### Become an OU student

Introduction to active galaxies

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

# 7.6 Questions

## Question 15

Suppose that a galaxy has emission lines in its optical spectrum. A line of wavelength 654.3 nm is broadened by 2.0 nm. Estimate the velocity dispersion of the gas giving rise to the broadened spectral line. Is it likely to be a normal galaxy?

For the gas motion use Equation 3.1, Δλ/λ = Δv/c, where Δv is the velocity dispersion. Then Δλ/λ = 2.0 nm/654.3 nm ≈ 0.0030.

Thus the overall spread of internal speeds is Δv ≈ 0.0030 × c ≈ 900 km s−1, which is too large for a normal galaxy.

## Question 16

Calculate λFλ flux densities in W m−2 in the radio, the far infrared and the X-ray regions, given the Fλ and λ values listed in Table 2. Which wavelength region dominates?

Table 2
RegionλFλ/W m−2 μm−1λFλ/W m−2
far-IR100 μm10−23
X-ray10−10 m10−20

In the radio wave region, λ = 105 μm so

In the far infrared region λ = 100 μm so that

In the X-ray region, λ = 10−4 μm so

The largest of these λFλ values is 10−21 W m−2, so we conclude that the far-infrared emission dominates.

## Question 17

Suppose that an unusual galaxy has broadband spectral flux densities Fλ at wavelengths 500 nm, 5 μm and 50 μm, of 10−27, 10−28, and 10−28 W m−2 μm−1, respectively. By calculating λFλ, comment on whether it is likely to be a normal or an active galaxy.