion with the vector  which is the force applied by Alice. The mass of the block of ice is  and, when we ignore friction, the only force acting on the block is the resultant force due to Alice and Bob pushing the
                  block, so
                

                
                  

                

                
                  

                

                and the acceleration of the block is given by

                
                  

                

                From Chapter 1, we know that multiplying a vector by a positive scalar does not change the direction of the vector, so the
                  direction of the acceleration is the same as the direction of , and is given by  (to 1 d.p.).
                

                We also know that when multiplying a vector by a positive scalar, its magnitude is changed through multiplication. So, the
                  magnitude of the acceleration is
                

                
                  

                

                So, the block accelerates at  (to 2 d.p.) in a direction that is  (to 1 d.p.) from the positive horizontal direction.

              

            

          

        

        
          4.1.2 Models of motion

          We have calculated that Alice and Bob’s combined force causes the block of ice to accelerate at , but what does this mean? We can put this in context by comparing it to other common magnitudes of acceleration, as shown
            in Table 4.1. Our calculated value is less than the magnitude of acceleration of a high-speed train, but within the same order
            of magnitude, and if we think about how slowly a train accelerates as it initially begins to move, then this comparison sounds
            about right.
          

          
            Table 4.1 Approximate magnitudes of acceleration
            

            
              
                
                  	Object
                  	Approximate magnitude 
of acceleration (m﻿ ﻿s−2)
                  
                

                
                  	High-speed train
                  	0.25
                

                
                  	Executive car
                  	4.3
                

                
                  	Sprinter (pulling away from start line)
                  	9.2
                

                
                  	Gravity on Earth at sea-level standard
                  	9.8
                

                
                  	Saturn V moon rocket (just after launch)
                  	11.2
                

                
                  	Mid-engined sports car
                  	15.2
                

                
                  	Space shuttle (maximum during launch)
                  	29
                

                
                  	Formula One car (maximum under heavy braking)
                  	49
                

                
                  	F-16 aircraft (pulling out of dive)
                  	79
                

                
                  	Explosive seat ejection from aircraft
                  	147
                

                
                  	Automobile crash (100 km h−1 into wall)
                  
                  	982
                

                
                  	Football struck by foot
                  	2946
                

                
                  	Baseball struck by bat
                  	29 460
                

                
                  	Closing jaws of a trap-jaw ant
                  	1﻿ ﻿000﻿ ﻿000
                

                
                  	Jellyfish stinger
                  	53﻿ ﻿000﻿ ﻿000
                

              
            

          

          We can also consider what the calculated acceleration means, by considering how it converts to motion. If we assume that acceleration
            is constant and in a straight line, then we can calculate speed and distance travelled using the following equations of motion.
          

          
            
              Equations of linear motion

            

            
              For linear motion under constant acceleration, the following equations relate distance (), time (), initial speed (), final speed () and magnitude of acceleration ().

              Initial speed:

              
                

              

              Final speed:

              
                

              

              Finding displacement using initial and final speed:

              
                

              

              Finding displacement using initial speed and acceleration:

              
                

              

            

          

          
            
              Example 4.2 Calculating speed and distance 

            

            
              A stationary block of ice has a mass of a metric ton (). If Bob applies a force of 130﻿ ﻿N to the left face of the block, while Alice applies a force of 110﻿ ﻿N to the bottom face,
                use the equations of motion to find how far the block will move and how fast it will be moving after 10 seconds.
              

              Solution

              The block of ice is initially stationary so we have an initial speed of 

              
                

              

              Also, in Example 4.1 we calculated that the magnitude of acceleration of the block of ice is  (to 2 d.p.), so we have 

              
                

              

              We can calculate the final speed using

              
                

              

              and distance travelled using

              
                

              

              So after 10 seconds we have

              
                

              

              and

              
                

              

              The block is travelling at a speed of approximately  and has travelled a distance of approximately 8.5﻿ ﻿m.

            

          

          
            
              Activity 4.3

            

            
              
                Now use the equations of motion to find how far the block will move and how fast it will be moving after the following times.

                
                  	
                    30 seconds

                  

                  	
                    1 minute

                  

                

              

            

          

          
            How good is the model?

            Do the answers calculated in Example 4.2 and Activity 4.3 seem reasonable to you? 

            
              	After 10 seconds we calculated that the block is travelling with a speed of approximately . This is an average walking speed, and sounds pretty reasonable. 

              	After 30 seconds the block is travelling at a speed approximately three times as fast. This is starting to get quite speedy,
                and it would be a challenge for Alice and Bob to maintain this pace while pushing a block of ice. 
              

              	After one minute the block is travelling at a very fast speed, comparable to the world record speed of  reached by Usain Bolt during the 100﻿ ﻿m sprint final at the 2009 World Championships in Berlin, and it is clear that Alice
                and Bob are very unlikely to reach such a speed while pushing a block of ice.
              

            

            So what has gone wrong? The problem lies in the underlying assumption in the equations of motion that we used. We assumed
              that acceleration is constant, but this is not realistic. Bob and Alice are unlikely to maintain the same force on the block
              once it has started moving, and it is much more realistic to assume that they will reduce the force that they apply once the
              block has reached a comfortable speed. This would result in a reduction in acceleration, and to maintain a constant speed,
              an acceleration of zero would be required. 
            

            For example, look at the velocity and acceleration profiles of a 100﻿ ﻿m sprinter in the graphs in Figure 4.7. Certain assumptions
              are made that simplify the graphs; in particular, it is assumed that the acceleration at the start of the race is immediately
              at the maximum value, and it is also assumed that there is no deceleration towards the end of the race. These assumptions
              are not realistic, but since these graphs are for the purposes of illustration, they are perfectly acceptable. The graphs
              are similar in shape to what we would expect to see if we plotted the profiles for Alice and Bob pushing the block of ice.
              
            

            
              [image: ]

              Figure 4.7 (a) Velocity and (b) acceleration profiles for a 100﻿ ﻿m sprint
              

            

            Consider the velocity profile first. In Figure 4.7(a), we see that the sprinter quickly increases velocity from 0 to above
               in the first two seconds of the race. Once maximum velocity is reached, after about 4 seconds, the sprinter maintains this
              for the rest of the race. The velocity profile is also reflected in the acceleration profile in Figure 4.7(b). We see a high
              initial acceleration, above , which after around 2 seconds quickly reduces to zero. There is a strong relationship between these two graphs: where the
              velocity looks like a straight line, the acceleration is flat, i.e. constant, and where the velocity is flat, acceleration
              is zero. This is because acceleration is the rate of change of velocity, and the slope of the velocity profile at a specific
              value of  is equal to the acceleration for that value of . This relationship is at the heart of calculus, which will be explored in more detail in Part 3. 
            

            Finally, note that for small values of , the graph of the velocity profile is approximately linear, and this gives a flat segment in the acceleration profile, where
              the acceleration is constant. This means that for small values of  an assumption of constant acceleration is not far from wrong, and this is why in Example 4.2 our calculation for 10 seconds
              seems reasonable, but for 30 and 60 seconds our calculations seem to be far away from reality. The statistician George Box
              is quoted as saying ‘all models are wrong, but some are useful’ (Box and Draper, 1987) and this perfectly sums up what we
              have found here.
            

          

        

        
          4.1.3 Modelling motion with non-perpendicular vectors

          The example of Alice and Bob pushing a block of ice was made simpler by the fact that they were pushing along horizontal and
            vertical vectors. Let’s look at another example, where the vectors are in arbitrary directions. 
          

          Consider the situation in Figure 4.8, where Alice and Bob have attached ropes to a face of the block of ice and are now pulling
            it in different directions. If Bob pulls with a force of 130﻿ ﻿N at an angle of 47° clockwise from the horizontal, and Alice
            pulls with a force of 110﻿ ﻿N at an angle of 24° anticlockwise from the horizontal, what is the combined force applied to
            the block, and what is the acceleration of the block?
          

          
            [image: ]

            Figure 4.8 Alice and Bob pulling a block of ice 
            

          

          As before, let’s start by creating an abstract drawing, with Alice and Bob replaced by arrows, as illustrated in Figure 4.9(a).
            Here,  represents the force applied by Alice and  represents the force applied by Bob. The vector  has a magnitude of 110﻿ ﻿N and a direction with an angle of 24° measured anticlockwise from the positive -axis, while  has a magnitude of 130﻿ ﻿N and a direction with an angle of , measured clockwise from the positive -axis.
          

          
            [image: ]

            Figure 4.9 Representing the vectors  and 
            

          

          Now, let’s calculate the magnitude and direction of the resultant vector . Figure 4.9(b) shows the result of visually adding the vectors  and . Unlike the previous example,  and  are not perpendicular, so the triangle formed by ,  and the resultant  is not a right-angled triangle. In this case, we cannot use Pythagoras’ theorem or the trigonometric functions to calculate
            the magnitude and direction of , and instead we need to use other properties of triangles, such as the sine or cosine rules (see Chapter 2). 
          

          If we knew one of the interior angles, then we could use the cosine rule,

          
            

          

          to calculate the magnitude of  from the magnitudes of  and , as follows:

          
            

          

          where  is the interior angle opposite , as illustrated in Figure 4.10(a).

          
            [image: ]

            Figure 4.10 Finding the interior angle θ 
            

          

          To find  we can make use of alternate angles (Z-angles). The angle  in Figure 4.10(b) is an alternate angle with the angle indicating the direction of vector , so . Also, ,  and the angle indicating the direction of vector  all lie on a straight line, so 

          
            

          

          Using this relation, we can now find the size of angle , and use this in the cosine rule to determine the length of .

          
            
              Activity 4.4

            

            
              
                Use the cosine rule to determine the length of edge  in the diagram below, to two decimal places.

                
                  [image: ]

                

              

            

          

          If we apply our answer to Activity 4.4 to the vector diagram in Figure 4.10, then we have calculated that the magnitude of
             is approximately 195.73﻿ ﻿N. The direction of  is given by the angle  in Figure 4.11(a).
          

          
            [image: ]

            Figure 4.11 Finding the direction of 
            

          

          We already know that the direction of , so if we can find the angle  in Figure 4.11(b), then we can calculate  from

          
            

          

          We can calculate  using the sine rule,

          
            

          

          as follows:

          
            

          

          
            
              Activity 4.5

            

            
              
                Use the sine rule to calculate angle  in the diagram below, to one decimal place.

                
                  [image: ]

                

              

            

          

          From Activities 4.4 and 4.5, we can therefore say that, approximately, the magnitude of  is 195.73﻿ ﻿N and its direction is given by the angle 

          
            

          

          which is measured clockwise from the horizontal, as illustrated in Figure 4.12. This is the combined force applied by Alice
            and Bob to the block of ice.
          

          
            [image: ]

            Figure 4.12  
            

          

          
            
              Activity 4.6

            

            
              
                A block of ice has a mass of a metric tonne (), and the resultant force on the block is described by a vector  with a magnitude of 195.73﻿ ﻿N and a direction of 14.9°, measured clockwise from the positive -axis. Give the magnitude of the acceleration to two decimal places and the direction to one decimal place.

              

            

          

        

      

    

  
    
      
        4.2 Vectors in component form

        Carrying out vector calculations using geometric methods is not very efficient, and in complicated engineering systems where
          there are many vectors acting, calculations can get unwieldy. Alternatively, we can work with vectors algebraically, using
          their component forms.
        

        
          4.2.1 Horizontal and vertical components

          
            [image: ]

            Figure 4.13 A vector and its components 
            

          

          Vectors are intuitively described using magnitude and direction, but they are more usefully described according to horizontal
            and vertical components, as illustrated in Figure 4.13. 
          

          In Chapter 1, we saw that a vector that can be described by a magnitude and a direction can also be described by component
            vectors with: 
          

          
            	the horizontal component pointing in the direction of the positive -axis 

            	the vertical component pointing in the direction of the positive -axis.

          

          Together, a vector and its component vectors form a right-angled triangle, and the magnitudes of the three vectors define
            the lengths of the edges of the triangle. So, referring to Figure 4.13, we can use the sine and cosine functions to determine
            the magnitudes of the component vectors. The vector  has magnitude  and direction , and from these its components are calculated as follows.
          

          The sine function is defined as

          
            

          

          and by recognising that the vertical component is opposite the angle , we get

          
            

          

          Similarly, the cosine function is defined as

          
            

          

          and by recognising that the horizontal component is adjacent to the angle , we get

          
            

          

          
            
              Activity 4.7

            

            
              
                The vector  has a magnitude of 4 makes an angle of 30° with the positive -axis, as shown in the following diagram. Identify the magnitudes of the horizontal and vertical components of .

                
                  [image: ]

                

              

            

          

        

        
          4.2.2 Cartesian unit vectors

          In Activity 4.7 we found that the vector  has a vertical component with a magnitude of 2 and a horizontal component with a magnitude of . So we can write

          
            

          

          
            [image: ]

            Figure 4.14 A vector and its components 
            

          

          The vector  and its horizontal and vertical components form a triangle, as illustrated in Figure 4.14, and we discovered in Chapter 1
            that vector sums form triangles. So this equation makes sense mathematically, and it is correct to say that a vector is the
            sum of its horizontal and vertical components.
          

          A shorthand way to write this is

          
            

          

          The vectors  and  are called the Cartesian unit vectors. Here, unit means one, so  and  are vectors with magnitude 1 that point in the directions of the coordinate axes. The unit vector  points in the direction of the -axis and, similarly, the unit vector  points in the direction of the -axis, as illustrated in Figure 4.15(a).
          

          
            [image: ]

            Figure 4.15 A vector and its components: (a) the Cartesian unit vectors; (b) multiples of the Cartesian unit vectors; (c) describing  according to Cartesian unit vectors 
            

          

          Consider what the expression  means. We are multiplying the unit vectors  and  by scalar values  and , as illustrated in Figure 4.15(b). Using the rule for multiplying a vector by a scalar:

          
            	multiplying  by  gives a vector of magnitude  pointing in the direction of the positive -axis

            	multiplying  by  gives a vector of magnitude  pointing in the direction of the positive -axis.

          

          So  is a quick way to write ‘horizontal component of magnitude ’, and  is a quick way to write ‘vertical component of magnitude ’, and the sum of these is the vector , as illustrated in Figure 4.15(c). 

          Expressing a vector as the sum of scalar multiples of unit vectors is a useful shorthand, and every vector can be described
            in this way. It works because perpendicular vectors act independently from each other – a change in the horizontal component
            has no effect on the vertical component, and vice versa. This is also what happens in the physical phenomena that are modelled
            using vector quantities, such as motion. 
          

          Imagine you have two balls, ball A and ball B, and you throw ball A forward at the same time that you drop ball B, as illustrated
            in Figure 4.16. Now, consider the velocities of the two balls. For both balls a vertical velocity  is produced as a consequence of weight due to gravity. For ball A there is also a horizontal velocity  because it has been thrown forward. Which ball do you expect will hit the ground first?
          

          
            [image: ]

            Figure 4.16 Perpendicular vectors of motion act independently 
            

          

          You may be surprised to hear that both balls will hit the ground at the same time. This is because, regardless of how fast
            ball A is thrown forward, the horizontal velocity  has no effect on the vertical velocity  – the vectors are independent because they are perpendicular. 
          

          A video illustrating this motion is provided on the module website.

          
            
              Component form of a vector

            

            
              If , then the expression  is called the component form of . The scalar  is called the -component of  and the scalar  is called the -component of .

            

          

          Recall, from Chapter 1, that it is convention that if the horizontal component of a vector points in the direction of the
            negative -axis, then its magnitude is negative, and similarly if the vertical component points in the direction of the negative -axis, then its magnitude is negative. For example, in Figure 4.17 the component form of vector  is , so its 
-component is  and its -component is . Similarly, the component form of the vector  is , so its -component is  and its 
-component is .
          

          
            [image: ]

            Figure 4.17 Examples of vectors and their components
            

          

          Sometimes, the - and -components of a two-dimensional vector are called the - and -components.

          
            
              Activity 4.8

            

            
              
                Express the following vectors ,  and  in component form.

                
                  [image: ]

                

              

            

          

          An alternative way for expressing a vector in component form is the column vector, which is common in engineering.
          

          This is a column of numbers surrounded by brackets, where the first number is the -component and the second number is the ﻿-﻿component. For example, 

          
            

          

          Both ways of expressing the vector are equally valid, but column vectors are often preferred because there is no need to explicitly
            write the  and . It is often the convention that the components of a vector are expressed using the same letter as the vector (but not bold
            or underlined), with subscripts. For example, 
          

          
            

          

          
            
              Alternative component form of a vector

            

            
              The vector  can be written as . 

              A vector written in this form is called a column vector.

            

          

          
            
              Activity 4.9

            

            
              
                Use your own grid or print off a copy of the grid paper provided on the module website, and draw the following vectors.

                
                  	

                  	

                  	

                

              

            

          

        

        
          4.2.3 Converting between vector forms 

          It is useful to be able to convert between the different forms of vectors, so that we can make use of the form that is most
            appropriate for a given situation. For example, the vector in Figure 4.18(a) represents the displacement of London from Milton
            Keynes, and direction and angle are the most intuitive description for this vector. London is approximately 65﻿ ﻿km south-east
            of Milton Keynes. Similarly, the vector in Figure 4.18(b) represents the motion of an aircraft, and for describing the ground
            speed of the aircraft, a description of the vector in terms of horizontal and vertical components is required. 
          

          
            [image: ]

            Figure 4.18 Examples of vectors: (a) displacement of London from Milton Keynes; (b) motion of an aircraft
            

          

          In both situations it is useful to be able to convert between vector forms. For example, it may be necessary to describe how
            far east London is from Milton Keynes, and how far south. To describe the direction in which the aircraft is flying, it is
            useful to use the resultant velocity.
          

          The mathematics that allows us to convert between different forms of vectors is very similar to the mathematics we explored
            in Chapter 3, regarding different coordinates systems, and this is because there is a strong analogy between vectors and points.
          

          
            [image: ]

            Figure 4.19 A vector and its components
            

          

          We have already identified how to calculate the magnitude of the component vectors of a vector. For example, the vector  in Figure 4.19 has magnitude  and direction , and its components are defined as  and .

          Putting these into component form we have the following result.

          
            
              Component form of a vector in terms of its magnitude and angle with the positive x-axis 
              

            

            
              If the vector  makes an angle  with the positive -axis, then

              
                

              

            

          

          
            
              Activity 4.10

            

            
              
                Find the component forms of the following vectors. Give your answers to two decimal places.

                
                  	
                    Vector  with magnitude 78 and direction given by an angle of 216° with the positive -axis.

                  

                  	
                    vector  with magnitude 4.4 and direction given by an angle of 
 radians with the positive -axis.
                    

                  

                

              

            

          

          
            [image: ]

            Figure 4.20 A vector 
            

          

          Going the other way, to find the magnitude and direction of a vector from its component form, the reasoning is the same as
            that used in Chapter 3, where we explored how to convert between Cartesian and polar coordinates. For example, the vector
             illustrated in Figure 4.20 has horizontal component of magnitude  and vertical component of magnitude , and in component form is given by . To calculate the magnitude of , we can use Pythagoras’ theorem, and to calculate the angle , we can use the inverse tangent function.
          

          
            
              Magnitude and direction of a vector in terms of its components

            

            
              If the vector  has the component form , then its magnitude is given by 

              
                

              

              and its direction is given by the angle  measured anticlockwise from the positive -axis, where 

              
                

              

            

          

          Remember, when using the inverse tan function, care must be taken to ensure that the answer given by a calculator is correct.
            As discussed in Chapter 2, drawing a diagram is the best way to check.
          

          
            
              Activity 4.11

            

            
              
                Find the magnitude to two decimal places and direction to one decimal place of the following vectors. 

                
                  	
                    

                  

                  	
                    
 
                  

                  	
                    

                  

                

              

            

          

        

        
          4.2.4 Position vectors

          There is a strong similarity between coordinates and vectors, and we have made use of this similarity when converting between
            vectors of different forms. We can also make use of this similarity when describing the locations of points in space: the
            location of a point can be described using a vector.
          

          Let  be a point in space. Then the position vector of  is a displacement vector  where  is the origin. This is illustrated in Figure 4.21.
          

          
            [image: ]

            Figure 4.21 The position vector 
            

          

          The components of the position vector of a point are the same as the coordinates of the point. So the position vector of a
            point  with coordinates  is
          

          
            

          

          If a point is denoted by a capital letter, as is the usual convention, then it’s often convenient to denote its position vector
            by the corresponding lowercase, bold (or underlined) letter. For example, we can denote the position vector of the point  by , the position vector of point  by , and so on.
          

          
            
              Activity 4.12

            

            
              
                Identify the position vectors of the points labelled  to  in the following diagram. 

                
                  [image: ]

                

              

            

          

        

      

    

  
    
      
        4.3 Vector algebra with components 

        So far, we have explored how to visually combine vectors using mathematical operations such as addition and subtraction. We
          did this with arrows as representations of vectors, but we can also apply the operations algebraically by expressing vectors
          in component form. 
        

        
          4.3.1 Vector addition in component form

          Let’s return to Alice and Bob pushing a block of ice, with each pushing on a different face of the block, as illustrated in
            Figure 4.22. If Bob applies a force of 130﻿ ﻿N to the left face of the block, and Alice applies a force of 110﻿ ﻿N to the
            bottom face, what is the combined force applied to the block? 
          

          
            [image: ]

            Figure 4.22 Alice and Bob pushing different sides of a block of ice 
            

          

          Figure 4.23(a) shows an abstraction of the drawing in Figure 4.22. Here, 
 represents the force applied by Alice, who is below the block, and  represents the force applied by Bob, who is to the left of the block. 
          

          
            [image: ]

            Figure 4.23 Combining the vectors  and 
            

          

          
            
              Activity 4.13

            

            
              
                Vector  is a vertical vector with magnitude 110﻿ ﻿N and  is a horizontal vector with magnitude 130﻿ ﻿N. Write the vectors  and  in component form.

              

            

          

          Vector  is a vertical vector so its -component is zero, and  is a horizontal vector so its -component is zero. Together,  and  are the horizontal and vertical components of the resultant vector , so we can say that

          
            

          

          So the net force on the block of ice in Figure 4.22 is represented by the vector .

          This example was straightforward because we were considering perpendicular forces acting vertically and horizontally. But
            the process we followed is the same for any vector addition. Using the component form of two vectors 
 and , we add them together algebraically to determine the resultant vector . 
          

          Let’s consider another example. In Figure 4.24, Alice and Bob are both pushing the same face of the block of ice. If, as before,
            Bob applies a force of 130﻿ ﻿N and Alice a force of 110﻿ ﻿N, what is the combined force applied to the block?
          

          
            [image: ]

            Figure 4.24 Alice and Bob pushing a block of ice 
            

          

          Again we let the vector  represent the force applied by Alice and vector  represent the force applied by Bob, so this time  and  are both horizontal vectors. 

          Both vectors act horizontally, so are acting in the same direction, the direction of the positive -axis, and we’d expect them to add up with the net result being a stronger force acting in the same direction. If we add the
            component forms of  and , then this is the result we get:
          

          
            

          

          So the resultant vector is , and the net effect is a force of 240﻿ ﻿N acting in the direction of the positive -axis. The resultant force on the block of ice is the sum of the forces applied by Alice and Bob, and the block will accelerate
            faster in the direction they are pushing as we’d intuitively expect. 
          

          To summarise, when we add vectors in component form, we add the individual components. This is illustrated visually in Figure 4.25,
            where the vector  is the sum of the two vectors  and , and the components of  are the sums of the individual components of  and . So expressing  in component form gives us the following.
          

          
            
              Adding vectors in component form

            

            
              If  and , then 

              
                

              

            

          

          
            [image: ]

            Figure 4.25 Sum of the vectors  and  
            

          

          For example, the sum of the vectors  and  is given by 

          
            

          

          We can also add the vectors using column form. For example:

          
            

          

          
            
              Adding column vectors in component form

            

            
              If  and , then .

            

          

          This method of adding vectors also extends to sums of more than two vectors. For example, if ,  and , then 

          
            

          

          
            
              Activity 4.14

            

            
              
                Find the following vector sums.

                
                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                

              

            

          

          Using component vectors we can add vector quantities algebraically. Let’s reconsider our block of ice example where Alice
            and Bob are both pulling the block in different directions (see Section 4.1.2). Using the component form of vectors, we can
            quickly calculate the combined force applied by Alice and Bob to the block of ice.
          

          
            
              Example 4.3 Calculating the magnitude of combined forces

            

            
              Alice and Bob have attached ropes to a face of the block of ice and are pulling it in different directions, see Figure 4.26.
                Bob pulls with a force of 130﻿ ﻿N at an angle of 47° clockwise from the horizontal, and Alice pulls with a force of 110﻿ ﻿N
                at an angle of 24° anticlockwise from the horizontal. Express the forces applied by Alice and Bob in component form, and use
                these to determine the magnitude of the combined force applied to the block.
              

              
                [image: ]

                Figure 4.26 Alice and Bob pulling on a block of ice in different directions
                

              

              Solution

              First let’s express the forces applied by Alice and Bob in component form.

              Alice applies a force with magnitude 110﻿ ﻿N at an angle of 24°. So in component form we have

              
                

              

              Bob applies a force with magnitude 130﻿ ﻿N at an angle of 360° – 47° = 313°. So in component form we have

              
                

              

              To calculate the combined force, add the corresponding components:

              
                

              

              So the magnitude of the combined force is

              
                

              

              Note: A tutorial clip of this example is provided on the module website.

            

          

        

        
          4.3.2 Scalar multiplication of vectors in component form

          In Figure 4.27 Alice and Bob are both pushing the same face of the block of ice, but this time with the same force. 

          
            [image: ]

            Figure 4.27 Alice and Bob pushing a block of ice with the same force
            

          

          Because they are both applying the same force, we can use a single vector to represent this, say , and if the force they apply is 110﻿ ﻿N, then 

          
            

          

          Now, the combined force exerted by both Alice and Bob is 

          
            

          

          This confirms what we found in Chapter 1: when we multiply a vector with a scalar quantity, the magnitude of the vector is
            multiplied by the scalar; if the scalar is positive its direction stays the same, but if the scalar is negative the direction
            is reversed. 
          

          For the situation of Alice and Bob pushing the block of ice we have

          
            

          

          Other examples are illustrated in Figure 4.28. The vector  can be written in component form as , and the scalar multiples of  are written in component form as follows:

          
            

          

          
            

          

          
            

          

          and

          
            

          

          
            [image: ]

            Figure 4.28 Scalar multiplication of a vector , in component form 
            

          

          
            
              Scalar multiplication of a vector in component form

            

            
              If  and  is a scalar, then

              
                

              

              In column notation, if  and  is a scalar, then

              
                

              

            

          

          For example, if , then .

          
            
              Activity 4.15

            

            
              
                Let  and . Find each of the following scalar multiples.

                
                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                

              

            

          

        

        
          4.3.3 Vector subtraction in component form

          In Chapter 1 we found that when subtracting a vector visually it is first necessary to find the negative of the vector being
            subtracted by reversing its direction. Algebraically, a similar process is followed, but if we follow the standard rules of
            algebra, it is a much more intuitive process. For example, consider the vector expression  where the vector  is subtracted from the vector . We can make sense of this by writing the expression as 
          

          
            

          

          where  is the negative of . The negative of a vector has the same magnitude but the opposite direction, and for a vector  we say its negative is 

          
            

          

          With this in mind, we can say that to subtract vectors in component form, we subtract each component of one vector from the
            corresponding component of the other.
          

          
            
              Subtracting vectors in component form

            

            
              If  and , then

              
                

              

              In column notation, if  and , then

              
                

              

            

          

          
            
              Example 4.4 Calculating vector subtraction in component form

            

            
              Let  and . Find .

              Solution

              Subtracting the components of  from the corresponding components of  gives

              
                

              

            

          

          
            
              Activity 4.16

            

            
              
                Find the following vectors.

                
                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                

              

            

          

        

        
          4.3.4 Combining vector operations

          When using vectors to model engineering systems it is often necessary to carry out multiple operations to combine vectors
            in different ways. When vectors are expressed in component form, combining operations involves following the standard rules
            of algebra. In the next example, the vector operations of addition, subtraction and scalar multiplication are combined.
          

          
            
              Example 4.5 Simplifying a combination of vectors in component form

            

            
              Let ,  and .

              Find  in component form.

              Solution

              Substitute in the expressions for ,  and  in terms of  and , and then simplify:

              
                

              

              Note: A tutorial clip of this example is provided on the module website.

            

          

          
            
              Activity 4.17

            

            
              
                Find each of the following vectors in component form.

                
                  	
                    , where ,  and 

                  

                  	
                    

                  

                  	
                    , where  and  are any scalars

                  

                

              

            

          

        

        
          4.3.5 Vector algebra

          Throughout this chapter we have explored calculations involving vectors, and from these we can identify general properties
            of addition, subtraction and scalar multiplication of vectors. For example, using the properties of addition and scalar multiplication
            we found that for any vectors  and :
          

          
            

          

          All the algebraic properties of vectors can be summarised using eight basic algebraic properties. These are mathematical expressions
            of results that may seem like common sense, but when we express them using this notation, it confirms the ways that we can
            apply standard rules of algebraic manipulation to vectors. Notice that multiplication and division of vectors are not included
            in the list; this is because these operations are defined differently for vectors, and we will explore one definition of vector
            multiplication in the next section.
          

          
            
              Properties of vector algebra

            

            
              The following properties hold for all vectors ,  and , and all scalars  and .

              
                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

              

            

          

          In many ways vector quantities behave in a similar manner to scalar quantities, and these eight properties allow us to perform
            some operations on vector expressions in a similar way to numbers, or algebraic expressions. 
          

          
            
              Example 4.6 Simplifying vector expressions

            

            
              Simplify the vector expression

              
                

              

              Solution

              Expand the brackets using property 5:

              
                

              

              Collect like terms using property 6:

              
                

              

            

          

          The properties of vector algebra also allow us to manipulate equations containing vectors, which are known as vector equations, in a similar way to ordinary equations. For example, we can add or subtract vectors on both sides of such an equation, and
            we can multiply or divide both sides by a non-zero scalar. We can use these methods to rearrange a vector equation to make
            a particular vector the subject, or to solve an equation for an unknown vector.
          

          
            
              Activity 4.18

            

            
              
                
                  	
                    Simplify the vector expression 

                    
                      

                    

                  

                  	
                    Rearrange the vector equation 

                    
                      

                    

                    to express  in terms of  and .

                  

                

              

            

          

        

      

    

  
    
      
        4.4 Scalar product of vectors

        We’ll end this chapter by exploring a way to multiply two vectors, which is called the scalar product or the dot product. It is called the scalar product, because when using this method of multiplication, the result is a scalar quantity. It is
          also called the dot product because it is written using the symbol ‘’, for example, the dot product of vectors  and  is written . 
        

        Let’s start by considering what multiplication might mean in the context of vectors. For scalar quantities, multiplication
          can be thought of as repeated counting. For example,  can mean . Alternatively, we can think of multiplication as taking a magnitude and growing it. For example,  can mean taking a magnitude of 4 and making it 3 times larger. For the scalar product of vectors, it is useful to think of
          multiplication in terms of growth. 
        

        Vectors have direction as well as magnitude, and if we consider vector operations in terms of growth, then we can describe
          them as follows.
        

        
          	
            Adding vectors: accumulate growth from several vectors.

          

          	
            Scalar multiplication: make an existing vector grow.

          

          	
            Scalar product: apply the directed growth of one vector to another vector. The result is how much stronger we have made the
              original.
            

          

        

        For example, if we are talking about force vectors, then the scalar product gives us a measure of how much push one vector
          can give to another. This cannot be just a matter of multiplying the magnitude of the vectors, because their directions need
          to be taken into consideration. So the scalar product is a multiplication operation that takes into consideration the directions
          of vectors. With this concept in mind, let’s look at some examples.
        

        
          4.4.1 Scalar product of a vector from components

          Consider vectors  and  in Figure 4.29. In component form these are written as  and . How can we calculate the scalar product ?

          
            [image: ]

            Figure 4.29 Finding the scalar product of  and  by comparing components 
            

          

          The scalar product will tell us how much vector  will grow vector , and to determine this we want to identify how much the vectors interact. One method is to consider how much the horizontal
            and vertical components of the vectors interact, as illustrated in Figure 4.30. There are four possible combinations to consider:
            horizontal to horizontal, horizontal to vertical, vertical to horizontal, and vertical to vertical. 
          

          
            [image: ]

            Figure 4.30 Interacting component vectors in the scalar product of  and  
            

          

          Horizontal components do not interact with vertical components (and vice versa) because they are independent of each other,
            so  and , and they do not contribute to the value of scalar product. Horizontal components interact with each other, and vertical
            components interact with each other, so  and  both contribute to the value of .
          

          The expression  is a measure of how much the scalar quantity  grows the scalar quantity , so it is equal to , and similarly  is equal to . The scalar product is a combination of these, so 

          
            

          

          For example, if  and , then 

          
            

          

          
            
              Scalar product of vectors in terms of components

            

            
              If  and , or  and  in column notation, then 

              
                

              

            

          

          
            
              Activity 4.19

            

            
              
                Suppose that ,  and . Find the following.

                
                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                

              

            

          

        

        
          4.4.2 Scalar product of a vector from magnitude and direction

          Another way to consider the scalar product is to consider how it is defined in terms of the magnitudes and directions of two
            vectors. Consider again the vectors  and  in Figure 4.29. We want to find out how much vector  will grow vector . So again we want to identify how much the vectors interact – and one way to do this is to determine how much vector  points in the direction of vector . 
          

          
            [image: ]

            Figure 4.31 Finding the scalar product of  and  by comparing magnitudes and directions
            

          

          In Figure 4.31, the vectors are arranged so that their tails meet, and this makes it possible to compare their magnitudes
            and directions. To make this explicit, we can draw the components of , not in terms of horizontal and vertical directions, but in terms of the direction where  is pointing, as illustrated in Figure 4.32(a). Formally, the component of  that points in the direction of  is called the projection of  onto , and if the angle between  and  is , then the length of the projection of  onto  is , as shown in Figure 4.32(b).
          

          
            [image: ]

            Figure 4.32 Projecting  onto  
            

          

          Comparing the components of  with  will give us a measure of how much  and  interact, as illustrated in Figure 4.33. In the direction of ,  has a component of magnitude , and  has a component of magnitude , so the contribution to the value of  is . Perpendicular to ,  has a component of magnitude , and  has a component of magnitude 0, so the contribution to the value of  is 0.

          
            [image: ]

            Figure 4.33 Interacting component vectors in the scalar product of  and  
            

          

          So 

          
            

          

          and this is a measure of how much the scalar quantity  grows the scalar quantity . 

           and  are parallel, so 

          
            

          

          and the scalar product is given by

          
            

          

          
            
              Scalar product of vectors in terms of magnitude and direction

            

            
              The scalar product of two vectors  and  is

              
                

              

              where  is the angle between  and .

              
                [image: ]

              

            

          

          
            
              Activity 4.20

            

            
              
                Suppose that ,  and  are vectors with magnitudes 4, 3 and 2 respectively, and directions as shown in the following figure. 

                
                  [image: ]

                

                Find the following scalar products.

                
                  	
                    

                  

                  	
                    

                  

                  	
                    

                  

                

              

            

          

        

        
          4.4.3 Properties of the scalar product

          Activity 4.20 illustrates two important properties of the scalar product. First, if two non-zero vectors are perpendicular,
            then their scalar product is zero. This is because if  and  are perpendicular, then
          

          
            

          

          This also works the other way, so that if the scalar product of two non-zero vectors is zero, then the vectors are perpendicular.
            This is because if  and  are non-zero vectors, then the only way that  can be equal to zero is if . This implies that .
          

          The second property is that the scalar product of a vector with itself is equal to the square of the magnitude of the vector.
            This is because if  is any 
non-zero vector, then the angle between  and itself is 0°, so 
          

          
            

          

          These, and other, properties of the scalar product in the following list can all be proved using the definition of the scalar
            product in a similar way.
          

          
            
              Scalar product properties

            

            
              The following properties hold for all vectors ,  and , and every scalar .

              
                	
                  If  and  are non-zero and perpendicular, then  and .

                

                	
                  

                

                	
                  

                

                	
                  

                

                	
                  

                

              

            

          

          We can use these properties to simplify expressions containing scalar products of vectors.

          
            
              Example 4.7 Simplifying an expression containing a scalar product

            

            
              Expand and simplify the expression , where  and  are vectors.

              Solution

              Expand the brackets by using property 4: 

              
                

              

              Simplify by using property 3, so:

              
                

              

              Using property 2, simplify further to get:

              
                

              

            

          

          
            
              Activity 4.21

            

            
              
                Expand and simplify the expression , where  and  are vectors.

              

            

          

        

        
          4.4.4 Finding the angle between two vectors

          The scalar product of two vectors has an important application in calculating the angle between two vectors. If we start with
            the definition of the scalar product in terms of the magnitudes and directions of the vectors, and rearrange it, then we get
            the following result.
          

          
            
              Angle between two vectors

            

            
              The angle  between any two non-zero vectors  and  is given by 

              
                

              

            

          

          We can use this result to find the angle between two vectors in component form.

          
            
              Example 4.8 Calculating the angle between two vectors in component form

            

            
              Alice and Bob have attached ropes to a face of the block of ice and are pulling it in different directions, see Figure 4.34.
                Vector  describes the force applied by Alice, and in component form is given by . Vector  describes the force applied by Bob, and in component form is given by . 
              

              What is the angle between these vectors, to one decimal place?

              
                [image: ]

                Figure 4.34 Alice and Bob pulling a block of ice
                

              

              Solution

              First let’s use the components of  and  to find ,  and . We have

              
                

              

              
                

              

              
                

              

              Using these we can calculate :

              
                

              

              So

              
                

              

              Therefore the angle between the vectors is 64.4° (to 1 d.p.).

              Note: A tutorial clip of this example is provided on the module website.

            

          

          
            
              Activity 4.22

            

            
              
                Find, to the nearest degree, the angle between the vectors 

                
                  

                

              

            

          

          
            
              In this chapter we developed techniques that make it easier to work with vectors. Instead of working with vectors geometrically,
                it is much more efficient to work with them in component form. When we represent vectors according to their components, engineering
                problems involving vectors can be solved by carrying out standard algebraic operations.
              

              In the final chapter of Part 2, we will explore how we can use component vectors to solve problems involving forces acting
                on static objects.
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        Solutions to activities in Chapter 4

        
          Activity 4.1

           is the hypotenuse of the right-angled triangle formed by ,  and the resultant , so from Pythagoras’ theorem its magnitude is given by

          
            

          

          This gives

          
            

          

          So the magnitude of  is 170.29 (to 2 d.p.).

        

        
          Activity 4.2

          Angles  and  are alternate angles, so they are equal. We can find  using the tangent function, which is given by

          
            

          

          So

          
            

          

          therefore

          
            

          

          This gives  (to 1 d.p.) and this is the direction of the vector .

        

        
          Activity 4.3

          
            	
              After 30 seconds we have

              
                

              

              and

              
                

              

              So the block is travelling at a speed of approximately  and has travelled a distance of approximately 76.5﻿ ﻿m.

            

            	
              After 60 seconds we have

              
                

              

              and

              
                

              

              So the block is travelling at a speed of approximately  and has travelled a distance of approximately 306﻿ ﻿m.

            

          

        

        
          Activity 4.4

          First we need to determine the size of angle . We can use the angles 24° and 47° to calculate  because they sit on the same straight line as , so

          
            

          

          Now, using the cosine rule, we can calculate the length of edge :

          
            

          

          So

          
            

          

        

        
          Activity 4.5

          Using the sine rule, we get

          
            

          

          so

          
            

          

          Using the inverse sine function, we get

          
            

          

        

        
          Activity 4.6

          Newton’s second law gives

          
            

          

          so acceleration is given by

          
            

          

          therefore

          
            

          

          The direction of the acceleration is the same as the direction of , and this is  measured clockwise from the positive -axis.

          The magnitude of the acceleration is

          
            

          

          So the block accelerates at  (to 2 d.p.) in a direction that is  measured clockwise from the positive -axis.

        

        
          Activity 4.7

          The magnitude of the vertical component is given by

          
            

          

          so

          
            

          

          The magnitude of the horizontal component is given by

          
            

          

          so

          
            

          

        

        
          Activity 4.8

          The horizontal displacement is  and the vertical displacement is , so .

          The horizontal displacement is  and the vertical displacement is , so .

          The horiztonal displacment is  and the vertical displacement is , so .

        

        
          Activity 4.9

          
            [image: ]

          

        

        
          Activity 4.10

          
            	
              The component form of the vector is given by

              
                

              

            

            	
              The component form of the vector is given by

              
                

              

            

          

        

        
          Activity 4.11

          
            	
              The magnitude of  is 

              
                

              

              and the direction is given by 

              
                

              

              The calculator value for  is , but looking at a drawing of the vector below, shows that this is not the correct angle. Instead, we are looking for a value
                of  that is greater than  and less than . 
              

              
                [image:  ]

              

              By considering the graph of , we can identify the angles that are within the range, and using the periodicity of the tangent function we can say that
                the value for  is 
              

            

            	
              The vector  has no vertical component, and a negative horizontal component. So it points in the negative -direction and its magnitude is 

              
                

              

            

            	
              The magnitude of  is 

              
                

              

              

              and the direction is given by 

              
                

              

              The calculator value for  is . Looking at a drawing of the vector below shows that this is the correct value for , because it is greater than  and less than . 

              
                [image:  ]

              

            

          

        

        
          Activity 4.12

          

          

          

          

          

        

        
          Activity 4.13

           and .

        

        
          Activity 4.14

          
            	
              

            

            	
              

            

            	
              

            

          

        

        
          Activity 4.15

          
            	
              

            

            	
              

            

            	
              

            

            	
              

            

            	
              

            

            	
              

            

          

        

        
          Activity 4.16

          
            	
              

            

            	

            	

          

        

        
          Activity 4.17

          
            	
              

            

            	
              

            

            	
              

            

          

        

        
          Activity 4.18

          
            	
               

            

            	
              Rearranging  gives

              
                

              

              So .

            

          

        

        
          Activity 4.19

          
            	
              

            

            	
              

            

            	
              

            

          

        

        
          Activity 4.20

          
            	
              

            

            	
              

            

            	
              

            

          

        

        
          Activity 4.21

          Expand the brackets by using property 4: 

          
            

          

          Simplify by using property 3 to give

          
            

          

          Simplify further by using property 2:

          
            

          

        

        
          Activity 4.22

          First let’s use the components of  and  to find ,  and . We have 

          
            

          

          
            

          

          
            

          

          Using these we can calculate :

          
            

          

          So

          
            

          

          The angle between the vectors is 27° (to the nearest degree).
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