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T194   Engineering: mathematics, modelling, applications

Part 2: Chapter 4 Applications of vectors
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Introduction

This OpenLearn course is an adapted extract from the Open University course module code module title. 

Learning outcomes

After studying this course, you should be able to:

· Replace as necessary

· Replace as necessary

· Replace as necessary

· Replace as necessary

· Replace as necessary

Introduction

It is common in engineering for physical phenomena to be represented as vector fields. A vector field is a mathematical representation of a system that describes how a quantity, such as a force, changes over an interval of time, or an area or volume of space. Figure 4.1, for example, illustrates vector fields created by magnets (in part (a)) and fluid flow (in part (b)). A vector field can be thought of as a graph where every coordinate has not only a position, but also a magnitude and direction. In the images in Figure 4.1, these are represented by small arrows, with each individual arrow indicating the direction and magnitude of a force at a specific position. 

Start of Figure
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Figure 4.1   Examples of models of vector fields: (a) model of a vector field created by a bar magnet; 
(b) model of a vector field created by flow around a cylinder 

End of Figure
When viewed as a collection of individual vectors, vector fields can be very complex and difficult to understand, but when viewed holistically, patterns emerge that give insight into physical phenomena. 

The examples in Figure 4.1 result from mathematical models, but accurately reflect the real-world situations they model. The first image is a diagram showing the magnetic field generated by a bar magnet, and accurately reflects the patterns created physically by iron filings when acted on by such a magnet, as illustrated in Figure 4.2(a). The image in Figure 4.1(b) is the result of a computational simulation of the fluid flow around a submerged cylinder, and is a representation of the real-world situation illustrated in Figure 4.2(b), which was created by smoke filaments in a wind tunnel. This representation is less accurate, with a difference in the flow to the right of the cylinder: in the physical example the smoke filaments become turbulent and messy as a result of the vortices formed in the wake of the cylinder, but in the simulation the flow remains smooth. This difference is a consequence of assumptions made in the mathematical model describing the flow. Assumptions have been made to make the mathematics more manageable by neglecting the complexity that gives rise to the vortices. 

Start of Figure
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Figure 4.2   Physical examples of vector fields: (a) magnetic field created by a bar magnet acting on iron filings; (b) turbulence created by flow around a cylinder 

End of Figure
Vector fields are beyond the scope of this module, but you are likely to encounter them later in your studies. In preparation for this we will explore the mathematics of vectors, building on what we learned in Chapter 1. 

In Section 4.1 we explore how vectors are used to model force and motion, and consider how problems involving vectors can be solved using geometry and trigonometry. In Section 4.2 we explore how to work with vectors represented in component form. Section 4.3 is concerned with vector algebra, and considers how equations involving vectors can be solved. Finally, Section 4.4 introduces the scalar product of vectors, a multiplication operation that takes into account direction as well as magnitude. 

4.1   Modelling with vectors

In Chapter 1, we used arrow representations to introduce the concept of vector quantities, and to explore some of the ways in which vectors can be manipulated and combined in order to solve models of engineering systems. Vector quantities are different from scalar quantities because they describe direction as well as magnitude. For this reason the arrow representation is useful to visually represent vector quantities. 

4.1.1   Modelling motion with perpendicular vectors

Let’s reconsider the example from Chapter 1, where two people, Alice and Bob, are pushing a block of ice, which has a mass of a metric tonne (). Alice and Bob each push on a different face of the block, as illustrated in Figure 4.3, and the direction in which the block moves is a consequence of the combination of the forces they apply. If Bob applies a force of 130﻿ ﻿N to the left face of the block, and Alice applies a force of 110﻿ ﻿N to the bottom face, what is the combined force applied to the block, and what is the acceleration of the block? 

Start of Figure
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Figure 4.3   Alice and Bob pushing different sides of a block of ice 

End of Figure
Calculating the magnitude of a combined force

In Chapter 1, we found we could determine the net effect of these two forces by combining them visually using arrows, as illustrated in Figure 4.4. Figure 4.4(a) shows an abstraction of the drawing in Figure 4.3, with Alice and Bob replaced by arrows representing the forces applied by Alice and Bob to the block of ice. Here, represents the force applied by Alice, who is below the block, and represents the force applied by Bob, who is to the left of the block. Notice that the vectors are shown to be acting on the centres of the faces of the block. This is because if forces are applied away from the centres, this can create a rotation, and that is a more complicated situation to model. Such rotational effects are outside the scope of this module. 

Start of Figure
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Figure 4.4   Combining the vectors and 

End of Figure
Figure 4.4(b) shows the result of visually adding the vectors and . This follows the method of adding vectors that we identified in Chapter 1. In this example, and are perpendicular, so the triangle formed by , and the resultant is a right-angled triangle, with as the hypotenuse. So we can use Pythagoras’ theorem to find the magnitude of , written , from the magnitudes of and , written and .

Start of Activity
Activity 4.1

Start of Question
If is a positive vertical vector that has magnitude 110﻿ ﻿N and is a positive horizontal vector that has magnitude 130﻿ ﻿N, what is the magnitude of the resultant to two decimal places? 

Start of Figure
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End of Figure
End of Question
End of Activity
Calculating direction of motion of a combined force

Using the fact that , and the resultant form a right-angled triangle, we can also use trigonometric functions to find the direction of . This is illustrated in Figure 4.5, where the direction of is represented by the angle . But is outside the triangle formed by , and , so we can’t directly calculate its size using trigonometry; we also need to use our knowledge of angles and triangles. 

Start of Figure
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Figure 4.5   Finding the direction of the resultant 

End of Figure
In particular, we can use the properties of angles on lines, as summarised here.

Start of Box
Opposite, corresponding and alternate angles

Where two lines intersect, opposite angles are equal. This is commonly referred to as the X-angles rule. For example, in the following diagram, . 

Start of Figure
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End of Figure
Where a line intersects parallel lines:

· Alternate angles are equal. This is commonly referred to as the 
Z﻿-﻿angles rule. For example, in the diagram below, . 

· Corresponding angles are equal. This is commonly referred to as the F-angles rule. For example, in the diagram below, . 

Start of Figure
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End of Figure
End of Box
For example, to find the angle in Figure 4.5, we can use alternate angles (Z-angles). So in Figure 4.6, angles and are equal, and to find we use trigonometry, e.g. the tangent function. 

Start of Figure
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Figure 4.6   Identifying corresponding angles 

End of Figure
Start of Activity
Activity 4.2

Start of Question
In Figure 4.6, if is a positive vertical vector that has magnitude 110﻿ ﻿N 
and  is a positive horizontal vector that has magnitude 130﻿ ﻿N, what is the direction of the resultant to one decimal place? Use the fact that  and  are alternate angles to help you. 

End of Question
End of Activity
Calculating acceleration from a combined force

With the magnitude and direction of the resultant vector now calculated, we can use Newton’s second law to determine the acceleration of the block. Recall that Newton’s second law states that 

Start of Equation
End of Equation
The block has a mass of a metric tonne () and because it is made of ice we will ignore any forces due to friction. The force applied by Alice and Bob is , which has the magnitude calculated in Activity 4.1 and the direction calculated in Activity 4.2.

Start of Box
Example 4.1   Finding acceleration from a combined force

A block of ice has a mass of a metric tonne (). If Bob applies a force of 130﻿ ﻿N to the left face of the block while Alice applies a force of 110﻿ ﻿N to the bottom face, what is the acceleration of the block? Give the magnitude of the acceleration to two decimal places and the angle to one decimal place. 

Solution

Newton’s second law gives us 

Start of Equation
End of Equation
so acceleration is given by

Start of Equation
End of Equation
In the following calculations we will use the vector to represent acceleration, to avoid confusion with the vector which is the force applied by Alice. The mass of the block of ice is and, when we ignore friction, the only force acting on the block is the resultant force due to Alice and Bob pushing the block, so 

Start of Equation
End of Equation
Start of Equation
End of Equation
and the acceleration of the block is given by

Start of Equation
End of Equation
From Chapter 1, we know that multiplying a vector by a positive scalar does not change the direction of the vector, so the direction of the acceleration is the same as the direction of , and is given by (to 1 d.p.). 

We also know that when multiplying a vector by a positive scalar, its magnitude is changed through multiplication. So, the magnitude of the acceleration is 

Start of Equation
End of Equation
So, the block accelerates at (to 2 d.p.) in a direction that is (to 1 d.p.) from the positive horizontal direction.

End of Box
4.1.2   Models of motion

We have calculated that Alice and Bob’s combined force causes the block of ice to accelerate at , but what does this mean? We can put this in context by comparing it to other common magnitudes of acceleration, as shown in Table 4.1. Our calculated value is less than the magnitude of acceleration of a high-speed train, but within the same order of magnitude, and if we think about how slowly a train accelerates as it initially begins to move, then this comparison sounds about right. 

Start of Table
Table 4.1   Approximate magnitudes of acceleration 

	Object
	Approximate magnitude 
of acceleration (m﻿ ﻿s−2) 

	High-speed train
	0.25

	Executive car
	4.3

	Sprinter (pulling away from start line)
	9.2

	Gravity on Earth at sea-level standard
	9.8

	Saturn V moon rocket (just after launch)
	11.2

	Mid-engined sports car
	15.2

	Space shuttle (maximum during launch)
	29

	Formula One car (maximum under heavy braking)
	49

	F-16 aircraft (pulling out of dive)
	79

	Explosive seat ejection from aircraft
	147

	Automobile crash (100 km h−1 into wall) 
	982

	Football struck by foot
	2946

	Baseball struck by bat
	29 460

	Closing jaws of a trap-jaw ant
	1﻿ ﻿000﻿ ﻿000

	Jellyfish stinger
	53﻿ ﻿000﻿ ﻿000


End of Table
We can also consider what the calculated acceleration means, by considering how it converts to motion. If we assume that acceleration is constant and in a straight line, then we can calculate speed and distance travelled using the following equations of motion. 

Start of Box
Equations of linear motion

For linear motion under constant acceleration, the following equations relate distance (), time (), initial speed (), final speed () and magnitude of acceleration ().

Initial speed:

Start of Equation
End of Equation
Final speed:

Start of Equation
End of Equation
Finding displacement using initial and final speed:

Start of Equation
End of Equation
Finding displacement using initial speed and acceleration:

Start of Equation
End of Equation
End of Box
Start of Box
Example 4.2   Calculating speed and distance 

A stationary block of ice has a mass of a metric ton (). If Bob applies a force of 130﻿ ﻿N to the left face of the block, while Alice applies a force of 110﻿ ﻿N to the bottom face, use the equations of motion to find how far the block will move and how fast it will be moving after 10 seconds. 

Solution

The block of ice is initially stationary so we have an initial speed of 

Start of Equation
End of Equation
Also, in Example 4.1 we calculated that the magnitude of acceleration of the block of ice is (to 2 d.p.), so we have 

Start of Equation
End of Equation
We can calculate the final speed using

Start of Equation
End of Equation
and distance travelled using

Start of Equation
End of Equation
So after 10 seconds we have

Start of Equation
End of Equation
and

Start of Equation
End of Equation
The block is travelling at a speed of approximately and has travelled a distance of approximately 8.5﻿ ﻿m.

End of Box
Start of Activity
Activity 4.3

Start of Question
Now use the equations of motion to find how far the block will move and how fast it will be moving after the following times.

a. 30 seconds

b. 1 minute

End of Question
End of Activity
How good is the model?

Do the answers calculated in Example 4.2 and Activity 4.3 seem reasonable to you? 

· After 10 seconds we calculated that the block is travelling with a speed of approximately . This is an average walking speed, and sounds pretty reasonable. 

· After 30 seconds the block is travelling at a speed approximately three times as fast. This is starting to get quite speedy, and it would be a challenge for Alice and Bob to maintain this pace while pushing a block of ice. 

· After one minute the block is travelling at a very fast speed, comparable to the world record speed of reached by Usain Bolt during the 100﻿ ﻿m sprint final at the 2009 World Championships in Berlin, and it is clear that Alice and Bob are very unlikely to reach such a speed while pushing a block of ice. 

So what has gone wrong? The problem lies in the underlying assumption in the equations of motion that we used. We assumed that acceleration is constant, but this is not realistic. Bob and Alice are unlikely to maintain the same force on the block once it has started moving, and it is much more realistic to assume that they will reduce the force that they apply once the block has reached a comfortable speed. This would result in a reduction in acceleration, and to maintain a constant speed, an acceleration of zero would be required. 

For example, look at the velocity and acceleration profiles of a 100﻿ ﻿m sprinter in the graphs in Figure 4.7. Certain assumptions are made that simplify the graphs; in particular, it is assumed that the acceleration at the start of the race is immediately at the maximum value, and it is also assumed that there is no deceleration towards the end of the race. These assumptions are not realistic, but since these graphs are for the purposes of illustration, they are perfectly acceptable. The graphs are similar in shape to what we would expect to see if we plotted the profiles for Alice and Bob pushing the block of ice. 

Start of Figure
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Figure 4.7   (a) Velocity and (b) acceleration profiles for a 100﻿ ﻿m sprint 

End of Figure
Consider the velocity profile first. In Figure 4.7(a), we see that the sprinter quickly increases velocity from 0 to above in the first two seconds of the race. Once maximum velocity is reached, after about 4 seconds, the sprinter maintains this for the rest of the race. The velocity profile is also reflected in the acceleration profile in Figure 4.7(b). We see a high initial acceleration, above , which after around 2 seconds quickly reduces to zero. There is a strong relationship between these two graphs: where the velocity looks like a straight line, the acceleration is flat, i.e. constant, and where the velocity is flat, acceleration is zero. This is because acceleration is the rate of change of velocity, and the slope of the velocity profile at a specific value of is equal to the acceleration for that value of . This relationship is at the heart of calculus, which will be explored in more detail in Part 3. 

Finally, note that for small values of , the graph of the velocity profile is approximately linear, and this gives a flat segment in the acceleration profile, where the acceleration is constant. This means that for small values of an assumption of constant acceleration is not far from wrong, and this is why in Example 4.2 our calculation for 10 seconds seems reasonable, but for 30 and 60 seconds our calculations seem to be far away from reality. The statistician George Box is quoted as saying ‘all models are wrong, but some are useful’ (Box and Draper, 1987) and this perfectly sums up what we have found here. 

4.1.3   Modelling motion with non-perpendicular vectors

The example of Alice and Bob pushing a block of ice was made simpler by the fact that they were pushing along horizontal and vertical vectors. Let’s look at another example, where the vectors are in arbitrary directions. 

Consider the situation in Figure 4.8, where Alice and Bob have attached ropes to a face of the block of ice and are now pulling it in different directions. If Bob pulls with a force of 130﻿ ﻿N at an angle of 47° clockwise from the horizontal, and Alice pulls with a force of 110﻿ ﻿N at an angle of 24° anticlockwise from the horizontal, what is the combined force applied to the block, and what is the acceleration of the block? 

Start of Figure
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Figure 4.8   Alice and Bob pulling a block of ice 

End of Figure
As before, let’s start by creating an abstract drawing, with Alice and Bob replaced by arrows, as illustrated in Figure 4.9(a). Here, represents the force applied by Alice and represents the force applied by Bob. The vector  has a magnitude of 110﻿ ﻿N and a direction with an angle of 24° measured anticlockwise from the positive -axis, while  has a magnitude of 130﻿ ﻿N and a direction with an angle of , measured clockwise from the positive -axis. 

Start of Figure
[image: image13.png]



Figure 4.9   Representing the vectors and 

End of Figure
Now, let’s calculate the magnitude and direction of the resultant vector . Figure 4.9(b) shows the result of visually adding the vectors and . Unlike the previous example, and are not perpendicular, so the triangle formed by , and the resultant is not a right-angled triangle. In this case, we cannot use Pythagoras’ theorem or the trigonometric functions to calculate the magnitude and direction of , and instead we need to use other properties of triangles, such as the sine or cosine rules (see Chapter 2). 

If we knew one of the interior angles, then we could use the cosine rule,

Start of Equation
End of Equation
to calculate the magnitude of from the magnitudes of and , as follows:

Start of Equation
End of Equation
where is the interior angle opposite , as illustrated in Figure 4.10(a).

Start of Figure
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Figure 4.10   Finding the interior angle θ 

End of Figure
To find we can make use of alternate angles (Z-angles). The angle in Figure 4.10(b) is an alternate angle with the angle indicating the direction of vector , so . Also, , and the angle indicating the direction of vector all lie on a straight line, so 

Start of Equation
End of Equation
Using this relation, we can now find the size of angle , and use this in the cosine rule to determine the length of .

Start of Activity
Activity 4.4

Start of Question
Use the cosine rule to determine the length of edge in the diagram below, to two decimal places.

Start of Figure
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End of Figure
End of Question
End of Activity
If we apply our answer to Activity 4.4 to the vector diagram in Figure 4.10, then we have calculated that the magnitude of is approximately 195.73﻿ ﻿N. The direction of is given by the angle in Figure 4.11(a). 

Start of Figure
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Figure 4.11   Finding the direction of 

End of Figure
We already know that the direction of , so if we can find the angle in Figure 4.11(b), then we can calculate from

Start of Equation
End of Equation
We can calculate using the sine rule,

Start of Equation
End of Equation
as follows:

Start of Equation
End of Equation
Start of Activity
Activity 4.5

Start of Question
Use the sine rule to calculate angle in the diagram below, to one decimal place.

Start of Figure
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End of Figure
End of Question
End of Activity
From Activities 4.4 and 4.5, we can therefore say that, approximately, the magnitude of is 195.73﻿ ﻿N and its direction is given by the angle 

Start of Equation
End of Equation
which is measured clockwise from the horizontal, as illustrated in Figure 4.12. This is the combined force applied by Alice and Bob to the block of ice. 

Start of Figure
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Figure 4.12    

End of Figure
Start of Activity
Activity 4.6

Start of Question
A block of ice has a mass of a metric tonne (), and the resultant force on the block is described by a vector with a magnitude of 195.73﻿ ﻿N and a direction of 14.9°, measured clockwise from the positive -axis. Give the magnitude of the acceleration to two decimal places and the direction to one decimal place.

End of Question
End of Activity
4.2   Vectors in component form

Carrying out vector calculations using geometric methods is not very efficient, and in complicated engineering systems where there are many vectors acting, calculations can get unwieldy. Alternatively, we can work with vectors algebraically, using their component forms. 

4.2.1   Horizontal and vertical components

Start of Figure
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Figure 4.13   A vector and its components 

End of Figure
Vectors are intuitively described using magnitude and direction, but they are more usefully described according to horizontal and vertical components, as illustrated in Figure 4.13. 

In Chapter 1, we saw that a vector that can be described by a magnitude and a direction can also be described by component vectors with: 

· the horizontal component pointing in the direction of the positive -axis 

· the vertical component pointing in the direction of the positive -axis.

Together, a vector and its component vectors form a right-angled triangle, and the magnitudes of the three vectors define the lengths of the edges of the triangle. So, referring to Figure 4.13, we can use the sine and cosine functions to determine the magnitudes of the component vectors. The vector has magnitude and direction , and from these its components are calculated as follows. 

The sine function is defined as

Start of Equation
End of Equation
and by recognising that the vertical component is opposite the angle , we get

Start of Equation
End of Equation
Similarly, the cosine function is defined as

Start of Equation
End of Equation
and by recognising that the horizontal component is adjacent to the angle , we get

Start of Equation
End of Equation
Start of Activity
Activity 4.7

Start of Question
The vector has a magnitude of 4 makes an angle of 30° with the positive -axis, as shown in the following diagram. Identify the magnitudes of the horizontal and vertical components of .

Start of Figure
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End of Figure
End of Question
End of Activity
4.2.2   Cartesian unit vectors

In Activity 4.7 we found that the vector has a vertical component with a magnitude of 2 and a horizontal component with a magnitude of . So we can write

Start of Equation
End of Equation
Start of Figure
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Figure 4.14   A vector and its components 

End of Figure
The vector and its horizontal and vertical components form a triangle, as illustrated in Figure 4.14, and we discovered in Chapter 1 that vector sums form triangles. So this equation makes sense mathematically, and it is correct to say that a vector is the sum of its horizontal and vertical components. 

A shorthand way to write this is

Start of Equation
End of Equation
The vectors and are called the Cartesian unit vectors. Here, unit means one, so and are vectors with magnitude 1 that point in the directions of the coordinate axes. The unit vector points in the direction of the -axis and, similarly, the unit vector points in the direction of the -axis, as illustrated in Figure 4.15(a). 

Start of Figure
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Figure 4.15   A vector and its components: (a) the Cartesian unit vectors; (b) multiples of the Cartesian unit vectors; (c) describing according to Cartesian unit vectors    

End of Figure
Consider what the expression means. We are multiplying the unit vectors and by scalar values and , as illustrated in Figure 4.15(b). Using the rule for multiplying a vector by a scalar:

· multiplying by gives a vector of magnitude pointing in the direction of the positive -axis

· multiplying by gives a vector of magnitude pointing in the direction of the positive -axis.

So is a quick way to write ‘horizontal component of magnitude ’, and is a quick way to write ‘vertical component of magnitude ’, and the sum of these is the vector , as illustrated in Figure 4.15(c). 

Expressing a vector as the sum of scalar multiples of unit vectors is a useful shorthand, and every vector can be described in this way. It works because perpendicular vectors act independently from each other – a change in the horizontal component has no effect on the vertical component, and vice versa. This is also what happens in the physical phenomena that are modelled using vector quantities, such as motion. 

Imagine you have two balls, ball A and ball B, and you throw ball A forward at the same time that you drop ball B, as illustrated in Figure 4.16. Now, consider the velocities of the two balls. For both balls a vertical velocity is produced as a consequence of weight due to gravity. For ball A there is also a horizontal velocity because it has been thrown forward. Which ball do you expect will hit the ground first? 

Start of Figure
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Figure 4.16   Perpendicular vectors of motion act independently 

End of Figure
You may be surprised to hear that both balls will hit the ground at the same time. This is because, regardless of how fast ball A is thrown forward, the horizontal velocity has no effect on the vertical velocity – the vectors are independent because they are perpendicular. 

A video illustrating this motion is provided on the module website.

Start of Box
Component form of a vector

If , then the expression is called the component form of . The scalar is called the -component of and the scalar is called the -component of .

End of Box
Recall, from Chapter 1, that it is convention that if the horizontal component of a vector points in the direction of the negative -axis, then its magnitude is negative, and similarly if the vertical component points in the direction of the negative -axis, then its magnitude is negative. For example, in Figure 4.17 the component form of vector is , so its 
-component is and its -component is . Similarly, the component form of the vector is , so its -component is and its 
-component is . 

Start of Figure
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Figure 4.17   Examples of vectors and their components 

End of Figure
Sometimes, the - and -components of a two-dimensional vector are called the - and -components.

Start of Activity
Activity 4.8

Start of Question
Express the following vectors , and in component form.

Start of Figure
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End of Figure
End of Question
End of Activity
An alternative way for expressing a vector in component form is the column vector, which is common in engineering. 

This is a column of numbers surrounded by brackets, where the first number is the -component and the second number is the ﻿-﻿component. For example, 

Start of Equation
End of Equation
Both ways of expressing the vector are equally valid, but column vectors are often preferred because there is no need to explicitly write the and . It is often the convention that the components of a vector are expressed using the same letter as the vector (but not bold or underlined), with subscripts. For example, 

Start of Equation
End of Equation
Start of Box
Alternative component form of a vector

The vector can be written as . 

A vector written in this form is called a column vector.

End of Box
Start of Activity
Activity 4.9

Start of Question
Use your own grid or print off a copy of the grid paper provided on the module website, and draw the following vectors.
End of Question
End of Activity
4.2.3   Converting between vector forms 

It is useful to be able to convert between the different forms of vectors, so that we can make use of the form that is most appropriate for a given situation. For example, the vector in Figure 4.18(a) represents the displacement of London from Milton Keynes, and direction and angle are the most intuitive description for this vector. London is approximately 65﻿ ﻿km south-east of Milton Keynes. Similarly, the vector in Figure 4.18(b) represents the motion of an aircraft, and for describing the ground speed of the aircraft, a description of the vector in terms of horizontal and vertical components is required. 

Start of Figure
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Figure 4.18   Examples of vectors: (a) displacement of London from Milton Keynes; (b) motion of an aircraft 

End of Figure
In both situations it is useful to be able to convert between vector forms. For example, it may be necessary to describe how far east London is from Milton Keynes, and how far south. To describe the direction in which the aircraft is flying, it is useful to use the resultant velocity. 

The mathematics that allows us to convert between different forms of vectors is very similar to the mathematics we explored in Chapter 3, regarding different coordinates systems, and this is because there is a strong analogy between vectors and points. 

Start of Figure
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Figure 4.19   A vector and its components 

End of Figure
We have already identified how to calculate the magnitude of the component vectors of a vector. For example, the vector in Figure 4.19 has magnitude and direction , and its components are defined as and .

Putting these into component form we have the following result.

Start of Box
Component form of a vector in terms of its magnitude and angle with the positive x-axis 

If the vector makes an angle with the positive -axis, then

Start of Equation
End of Equation
End of Box
Start of Activity
Activity 4.10

Start of Question
Find the component forms of the following vectors. Give your answers to two decimal places.

a. Vector with magnitude 78 and direction given by an angle of 216° with the positive -axis.

b. vector with magnitude 4.4 and direction given by an angle of 
radians with the positive -axis. 

End of Question
End of Activity
Start of Figure
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Figure 4.20   A vector 

End of Figure
Going the other way, to find the magnitude and direction of a vector from its component form, the reasoning is the same as that used in Chapter 3, where we explored how to convert between Cartesian and polar coordinates. For example, the vector illustrated in Figure 4.20 has horizontal component of magnitude and vertical component of magnitude , and in component form is given by . To calculate the magnitude of , we can use Pythagoras’ theorem, and to calculate the angle , we can use the inverse tangent function. 

Start of Box
Magnitude and direction of a vector in terms of its components

If the vector has the component form , then its magnitude is given by 

Start of Equation
End of Equation
and its direction is given by the angle measured anticlockwise from the positive -axis, where 

Start of Equation
End of Equation
End of Box
Remember, when using the inverse tan function, care must be taken to ensure that the answer given by a calculator is correct. As discussed in Chapter 2, drawing a diagram is the best way to check. 

Start of Activity
Activity 4.11

Start of Question
Find the magnitude to two decimal places and direction to one decimal place of the following vectors. 
End of Question
End of Activity
4.2.4   Position vectors

There is a strong similarity between coordinates and vectors, and we have made use of this similarity when converting between vectors of different forms. We can also make use of this similarity when describing the locations of points in space: the location of a point can be described using a vector. 

Let be a point in space. Then the position vector of is a displacement vector where is the origin. This is illustrated in Figure 4.21. 

Start of Figure
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Figure 4.21   The position vector 

End of Figure
The components of the position vector of a point are the same as the coordinates of the point. So the position vector of a point with coordinates is 

Start of Equation
End of Equation
If a point is denoted by a capital letter, as is the usual convention, then it’s often convenient to denote its position vector by the corresponding lowercase, bold (or underlined) letter. For example, we can denote the position vector of the point by , the position vector of point by , and so on. 

Start of Activity
Activity 4.12

Start of Question
Identify the position vectors of the points labelled to in the following diagram. 

Start of Figure
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End of Figure
End of Question
End of Activity
4.3   Vector algebra with components 

So far, we have explored how to visually combine vectors using mathematical operations such as addition and subtraction. We did this with arrows as representations of vectors, but we can also apply the operations algebraically by expressing vectors in component form. 

4.3.1   Vector addition in component form

Let’s return to Alice and Bob pushing a block of ice, with each pushing on a different face of the block, as illustrated in Figure 4.22. If Bob applies a force of 130﻿ ﻿N to the left face of the block, and Alice applies a force of 110﻿ ﻿N to the bottom face, what is the combined force applied to the block? 

Start of Figure
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Figure 4.22   Alice and Bob pushing different sides of a block of ice 

End of Figure
Figure 4.23(a) shows an abstraction of the drawing in Figure 4.22. Here, 
represents the force applied by Alice, who is below the block, and represents the force applied by Bob, who is to the left of the block. 

Start of Figure
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Figure 4.23   Combining the vectors and 

End of Figure
Start of Activity
Activity 4.13

Start of Question
Vector  is a vertical vector with magnitude 110﻿ ﻿N and is a horizontal vector with magnitude 130﻿ ﻿N. Write the vectors and in component form.

End of Question
End of Activity
Vector is a vertical vector so its -component is zero, and is a horizontal vector so its -component is zero. Together, and are the horizontal and vertical components of the resultant vector , so we can say that

Start of Equation
End of Equation
So the net force on the block of ice in Figure 4.22 is represented by the vector .

This example was straightforward because we were considering perpendicular forces acting vertically and horizontally. But the process we followed is the same for any vector addition. Using the component form of two vectors 
 and , we add them together algebraically to determine the resultant vector . 

Let’s consider another example. In Figure 4.24, Alice and Bob are both pushing the same face of the block of ice. If, as before, Bob applies a force of 130﻿ ﻿N and Alice a force of 110﻿ ﻿N, what is the combined force applied to the block? 

Start of Figure
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Figure 4.24   Alice and Bob pushing a block of ice 

End of Figure
Again we let the vector represent the force applied by Alice and vector represent the force applied by Bob, so this time and are both horizontal vectors. 

Both vectors act horizontally, so are acting in the same direction, the direction of the positive -axis, and we’d expect them to add up with the net result being a stronger force acting in the same direction. If we add the component forms of and , then this is the result we get: 

Start of Equation
End of Equation
So the resultant vector is , and the net effect is a force of 240﻿ ﻿N acting in the direction of the positive -axis. The resultant force on the block of ice is the sum of the forces applied by Alice and Bob, and the block will accelerate faster in the direction they are pushing as we’d intuitively expect. 

To summarise, when we add vectors in component form, we add the individual components. This is illustrated visually in Figure 4.25, where the vector is the sum of the two vectors and , and the components of are the sums of the individual components of and . So expressing in component form gives us the following. 

Start of Box
Adding vectors in component form

If and , then 

Start of Equation
End of Equation
End of Box
Start of Figure
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Figure 4.25   Sum of the vectors and 

End of Figure
For example, the sum of the vectors and is given by 

Start of Equation
End of Equation
We can also add the vectors using column form. For example:

Start of Equation
End of Equation
Start of Box
Adding column vectors in component form

If and , then .

End of Box
This method of adding vectors also extends to sums of more than two vectors. For example, if , and , then 

Start of Equation
End of Equation
Start of Activity
Activity 4.14

Start of Question
Find the following vector sums.
End of Question
End of Activity
Using component vectors we can add vector quantities algebraically. Let’s reconsider our block of ice example where Alice and Bob are both pulling the block in different directions (see Section 4.1.2). Using the component form of vectors, we can quickly calculate the combined force applied by Alice and Bob to the block of ice. 

Start of Box
Example 4.3   Calculating the magnitude of combined forces

Alice and Bob have attached ropes to a face of the block of ice and are pulling it in different directions, see Figure 4.26. Bob pulls with a force of 130﻿ ﻿N at an angle of 47° clockwise from the horizontal, and Alice pulls with a force of 110﻿ ﻿N at an angle of 24° anticlockwise from the horizontal. Express the forces applied by Alice and Bob in component form, and use these to determine the magnitude of the combined force applied to the block. 

Start of Figure
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Figure 4.26   Alice and Bob pulling on a block of ice in different directions 

End of Figure
Solution

First let’s express the forces applied by Alice and Bob in component form.

Alice applies a force with magnitude 110﻿ ﻿N at an angle of 24°. So in component form we have

Start of Equation
End of Equation
Bob applies a force with magnitude 130﻿ ﻿N at an angle of 360° – 47° = 313°. So in component form we have

Start of Equation
End of Equation
To calculate the combined force, add the corresponding components:

Start of Equation
End of Equation
So the magnitude of the combined force is

Start of Equation
End of Equation
Note: A tutorial clip of this example is provided on the module website.
End of Box
4.3.2   Scalar multiplication of vectors in component form

In Figure 4.27 Alice and Bob are both pushing the same face of the block of ice, but this time with the same force. 

Start of Figure
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Figure 4.27   Alice and Bob pushing a block of ice with the same force 

End of Figure
Because they are both applying the same force, we can use a single vector to represent this, say , and if the force they apply is 110﻿ ﻿N, then 

Start of Equation
End of Equation
Now, the combined force exerted by both Alice and Bob is 

Start of Equation
End of Equation
This confirms what we found in Chapter 1: when we multiply a vector with a scalar quantity, the magnitude of the vector is multiplied by the scalar; if the scalar is positive its direction stays the same, but if the scalar is negative the direction is reversed. 

For the situation of Alice and Bob pushing the block of ice we have

Start of Equation
End of Equation
Other examples are illustrated in Figure 4.28. The vector can be written in component form as , and the scalar multiples of are written in component form as follows:

Start of Equation
End of Equation
Start of Equation
End of Equation
Start of Equation
End of Equation
and

Start of Equation
End of Equation
Start of Figure
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Figure 4.28   Scalar multiplication of a vector , in component form 

End of Figure
Start of Box
Scalar multiplication of a vector in component form

If and is a scalar, then

Start of Equation
End of Equation
In column notation, if and is a scalar, then

Start of Equation
End of Equation
End of Box
For example, if , then .

Start of Activity
Activity 4.15

Start of Question
Let and . Find each of the following scalar multiples.
End of Question
End of Activity
4.3.3   Vector subtraction in component form

In Chapter 1 we found that when subtracting a vector visually it is first necessary to find the negative of the vector being subtracted by reversing its direction. Algebraically, a similar process is followed, but if we follow the standard rules of algebra, it is a much more intuitive process. For example, consider the vector expression where the vector is subtracted from the vector . We can make sense of this by writing the expression as 

Start of Equation
End of Equation
where is the negative of . The negative of a vector has the same magnitude but the opposite direction, and for a vector we say its negative is 

Start of Equation
End of Equation
With this in mind, we can say that to subtract vectors in component form, we subtract each component of one vector from the corresponding component of the other. 

Start of Box
Subtracting vectors in component form

If and , then

Start of Equation
End of Equation
In column notation, if and , then

Start of Equation
End of Equation
End of Box
Start of Box
Example 4.4   Calculating vector subtraction in component form

Let and . Find .

Solution

Subtracting the components of from the corresponding components of  gives

Start of Equation
End of Equation
End of Box
Start of Activity
Activity 4.16

Start of Question
Find the following vectors.
End of Question
End of Activity
4.3.4   Combining vector operations

When using vectors to model engineering systems it is often necessary to carry out multiple operations to combine vectors in different ways. When vectors are expressed in component form, combining operations involves following the standard rules of algebra. In the next example, the vector operations of addition, subtraction and scalar multiplication are combined. 

Start of Box
Example 4.5   Simplifying a combination of vectors in component form

Let , and .

Find in component form.

Solution

Substitute in the expressions for , and in terms of and , and then simplify:

Start of Equation
End of Equation
Note: A tutorial clip of this example is provided on the module website.
End of Box
Start of Activity
Activity 4.17

Start of Question
Find each of the following vectors in component form.

a. , where , and 
b. , where and are any scalars

End of Question
End of Activity
4.3.5   Vector algebra

Throughout this chapter we have explored calculations involving vectors, and from these we can identify general properties of addition, subtraction and scalar multiplication of vectors. For example, using the properties of addition and scalar multiplication we found that for any vectors and : 

Start of Equation
End of Equation
All the algebraic properties of vectors can be summarised using eight basic algebraic properties. These are mathematical expressions of results that may seem like common sense, but when we express them using this notation, it confirms the ways that we can apply standard rules of algebraic manipulation to vectors. Notice that multiplication and division of vectors are not included in the list; this is because these operations are defined differently for vectors, and we will explore one definition of vector multiplication in the next section. 

Start of Box
Properties of vector algebra

The following properties hold for all vectors , and , and all scalars and .
End of Box
In many ways vector quantities behave in a similar manner to scalar quantities, and these eight properties allow us to perform some operations on vector expressions in a similar way to numbers, or algebraic expressions. 

Start of Box
Example 4.6   Simplifying vector expressions

Simplify the vector expression

Start of Equation
End of Equation
Solution

Expand the brackets using property 5:

Start of Equation
End of Equation
Collect like terms using property 6:

Start of Equation
End of Equation
End of Box
The properties of vector algebra also allow us to manipulate equations containing vectors, which are known as vector equations, in a similar way to ordinary equations. For example, we can add or subtract vectors on both sides of such an equation, and we can multiply or divide both sides by a non-zero scalar. We can use these methods to rearrange a vector equation to make a particular vector the subject, or to solve an equation for an unknown vector. 

Start of Activity
Activity 4.18

Start of Question
a. Simplify the vector expression 

Start of Equation
End of Equation
b. Rearrange the vector equation 

Start of Equation
End of Equation
to express in terms of and .

End of Question
End of Activity
4.4   Scalar product of vectors

We’ll end this chapter by exploring a way to multiply two vectors, which is called the scalar product or the dot product. It is called the scalar product, because when using this method of multiplication, the result is a scalar quantity. It is also called the dot product because it is written using the symbol ‘’, for example, the dot product of vectors and is written . 

Let’s start by considering what multiplication might mean in the context of vectors. For scalar quantities, multiplication can be thought of as repeated counting. For example, can mean . Alternatively, we can think of multiplication as taking a magnitude and growing it. For example, can mean taking a magnitude of 4 and making it 3 times larger. For the scalar product of vectors, it is useful to think of multiplication in terms of growth. 

Vectors have direction as well as magnitude, and if we consider vector operations in terms of growth, then we can describe them as follows. 

· Adding vectors: accumulate growth from several vectors.

· Scalar multiplication: make an existing vector grow.

· Scalar product: apply the directed growth of one vector to another vector. The result is how much stronger we have made the original. 

For example, if we are talking about force vectors, then the scalar product gives us a measure of how much push one vector can give to another. This cannot be just a matter of multiplying the magnitude of the vectors, because their directions need to be taken into consideration. So the scalar product is a multiplication operation that takes into consideration the directions of vectors. With this concept in mind, let’s look at some examples. 

4.4.1   Scalar product of a vector from components

Consider vectors and in Figure 4.29. In component form these are written as and . How can we calculate the scalar product ?

Start of Figure
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Figure 4.29   Finding the scalar product of and by comparing components 

End of Figure
The scalar product will tell us how much vector will grow vector , and to determine this we want to identify how much the vectors interact. One method is to consider how much the horizontal and vertical components of the vectors interact, as illustrated in Figure 4.30. There are four possible combinations to consider: horizontal to horizontal, horizontal to vertical, vertical to horizontal, and vertical to vertical. 

Start of Figure
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Figure 4.30   Interacting component vectors in the scalar product of and 

End of Figure
Horizontal components do not interact with vertical components (and vice versa) because they are independent of each other, so and , and they do not contribute to the value of scalar product. Horizontal components interact with each other, and vertical components interact with each other, so and both contribute to the value of . 

The expression is a measure of how much the scalar quantity grows the scalar quantity , so it is equal to , and similarly is equal to . The scalar product is a combination of these, so 

Start of Equation
End of Equation
For example, if and , then 

Start of Equation
End of Equation
Start of Box
Scalar product of vectors in terms of components

If and , or and in column notation, then 

Start of Equation
End of Equation
End of Box
Start of Activity
Activity 4.19

Start of Question
Suppose that , and . Find the following.
End of Question
End of Activity
4.4.2   Scalar product of a vector from magnitude and direction

Another way to consider the scalar product is to consider how it is defined in terms of the magnitudes and directions of two vectors. Consider again the vectors and in Figure 4.29. We want to find out how much vector will grow vector . So again we want to identify how much the vectors interact – and one way to do this is to determine how much vector points in the direction of vector . 

Start of Figure
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Figure 4.31   Finding the scalar product of and by comparing magnitudes and directions 

End of Figure
In Figure 4.31, the vectors are arranged so that their tails meet, and this makes it possible to compare their magnitudes and directions. To make this explicit, we can draw the components of , not in terms of horizontal and vertical directions, but in terms of the direction where  is pointing, as illustrated in Figure 4.32(a). Formally, the component of  that points in the direction of  is called the projection of  onto , and if the angle between and  is , then the length of the projection of  onto  is , as shown in Figure 4.32(b). 

Start of Figure
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Figure 4.32   Projecting onto 

End of Figure
Comparing the components of  with  will give us a measure of how much  and  interact, as illustrated in Figure 4.33. In the direction of , has a component of magnitude , and  has a component of magnitude , so the contribution to the value of is . Perpendicular to ,  has a component of magnitude , and  has a component of magnitude 0, so the contribution to the value of is 0.

Start of Figure
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Figure 4.33   Interacting component vectors in the scalar product of and 

End of Figure
So 

Start of Equation
End of Equation
and this is a measure of how much the scalar quantity grows the scalar quantity . 

and are parallel, so 

Start of Equation
End of Equation
and the scalar product is given by

Start of Equation
End of Equation
Start of Box
Scalar product of vectors in terms of magnitude and direction

The scalar product of two vectors and is

Start of Equation
End of Equation
where is the angle between and .

Start of Figure
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End of Figure
End of Box
Start of Activity
Activity 4.20

Start of Question
Suppose that , and are vectors with magnitudes 4, 3 and 2 respectively, and directions as shown in the following figure. 

Start of Figure
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End of Figure
Find the following scalar products.
End of Question
End of Activity
4.4.3   Properties of the scalar product

Activity 4.20 illustrates two important properties of the scalar product. First, if two non-zero vectors are perpendicular, then their scalar product is zero. This is because if and are perpendicular, then 

Start of Equation
End of Equation
This also works the other way, so that if the scalar product of two non-zero vectors is zero, then the vectors are perpendicular. This is because if and are non-zero vectors, then the only way that can be equal to zero is if . This implies that . 

The second property is that the scalar product of a vector with itself is equal to the square of the magnitude of the vector. This is because if is any 
non-zero vector, then the angle between and itself is 0°, so 

Start of Equation
End of Equation
These, and other, properties of the scalar product in the following list can all be proved using the definition of the scalar product in a similar way. 

Start of Box
Scalar product properties

The following properties hold for all vectors , and , and every scalar .

1. If and are non-zero and perpendicular, then and .
End of Box
We can use these properties to simplify expressions containing scalar products of vectors.

Start of Box
Example 4.7   Simplifying an expression containing a scalar product

Expand and simplify the expression , where and are vectors.

Solution

Expand the brackets by using property 4: 

Start of Equation
End of Equation
Simplify by using property 3, so:

Start of Equation
End of Equation
Using property 2, simplify further to get:

Start of Equation
End of Equation
End of Box
Start of Activity
Activity 4.21

Start of Question
Expand and simplify the expression , where and are vectors.

End of Question
End of Activity
4.4.4   Finding the angle between two vectors

The scalar product of two vectors has an important application in calculating the angle between two vectors. If we start with the definition of the scalar product in terms of the magnitudes and directions of the vectors, and rearrange it, then we get the following result. 

Start of Box
Angle between two vectors

The angle between any two non-zero vectors and is given by 

Start of Equation
End of Equation
End of Box
We can use this result to find the angle between two vectors in component form.

Start of Box
Example 4.8   Calculating the angle between two vectors in component form

Alice and Bob have attached ropes to a face of the block of ice and are pulling it in different directions, see Figure 4.34. Vector describes the force applied by Alice, and in component form is given by . Vector describes the force applied by Bob, and in component form is given by . 

What is the angle between these vectors, to one decimal place?

Start of Figure
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Figure 4.34   Alice and Bob pulling a block of ice 

End of Figure
Solution

First let’s use the components of and to find , and . We have

Start of Equation
End of Equation
Start of Equation
End of Equation
Start of Equation
End of Equation
Using these we can calculate :

Start of Equation
End of Equation
So

Start of Equation
End of Equation
Therefore the angle between the vectors is 64.4° (to 1 d.p.).

Note: A tutorial clip of this example is provided on the module website.
End of Box
Start of Activity
Activity 4.22

Start of Question
Find, to the nearest degree, the angle between the vectors 

Start of Equation
End of Equation
End of Question
End of Activity
Start of Box
In this chapter we developed techniques that make it easier to work with vectors. Instead of working with vectors geometrically, it is much more efficient to work with them in component form. When we represent vectors according to their components, engineering problems involving vectors can be solved by carrying out standard algebraic operations. 

In the final chapter of Part 2, we will explore how we can use component vectors to solve problems involving forces acting on static objects. 

End of Box
Reference
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Solutions to activities in Chapter 4

Activity 4.1

is the hypotenuse of the right-angled triangle formed by , and the resultant , so from Pythagoras’ theorem its magnitude is given by

Start of Equation
End of Equation
This gives

Start of Equation
End of Equation
So the magnitude of is 170.29 (to 2 d.p.).

Activity 4.2

Angles and are alternate angles, so they are equal. We can find using the tangent function, which is given by

Start of Equation
End of Equation
So

Start of Equation
End of Equation
therefore

Start of Equation
End of Equation
This gives (to 1 d.p.) and this is the direction of the vector .

Activity 4.3

a. After 30 seconds we have

Start of Equation
End of Equation
and

Start of Equation
End of Equation
So the block is travelling at a speed of approximately and has travelled a distance of approximately 76.5﻿ ﻿m.

b. After 60 seconds we have

Start of Equation
End of Equation
and

Start of Equation
End of Equation
So the block is travelling at a speed of approximately and has travelled a distance of approximately 306﻿ ﻿m.

Activity 4.4

First we need to determine the size of angle . We can use the angles 24° and 47° to calculate because they sit on the same straight line as , so

Start of Equation
End of Equation
Now, using the cosine rule, we can calculate the length of edge :

Start of Equation
End of Equation
So

Start of Equation
End of Equation
Activity 4.5

Using the sine rule, we get

Start of Equation
End of Equation
so

Start of Equation
End of Equation
Using the inverse sine function, we get

Start of Equation
End of Equation
Activity 4.6

Newton’s second law gives

Start of Equation
End of Equation
so acceleration is given by

Start of Equation
End of Equation
therefore

Start of Equation
End of Equation
The direction of the acceleration is the same as the direction of , and this is measured clockwise from the positive -axis.

The magnitude of the acceleration is

Start of Equation
End of Equation
So the block accelerates at (to 2 d.p.) in a direction that is measured clockwise from the positive -axis.

Activity 4.7

The magnitude of the vertical component is given by

Start of Equation
End of Equation
so

Start of Equation
End of Equation
The magnitude of the horizontal component is given by

Start of Equation
End of Equation
so

Start of Equation
End of Equation
Activity 4.8

The horizontal displacement is and the vertical displacement is , so .

The horizontal displacement is and the vertical displacement is , so .

The horiztonal displacment is and the vertical displacement is , so .

Activity 4.9

Start of Figure
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End of Figure
Activity 4.10

a. The component form of the vector is given by

Start of Equation
End of Equation
b. The component form of the vector is given by

Start of Equation
End of Equation
Activity 4.11

a. The magnitude of is 

Start of Equation
End of Equation
and the direction is given by 

Start of Equation
End of Equation
The calculator value for is , but looking at a drawing of the vector below, shows that this is not the correct angle. Instead, we are looking for a value of that is greater than and less than . 

Start of Equation
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End of Equation
By considering the graph of , we can identify the angles that are within the range, and using the periodicity of the tangent function we can say that the value for is 

b. The vector has no vertical component, and a negative horizontal component. So it points in the negative -direction and its magnitude is 

Start of Equation
End of Equation
c. The magnitude of is 

Start of Equation
End of Equation
and the direction is given by 

Start of Equation
End of Equation
The calculator value for is . Looking at a drawing of the vector below shows that this is the correct value for , because it is greater than and less than . 

Start of Equation
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End of Equation
Activity 4.12

Activity 4.13

and .

Activity 4.14
Activity 4.15
Activity 4.16
Activity 4.17
Activity 4.18
a. Rearranging gives

Start of Equation
End of Equation
So .

Activity 4.19
Activity 4.20
Activity 4.21

Expand the brackets by using property 4: 

Start of Equation
End of Equation
Simplify by using property 3 to give

Start of Equation
End of Equation
Simplify further by using property 2:

Start of Equation
End of Equation
Activity 4.22

First let’s use the components of and to find , and . We have 

Start of Equation
End of Equation
Start of Equation
End of Equation
Start of Equation
End of Equation
Using these we can calculate :

Start of Equation
End of Equation
So

Start of Equation
End of Equation
The angle between the vectors is 27° (to the nearest degree).
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