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Introduction

Quantum computing is a rapidly evolving field at the intersection of physics, mathematics,
and computer science. Unlike classical computing, which relies on bits as units of
information, quantum computing leverages the principles of quantum mechanics — such
as superposition and entanglement — to solve certain computational problems more
efficiently.

This course begins with an introduction to the basics of ‘classical’ computing, providing a
foundation of logic gates and information processing before moving on to quantum
computing. You will explore the fundamental principles of quantum computing and be
introduced to the qubit (quantum-bit, pronounced kew-bit), the quantum analogue of the
classical bit.

You will examine quantum computing processes, from input to output, including single-
qubit gates and two-qubit gates. By the end of this section, you will be able to read a
quantum circuit, predicting how a series of gates transforms input qubits into output
states. Additionally, you will engage in activities, such as designing your own quantum
circuit to achieve a specific computational outcome.

To ensure you have the necessary technical background, the course includes dedicated
sections on relevant quantum physics and mathematics topics. Whether these sections
serve as a review or introduce new concepts, they provide the foundation for grasping
quantum computing. Essential concept to pay close attention to are quantum
superposition and quantum entanglement, two of the most fascinating and
fundamental phenomena in quantum mechanics.

Finally, the course concludes with an overview of the technologies driving real-world
quantum computing, exploring how researchers and companies are working to make
quantum computers a reality.

By the end of this course, you will have a grasp of quantum computing fundamentals, its
computational advantages, and the technological advancements shaping its future.

This OpenLearn course is an adapted extract from the Open University course
SM380 Quantum physics: fundamentals and applications.



https://www.open.ac.uk/courses/modules/sm380

Learning outcomes 20/11/25

Learning outcomes

After studying this course, you should be able to:

describe a qubit and understand how it differs from a bit in classical computing
explain how a two-qubit CNOT gate can generate entanglement between two qubits
derive the output qubits of a quantum circuit given the input qubits

describe different ways quantum computing is being implemented in practice.
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1 Why quantum computing?

Quantum computers have the potential to revolutionize science and technology by
overcoming the limitations of classical computing. Classical computers are limited by
processing speed and computational resources so complex problems quickly become
impossible to solve. Quantum computers can solve some computational problems
significantly faster. This enhanced processing capability enables quantum computing to
tackle complex problems more efficiently and unlock new types of applications. In this
section, you will explore how quantum computers may outperform classical computers
and drive innovation in various fields.

1.1 What can classical computers do?

In this course, the term classical computers is used to refer to computers which use bits to
encode information and carry out computations; i.e. they are binary based.

The complexity of tasks that any computer can complete is limited by the available time
and computing resources. There are two routes to increasing the power of classical
computing: one is to improve the hardware, which means increasing the size of the
memory, the number of gates on a processor chip, or improving the speed of those
elements. The other approach seeks to improve the software, i.e. the algorithms.

Figure 1 A classical computer

Thinking about the hardware, the improvement in computing power over the past 50 years
has been enormous. The number of transistors on a microprocessor chip has doubled
approximately every two years, a fact known as Moore’s law. Unfortunately, this trend
cannot continue indefinitely, because one of the main ways that these improvements are
realised is by shrinking the size of the circuit elements.
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Improving the algorithms is the second possibility. The power of an algorithm can be
expressed by stating how the ‘run-time’ which is the number of steps required to
implement the algorithm, scales with the size of the task. Some algorithms have a
polynomial run-time meaning that if a procedure is to be carried out on a number, n, of
elements, the run-time scales as n* where x is typically a small integer. Other algorithms
have an exponential run-time, scaling as e”.

The algorithms with polynomial run-time are considered to be much more useful than
algorithms with exponential run-time, because exponential scaling means that only
modest increases in the task size can exhaust available resources.

Throughout this course there are a series of exercises for you to work through. Some
of these exercises you can supply your answer to in the response boxes provided.
Others will require you to work through your calculations on paper.

Exercise 1

Consider some algorithms that are carried out on two data sets — one with n = 10
elements and another with n = 100 elements. The run-time of one algorithm scales
as n® and the run-time of another algorithm scales as e”. How do the run-times of
the two algorithms compare for the smaller data set? How do the run-times compare
for the larger data set?

Answer

For the smaller data set, the run-times for the two algorithms are in the ratio
e'?/10% ~ 22, whereas for the larger data set, the run-times for the two algorithms

are in the ratio e'%° /100® ~ 2.7 x 10%. The time to carry out the algorithm with the

exponential run-time soon becomes unfeasibly long as the size of the data set
increases.

1.2 What can quantum computers do?

Quantum computing offers a new computing approach that is based on the idea that the
rules of quantum mechanics can allow shortcuts to solutions for certain tasks. There are
quantum algorithms with polynomial run-times that can solve problems where the only
known classical algorithms have exponential run-times. Quantum computers make use of
the fact that quantum states can be made of linear combinations of individual states and
when a measurement is taken, one of the individual states will be measured with a given
probability. You will see that entanglement is another fundamental resource for quantum
computing.

The integer factorisation problem, which seeks to find the prime number factors of an n-
digit integer, is of particular interest because it is the basis of a lot of information security.
The run-time of the classical algorithm scales exponentially so as n increases a classical
computer takes longer and longer to factorise the integers as n increases. The integer

20/11/25
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factorisation problem is an example of a a problem that quantum computers can solve
much more efficiently. If quantum computing was able to solve the integer factorisation
problem with a polynomial run-time then there would be a major problem for information
security.

Another example of a problem with an exponential run-time is the travelling salesperson
problem, which seeks to find the shortest route between a number of cities subject to
visiting each city only once and returning to the starting city at the end of the journey (see
Figure 2). This is a typical optimisation problem which can be used to demonstrate the
power of quantum computing as well as being a problem which delivery companies would
like to be able to solve quickly.

0 20 40 60 8 100 0 20 40 60 80 100

Figure 2 An illustration of the travelling salesperson problem. The image on the left shows
7 cities (in blue) and a trial of all 360 possible routes between them (in red). The image on
the right shows the optimum distance after trialling all possible routes.

Exercise 2

Write a sentence or two to summarise in general terms the context in which
quantum computers are considered to be an improvement on classical computers.

[ Provide your answer... }

Your answer will not be the same but a possible answer is:

Quantum computers may be able solve some problems more quickly than classical
computers if problem solving algorithms which have exponential run-times on a
classical computer can be written to have polynomial run-times on a quantum
computer.

Your answer should include the same conclusions.
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2 Background mathematics and terminology

In this section, some mathematics and terminology which will be needed to learn about
quantum computing are introduced. This includes matrices, eigenvalue equations and
complex numbers.

2.1 Matrix multiplication

A matrix, A, is a rectangular array of numbers arranged in rows and columns. (Matrices is

the plural of the word matrix.) You will concentrate on two-dimensional situations, and so
consider matrices of the form:

A A
[ 1 12 } 2 X 2 square matrix
Ay Ay
[An A ] 1 X 2 row matrix
A
[ 1 ] 2 x 1 column matrix
Ay

In order to multiply two matrices, the number of columns of first matrix should be equal to
the number of rows in the second matrix. Matrices of the right shape can be multiplied
together as follows:

C = AB. (1)
To calculate C, where C;; is the element in the i th row and j th column of C, you go along

the ith row of A and down the jth column of B, multiplying corresponding elements and

adding the results. For two 2 x 2 matrices, this pattern may be visualized as follows:

A

| _[— — | S
I I L 4]
[ _ [ )
E = =1 [{
_ ) _ _ 1]
L * L= —11 i

where the x indicates a matrix element in the new matrix, C, and the arrows show how

matrix elements in the old matrices are processed to obtain this. In order to multiply two

20/11/25
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matrices, the number of columns of first matrix should be equal to the number of rows in
the second matrix. In other words, each term C;; is given by C;; = A;1 Bij + Aja Baj.

Exercise 3

a. What shape is the result of multiplying a 1 x 2 row matrix by a 2 x 2 square

matrix?
b. What shape is the result of multiplying a 2 x 2 square matrix by a 1 x 2 row

matrix?
c. What shape is the result of multiplying a 2 x 2 square matrix by a 2 x 1 column

matrix?
d. What shape is the result of multiplying a 1 x 2 row matrix by a 2 x 1 column

matrix?

[ Provide your answer... ]

Answer

a. Theresultis a1l x 2 row matrix.

b. This operation cannot be performed because the number of columns of first
matrix is not equal to the number of rows in the second matrix.

c. Theresultis a2 x 1 column matrix.

d. Theresultis a1 x 1 matrix (i.e. a scalar number).

Exercise 4

Evaluate the following combination of square matrices:
[1 2 ] {1 0 ] [1 2 ]
2 —-1][0 —-1][2 -1

Answer

The product of two matrices is given by:

[An A12] [Bn B12] _ |:AllBll + A12By1 A1 Bio + A12By
Az Ay | [Ba B A2 Bi1 + A By A1 By + Ay Boy

20/11/25
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So, to find the matrix element in row 7 and column j of the product AB, we multiply

the elements in row i of A with the corresponding elements in column j of B, and

add the results together.

To find the product of three matrices, ABC, we first evaluate BC and then form the

product A(BC), taking care to preserve the order of the matrices.

So the solution is

Y | et | et ol Pt | PR P

1 271 o]t 27 [1 2 1 2
-1]l0 —-1][2 -1] [2 -1][-2 1
1 271 o1 2] [ Ix1+2x(-2) 1x2+2x1
—1] [0 —1][2 —1] [2x1+(-1)x(-2) 2x2+(-1)x1
1 271 o)1 2] [-3 4
-1/]l0 -1][2 -1] |[4 3

2.2 Finding the eigenvalues and eigenvectors of a 2 < 2

matrix
For a given square matrix, A, it is possible to solve the equation

Av = )v (2)

where v are column vectors known as eigenvectors and ) is a scalar called an

eigenvalue.
A procedure to find the eigenvectors and eigenvalues of a 2 x 2 square matrix

A= [a b} is
c d
»  Solve the quadratic equation A?> — (a + d)\ + (ad — be) = 0 to find the two values of

A which are the required eigenvalues.
e  For each eigenvalue found, write down the eigenvector equations

(a—ANz+by=0
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cx+(d—ANy=0
«  This pair of equations usually reduces to a single equation that is readily solved for z

and y. The eigenvector is given by v = [w

} with z and y replaced by their solved
Yy

values.
e It is often useful to normalise v by writing it as a unit vector. It this case, the unit

vector is given by
et
Vy = — .
z2 +y2 LY

Exercise 5

Find the eigenvalues and eigenvectors of the following matrix:
A 4 1
2 3

Following the prescription described above: a =4, b=1, c =2 and d = 3. So we

first need to solve the quadratic equation

AN —(4+3)2+((4x3)—(1x2)=0

which is simply

AN —7A+10=0

This can be written as

(A=2)(A—5) =0

So it has solutions A\; = 2 and A\, = 5. These are the two eigenvalues.

We now write the two eigenvector equations:
4-Nz+1y=0
2c+(3-ANy=0

For eigenvalue \; = 2 these reduce to

2¢+y=0
2c+y=0
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Both equations imply that y = —2z, so z = 1 and y = —2 and the first

eigenvector is

e [—12]

For eigenvalue A\, = 5 these reduce to
—zxz+y=0
2¢ — 2y =0

Both equations imply that y = z, so 2 = 1 and y = 1 and the second eigenvector is

o[}

2.3 Complex numbers
A complex number may be written in the form:

z =z + iy, 3)
where z and y are real numbers and i is a special quantity with the property that i = —1.
Each complex number z = z + iy has a real part, Re{z} = =, and an imaginary
part, Im{z} = y.

Complex numbers can be added,

(a+bi) + (¢ + di) = (a +¢) + (b + d)i,

and multiplied,
(a + bi)(c + di) = (ac — bd) + (ad + be)i,
using the usual rules of algebra along with i = —1.
The complex conjugate of z = ¢ + iy is z* = & — iy (pronounced "z star").
This results in zz* = (z + iy)(z — iy) = z? + y* showing that zz* is a positive real
number, (unless z = y = 0).

The modulus of the complex number z = x + iy is defined as

2| = V" = y[a® + 3 4)
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which is a real, non-negative quantity.
Complex numbers can also be written in polar form,

z=re’, ®)

where r and 6 are real numbers. The relationship between z and y, » and 6 is shown in
Figure 3. Here r is the modulus of z as defined in Equation (4); 8 is known as the phase,
and e is a phase factor.

H-axis

===

1
1
[

i} T F-Axis

Figure 3 A diagram showing the relationship between Cartesian coordinates z and y, and

polar coordinates r and 6

Exercise 6

Consider the complex number z = 3 + 3i.

a. Write down its complex conjugate z*.

b. Calculate the modulus of z.

c. Write z in polar form.

a. The complex conjugate is z* = 3 — 3i.

b. The modulus of z is

2| = V22" = /32 + 32 =0+ 9=/I8 =32

c.  Inpolar form z = re' where r = |z| = 3/2 and tanf = 3/3 = 1, so0 0 = /4

radians. Therefore we can write z = 3+/2¢'™/4.
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2.4 Operators and superposition

In quantum mechanics, an operator is a mathematical entity which converts one function
into another function and is written with a ‘hat’'on, for example f& (pronounced ‘A hat’).

Given an operator K the eigenvalue equation for that operator is
Af(2) = M(2) (6)

Here, X is a constant known as an eigenvalue, which may be complex, and f(z) is

function known as an eigenfunction. There may be more than one eigenvalue and
corresponding eigenfunction associated with each eigenvalue equation. The eigenvalue
matrix equation, Equation (2) as described in Section 2.2 is an example of this type of
equation with the operator written as a matrix and the eigenfunction as a column vector.

Consider an operator A with two eigenvectors and two corresponding eigenvalues so that

Afi(@)=Mfi(z) and Afy(z) = hofa(@).

Since f;(z) and f,(z) are both eigenfunctions or solutions of the eigenvalue equation any

linear combination of f; (z) and f,(z) is also a solution. Such a linear combination, known
as a superposition, is

f(z) = a1 fi(z) + a2 fo ()

where a; and ay are complex numbers.

Exercise 7

The wave function of a free particle in quantum mechanics may be written as

‘Ilfree(l', t) — Aei(km—wt)

Confirm that ¥y, (z, t) is an eigenfunction of ik9/0t (where 9/0¢t indicates a partial

derivative) and show that the eigenvalue is the energy of the free particle, hw. (h is

the reduced Planck’s constant.)

Answer

Operating on Uy (z,t) with ikd/0t we find that

0 0 .
i — ¢ i(kz—wt)
ik ; Upee(z,t) = iR ; (Ae )

_ _thi2 ei(szwt)
= hw¥gee (z, 1)

20/11/25
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Thus the free-particle wave function ¥, (z,t) = Ae'**~+*) is an eigenfunction of

ihd/0t and the corresponding eigenvalue is the energy, hw, associated with this

wave.
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3 Setting the scene in quantum physics

In this section, some quantum physics needed to study quantum computing is introduced.
You will learn about spin-'2 particles, which have two fundamental basis states but can
also exist in a superposition of these states. This concept is central to quantum mechanics
and directly relates to quantum computing, where quantum bits (qubits) similarly have two
basis states and can exist in any superpositions of these two states. In the context of spin-
Y, particles the two states are called spin-up and spin-down; in quantum computing the
two states are referred to as logical states. At the end of this section, the essential
concept for quantum computing of entanglement is illustrated using spin-states.

3.1 Spin-'2 particles

Experiments show that electrons have an intrinsic property which is called spin. (Mass
and charge are other examples of intrinsic properties of particles.) Spin is a type of
angular momentum with a quantum number of %2 which means that a measurement of
spin along an axis can only have values of +k/2 or —h /2 as an outcome. (Here h = h /27

where h is Planck’s constant, 6.626 x 10* J s.) Thus, electrons are referred to as spin-%
particles.

The most important spin operators are the component of spin angular momentum in the z-
direction, §z and the total spin angular momentum, §2. The eigenvalue equations for
these operators are

§2
S

|8, My) = S(S +1)k*|S, M),
2|8, M,

s> = Msh|S>Ms>‘

where the angled bracket, | ) is used and is called a ket. |S, M) represents the
eigenfunction, known as an eigenstate with a spin quantum number of S and a spin
magnetic quantum number of M. For a single electron S = % and M = i%. The state

with M, = +% is the spin-up state and the state with M, =

1

-5 is the spin-down state.

3.2 Representing a general spin state

A ket can also be considered as a vector. The spin-up state is often represented by the
symbol | 1) and the spin-down state by the symbol | |). The spin-up state obeys

~ h
S.1) = +51 1) ™)

and the spin-down state obeys

810 =211 ®)

The spin vectors are normalised and orthogonal to one another, as represented by the
following relations:

20/11/25
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T = {|4) =1 (normalized)
(T14) = (IT) =0 (orthogonal)

where these equations use additional notation. ( | is known as a bra and the combination

of the bra and ket together is an inner product, ( | ).

A general spin state |A) can be written as a linear combination of | 1) and | |), thus

|A) = a1| 1) + az| 1) 9)

where a; and ay are complex numbers referred to as probability amplitudes.
In other words, | 1) and | |) provide an orthonormal basis for spin space. The vectors

| 1) and | |) are called basis vectors. Because any spin state |A) can be written as a

linear combination of just two basis vectors, the spin space of a spin-'% particle is two-
dimensional.

For an atom in any spin state, |A), as given in Equation 9 the probability of the outcome of

a measurement indicating spin-up is |a; |2 and for spin-down is {a212. Since these are the

only possible outcomes, the corresponding probabilities must sum to one, therefore
la1|? + |ag|” = 1.

Matrices can be used as an alternative representation of spin states to simplify
calculations. | 1) and | |) are represented by the following column vectors:

1=o] ma 101}

These matrices have two elements because spin space is two-dimensional. Spin states
that do not have definite values of S, are expressed as linear combinations of | 1)

and | ).
Any vector | A) in spin space may be written as a linear combination of | 1) and | |). This

means that |A), as defined in Equation 9 becomes:
1 0 aiy
A - =
4= o] +er 1] =[]

In this way any spin state of a spin-'% particle can be represented as a two-element matrix,
which is called a spinor.

The inner product in spin space of two vectors in matrix form is written

<A‘B> = CLIbl + a;bg,

which is consistent with the matrix multiplication:

20/11/25
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b
it +as = (o a3]|)!].

and thus the inner product of two spin vectors can be written in the matrix form:

e =lai x|}

We can therefore identify the separate bra and ket vectors as follows:

=le @3] ad |B)= ).

A ket spin vector is represented by a column spinor, and a bra spin vector is represented
by a row spinor. To convert a column spinor into the corresponding row spinor, the rule is
to turn the column into a row and take the complex conjugate of all elements. So

a

if \A):[ } then (A|=[a: a].

az

When using a matrix representation, the spin operators are also represented as matrices,
for example,

st )
210 -1

Rewriting Equation 7 using matrices gives,
o =210 SJ1o]-3L]
“lo]  2]o —1]lo] 2]o0

where you can see that carrying out the matrix multiplication gives the expected result.
The operators for a spin-'% particle are each represented by 2 x 2 matrices. Along the

three axes these are:
~ R{O 1 ~ R0 -—i ~ R{1 O
Sz = — , Sy == , S,=—=
’ 2[1 0] Y 2[1 0] ‘ 2[0 —1]

It is common to define the so called Pauli operators, 7, as S = g& such that we have the

following Pauli operator matrices:
5 _ 01 5 _ 0 —i 5 _ 1 0
ol ool Y Lo 7 o -1

These will be useful in the context of quantum computing where they can be used to
represent the action of quantum gates.

20/11/25
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Exercise 8

Show that the spin vectors

U) = %m and |V)= %[_11]

are normalized and orthogonal, i.e. (U|U) = (V|V) =1 and (U|V) = 0.

Answer

Using matrix multiplication
Wiy =2[1 1] m = 2(+1) =1
VIV = %[_1 1] [‘11} Lot =1

2

{Ulv) =

N | =

[1 1] {_11] - %(—1+1) =0

The first two equations show that the vectors |U) and |V') are normalised; the third

that they are orthogonal to each other. Hence, they are orthonormal.

3.3 Spin observables

In quantum mechanics measurable quantities are called observables. Spin is an example
of an observable because it can be measured in an experiment. (Position and orbital
angular momentum are other examples of observables.) Each observable is associated
with an operator and, in general, the only possible outcomes of a measurement of an
observable are any of the eigenvalues.

When a measurement is performed on a quantum system with spin, the wavefunction

collapses into one of the eigenstates of the observable being measured. For example, if
we measure the spin of an electron along the z-axis, the quantum state collapses into one
of the two basis states: | 1) or | |) with probabilities determined by the initial state before

measurement (see Equation 9). This collapse means and any superposition that existed
before the measurement is lost.

After the measurement, the electron will be in a new well-defined spin state, either spin-up
or spin-down depending on the result of the measurement. The general spin state has
collapsed into one of the eigenstates due to being measured. As long as the initial general
spin state is not an eigenstate, the spin state after the measurement will be different from
the spin state before the measurement.

20/11/25
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Exercise 9

Particles are prepared in the spin state

V3

14) = 2219+ 21 1)

a. If a single particle is prepared in the state |A), what prediction can be made

about the result of measuring S, for this particle?

b. If a million particles are prepared identically, all in the state |A), what prediction

can be made about the results of measuring S, for this collection of particles?

Answer

a. No definite prediction can be made for a single particle in the given state, but a
measurement of S, will give either +h/2 or —h/2; see Equations 7 and 8. In

given state |A) and using Equation 9, a; = v/3/2 and a; = 1/2 so the
probability of getting +A/2 is (1/3/2)% = 3/4 and the probability of getting
—h/2is (1/2)? = 1/4. As expected these two probabilities sum to unity

because for any measurement either one or the other outcome will be
obtained. This shows that the value +k/2 is more likely, but the value —h/2

would not be that surprising.
b. For a million particles, the expected outcome is that close to three-quarters or
750,000 measurements will give S, = +k/2, and the remainder will

give S, = —h/2.

3.4 Two-particle spin states

If we have two indistinguishable’ electrons, we can define a two-particle spin state. Due to
symmetry and the rules of quantum mechanical addition of angular momentum, there are
four possible spin states in total. These spin states are represented using the quantum

numbers S and M, as introduced in Section 3.1, but now the quantum numbers are the

sum of the values for the individual electrons. Therefore the spin quantum number is
S=1+1=10rS=1—1=0and, for the case when § = 1, the spin magnetic

1 Particles are indistinguishable when they are identical (i.e. they have the same intrinsic properties like mass,
charge, and spin) and they are so close together that their wavefunctions overlap so that we cannot tell them
apart, even in principle.
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quantum is Mg = i% + % = —lor0Oor + 1, while for the case when S = 0, we only

1 1 _
haveMS_+5—§_O.
Such a two-particle spin state therefore can only have an overall spin function which is
either symmetric or antisymmetric with respect to exchange of the electrons. The
symmetric spin state is referred to as a triplet because there are three possible symmetric
combinations:

11,1) =[11)
1
11,0) = E(\ T+ 1)
1,-1) =)

where the first arrow in each ket refers to particle 1 and the second to particle 2. The
antisymmetric spin state is referred to as a singlet because there is only one possible
combination:

_ 1 N 10
|0, 0) ﬁ(IT@ | 41) (10)

You can see that the states | 1) and | ||) can be factorised into | 1)1| )2 and | })1| {)2

respectively, where the subscripts label each particle. In contrast, the states

%(| 1) +141)) and %(| 1)) — | 41)) cannot be factorised into the product of a particle

1 state multiplied by a particle 2 state. Two-particle states which cannot be factorised are
known as entangled states and said to exhibit entanglement.

Exercise 10

Verify that the three spin kets

1,1) = | 11),
1
1,0) = Eﬂ T +141),
L, =1 =1

are symmetric with respect to swapping the labels of the particles.

Answer
Starting with
1 1
EU T +14) = EU il b2+ D1l D),

exchanging the particle labels and then rearranging gives
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%u al D1 + | Lol 1) = %u D1l 2+ [ Dl B2)
- %u D1l Dz + 1 D] 1)2)
1
= (110 +1 1)

Since this final expression is identical to the initial expression, this shows
%(y 1) + | I1)) is symmetric to swapping particle labels.
For | 11) = | 11| )2 and | []l) = | })1] |)2 the particle labels are interchanged and

re-ordered (perfectly acceptable!) to get the same expressions as required.

3.5 Entanglement

Entanglement is a consequence of quantum theory and leads to a correlation between
the outcomes of measurements which cannot be explained by classical physics. Two-
particle states which show such non-classical correlations are known as entangled
states.

Consider the following thought experiment. Suppose you have a two-particle system in
the spin state |0, 0) as given in Equation 10. Before the experiment you know that particle

1 can be either spin-up or spin-down with equal probability. However, if you measure
particle 1 to be spin-up then you know that particle 2 is spin-down as the measurement
means that the two-particle state has collapsed into the | 1]) arrangement of spins. In

contrast, if you measure particle 1 to be spin-down then you know that particle 2 is spin-up
as the two-particle state has collapsed into the | |1) arrangement of spins. This type of

prediction is quite puzzling because the two entangled particles can be as far apart as
possible and when a measurement is made on particle 1 then it is known simultaneously
what the outcome of a measurement on particle 2 will be.

Entanglement is essential for quantum computing. Entangled states are generated as part
of the workings of a quantum computer, as you will see later.

Exercise 11

Confirm that the following states are normalised and determine whether the states
are entangled.

a.

1) - —=

|B) =
V2 V2

| 1)
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1

110314

) =311

The normalisation condition for a general two-particle state is that the sum of the
squares of the probability amplitudes is equal to 1.

The states are entangled if the two-particle state cannot be factorised into the
product of a particle 1 state multiplied by a particle 2 state.

a. Checking the normalisation of state | B):

1 2

2
+-2

V2

1+1_1
2 2 7

‘ 1
V2
showing state |B) is normalised.

|B) can also be factorised:

1 1
|B) = $| ) — E| )
1
= E(\ Dl b = D1l M2)
1
= El P2 —112)

which is a particle 1 state multiplied by a particle 2 state so state |B) is not

entangled.
b. Checking the normalisation of state |C):
> 1 1

=_ + 1—1
402 4 7

showing state |C) is normalised.

State |C) cannot be factorised and so is an entangled state.
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4 Classical computing

In this section, you will be introduced to a few aspects of classical computing to give you a
reference frame for discussing quantum computing. All computers work by taking input
information and processing it using gates to give output information. By the end of the
section, you will be familiar with the classical NOT and CNOT gates including their truth
tables, so that you can compare them with the non-classical output of the quantum
versions of these gates described in Section 5.

4.1 Classical bits and logic gates

In classical computing, the smallest piece of information is called a bit. A bit may take only
one of two logical values: either 0 or 1. Strings of bits are used to represent information
as numbers, which can be stored, copied and processed by the computer. The processing
of information is accomplished by logic gates, which take strings of bits as their input and
produce an output value for each bit that they act on. A diagram showing how a logic gate
works is given in Figure 4.

11010... [oore] 01011..
input output

Figure 4 A diagram to illustrate how a logic gate works

4.2 Classical Boolean gates

A single-bit gate acts on one bit at a time. In classical computing, there are two universal
single-bit gates, the NOT gate and the Reset gate which, either acting alone or in a
sequence, can generate all possible transformations of a single bit.

The NOT gate (Figure 5) simply flips the value of the bit to the alternative value, so a 0
becomes a 1, and a 1 becomes a 0.

Figure 5 The symbol for a NOT gate

A truth table is a convenient way of summarising the action of a gate. The truth table for a
NOT gate is given in Table 1.

Table 1 Classical
NOT gate truth
table

Input Output
0 1

1 0

The Reset gate sets a bit to value 0, regardless of the input state.
Single-bit gates are not sufficient to perform computing: it is also necessary have

conditional gates in which an operation on a target bit depends on the state of one or
more control bits. It will be helpful to write the two input bits as an ordered pair of values,
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CT (for example, 01 has C =0 and T = 1), where C represents the control bit and T the
target bit.

An important two-bit gate is the CNOT gate (controlled NOT gate), which performs a NOT
operation on the target bit conditional on the state of the control bit being 1; if the control
bit is 0, then no operation is applied. The state of the control bit is unchanged by the
CNOT operation. Table 2 is the truth table for the CNOT gate.

Table 2 Classical
CNOT gate truth
table

Input Output
00 00
01 01
10 11

11 10

To perform classical computing, the bits are set to some initial values and the gates are
applied to the bits in an ordered sequence to make an algorithm.

Quantum computing has different sets of universal gates, which include quantum versions
of the NOT and CNOT gates.
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5 Qubits and quantum gates

Quantum computing is based on units of information called qubits (quantum bits, and
pronounced kew-bits), which obey the laws of quantum mechanics. A qubit is the
quantum analogue of a classical bit. The classical bit values 0 and 1 are replaced by the
orthonormal basis states of the quantum-mechanical qubit |0) and |1). The basis states

are given the name logical states, since they correspond to the classical bits upon which
the logic gates operate. The key difference between qubits and classical bits is that qubits
can exist in a superposition of the |0) and |1)states, which means qubits can be prepared

in the superposition state:

) = ao[0) + a1 |1)

Remarkably, you can take logic gates similar to the Boolean logic gates of classical
computing and apply them to the qubits. In doing so, the input state of the qubits is
transformed into the output state. To obtain the result of the computation, the value (0 or
1) of each qubit is measured. As you will see, the resulting outputs can include entangled
states of two or more qubits.

Quantum entanglement is a fundamental resource for quantum computing as it involves
the distribution of information in a fundamentally non-classical way.

In this section, you will learn the definition of a qubit and be introduced to some single-
qubit and two-qubit logic gates. The quantum CNOT gate is an important gate as it can
entangle and disentangle a pair of qubits. By the end of this section you will have been
introduced to quantum circuits and there is a final activity to test your understanding.

5.1 Defining a qubit
A qubit is defined by the equation
%) = ao|0) + a1(1) (11)

where |¢)) is a two-state quantum system and |0) and |1) are logical states. Note that |0)

has a logical value of 0 and |1) has a logical value of 1. ay and a; are the probability

amplitudes which may be complex numbers and satisfy the normalisation condi-
tion ]a0|2 + |a1]2 =1.

Examples of qubits are the general spin states of spin-'2 particles as described in
Section 3.2. You can see that the spin-up state has been replaced by logical state |0) and

the spin-down state by logical state |1) and you can see that Equation 9 and Equation 11

have a similiar form.

To fully specify the two complex amplitudes or four real numbers are required: the real and
imaginary parts of each. However, the number of values can be reduced by two, one
because of the normalisation condition, and one because the phase of one basis state
can be set to zero without changing anything.

This leads to the equation,

|9) = cos(8/2) |0) + sin(8/2) e |1).
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where 6 and ¢ are real numbers with 0 <0 <7 and 0 < ¢ < 2.

A qubit state can therefore also be represented as a column vector

cos(6/2) ]
sin(0/2) e |

- |

This representation is like the spinor representation introduced in Section 3.2. The column
vector representation is useful because the operators corresponding to single-qubit gates
and observables may be written as 2 x 2 matrices.The qubit basis states are defined as

0) [(1)] and [1) = m (12)

The column vectors of Equations 12 are eigenstates of a 2 x 2 matrix operator known as
the Pauli-Z operator &, or 7, which as mentioned earlier is defined as

S~ _[r o0
A |

Exercise 12
Show that the qubit basis states |0) and |1) are eigenvectors of the Pauli-Z operator

and find the corresponding eigenvalues. Determine the relationship between the
eigenvalues and the logical values of the basis states. Use the symbol, m to
represent the logical value.

Noting |0) = [(1)] and has logical value, m = 0; and |1) = [(1)] and has logical

value, m =1 and that 5, = [(1) 01]

First, for basis state,

0) the eigenvalue equation (Equation 2) becomes
o Ao =» Lo
0 —-1]1[0 0
Doing the matrix multiplication gives
o S]] ==L
0 —-1] 1[0 0 0

showing that A\j =1

Similarly, for basis state |1)
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o S =[5) ===~ L2

showing that A\, = —1

Comparing the eigenvalues with the logical values: when \q = 1, m = 0, and when

A1 = —1, m = 1. The relationship between the eigenvalue and the logical value is

therefore

5.2 Single qubit gates

In quantum computing, a gate is a reversible transformation of a qubit state |¥') to another
qubit state |®), represented by an operator U. Itis convenient to write the single-qubit gate
operators as 2 x 2 matrices. Therefore, the action of the gate ﬁ can be written as follows:

Ule) = ).

The word reversible is important because it is a reminder that a gate operation is of a
different nature from a measurement. The operation of the gate can be reversed so that it
is possible to get back to the state ¥, whereas, in general, a measurement makes an

irreversible change to the qubit state. IAJT is defined as the operator needed to reverse the

gate action and transform |®) back to |¥):

~1

U |®) = |¥).
therefore

o'l = |v),

which means that

76— [1 0] _i (13)
0 1

where 1 is the identity operator, represented by the 2 x 2 matrix appearing in Equation 13.

An operator, U that obeys Equation 13 is called a unitary operator, hence gates are
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represented by unitary operators. The identity operator is itself a gate, denoted I,andits

symbol is shown in Figure ‘6.

Figure 6 The symbol used in a quantum circuit for an identity gate, I

You will now look at some gates, starting with the quantum NOT gate. (From now on the
prefix quantum will be omitted as long as it is obvious the gates are quantum gates and
not classical gates from the context.)

5.2.1 The NOT gate

The NOT gate is denoted by the operator, X and, in the basis of the logical qubits |0) and

|1), is represented by the matrix
=% .
1 0

which is also the Pauli-X operator, ., mentioned earlier. In a circuit diagram representing

a quantum algorithm, the symbol for the NOT gate is shown in Figure 7.

4@7

Figure 7 The symbol used in a quantum circuit for a NOT gate, X
In quantum computing, the truth table specifies outcomes for the logical states |0) and |1).

In Table 3 the general superposition state is also included for reference.

Table 3 Quantum NOT gate truth

table
Input Output
10) 1)
1) 0)

a0]0>+a1\1) a0]1>+a1\0)

5.2.2 The Hadamard gate

The Hadamard gate is a single-qubit gate defined by a matrix 3]
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ﬁ:%[i —11}

In a circuit diagram representing a quantum algorithm, the symbol for the Hadamard gate
is shown in Figure 8.

Figure 8 The symbol used in a quantum circuit for a Hadamard gate, H

Consider the action of a Hadamard gate on logical state |0).

First, the gate and logical state are written as matrices,

~ 1 {1 1 1

w0 -2 AL

V211 —-1]10
Next, the matrices are multiplied to obtain the final state matrix
1 [1 1“1}_ 1 [1]

V21 -1 o]  2l1

Finally, the final state matrix is rewritten in terms of the logical states |0) and |1):

015l 50

You can see that the final output state, %(|0> + |1)) is a superposition state. This

calculation shows that a Hadamard gate allows the transformation of the logical qubit
state into a superposition state.

Exercise 13

Use matrices to work out the action of a Hadamard gate on logical state |1).

Answer
, . 0 o=~ 1|11 .
Noting, logical state |1) = ; and the Hadamard gate is H = — . 1 Using

matrices gives
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You can see that the Hadamard gate has transformed logical state |1) into a

superposition state.

The effect on a general state can be determined by combining the results of the action of a
Hadamard gate on logical states |0) and |1).

H(ao|0) + a1|1)) = agH|0) + a;H|1)
= 2 (j0) + 1)) + %um ~ 1))

V3
= %(ao +a)[0) + %(ao —a)l)

All these results are summarised in the truth table for the Hadamard gate in Table 4.

Table 4 Hadamard gate truth table

Input Output

10) —(10)+ 1))

1) —5(10) = 1)

ao|0) + a1 |1) %(a0+a1)\0>+%(a0—a1)\1>

5.2.3 Sequences of gates

The next step towards quantum computing is to combine gates sequentially to give a
quantum circuit. In a circuit, successive operations are applied to a single qubit.

If you first apply the NOT gate, and then apply the Hadamard gate, the mathematical
expression representing this is written as a sequence of operators, operating from right to
left on the qubit |¢):

|¢) = HX|w) (14)
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This ordering of operators should not come as a surprise; reading the expression on the
right hand side of Equation 14, first gate X is applied to qubit |¢) to give an intermediate

qubit, say |a), and then gate His applied to |a) to give the final resultant |¢). Alternatively,

if calculating the outcome of fiX on qubit |¢), the matrices representing H and X can be

multiplied together to give a resultant matrix, which can be considered a new operator,
W = HX. Then operator, W can be thought to act on |¢) to give the resultant |¢).

The diagram representing this sequence is shown in Figure 9.

.
H
N

Figure 9 A circuit for applying a NOT gate and a Hadamard gate in sequence

A circuit diagram represents the logical flow of the circuit from the left (the initial state) to
the right (the final state) of the diagram. Therefore, in the circuit shown in Figure 8, the
elements are ordered from left to right: the NOT, which acts first, is on the left.

Note that the ordering of gates in the circuit diagram is the opposite to the ordering of
gates when the circuit is written as a sequence of operators acting on a ket.

By matrix multiplication, any sequence of single-qubit gates can be represented by a
single 2 x 2 matrix found by forming an ordered product of the matrices representing the
gates. You have to be careful because, in general, the single-qubit operators do not
commute. In the next exercise you will see that the method using matrix multiplication to
combine gates is equivalent to applying the gates sequentially.

Exercise 14
Given the initial qubit state |0), show that the sequence of gates in Equation 14
produces the final state

1

%) Y

(10) = [1))-

Show that you get the same result by applying either the gates in sequence or by
using matrix multiplication to combine gates.

Answer
Applying the gates in sequence from right to left:
|4) = HX]0)
= HJ1) Dby definition of a NOT gate
1
= —(]|0) —|1)) using row 2 of Table 4
V2

Using matrix multiplication to combine gates: First, calculate the product of the

matrices HX:
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o)

)A(—L[l 1][0 1]_L[1 1]
vl 1)1 o 2l 1
then apply this matrix to the column vector for |0):

O
(

a a| a|~az

which is the same final state as applying the gates in sequence, as expected.

5.3 Two-qubit gates

The gates discussed in Section 5.2 are examples of single-qubit gates, but these are
insufficient for quantum computing. Just as the classical computing must include
conditional gates that act on two bits, so a working quantum computer needs both single-
qubit and two-qubit gates. A quantum CNOT gate is introduced and you will see that it is
able to produce entangled states of two qubits.

5.3.1 Two-qubit states

A straightforward way to define the two-qubit states is to build the two-qubit basis states
from product states:

V) = [q1)|g2) = |q1g2)-

There are four possible product states of the usual single-qubit basis states:

|00), |01), [10),|11)

A general two-qubit state, therefore can be expressed in terms the product states as

‘\II> = a00]00> + a01|01> + a10]10> + a11|11>,

where | ) is normalised in the usual way:

lago|® + |ao |* + |ato]® + |an|* =1 (15)

To specify the state of the two-qubit system, six real numbers must be given. Counting
them in the same way as for a single qubit, these are the eight numbers specifying the real
and imaginary parts of each complex number a,,,, (Wwhere the indices are mn = 00, 01, 10,

11). Eight is reduced by one because of the normalisation condition, given in Equation 15

20/11/25



5 Qubits and quantum gates

and by one more, to six because the phase of one of the basis states can be set to zero
without changing anything physical.

In general, an n-qubit system requires (2! — 2) real numbers to specify the state, which
is an exponential scaling in the number of qubits.

If the two-qubit gate G is an operation, an equation can be written which represents the

transformation from a two-qubit state |¥) into a new two-qubit state |®):

G|T) = |®) = bgy|00) -+ bo1[01) + b1o|10) + by [11).

Multiple qubits are represented using the tensor product, which combines their states into
a larger system. The resulting matrices represent the full system and can be used to
calculate outputs by multiplying them with quantum state vectors. For instance the
example above can be written as

goo goi Go2 Jo3 aoo boo
g gu g2 g3 aor | _ | bo
920 G211 922 G923 | |aw b1o
g3 931 92 g33] Lan b11

This representation shows that a two-qubit gate can be expressed as a 4 x 4 matrix with
elements g,;, which act on a 4 x 1 column vector representing the quantum state. This

allows you to compute the output state using matrix multiplication. However, we won’t be
using this formalism in our discussions, as we will focus on other intuitive approaches to
understanding multi-qubit systems and gates.

5.3.2 How the CNOT gate works

In the same way as a classical CNOT gate, described in Section 4.2, acts on two bits, a
control bit and a target bit; the quantum CNOT gate also acts on two qubits, a control qubit
and a target qubit.

The CNOT gate, represented by an operator CAXQT, acts on a target qubit |¢7) depending
on the state of a control qubit |¢¢). Note that the single ‘hat’ over the CX operator tells

you that this is one operator in contrast to the sequential operators, e.g. fiX asin Equation

14, which are two operators.
In the following, the two-qubit state is assumed to be the product |¢¢) = |¢)c|d)r.

The quantum CNOT gate follows the same rules as the classical CNOT gate: if the state
of the control qubit is |0), then it leaves the target qubit unchanged. If the state of the

control qubit is |1), then it applies the NOT gate to the target qubit. Thus the CNOT gate
would act on the state |00) as follows:

&cj |00) = |00) (state of the target is unchanged)
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and on the state |10) as follows:

6)\(0711]10> = [11) (state of the target is flipped)

The transformations on the kets |01) and |11) can be worked out in the same way. The

results of these transformations are collected in the truth table in Table 6 and are identical
to the classical rules given in Table 2.

The quantum CNOT gate, however, can also act on superposition states, which is
completely beyond the capabilities of the classical CNOT gate. So now consider how the
CNOT gate transforms superposition states, starting from the situation where the control
state is prepared in the superposition state

oy %umc +1)0) (16)

and the target qubit is in the state |0)7. First, here is the initial two-qubit state:

) = %umc 4 1)6)[0)r
_ b
V2

1
= 5 (100) + 10)

(10)c|0)r + [1)c|0)7) .

Then applying the CNOT operator gives:
— — 1
CXer|¥) = CXer—=(|00) + [10))
V2
=~ (CXeyrl00) + TKor10)
V2

- %uoow 11))

You can see that the final state is an entangled state because it cannot be factorised. If
the control is in the superposition state orthogonal to the state described in Equation 16,

i.e. [¢)e = (|0) — |1))/4/2, then the negative sign simply propagates so that:

— 1 1
CXC,T$(|OO> —[10)) = ﬁ(\%) — [11)).

The quantum CNOT gate is depicted graphically in Figure 10 and the full CNOT truth table
including the quantum-mechanical results is given in Table 6.

c—o——

r— N

Figure 10 The symbol for the quantum CNOT gate, with the control (C) and target (T)
qubits labelled
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Table 6 Truth table for the quantum

CNOT gate
Input Output
|00) |00)
|01) |01)
|10) |11)
|11) |10)

L(j00) +10))  L(j00) + [11))

There are other useful states that can be generated using a CNOT gate; another is

introduced in the next exercise.

Exercise 15

Find the two-qubit output state produced by the CNOT operation if the control qubit
is prepared in the state [))c = (|0)¢ + |1)¢)/+/2, and the target qubit is prepared in

the state |¢)r = |1). State whether the output state is entangled or not.

Answer

First, writing the input two-qubit state

) = %(Wc o)Lz

_ %(yomm + Lell)r).

1
= E(I01>+I11>)

Next, applying the operator:
— — 1
CXer|¥) = CXer|—(|01) + [11))
V2

1 — —
= (CXC,T|01> + CXC,T|11>)

1

\/§(|Ol> +10))
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The output state cannot be factorised so it is an entangled state.

To complete this section, consider the case when one of the entangled outputs from
Table 6, |®), = %(|OO> +]11)) is used as an input state.
— — 1
CXer|®) = CXor[—(|00) +[11))
V2
1 (/\ —_—
= — (CXe,r[00) + CXer11))
V2

_ %(|00> +[10) = %qmo +]1)0)[0)7

The final state is now a product state (i.e. it is disentangled), where the control qubit is in
the superposition state (|0)¢ + |1)¢)/+/2. Thus the CNOT gate can disentangle a pair of

qubits as well as entangle them.

5.4 Quantum circuits

In this section, you will make use of what you have already learnt about single-qubit and
two-qubit gates to construct and interpret quantum circuits. A quantum circuit performs an
algorithm in the sense that it executes a predefined sequence of quantum operations that
embody an algorithm’s logic. However, unlike classical circuits, quantum circuits rely on
principles like superposition and entanglement, and their output is often probabilistic
rather than deterministic.

By the end of this section you will be able to predict the outcome of the application of a
quantum circuit to a given input state. As well as combining a series of gates,
measurements can also be made in quantum circuits when one of the eigenstates of the
measurement operator will be obtained with a certain probability. Therefore, the prediction
of an output from a quantum circuit may involve more than one possible outcome and the
associated probabilities of these outcomes. At the end of this section there is an activity to
test your understanding of quantum circuits.

5.4.1 Circuits with multiple gates

Single-qubit gates and two-qubit gates can be combined in a structured sequence to give
a quantum circuit containing multiple quantum gates. Consider as an example the circuit
shown in Figure 11, which depicts a sequence of gates acting on two qubits, labelled |q; )

and |g,). Remember that each qubit enters its circuit from the left; first, a Hadamard gate
is applied to qubit |g; ). Then a CNOT is applied to |g;) and |g2), where the control C is

|g1) and the target Tis |g2). Finally, a NOT gate is applied to |g2).
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9z N
NN

Figure 11 An example of a quantum circuit with multiple quantum gates

The circuit in Figure 11 is a sequence of operations applied to qubits and can be analysed
using the methods already introduced, with extra subscripts labelling the single-qubit

gates and operations so that the qubit each operation is acting on is clear. Thus ﬁ1 acts
only on the qubit ¢, leaving ¢, unchanged. Therefore, using |00) as a sample input the

calculation becomes:

19162 final = 5{26)\(1,21,'11 |00).

Now ﬁl acts only on ¢y, so
H,100) = H;(0)1/0):

=%mmwm%

1
= —5(10) + 00)

This means that

o= 1
|q192) final = X2CX12—(]10) + |00)).
V2

Next comes the effect of the CNOT gate, courtesy of ﬁl’z and gives

~ 1
|g192) final = X2 —=(]|11) + |00)).
V2

Finally, observe that )A(Q acts on g, only, so flip g of each ket in the superposition:

mmmzﬁmwmm

5.4.2 Measurements

Measurements are different from gate operations in a very important way, since rather
than transforming a qubit from one definite state |¥') to another definite state |®), the final

state after measurement is one of the two eigenstates of the measurement operator,
which are obtained with some probability. Therefore, measurements are not reversible.
The results of measurements are real numbers, so they can be stored as bits (rather than
qubits) in a modern memory cell.
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The circuit symbol for the measurement operation is shown in Figure 12.

Figure 12 The symbol for a measurement operation

The probabilistic nature of measurement is a feature of quantum computing that must be
accounted for when evaluating the performance of a quantum algorithm.

Example

A circuit is set up as shown in Figure 13 and the input qubits are both |1). Calculate

the output qubits and hence the possible results of the measurements and their
probabilities.

— DA

Figure 13 A circuit incorporating both a single-qubit and a two-qubit gate

Answer

Writing the sequence of operations applied to the input qubits and using subscripts
to label the qubits and the operations to show which qubit the gates are operating on,
gives

19192) final = CXz,1ﬁ2!11>.

ﬁz acts on g, so
Hy|11) = Hy|1)1[1)s = [1)1Ha[1),
1
= [D1—(/0)2 — [1)2)
V2
1

> \/5|1>(|0> - 11)

SO NnoOw

[ —— ch2,1£|1><|o> 1))

Note that g, is the control qubit and ¢ is the target qubit. Consequently, when ﬁm

operates on |q;g2), look at |go) to decide whether |g;) is flipped. Again, adding

subscripts to identify the qubits,
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19192 ) final = %ﬁm(!lhl% —|1)1]1)2)
— %(C/\Xm(‘lhmh S ﬁ1,2\1>1’1>2)

- %(|1>1|0>2 —[0)1[1)2)
1 1
= ﬁ\mm - E'OW

This is the final state which is measured. It is an entangled state. There are two
possible outcomes; either g; is measured as |1) and g, is measured as |0) or q; is

measured as |0) and ¢, is measured as |1). From the 1/+/2 coefficients, the

conclusion is that each outcome has a probability of 1/2.

5.4.3 Activity

This activity is in two parts. In the first, you are given a quantum circuit and input qubits.
Your task is to work out the output qubits and to determine whether the final output states,
before measurements are taken, are entangled. In the second task you will design your
own circuit for given input and output qubits.

Part 1

Consider the quantum circuit shown in Figure 14. The input qubits are both |0).

Determine if the output two-qubit state, before measurements are taken, is
entangled. Calculate the possible measurements and the probability of each
possibility.

ql H {L@ m ,.7?\ —
a2 H T —A

Figure 14 A circuit to be analysed for the Activity

Answer

Writing the sequence of operations applied to the input qubits and using subscripts
to label the qubits and the operations to show which qubit the gates are operating on,
gives

19162)final = CXa1 X, CXyp H,H, |00).

ﬁ1 acts on ¢; and ﬁ2 acts on g,. So looking first at ¢,

20/11/25
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~ 1
H;|0); = ﬁ(!oh + [1)1)

So ¢; is now in a superposition state. The effect on g, is similar,

~ 1
H[0)2 = E(|U>2 + [1)2)

and ¢, is also in a superposition state. So now we have
19192 ) final = CX21X1CX15—([0)1 + [1)1)—=(|0)2 + [1)2)
V2 V2

—_— A~ — 1
= CX21X1CXy 5 §(|0>1!0>2 +10)1[1)2 + [1)1]0)2 + [1)1]1)2)

Note that for the first CNOT gate, q, is the control qubit and g, is the target qubit.

Consequently, when 6)\(1,2 operates on |q1¢2), look at |g; ) to decide whether |g,) is

flipped. Again, adding subscripts to identify the qubits,

CXi,2(|0)1[0)2 + 0)1]1)2 + [1)1[0)2 + [1)1]1)2) = ([0)1]0)2 +[0)1]1)2 + [1)1[1)2 +[1)1]0)2)

The result is an entangled state. Next the NOT gate acts on qubit ¢, to give

X1(]0)1]0)2 + [0)1]1)2 + [1)1[1)2 + [1)1]0)2) = (|1)1[0)2 + [1)1]1)2 + [0)1[1)2 + [0)1]0)2)
So we now have

1 —
|q192) final = §CX2,1(!1>1|O>2 + [1)1]1)2 4+ [0)1]1)2 +(0)1]0)2)

The second CNOT gate acts on ¢, as the control qubit and ¢; as the target qubit, so

this time look at |g;) to decide whether |g; ) is flipped.

CXao1 (11)1]0)2 + |1)1]1)2 + 0)1]1)2 + [0)1]0)2) = (11)1]0)2 + [0)1]1)2 + [1)1]1)2 + |0)1]0)2)
So we finally have the following,

1
9192 ) final = 5(\10> +|01) + [11) + [00))
This is the final state which is measured. It is an entangled state. There are four
possible outcomes; either g; is measured as |0) and g, is measured as |0) or q; is
measured as |0) and g, is measured as |1) or ¢; is measured as [1) and ¢, is

measured as |0) or g; is measured as |1) and g, is measured as |1). From the 1/2

coefficients, the conclusion is that each outcome has a probability of 1/4.
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Part 2

Design a circuit to convert the two-qubit input state |00) into the (non-entangled)

superposition two qubit output state comprising |01) and |11) with equal probability.

Answer

There are various ways to achieve this. Once such circuit is shown in Figure 15.

ql H

Figure 15 A circuit to convert the two-qubit input state |00) into the two qubit output

state |01) or |11) with equal probability

The circuit can be described as

|q1 q2>ﬁnal = ﬁliz |OO>

Starting with input |00) the circuit applies a NOT gate to qubit ¢,, resulting in |01), so

we have

14162 inat = Hi1]01).
A Hadamard gate is then applied to qubit ¢; to create a superposition for this qubit,

fi,(0), = %qoh + 1))

This gives

Felrn = %uow + 1))

The output state is therefore a state whose non-entangled two qubit output state is a
superposition of |01) and |11) with equal probability, as required.
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6 Real-world quantum computing

Quantum computing presents enormous technical challenges, which is why there many
research groups and companies working on quantum computers and many competing
technologies. Each of these technologies has its advantages and disadvantages.

Even though large systems are built of atoms and molecules that are well-described by
quantum mechanics, large complicated systems such as computers or people don’t
exhibit the quintessential quantum behaviour such as superposition or entanglement.

6.1 Schrodinger’s cat

A famous statement of this idea was given by Erwin Schrodinger in his Schrodinger’s cat
thought experiment. In that thought experiment, the fate of a cat in an enclosed box
depends on the disintegration of a single radioactive nucleus, which, when it decays, will
trigger the release of poison and thereby the death of the cat. The nucleus is supposed to
be in the superposition state

|nucleus) = ag|metastable) + a; |stable)

If the possible states for the cat are |dead) and |alive), then the total state for the system
of cat and nucleus is

|cat + nucleus) = ap|metastable)|alive) + a;|stable)|dead) (17)

The cat is entangled with the nucleus, since there exists a correlation between the state of
the nucleus and the state of the cat (the state written down in Equation 17 is an entangled
state).

The point of the thought experiment is that it demonstrates that thinking of the nucleus +
cat system as a superposition of those extreme states is absurd.

Surely it's absurd to believe that a cat is well-described by a state vector (]alive) or

|dead)), and surely the cat is in the definite state ‘alive’until it definitely dies (or better, until

the experiment is stopped before the cat is killed).

The issue at hand is that a useful working quantum computer containing hundreds of
thousands of qubits would be more akin to Schrodinger’s cat than a single quantum
object, like a solitary microscopic superconducting circuit.

6.2 A few examples of quantum technologies

This section is to provide you with a starting point if you would like to learn more about
quantum computer technologies. The difficulties of quantum computing means that the

number of systems that have been proposed as quantum computers is almost as large as
the number of tasks in which quantum computers can (in principle) outperform classical
computers. In this section there is a brief introduction to three, the transmon qubit, NMR
and cold atom technology. It is not possible to expect this section to keep up-to-date as
advances are being made all the time and often announcements appear in the news. You
can watch out for these and follow up your interests if you would like to. Some links are
provided at the end to get you started.

The transmon qubit

20/11/25



6 Real-world quantum computing

The transmon qubit is based on a miniaturised superconducting circuit, built from a
capacitor and a non-linear inductor called a Josephson junction. This qubit is at the heart
of the IBM quantum computers, which makes it one of the most advanced platforms.

Within superconducting circuits, quantum logic gates may be implemented by applying an
AC voltage to the qubits. The qubits in the superconductor involve the charge carriers
which respond to the applied potential.

The NMR qubit

NMR was used as an early test of quantum computing because the technology is well-
developed as a result of medical research and its use for medical purposes (MRI
scanners). In NMR quantum computing, each qubit is realised as a collection of particles
called an ensemble. The ensemble is all the molecules in a sample. The qubits are
molecular sites in the target molecule. Therefore, the sample contains many copies of the
qubits. To increase the number of qubits, the molecule must become more complex, but
this is difficult because as the size of the molecule increases, environmental effects mean
that each molecule is likely to be different. This leads to the conclusion that NMR quantum
computing is limited to about 20 qubits and it is unlikely that this number of qubits can be
increased.

Using cold-atom technology

Cold-atom technology (which includes cold ions) is able to take advantage of techniques
developed to build atomic clocks. The appeal of cold-atom systems is the degree of
control that can be achieved. For example, from the gas phase, individual atoms can be
trapped at specific sites in a vacuum chamber, and then addressed by individual laser
beams for the purposes of implementing gates or measurements. The weakness of the
cold-atom approach is that, so far, its complexity scales poorly with the number of qubits.

Links

Here are some links to websites that explain current activities in quantum computing from
different companies.

IBM https://www.ibm.com/quantum/technology

Amazon https://aws.amazon.com/what-is/quantum-computing

Quantum Insider https://thequantuminsider.com/2023/06/06/types-of-quantum-computers
Xanadu Al and From a state of light to state of the art

Google Quantum Al and What our quantum computing milestone means or
Microsofthttps://quantum.microsoft.com/en-us/explore/concepts/topological-qubits
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7 Summary

7 Summary

In this course you have learnt the fundamentals of quantum computing.The key points are
as follows.

1.

Quantum computers may be able solve problems more quickly than classical
computers if problem solving algorithms which have exponential run-times on a
classical computer can be written to have polynomial run-times on a quantum
computer.

For a given square matrix, A, it is possible to solve the equation Av = \v where v

are column vectors known as eigenvectors and X is a scalar called an eigenvalue.
In quantum mechanics, an operator is a mathematical entity which converts one
function into another function. Given an operator A, the eigenvalue equation for that

operator is Kf(m) = A\f(z). Here, the eigenvalue A\ may be a complex number, and

f(z) is function known as an eigenfunction. There may be more than one

eigenvalue and corresponding eigenfunction associated with each eigenvalue
equation.

A general spin state | A) (known as a ket) can be written as a linear combination of a
spin-up state | 1) and a spin-down state | |) (known as basis vectors), thus
|A) = a1| 1) + az2| |) where a; and ay are complex numbers. For an atom in any

spin state, |A), the probability of the outcome of a measurement indicating spin-up is
la1|* and for spin-down is |ay|*. Since these are the only possible outcomes the
corresponding probabilities must sum to one, therefore |a, ]2 + \a2]2 =1.

Matrices can be used as an alternative representation of spin states to simplify
calculations. | 1) and | |) are represented by the following column vectors:

M>=[é] and r¢>=m

Any vector |A) in spin space may be written as a linear combination of | 1) and | |).

This means that |A) becomes:
1 0 ai

A - =

4= o] +er 1] =[]

In this way any spin state of a spin-% particle can be represented as a two-element
matrix, which is called a spinor.

For two electrons, the two-particle spin state can have an overall spin function which
is either symmetric or antisymmetric to exchange of electrons. There is a set of triplet
states and a singlet state, as follows:

20/11/25
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1,1) = [ 11),
1
1,0) = ﬁ(‘ T +141),
1, -1) =),
1
10,0) = E(‘ T = 11)-

where the first arrow in each ket refers to particle 1 and the second to particle 2. The
triplet states are symmetric and the singlet state is antisymmetric under particle
exchange. Two-particle states which cannot be factorised (i.e. |0,0) and |1,0)) are

known as entangled states and exhibit entanglement. The other states (i.e. |1,1)
and |1, —1)) are not entangled.

6. Quantum computing is based on units of information called qubits (quantum bits,
and pronounced kew-bits), which obey the laws of quantum mechanics. A qubit is the
quantum analogue of a classical bit. The classical bit values 0 and 1 are replaced by
the orthonormal basis states of the quantum-mechanical qubit |0) and |1). The basis

states are given the name logical states , since they correspond to the classical bits
upon which the logic gates operate. The key difference between qubits and classical
bits is that qubits can exist in a superposition of the |0) and |1)states, which means

qubits can be prepared in the superposition state |¢)) = a|0) + a;|1).

7. The quantum NOT gate is denoted by the operator, X and, in the basis of the logical

qubits |0) and |1), is represented by the matrix:
R - [0 1} .
1 0
which is also the Pauli-X operator, &,. If the input to a quantum NOT gate is
ap|0) + a1|1) then the output is ag|1) + a1|0).
8. The Hadamard gate is a single-qubit gate defined by the matrix:

ﬁ:%[i —11}

If the input to a Hadamard gate is a(|0) + a;|1) then the output is

%(ao +a1)|0) + %(ag —ay)|1). A Hadamard gate allows the transformation of the

logical qubit state into a superposition state.

9. A straightforward way to define the two-qubit states is to build the two-qubit basis
states from product states |¥) = |¢1)|g2) = |q1g2). There are four possible product

states of the usual single-qubit basis states: |00), |01), |10),|11). A general two-qubit

state, therefore can be expressed in terms of the product states as
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10.

1.

12.

‘\IJ> = CL00’00> + a01|01> + a10]10> + a11|11>,

where |¥) is normalised in the usual way:

|a,()()|2 + \a01]2 + |a10|2 + ’an’z =1

The quantum CNOT gate acts on two qubits, a control qubit and a target qubit. It is
represented by an operator ﬁc,:r which acts on a target qubit |¢,) depending on

the state of a control qubit |¢¢). If the input to a CNOT gate is %(|00> +(10)) then

the output is %(!00) +(11)). The CNOT gate can entangle a pair of disentangled

qubits and can also disentangle a pair of entangled qubits.

Single-qubit gates and two-qubit gates can be combined in a structured sequence to
give a quantum circuit that executes a particular algorithm. Measurements can also
be made in quantum circuits when one of the eigenstates of the measurement
operator will be obtained with a certain probability.

Real-world quantum computing has been impemented on platforms including the
transmon qubit (as in the IBM quantum computers), the NMR qubit (based on
technology used in MRI scanners), and using ultra-cold atom technology.
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8 Quiz

Answer the following questions in order to test your understanding of the key ideas that
you have been learning about.

Question 1

Which of the following statements about eigenvalues, eigenstates, eigenvectors
and eigenfunctions are true?

O An eigenfunction is special type of function that remains essentially unchanged
(except for a scaling factor) when acted upon by a given linear operator.

True

An eigenstate in quantum mechanics is a special quantum state that remains
unchanged, except for a multiplicative factor, when a specific quantum operator
acts on it.

True

O An eigenvalue is a special scalar associated with a linear transformation of a
square matrix. It represents how much a given vector is scaled when that matrix
is applied to it.

True

O An eigenstate is a state for which the outcome of a measurement of a certain
observable (like energy, position, or momentum) will always yield a specific,
definite value.

True

O An eigenvector of a square matrix is a nonzero vector that gets scaled by a
certain value when the matrix is applied to it.

True

O There is always only one eigenvalue and corresponding eigenfunction
associated with each eigenvalue equation

False

O

Answer

The first five statements are all true. The last one is false: there may be more than
one eigenvalue and corresponding eigenfunction associated with each eigenvalue
equation.

Question 2

What are the eigenvalues and eigenvectors of the following matrix?
7 4
2 5
o For eigenvalue \; = 7 the eigenvector is v; = [1] and for eigenvalue A\, = 5

the eigenvector is vy = [_12]
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o For eigenvalue \; = 9 the eigenvector is v; = [ﬂ and for eigenvalue Ay = 3

the eigenvector is vy = [_11]

o For eigenvalue \; = 4 the eigenvector is v; = [;] and for eigenvalue \y = 2

the eigenvector is vy = [ 11]

o For eigenvalue \; = 1 the eigenvector is v; = [i] and for eigenvalue \y = 8

the eigenvector is v, = [_13]

Answer
Following the prescription described in the course: a =7, b =4, c=2 and d = 5.

So we first need to solve the quadratic equation

AN —(T+5)A+((Tx5)—(4x2)=0

which is simply

A2 120 +27=0

This can be written as

A—9)(A—3)=0

So it has solutions A\; = 9 and Ay, = 3. These are the two eigenvalues.

We now write the two eigenvector equations:

(7 — Nz + 4y = 0
2+ (5—-AN)y=0

For eigenvalue \; = 9 these reduce to

—2z+4y=0
20 —4y =0

Both equations imply that x = 2y, so z = 2 and y = 1 and the first eigenvector is

e[l

For eigenvalue A\, = 3 these reduce to
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dr +4y =10
204+ 2y =0
Both equations imply that x = —y, so x = —1 and y = 1 and the second

eigenvector is

GalE

Question 3
If a general spin state is written as |a) = a;| 1) + a2 |), which of the following

statements is true?
o The probability of a measurement indicating spin-up is a;

O The probability of a measurement indicating spin-down is \a2\2
o The probability of a measurement indicating spin-down is |¢;L1|2
O The probability of a measurement indicating spin-down is a; — as

o The probability of a measurement indicating spin-up is |a; + a212

Answer

The probability of the outcome of a measurement indicating spin-up is |a; ]2 and for

spin-down is |as|*.

Question 4

Match the following two-particle spin states with the correct descriptions.

1,1) =[11)

1,00 = 2= (1 1) + 1)

0,0) = —5(1 1) =1 41)

Match each of the items above to an item below.

symmetric not entangled state
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symmetric entangled state

antisymmetric entangled state

Answer

The triplet states (i.e. |1,1) and |1,0) and |1, —1)) are symmetric and the singlet
state (i.e. |0, 0)) is antisymmetric under particle exchange. Two-particle states which
cannot be factorised (i.e. |0,0) and |1, 0)) are known as entangled states. The other

states (i.e. [1,1) and |1, —1)) are not entangled.

Question 5

The quantum NOT gate is represented by which of the following matrices?

1 o]
o)
10 1]
"o
o)
L0 0]
T
o)
L1 0]
0o -1
o)
-
1 1
o)
....... 11]
Answer

The quantum NOT gate is represented by the Pauli-X operator, X = [(1) (1)]

Question 6

The Hadamard gate is represented by which of the following matrices?

L[ o0
vzlo 1
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o a1
VZl1 1
o af[-1 0
Vil o -1
L1

o) —
VZl1 -1
o af-11
Vil 1 1

Answer

The Hadamard gate is represented by - 11
9 P Y71

Question 7

Match the following quantum gates with the correct result.
NOT gate
CNOT gate
Hadamard gate
Match each of the items above to an item below.
Flips the state of a qubit

Entangles a pair of disentangled qubits

Transforms a qubit into a superposition state

A NOT gate flips the state of a qubit. A CNOT gate can entangle a pair of
disentangled qubitts. A Hadamard gate can transform a qubit into a superposition
state.
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Question 8
If an input qubit |0) is passed to a Hadamard gate, and the output from the

Hadamard gate is then passed as input to another Hadamard gate, what will be the
output from the second Hadamard gate?

o L(joy+)

o 3(l0)— 1))
o 1)
Answer

The circuit can be written as ﬁﬁ|0>. The action of the first Hadamard gate produces

a superposition state:

. 1 1
H|0) = $|O> + EIU

Then passing this through the second Hadamard gate we have
PN 1 1 1 1 1 1
HH0) = —| —=+—|10)+ —=| ——— | |1)

V2\v2 V2 V2\v2 V2
PN 1 1 1 1 2
HH|0) = —| —+— 100 =—| —= | 10) =0)
V2\vV2 V2 V2 \ V2

The action of the second Hadamard gate is therefore to restore the original input
qubit.
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