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Introduction

Introduction

The idea that our Solar System may not be unique, and that there might be planets
orbiting other stars (or exoplanets), has been around for a long time. Important principles
that underpin exoplanet research today were foretold by key discoveries in the eighteenth
and nineteenth centuries. In 1783, an unseen companion was presented as an
explanation of the peculiar periodic dimming observed for the bright star Algol, and in
1844 the observation of a periodic change in position of the bright stars Sirius and
Procyon uncovered their two unseen companions. The concept of detecting and exploring
an unseen object by studying its influence on a nearby astronomical source has also been
applied to exoplanets and their host stars.

However, exoplanets were expected to be extremely hard to observe in practice. Using
the orbits and size of planets in our Solar System as a guide, the influence of an exoplanet
on its host star was predicted to be very small. Indeed, it took until the late twentieth
century for technological advancements to enable the first exoplanet to be identified, and
the result was surprising: 51 Pegasi b (named after its Sun-like host star 51 Pegasi in the
Pegasus constellation) was unlike anything in our Solar System. 51 Pegasi b is a hot
Jupiter: a planet with a similar mass to Jupiter, but with an incredibly high surface
temperature as its orbit takes it very close to its host star. The fact that a planet like 51
Pegasi b exists triggered what became a radical overhaul of theories of planet formation
and evolution. But the discovery of a hot Jupiter was also encouraging, as it showed that
exoplanet detection was perhaps not quite as impossible a challenge as many had
assumed. All astronomers needed to do was start looking for something that is different
from the planets of the Solar System.

Since the discovery of 51 Pegasi b, thousands more exoplanets have been discovered by
a variety of techniques. The main outcome of exoplanet searches and characterisation
studies carried out using these techniques is a known exoplanet population with a wide
variety of physical and orbital characteristics. This course explores the key astrophysical
concepts involved in planet formation and how they can be used to explain the great
diversity of configurations observed.

Section 1 focuses on the birthplaces of planets: the protoplanetary discs. Section 2
describes the core-accretion scenario for planet formation. This was initially developed
to explain the existence of Jupiter, but has, over the years, become a more general model
of planet formation for its ability to account for a large diversity of planetary outcomes,
from Earth-sized planetary cores that form first, to ice and gas giants that evolve later.
Lastly, Section 3 focuses on the final stages of planet formation, and explores the core-
accretion scenario further, as well as an alternative disc-instability scenario, where the
formation of massive objects occurs first from the collapse of gas into clumps by self-
gravity.

This course material will refer to masses of stars in terms of the mass of the Sun
(represented by M., = 1.99 x 10°° kg), and masses of planets in terms of the mass of the
Earth (represented by Mg, = 5.97 x 10%* kg) and the mass of Jupiter (represented by Muup
=1.90 x 10" kg). Orbital distances from stars will be expressed in terms of the distance of
the Earth from the Sun; this is 1 astronomical unit (1 au = 1.496 x 10" m).

This OpenLearn course is an adapted extract from the Open University course
S384 Astrophysics of stars and exoplanets.
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Learning outcomes

After studying this course, you should be able to:

use mathematical models to calculate properties of protoplanetary discs

understand the core-accretion scenario for the growth of planetary cores from
smaller components

understand the disc-instability scenario for the formation of planets from a
circumstellar disc

describe how planets migrate and interact after forming

appreciate how planet formation models can explain the observed exoplanet
population.
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1 Protoplanetary discs

The idea that planets form from initially microscopic solid material within protoplanetary
discs made predominantly of gas dates back to the Enlightenment, possibly starting with
the idea that the planets of the Solar System formed out of a nebula surrounding the Sun,
which featured in Kant's Universal Natural History and Theory of the Heavens. Today, our
understanding of protoplanetary discs stems from experimental observations and
theoretical models of the behaviour of gases in the gravitational fields of stars.

1.1 Observations of protoplanetary discs

The presence of discs around newborn stars is a natural consequence of the collapse of
the molecular cloud from which they form, as a mechanism to conserve angular
momentum. The first evidence of the existence of protoplanetary discs came thanks to
the Hubble Space Telescope (HST) in the mid-1990s, which was more or less at the same
time as the first exoplanet discoveries. Figure 1 shows the HST images of the
protoplanetary discs around four young stars in the Orion nebula, 1500 light-years from
the Sun, compared with the much more detailed view of a protoplanetary disc in the same
region obtained with the James Webb Space Telescope (JWST) in 2022. Protoplanetary
discs have been observed mainly around young stars (with ages of about one to ten
million years) that are close to the final stages of formation. This means that most of the
material from the disc has been accreted by the central star, so the mass of the disc
(Myisc) is much lower than the mass of the star (M-).

e

\ \disc
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b)

Figure 1 (a) Some of the first images of protoplanetary discs, in the Orion nebula, taken in
1993 with HST. (b) Protoplanetary disc in Orion, imaged with JWST in 2022. The orbit of
Neptune is shown for scale.

The presence of planets in protoplanetary discs is strongly supported by observations,
which have been supported by the development of ground-based instruments such as
SPHERE.
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Box 1 SPHERE

Figure 2 The SPHERE instrument (dashed—dot outline) mounted on the side of one
of the four telescopes that form the VLT complex in Chile.

SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) is an instrument
operating at near-infrared and visible wavelengths, installed on one of the four
telescopes comprising the European Southern Observatory’s (ESO) Very Large
Telescope (VLT) site in Paranal (Chile). SPHERE is one of the first dedicated direct-
imaging instruments and its primary science goal is to directly detect and
characterise young exoplanets and the discs in which they form.

Recent observations using VLT/SPHERE include the direct detection of two forming
planets in the disc around the young T Tauri star PDS 70 (which gets its name from the
Pico dos Dias Survey for young stellar objects). One of the directly imaged planets is
shown in Figure 3.
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Figure 3 VLT/SPHERE image of PDS 70 with a planet in a gap in the disc. The other
planet in the system is obscured by the bright region of the disc to the right of the central
star.

1.2 Modelling protoplanetary discs

Material in a protoplanetary disc will be in orbit around a central star (or protostar). A first
approximation to the motion of the material is that it is in so-called Keplerian motion, that
is it obeys Kepler’s laws of planetary motion. In particular Kepler’s third law, which is a
consequence of Newton’s law of gravity, states that the square of the orbital period is
proportional to the cube of the orbital radius (assuming circular orbits, which is generally
the case), i.e. P? « a>. As long as the orbiting particle has a mass that is small compared
to that of the star, this may be expressed in the following equation:

_ 47?a®
- GM,

P2

where G is the gravitational constant (6.674 x 10" N m? kg™?) and M- is the mass of the
star. The Keplerian orbital speed is therefore the distance travelled in an orbit (the
circumference of the orbit, 21ma) divided by the orbital period, P. This is therefore

1/2 _
VK = (GM*> (Equation 1)

a

Figure 4 shows a schematic view of a protoplanetary disc, comprised mostly of molecular
hydrogen. The rest of this section will aim to derive and solve the differential equations
that govern the vertical (out-of-disc plane) gas-density profile as well as the radial
dependence of the orbital (in-disc plane) velocity, which turns out to differ from the pure
Keplerian motion. The following two subsections therefore will look in turn at how these
two properties may be quantified.
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Figure 4 Schematic illustration of a protoplanetary disc.

1.3 Vertical gas-density profile

In the direction perpendicular to the disc plane (vertically, corresponding to the z-axis in
Figure 4), the profile of the gas density p,, is such that the vertical pressure gradient

dP,,s/dz and the vertical component of the stellar gravity g, are in hydrostatic

equilibrium. Since, as mentioned earlier, Mg, < M,, any disc contribution to the
gravitational force can be ignored. Therefore we may write:

dPyas(2)

dz = —Pgas (Z)gz-

Referring to Figure 4, the vertical component of the stellar gravity at a point A located a
distance d from the star is g, = (GM, /d?*)sin 6, where G is the gravitational constant.

17/12/24
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Figure 4 (repeated) Schematic illustration of a protoplanetary disc.

The angle 6 is such that sin@ = z/d, hence g, = GM,z/d>. Now, the distance d is given

by d?> = r? 4 22 but for geometrically thin discs, z < r, so we have simply d ~ r, and
therefore

N GM,z

g, ~ .
r3

Note that the Keplerian angular speed wg at this same point in the disc is

1/2
o — <GM* ) / (Equation 2)
K 7‘3

S0 g, = zw% and we may write

dPyas(2)

o —2ZPgas (z)w%{.

This equation can be simplified by recognising that, for an ideal gas, the pressure P,,; and

density pg,s are related by the sound speed ¢ such that
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kseT P,
=22 =82 (Equation 3)
m Pgas

where kg is the Boltzmann constant, T is the temperature of the disc and m is the mean
molecular mass. The sound speed may be assumed to be constant for a given disc.
Hence, dP,,s = ¢ dp,as and the expression of hydrostatic equilibrium becomes

dpgas (2)
dz

2
w
= —ngas(z)< CK ) . (Equation 4)

S

This differential equation has the following solution, which gives the density in terms of the
disc scale height H and the density at the midplane pg:

212 .
— _ Equation 5
pgas(z)—poexp( 2H2), (Eq )
where
o= (Equation 6)
WK
and
po = Lg (Equation 7)
V2 H

Here, ¥ = [pgas(2) dz is the surface density of the disc (i.e. its mass per unit surface

area).

What is the gas density at a height of z = H?
® The gas density is pg.s(H) = pp exp(—1/2) = po/e}/? ~ 0.607py.

The shape of a disc can be described by its aspect ratio H/r = ¢, /v, where vg = rwg

is the Keplerian speed at a radius r. Normally, for protoplanetary discs,

H s (Equation 8)

This is because the speed of sound ¢, < T'*/2 (Equation 3) and the temperature profile of

the disc is driven by the stellar irradiation, so that usually 7' o r~/2. (The reason for this
latter dependence is that, from the Stefan-Boltzmann law, the temperature of the disc

T « FY* where the flux received from the star F, oc 1/72.) Hence, ¢, oc r~/4 and this

result, combined with the fact that wx o r—3/2 (Equation 2), leads to Equation 8.

17/12/24
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How does Equation 8 explain the shape of the disc shown in Figure 47?

m The aspect ratio of the disc increases with r, so the disc is expected to be thicker on the
edge than in the centre, like the one in Figure 4.

1.4 Radial dependence of the orbital velocity

Having considered the vertical density profile of the disc, we now turn to the radial
dependence of the orbital velocity v,,, (). In the radial direction, in addition to the

gravitational force, there is also a force due to the pressure gradient. Hence, the net
centripetal acceleration of a small volume of gas in the disc on an assumed circular orbit
at radius ris

v2 . (7) 1 dP(r
Ol'b — g(r) + g ( ) .
r Pgas(r)  dr

Here, g(r) ~ GM, /r* since M- is much greater than the total mass of the disc inside the

orbital radius. Therefore, the orbital speed v, of the gas in the disc has two components:
one due to the Keplerian speed vk (r) = (GM, /r)'/2, and one due to this extra pressure

gradient. It is given by:
GM, r dPgs(r)

2 _ + ) (Equation 9)
o (7) r Pgas(r)  dr

Usually, dP,,s(r)/dr < 0 in the disc, so the gas will behave as if it was feeling a slightly

lower gravitational pull from the star, and its orbital speed will be sub-Keplerian, that is,
Vorb (7) < vk (7). The following activity shows how to quantify the magnitude of the

deviation between the actual orbital speed of the gas and its Keplerian speed.

Activity 1

Using Equation 9 and approximating the pressure gradient as
dPg,s(r)/dr = —nPg,s(r)/r, where n is a dimensionless constant:

a. Write an approximate expression for v, () as a function of the radius, scale

height and Keplerian speed, vk (r) = rwxk (7).

b. Calculate the difference between the orbital and Keplerian speeds,
Av = vk — vop, at a radius of 1 au from a star of the same mass as the Sun,

for a disc of constant aspect ratio H/r = 0.05 and n = 3. (You may assume 1 au
=1.496 x 10" m, 1 My, = 1.99 x 10*° kg, and G = 6.674 x 107" N m? kg?.)
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a. From Equation 3, the pressure of the gas Py, is linked to the sound speed c;
such that P, = pgasc?. Using this, the expression for the pressure gradient

becomes:
dPyas () I8 ((6) c? ()
= —MNn = —n—,
dr T r

then substituting this into Equation 9 gives

_GM, .,

—nc? = vk (r) — nc.

2
orb (’I’) r

Finally, using the fact that
H Cs Cs

T rwg (1) vk (1) ’

the requested expression is obtained as:

m\2]" .
Vorb (T) = vk (r)ll — n(—) ] . (Equation 10)

r

b. From Equation 10, the difference in velocities is

Av(r) = vk (1) — Vorb (1)

Av(r) = [1 - /T=3 % 005 | o (r)

Awv(r) = 0.00376vk (1)

So the difference is only about 0.4% of the Keplerian velocity.

To evaluate Av at r = 1 au we need to calculate the Keplerian velocity vk at
1 au:

\/GM* \/Gx1M®
’UK: =
T lau
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6.674 x 107" Nm? kg2 x 1.99 x 10* kg
VK =
1.496 x 10" m

vk = 29.8 x 10°m s~!

which gives Av = 0.00376vk = 112m s~ . So the difference between the

orbital and Keplerian speeds at this radius is about 100 m s™.
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2 Rising from the dust

The basis of the core-accretion scenario is that planets form by accumulation of solids
into a core, on which an atmosphere is accreted once a critical value of the core mass is
achieved. This section explores the various stages of this process, going from sub-
micron-sized dust particles to metre-sized rocks that grow into kilometre-sized
planetesimals and finally into Mercury-sized planetary embryos, spanning roughly 12
orders of magnitude in size. The embryos then accumulate further matter, becoming the
cores of fully formed planets.

2.1 From dust grains to rocks

Consider again the protoplanetary disc from Activity 1. The fact that the velocity of the gas
in a protoplanetary disc is usually sub-Keplerian has important consequences for the
evolution of solid particles embedded in it. A consequence of Equation 10 is that for
geometrically thin discs (H/r < 1) the radial pressure gradient makes a negligible

contribution to the orbital speed of the gas. However, as seen in Activity 1, the difference
in speed can be of the order of Av~ 100 m s™' at ~1 au from the star and this turns out to
be important in determining how the particles in a disc behave. In particular, a finite Av can
cause particles in the disc to slow down and drift inwards towards the star.

One of the most important parameters that determines how a particle of mass m interacts
with the gas surrounding it is the stopping time, defined as

mAv

Tstop = T (Equation 11)
rag

where Fq.54 is the magnitude of the drag force that acts in the opposite direction to Av.
This stopping time may be related to the Keplerian orbital speed by

TS = TstopWK (Equation 12)

where 15 is the Stokes number, which characterises how well particles follow fluid
streamlines. Large particles will generally have large Stokes numbers (74 > 1), and small

particles will generally have small Stokes numbers (15 < 1).

Small particles of radius s will be coupled with the gas; that is, they will move at almost the
same speed as the gas. Such particles experience a drag force whose magnitude is
given by

47 .
Farag = ?pgasszvthAv, (Equation 13)

where the thermal speed of the gas, v, is roughly the same as its sound speed, c;. For
spherical particles, the material density is p,, = 3m/(4ns®). So, by combining this with

Equations 11 and 13, we have

P 8 (Equation 14)

Tstop — .
Pgas Cs
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2 Rising from the dust

We can now define the radial drift speed, v,.4, as the speed with which particles in the
disc move radially through it, drifting inwards towards the star. To derive a general
expression for the radial drift speed we write the orbital speed as

Vorb = vk (1 — 1)Y/2, (Equation 15)

where, from Equation 10, we already know that = n(H /r)%. Remember that n is a

dimensionless constant relating the pressure gradient to Pg,¢/r. After much algebra
concerning the equations of motion and making appropriate approximations (the details of
which are not important here), a general expression for the radial drift speed is found as:

Ui

— (Equation 16)
TS + Tg

Urad = —UK

The radial drift speed will reach its maximum value when the Stokes number is 15 = 1.
This corresponds to the situation when the stopping time and Keplerian orbital speed are

related by 7, = 1/wk. In this case, Equation 16 shows that the radial drift speed

IS Upad (max) = —nug /2.

Since n will be a small number for geometrically thin discs, make use of the
approximation that (1 —n)/2 ~ 1 — (n/2) to obtain a simple relation between Av and

vk. Hence write the maximum radial drift speed in terms of Av.
m From Equation 10, the difference between the Keplerian speed and the orbital speed is

AV = Vg — Vorh, = VK {1—(1—77)1/2} .

Therefore, using the approximation for small values of n, we have

Av = vk [l -1+ (n/2)] = nuk /2

and so vg ~ 2Av/n. Hence, the maximum radial drift speed is

Urad (Max) = —(n/2) x 2Av/n ~ —Awv.

So the maximum radial drift speed is simply the difference between the Keplerian and
orbital speeds.

Activity 2

a. For large particles, with s > 1 m, the Stokes number is very large, 75 > 1.

Obtain an expression for the radial drift speed in this case, in terms of 15 and
Av only.
b. For small particles, with s <1 cm, the Stokes number is very small, 75 < 1.

Obtain an expression for the radial drift speed in this case, in terms of 15 and
Av only.

17/12/24
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Discussion

a. For large particles 7 > 1 so Equation 16 becomes

Urad =~ —TUK /TS .

Then, substituting for vk using the approximation vgx ~ 2Av/n, we have

Vrad & —2Av/715.

b. For small particles 7 < 1 so Equation 16 becomes

Urad = —TNUKTS.

Then, substituting for vk using the approximation vk ~ 2Awv/7n, we have

Vrad ~ —2AvTg.

Activity 2 showed that, in the limits of large or small particles, both values of the radial drift
speed are independent of n. In each case, the radial drift speed is a small fraction of Av.

2.2 Assembling the planetesimals

Thanks to the coupling with the disc, small (sub-micron-sized) particles will collide with
each other gently enough that they will always stick together. Therefore, they will
efficiently form millimetre-sized aggregates, in a process referred to as coagulation, that
tend to settle on the midplane of the disc.

The simplest assumption for the formation of a planetesimal is that this process continues
up to the kilometre-sized scale. As the particles grow, however, so does their speed, and
the outcome of a collision no longer necessarily leads to bigger objects, as energetic
impacts can be neutral (so the particles will bounce off each other) or even destructive (so
the particles fragment and are broken apart once more).

However, there is also another problem that occurs around the metre-sized scale, as
illustrated by the following activity. Metre-sized particles, referred to as ‘rocks’ will have 15
~ 1, and so move with the maximum radial drift speed.

Activity 3

a. Consider a thin protoplanetary disc with aspect ratio H/r = 0.05 and
dimensionless pressure constant n = 3. Calculate the radial drift speed for a
particle with 15 = 1 at 1 au from a star of mass 1 M. Hint: the Keplerian speed
at 1 au from a 1 M, star as calculated in Activity 1 is vk = 29.8 x 10° m s,

b. Moving at the constant speed from part (a), how long would the particle take to
travel a distance of 1 au? Express your answer in terms of the number of orbital
periods at 1 au.

17/12/24
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Discussion
a. In this case,

n=n(H/r)*> =3 x0.05> = 7.5 x 103,

so with 15 = 1, the radial drift speed is

Urad = _nUK/2
Viad = —7.5 X 1072 x 29.8 x 103 m s 1/2

Vpad = —112m s L.

(Note that this is equal to Av, calculated in Activity 1, which is as expected
according to the expression for the maximum radial drift speed derived earlier
for the case 15 = 1.)

b. The time t to travel a distance of 1 au radially at the speed from part (a) is

,_ lau _ 1.496 x 10" m

Vrad 112m S_1

t=1.34 x 10°s.

Since the orbital period at a distance of 1 au froma 1 Mg, staris 1y =3.16 x 107
s, this timescale is only about 40 orbital periods.

Activity 3 showed that the radial drift for metre-sized particles can be very rapid. Radial
drift therefore reduces the abundance of rocks in the outer regions of the disc, while
potentially increasing it in the regions closer to the star. The fact that rocks move through
the disc very rapidly gives rise to the ‘metre-sized barrier problem’ in explaining how
planetesimals form: the growth to kilometre-sized planetesimals must happen fast enough
to be complete before the medium-sized particles drift toward the centre, but also occur
via a mechanism that avoids fragmentation.

Figure 5 shows a schematic view of the current picture of planetesimal formation. Once
smaller fragments have formed, they settle vertically into the disc: see Figure 5(a). Next,
the fragments drift radially towards the centre, leading to a possible build-up of solids in
the inner disc: see Figure 5(b). Over-densities of solid material form through streaming
instabilities and then lead to the formation of planetesimals through gravitational
collapse: see Figure 5(c).
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Figure 5 Schematic illustration of the formation of planetesimals.

2.3 The growth of planetary cores

Once kilometre-sized planetesimals have formed with a mass of ~ 10'2 - 10"3 kg, they are
massive enough to interact significantly with their neighbours via gravity and modify their

velocity, thus becoming prone to collisions.

In the same way as for the smaller particles, collisions of planetesimals with other
planetesimals need to happen at sufficiently low speed to lead to accretion. Under this
assumption, the rate at which a planetesimal of mass M, and radius R, grows with time ¢

can be written as:
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2 Rising from the dust

v
= WR%(UKZ<1 + — ) = mRwk X F,. (Equation 17)

2
Urel

dM,
dt

Here, 2 is the surface density of the disc, vqqc is the planetesimal’s escape velocity, v, is
the relative velocity between the two impacting planetesimals and Fg is the gravitational
focusing, which is a dimensionless parameter that describes how the gravitational
attraction between two bodies increases their collision probability.

How does dM,/dt change with the disc’s surface density 2?

m The growth rate scales linearly with the disc’s surface density, so the growth rate will be
higher for discs with a higher mass in planetesimals.

And how does growth rate scale with the distance from the central star?

m With everything else being equal, growth is slower at large distances where the
Keplerian angular speed, wy is smaller.

The following activity shows a quantitative example of the impact of the gravitational
focusing on the growth rate, considering a planetesimal in an orbit similar to that of
Jupiter.

Activity 4

a. Assuming that Fy is constant, starting from Equation 17 write an expression for
the planetesimal’s radius growth rate dR/dt as a function of its density p,.

b. Estimate the value of Fy needed for a planetesimal at the same distance as
Jupiter with wx = 0.16 y' to grow to a radius of Ry, =1000 km in 10° years. Use

surface density of 5 = 100 kg m™? and a planetesimal density of Pp = 3000 kg
-3

a. Assuming the planetesimal to be spherical, its mass M, can be expressed in
terms of its radius R, and density p, as:

4 .
M, = gerf,pp, (Equation 18)
then we note that
dR, dM, dM,
dt  dt  dR,

Since dM,/dt is given by Equation 17, and dM,, /dR,, = 47R2p, (by

differentiation of Equation 18), this means
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dR mR2wg X'F, 1 ww X
> P ¢ K2R, (Equation 19)

dt 4rR2p, 4 Pp

b. Using the values provided, we obtain:

dR, 1 0.6y ! x100kgm 2 "
= —X

a4 3000 kg m~® ¢

dR

dtp =133x10°% F,my '

To reach a radius of 1000 km in 10° years, the desired growth rate must be
dRy/dt=10° m /10° =10 m y".
Hence, the gravitational focusing needs to be approximately

10my*

F, ~ ~ 7500.
1.33 x 10 3my-!

The expression that involves Fg4 (Equation 17) depends on the relative velocities between
planetesimals, the range of which is characterised by the velocity dispersion within the
disc. Hence, velocity dispersion plays a crucial role in determining the accretion rates. It
turns out that there are two regimes:

1. In cases where gravitational focusing of planetesimals is initially very strong,
runaway growth occurs. This is an accelerated phase in the growth of
planetesimals such that the largest bodies get larger at a rapid and increasing rate,
proportional to their mass. This phase is thought to be generally quite short, and
ends when the velocity dispersion of the resulting planetary embryos increases to the
point where gravitational focusing is ineffective.

2. In cases where the largest planetary embryos grow quickly while the smallest grow
slowly, oligarchic growth occurs. This leads to a bimodal mass distribution with a
number of embryos comparable to the mass of the Moon, Mercury or Mars (~10%
kg) embedded in a large population of smaller planetesimals.

2.4 The isolation mass

Once the oligarchic growth phase is over, the resulting embryos are relatively isolated and
on initially circular orbits. They continue growing into planetary cores, by accreting the
nearby leftover planetesimals within a feeding zone which extends a distance Aa either
side of the planetary core. We may write the radius of this feeding zone as Aa = CRy;,
where C is a constant and Ry, is the Hill radius, defined as:

M 1/3 .
Ryuy = (3]\;* ) a. (Equation 20)
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Here, M, is the mass of the planetary core, M- is the mass of the star and a is the radius of
the orbit. The Hill radius is defined as the distance from the planetary core at which its
gravitational force dominates over that of the star.
The growth of the cores continues until all the neighbouring planetesimals have been
consumed. At this point, the mass of the core reaches the isolation mass Mg, defined
as the total mass of the planetesimals within the feeding zone.
8 3/2 a3 .
My, = — (7 XC)" " ——. (Equation 21)
V3 M2

The origin of Equation 21 is explored in the next activity.

Activity 5

a. Write down an expression for the mass of planetesimals within the feeding
zone in terms of the disc surface density 2, distance to the central star a and
feeding zone width Aa. Hence, derive Equation 21.

b. Use Equation 21 to evaluate My, in the terrestrial planets region at ag, = 1.0 au
and in the Jovian planets region at a,,, = 5.2 au, for M- =1 My, 2 = 100 kg m-2
and C = 2v3.

Answer
a. The mass of planetesimals within the feeding zone is the area of the annulus
with width 2Aa at a radius a, multiplied by the surface density. Hence,

My, = 2ma x 2Aa x X.

The width of the feeding zone is defined in terms of the Hill radius of the
resulting planetary core (Equation 20) as Aa = CRy;,. Therefore, once this
mass is all contained within a single core, its mass is given by

M, 1/3

Mso = 47['(12 EC(ﬁ) .
This simplifies to
2/3 471'0220

iso (3M*)1/3,

which may be rearranged to give the requested expression.
b. In the terrestrial planets region (where a = ag = 1.0 au), this gives

(1.496 x 10" m)?
(1.99 x 1030 kg)1/2

8
My = — x (7 x 100kg m~2 x 24/3)%% x
V3

Mg, = 3.94 x 10% kg.
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(This is about 0.066 times the mass of the Earth, or around the mass of
Mercury.)

Similarly, at the distance of Jovian planets (where a = a,,, = 5.2 au), Equation
21 gives an isolation mass that is (5.2) larger. Hence,

Mg, = 5.53 x 10% kg

(This is about 9.3 times the mass of the Earth, which is around half the mass of
Neptune.)

As shown in Activity 5, the fact that Mg, « a°> means that more massive cores up to several
Earth masses can form at larger distances from the central star. However, at a ~ 10 au the
speed of the planetesimals is too high for the collisions to lead to accretion, so it becomes
increasingly hard to build massive planetary cores.

Planetary cores formed in this way will have sizes from around that of Mercury (with
radius a few thousand kilometres) to several times that of the Earth (with radius a few tens
of thousand kilometres).

Activity 6

Summarise the typical sizes of objects involved in the various stages of the core-
accretion scenario.

Discussion

Initially, the particles are dust grains with a typical size of a micron or less which
coagulate into millimetre-sized aggregates. These accumulate into rocks that are
around one metre in size, which grow further into kilometre-sized planetesimals.
Gravitational focusing helps these grow into planetary embryos with sizes and
masses around that of the Moon, Mercury or Mars. These then become planetary
cores by accreting leftover planetesimals within their feeding zone to reach a mass
and size of a few times that of the Earth.
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3 The final stages of planet formation

This section explores the possible outcomes of the final stages of planet formation,
starting with the formation of giant planets via core accretion, then turning to alternative
formation routes and, finally, exploring the effect of migration and planet—planet
interaction on the final architectures of planetary systems.

3.1 Forming giant planets via core accretion

Once the mass of a planetary core reaches a few Earth masses, it starts to build up a gas
envelope. This process can lead to a variety of outcomes because, as seen in Activity 5,
the speed at which a core grows and its final mass depend on where in the disc it is found.

core formation  gas accretion core formation slow core core formation growth in
by solid beyond critical by solid accretion by solid the region of the
accretion mass accretion accretion disc with little
solids
). o o
. N ~ ~
2
2
g
£
L
-~ -~ -~
(% o
=
2,
=
o
gas giant ice giant terrestrial planet
(a) (b) ()

Figure 6 Schematic view of possible outcomes of the core-accretion model.

Figure 6(a) shows that for Jupiter-like gas giants to form, the core needs to reach a
critical mass, high enough that the gas envelope cannot maintain hydrostatic equilibrium
and start contracting. (Usually, M. is in the approximate range 5 — 20 Earth masses.)
Exceeding the critical mass triggers a phase of rapid accretion, which continues until
either the gas is dispersed or the planet opens a gap in the disc and the rate of gas
accretion slows down. (In the core-accretion scenario, the gas-dispersal timescale is one
of the factors that governs the lifespan of the disc and hence the final mass of gas giants.)
Figure 6(b) shows that if the core grows in a region of the disc where accretion is slower
than in (a), there will be less gas in the vicinity of the planetary core by the time the critical
mass is reached. This will typically occur further out than (a). Therefore, the final mass of
the gas envelope will be smaller than it is for gas giants, and the resulting planet will be a
core-dominated ice giant, like Uranus and Neptune.

Finally, Figure 6(c) shows that if the timescale for the core growth is much smaller than the
gas-dispersal timescale, or if the core grows much closer to the star than gas or ice giants
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(where very little solid material is available) the planet will only develop a thin hydrogen-
dominated atmosphere, like that of the primordial Earth.

Many observed protoplanetary discs show gaps, bright rings, asymmetries, spirals and
other structures. Figure 7 provides a stunning example of the variety of configurations that
can arise from the interactions of forming planets with the disc.

Figure 7 Gallery of protoplanetary disc images obtained with the Atacama Large
Millimeter Array (ALMA).

3.2 Super-Jupiter exoplanets

The core-accretion scenario discussed so far has its origin in the search for an
explanation for our Solar System which, until the discovery of 51 Pegasi b, was the source
of all available observational data used to constrain planet-formation theories. While, in its
modern form, the core-accretion scenario succeeds in explaining some of the
characteristics of the observed exoplanet population, there are still some aspects of
planet formation that the model struggles to describe. One such aspect is connected with
the formation of giant planets and, in particular, of directly imaged planets in wide orbits.

As briefly mentioned in Section 3.1, the main problem with the growth of giant planets via
core accretion is connected with the lifetime of the discs, which appear to have gas-

dissipation timescales that are too short to allow for the formation of many of the observed
gas-giant exoplanet systems. This is true for Jupiter-sized exoplanets, but becomes even
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more crucial when considering the directly imaged super-Jupiters (exoplanets with
masses several times that of Jupiter), like the one orbiting the young solar-type star YSES
2 (named after the Young Suns Exoplanet Survey). The YSES 2 planetary system, which
is part of the Scorpius—Centaurus association, is shown in Figure 8. The giant exoplanet
YSES 2 b, which is visible as a bright dot indicated with the arrow in the figure, has a mass
of about 6 Jupiter masses and a semimajor axis of around 110 au, and is one of the few
directly imaged planets around a solar-type star.

ADec/arcsec

1.0 0.0 -1.0
ARA /arcsec

Figure 8 Near-infrared image of the planet around the young star YSES 2, obtained with
the VLT/SPHERE instrument.

3.3 The disc-instability scenario

There is, however, an alternative to the core-accretion scenario that succeeds in
predicting the formation of giant planets, including those with M, > M, via direct collapse
of the gas in the protoplanetary disc. The key idea of this disc-instability scenario is that
a sufficiently cold and/or massive disc tends to be gravitationally unstable. Thus, the disc
can undergo fragmentation to form gravitationally bound clumps that evolve into giant
planets. For fragmentation to occur, the local surface density in the disc needs to be high
enough that the self-gravity of the gas and its differential rotation (both drivers of
gravitational collapse) are higher than the thermal pressure (which counteracts collapse).
These competing effects are nicely summarised by the Toomre criterion, which states
that, for a disc to fragment, its Toomre Q parameter must satisfy:

WK Cs

<1 (Equation 22)
TGX

Q=

Here, ¢, is the sound speed (Equation 3), w is the Keplerian angular speed (Equation 2)
and X is the gas surface density.
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To understand the significance of the Toomre criterion for exoplanet systems, it is
instructive to consider it in the context of a protoplanetary disc similar to the one that
formed our Solar System. To that end, it is useful to introduce the concept of the
minimum-mass solar nebula. This is a hypothetical protoplanetary disc with a surface
density profile 2,(r) defined as the minimum value of the surface density that a disc would
need to have (as a function of radius r from a Sun-like star) to form our Solar System. The
composition of this model nebula is derived from the observed mass of heavy elements in
the Solar System planets, plus enough hydrogen and helium to mimic the solar
composition. The distribution of this model nebula is determined by spreading the mass
needed for each planet over an annulus extending over the distance between them. The
accepted surface density distribution for the minimum-mass solar nebula is:

~3/2
S (r) = 1.7 x 10% (ﬁ) kg m 2.

The following activity shows how to express Q as a function of the stellar mass, disc mass
and the disc aspect ratio, and compares the minimum value of 2 required for
fragmentation to that of the minimum-mass solar nebula.

Activity 7

a. Starting from the definition of scale height H = ¢, /wk (Equation 6), demon-

strate that for a protoplanetary disc with uniform surface density 2, the Toomre
Q parameter can be written as

M, H

, (Equation 23)
Mdisc r

Q=

where ris the distance from the star, H is the scale height, M- is the mass of the
central star and My is the mass of the disc.

b. Show that for the Toomre criterion to be satisfied, the surface density must
obey:

H/T‘ M r \—2
¥ > 1.4 x 10° kg m 2 * )
> ax D kem <0.05)(M®>(1au)

c. Consider a disc with aspect ratio H/r = 0.05 around a solar-type star (M- = 1
Ms). Show that the minimum surface density at r = 1 au for the disc to fragment
is roughly two orders of magnitude greater than that of the minimum-mass
solar nebula at the same radius.

Discussion

a. Using the scale height definition, Equation 22 becomes:
w%{H

- mGXY’
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Using wg = (GM, /r3)'/? (Equation 2), and noting that

varSigma = Mg /(mr?) for a disc with uniform surface density, then Q

becomes

Q_GM* H 7nr? M. H
B r G Mdisc B Mdisc r’

as required.

b. Starting from Equation 23 and multiplying by a factor of M. /(7r*X) = 1 and

the relevant normalised quantities gives

o_ M. H 005 (1.99x10%kg) ( Mus | (1496 x 10" m -
" Mge 7 0.05 Mo w2 X lau

H =2
Q=14x10°kgm™® x — /T (M. ( ! ) .
o 0.05 M@ 1au

For the Toomre criterion to be satisfied, we need Q < 1, therefore rearranging
the equation above:

H )
2> 14x10°kgm? (20 (M ( r ) :
0.05 M@ lau

c. Using the result from part (b), for a solar mass star with a disc whose aspect
ratio is 0.05, fragmentation occurs at r = 1 au when = > 1.4 x 10° kg m™.
Comparing this to the surface density of the minimum-mass solar nebula at r =
1 au gives

Y  1.4x10°kgm2

~ ~ 80 ~ 10°.
Ysn 1.7 x 10* kg m 2

Activity 7(c) showed that the minimum-mass solar nebula does not meet the Toomre
criterion for fragmentation at r = 1 au. In fact, the Toomre criterion would only have been
met at distances greater than several thousand astronomical units in the case of the
minimum-mass solar nebula. So the Solar System planets probably did not form via disc
instability.

Computational simulations show that as a disc becomes unstable, due to Q falling below
1, shock waves are generated within the disc. These shock waves follow a spiral pattern

and heat up the disc. Since Q « ¢ « T2, the net effect of the shocks is for Q to increase

again so the disc stabilises. This effect is known as self-regulation and because of this
the disc temperature and surface density tend to reach values for which Q ~ 1. Therefore,
an additional condition is necessary for fragmentation: the cooling needs to be fast
enough to prevent self-regulation. This is known as the cooling criterion and it is
satisfied if the cooling time obeys:
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1 .
Teool S o (Equation 24)

The fact that both the conditions in Equation 22 and Equation 24 need to be satisfied for
fragmentation effectively limits the mass and semimajor axis of the planets that can form
via the disc-instability scenario, as shown in Figure 9.

100 I
0F not cooling B
criterion
801 fulfilled fulfilled —
701 -
E 60 allowed rapge Toomre —
= ol for formation ot
7 fulfilled
<
g 40F
301
S0l not fulfilled i
10 -
0 | | | | |
0 50 100 150 200 250 300

separation/au

Figure 9 Mass and separation (semimajor axis) of possible planets forming around a
solar-type star satisfying both the cooling and Toomre criteria, for a typical disc aspect
ratio.

3.4 The Jeans mass for fragmentation

The typical mass of a planet formed through fragmentation can be estimated starting from
the definition of its Jeans mass. The Jeans criterion states that a gas cloud will collapse if
the cloud’s kinetic energy is less than the magnitude of its gravitational energy; the
minimum mass of a gas cloud for which the Jeans criterion is met is known as the Jeans
mass. For the geometry of a protoplanetary disc, the Jeans mass in terms of the surface
density is

1(2kpT >
MJeans = E( Gm ) )
where Tand m are the temperature and mean molecular mass of the gas. Noting that the
sound speed is given by ¢ = kgT'/m (Equation 3), so the Jeans mass may be written as

4ct
G2y

Jeans —
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Using Q = 1 to express the surface density 2 for a disc that is just becoming unstable
(Equation 22) this becomes:
4ct, G B 47e?

MJeans = = .
G? cswk  Gug

Then, recognising that H = ¢, /wk (Equation 6) and w? = G M, /r® (Equation 2), we have

47
Mjeans = Gw X (‘H’WK)3
K

47 GM,
MJeans = E X H3 X T—3

Therefore, this gives the final result:

HY .
Mjeans = 47TM*<—> . (Equatlon 25)
T

Estimate the Jeans mass for a typical disc with H/r = 0.05, centred on a Sun-like star.
m Inserting values into Equation 25:

Mieans = 4m x 1.99 x 10*° kg x 0.05°

Mieans = 3.1 x 10%" kg.

(This is about 1.6 Jupiter masses.)

3.5 Migration and planet interaction

Regardless of the mechanism involved, once planets have managed to form, they tend to
interact with each other and with the remaining gas and planetesimals in the disc.
Therefore, planets often end up in a different mass and orbital configuration than the one
they had at formation. There are several ways this can happen.

Interaction with remaining gas in the disc

The angular momentum exchange between a planet and the remaining gas in the disc
causes the planet to migrate. Migration affects both Earth-sized rocky planets and giant
planets, and is one possible mechanism for the formation of hot Jupiters like 51 Pegasi b,
which almost certainly formed much further out and migrated inwards.
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Interaction with the remaining planetesimals

Giant planets can interact with the leftover planetesimals in the disc. The resulting
exchange in angular momentum can cause the planetesimals to be ejected from the
system.

Planet—planet interaction

There is no guarantee that newly formed planets will be on stable orbits. Instabilities can
cause the planets’ orbits to cross, and the net effect of this is usually the ejection of the
smaller-mass body involved in the interaction, leaving the surviving planet on a highly
eccentric orbit. This effect could explain the high eccentricities seen in many exoplanetary
systems.

Interaction with additional stellar companions

If a distant stellar companion is present and a planet is formed on an orbit that is
misaligned with that of the binary companion star, the planet’s eccentricity will change due
to the Kozai-Lidov effect. This is a dynamical phenomenon that affects systems where
two bodies are orbiting each other in the presence of a third, more distant companion. The
presence of the third body causes the position of the inner pair’s orbital periapsis to
oscillate, leading to periodic exchanges between the planet’s orbital eccentricity and
inclination on a timescale of many orbital periods. This is another possible explanation for
the formation of hot Jupiters.

3.6 Comparing theory and observation

Figure 10 shows a snapshot of the exoplanet population (as of early 2023). While being a
result of the observational biases connected to the various detection techniques, the
figure highlights some interesting trends, including the existence of types of planet that
are not present in our Solar System. While core accretion successfully explains the bulk of
the giant planet population discovered through transit, radial-velocity and microlensing
techniques (orange diamonds, red squares and green triangles, respectively, in

Figure 10), and disc instability may explain some of the planets discovered by direct
imaging (blue triangles in Figure 10), neither scenario is able to easily explain the
characteristics of all planets shown here.
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Figure 10 Masses of the known exoplanets (in units of Earth mass) plotted against their
orbital period in years. The different colours and shapes represent the different detection
methods. Solar System planets are plotted as open circles. The dashed-dotted line marks
the position of the Earth.

In particular, the core-accretion scenario struggles to explain the formation of giant
planets at orbital distances larger than a few astronomical units (corresponding to orbital
periods longer than a few years), because of the extended time needed to form big
enough cores at these distances. On the other hand, discs are unlikely to fragment at
small orbital distances from the central star, because the stellar irradiation tends to
stabilise the disc by maintaining high temperature (hence high sound speed and high Q),
so the Toomre and cooling criteria cannot be satisfied simultaneously. Therefore, unless
planets formed by the core-accretion scenario can migrate or be scattered outward to
large distances, then the directly imaged giant planets at large orbital distances must have
formed on their current orbits via another mechanism, such as the disc-instability
scenario. This suggests that giant-planet formation could be bimodal, with different
mechanisms dominating depending on the distance from the central star.

Activity 8

A current catalogue of known exoplanets is maintained at the website exoplanet.eu.
Visit the website now, and you will see two buttons labelled ‘The catalog’ and ‘The
plots’. The first of these allows you to explore the current catalogue of known
exoplanets, while the second allows you to plot various planet parameters against
each other. Try to produce an updated version of Figure 10 by plotting the masses of
known exoplanets against their orbital periods. You can click on the axis labels to
change the units in which the quantities are displayed.
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4 Quiz

Answer the following questions in order to test your understanding of the key ideas that
you have been learning about.

Question 1

Consider four protoplanetary discs, with the same temperature, around stars of
similar mass. One is composed entirely of molecular hydrogen, one is a mixture of
molecular hydrogen and helium, one is composed entirely of helium, and one is a
mixture of hydrogen, helium and other heavier elements giving a mean molecular
mass of 2.3u (where u is the atomic mass unit, 1.66 x 10727 kg). Which disc will have
the largest scale height at a given radius?

o The disc composed of molecular hydrogen only.

The disc composed of helium only.

The disc composed of molecular hydrogen and helium.

The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same scale height.

The scale height is given by H = ¢ /wk. The Keplerian angular speed at a given

radius will be the same for all four discs since it depends only on the stellar mass
and the radius, which are the same in all four cases.

The sound speed is inversely proportional to the mean molecular mass of the gas in
the disc. For the disc composed entirely of molecular hydrogen, m = 2u and for the

disc composed entirely of helium, m = 4u. The disc composed of a mixture of

molecular hydrogen and helium will have a mean molecular mass that is
somewhere between 2u and 4u, and as noted in the question, the disc composed of
molecular hydrogen, helium and other heavier elements has a mean molecular
mass of 2.3u.

The largest scale height will be for the disc with the largest sound speed, and this
will be for the disc with the smallest mean molecular mass. Therefore the
protoplanetary disc composed entirely of molecular hydrogen will have the largest
scale height at a given radius. (Conversely, the disc composed entirely of helium will
have the smallest scale height.)

Question 2

Consider the same four protoplanetary discs as in Question 1. Which disc will have
the smallest difference between the orbital and Keplerian speeds at a given radius?

o The disc composed of molecular hydrogen only.

The disc composed of helium only.

The disc composed of molecular hydrogen and helium.

The disc composed of molecular hydrogen, helium and heavier elements.

o)
o)
o)
o All four discs will have the same difference in speeds.
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The difference between the orbital and Keplerian speeds at a given radius is
given by

Av(r) = ll —4/1— n<g>2] vk (1)

As noted in the answer to Question 1, the Keplerian angular speed at a given radius
will be the same for all four discs since it depends only on the stellar mass and the
radius, which are the same in all four cases. So the difference in speeds will be
smallest when the term under the square root is largest. This term will be largest
when H/r is smallest. From the information in Question 1, this will be for the disc
composed entirely of helium.

Question 3

Consider again the same four protoplanetary discs as in Question 1. Which disc will
have the largest radial drift speed at a given radius for particles with a Stokes
parameter of 1 = 1?

o The disc composed of molecular hydrogen only.

The disc composed of helium only.

The disc composed of molecular hydrogen and helium.

The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same radial drift speed.

For particles with a Stokes parameter of 15 = 1, the radial drift speed from Equation
16 is viag = -vkn/2. As noted in the answer to Question 1, the Keplerian angular
speed at a given radius will be the same for all four discs since it depends only on
the stellar mass and the radius, which are the same in all four cases. So the radial
drift speed will be largest for the disc with the largest value of n. Since this is given
by n = n(H/r)?, and the disc aspect ratio is largest for the disc with the largest scale
height, this corresponds to the disc composed entirely of hydrogen, as revealed in
Question 1.

Question 4

Which of the following statements about the isolation mass involved in the growth of
planetesimals are true?

O The isolation mass increases as the surface density of the protoplanetary disc
increases, for a given star at a given orbital radius.

O The isolation mass increases with orbital distance from the central star, for a
given star and a given disc surface density.

O The isolation mass decreases as the mass of the star increases, for a given
orbital distance and a given disc surface density.
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O For the situation described in Activity 5, the isolation mass at 0.1 au is 3.94 x
10%° kg.

o For the situation described in Activity 5, an isolation mass of 3.94 x 10%° kg
corresponds to a distance of 10 au.

O The isolation mass can never be larger than the mass of the Earth.

Answer

The isolation mass is given by Equation 21:

8 3/2 0,3
My, = — (7 2C)** ——.
V3 M2

Therefore the first three statements are true, since Mg, « Z, Miox @ and Migox 1/
M.""2. Furthermore, since the isolation mass in Activity 5 at 1.0 au is 3.94 x 103 kg,
the corresponding masses at distances 10x smaller and 10x larger are 1000x
smaller and 1000x larger respectively, therefore the next two statements are also
true. Hence all statements are true except the last one.

Question 5

Match the following core-accretion scenarios to the type of planet that results.

Core formation by solid accretion followed by gas accretion beyond the critical
mass.

Core formation by solid accretion followed by slow core accretion.

Core formation by solid accretion followed by growth in the region of the disc with
little solids.

Match each of the items above to an item below.

Gas giant planet
Ice giant planet

Terrestrial planet

See Figure 6 for details.
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Figure 6 (repeated) Schematic view of possible outcomes of the core-accretion
model.

Question 6

A protoplanetary disc around a star of mass M- = 0.75 M, has a surface density of >

= 4700 kg m at a radius of r = 3.3 au. If the disc aspect ratio is H/r = 0.065,

determine whether the disc satisfies the Toomre criterion for fragmentation.

o The Toomre parameter is less than 1 and so the disc does meet the Toomre
criterion.

O The Toomre parameter is greater than 1 and so the disc does not meet the
Toomre criterion.

Answer
The Toomre criterion for fragmentation is

WK Cq

<1.
TGY

Q=

The sound speed may be written ¢ = H wyg, where H is the scale height, so this
becomes
w%(H

= <
TGY
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Then we note that the Keplerian angular speed is wx = (GM, /r*)'/? so this now
becomes

GM, H M. H

= < 1.
P TGY ar2yor

Q=

So, calculating in this case

0.75 x 1.99 x 10% kg
Q= x 0.065
7 x (3.3 x 1.496 x 10" m)2 x 4700 kg m—2

Q =27 (2s.£)

Since this is greater than 1, the Toomre condition is not satisfied and the disc will not
fragment.

Question 7

In a protoplanetary disc around a star of mass M- = 0.45 M, what is the minimum
value of the disc aspect ratio H/r to ensure that the Jeans mass exceeds the mass of
Jupiter?

o Hi/r>0.0055

Hir > 0.055

Hir > 0.55

Hir> 5.5

Hir > 55

The Jeans mass is given by Equation 25 as

H

3
Mjeans = 4mM, (—)
T

So, if the Jeans mass exceeds the mass of Jupiter, we have

H 3
47 M, <7> > MJup

Mu 1/3
H/r>< Jp)

47 M,

In this case
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1/3
1.90 x 10%"k
H/r > g
47 x 0.45 x 1.99 x 10%kg

So the disc aspect ratio must be greater than 0.055 (2 s.f.).

Question 8

The formation of which of the following types of planets cannot be explained by the
core-accretion scenario?

Hot Jupiter planets at very small orbital distances.

Giant planets at orbital distances larger than a few au.
Terrestrial planets in Earth-like orbits around their stars.
Mini-Neptune planets at orbital periods of a few months.
Super-Earth sized planets at orbital periods of less than a year.

(@)

The core-accretion scenario can explain the formation of most types of exoplanets.
However, it struggles to explain the formation of giant planets at orbital distances

larger than a few astronomical units (corresponding to orbital periods longer than a
few years), because of the extended time needed to form big enough cores at these
distances. These planets probably formed by the disc-instability scenario.
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The focus of this course has been on how planets form around stars from the material in
protoplanetary discs. These were some of the key learning points:

1.

Protoplanetary discs comprised of gas and solid material are believed to be the
birthplaces of planets. In hydrostatic equilibrium, the density profile pyas(z) of the
gas in a disc as a function of vertical height z can be expressed as:
2
Z ) (Equation 5)
2H?

Pgas (Z) = pPo €Xp <_

Here, H = ¢, /wk (Equation 6) is the disc scale height, p, is the density at the
midplane (z=0), ¢, = (Pgas/pgas)l/2 (Equation 3) is the sound speed in the gas and

wkg = (GM, /r®)'/? (Equation 2) is the Keplerian angular speed for an orbit at a

distance r from a star of mass M-.

In the radial direction, in addition to the gravitational force, there is also a force due to
the pressure gradient of the gas dPg,s/dr. Therefore, the orbital speed v,(r) of the
gas in the disc has two components: one due to the Keplerian speed,

vk (r) = (GM, /r)'/? (Equation 1), and one due to this extra pressure gradient,
given by

M, dPgas (7 .
Vo (1) = < +— Gl )- (Equation 9)
r Pgas(r)  dr

Usually, dPg,s/dr < 0, so the orbital speed is sub-Keplerian, vom(r) < vk(r). The
difference between the Keplerian speed and the orbital speed is Av = vg — v, and

is typically ~ 100 m s at 1 au from a 1 M, star.

The core-accretion scenario predicts that planets form by accumulation of initially
sub-micron-sized dust grains to form metre-sized rocks, then kilometre-sized
planetesimals and Mercury-sized planetary embryos, and eventually planetary
cores up to several times the size of the Earth.

The relation between the orbital speed and Keplerian speed of particles in a
protoplanetary disc can be expressed as v, = vk (1 — n)'/? (Equation 15) where

n = n(H/r)? with n a numerical constant. Particles in the disc experience a radial

drift inwards with a speed:
Ui

Uad = “UK—— 7>
TS + Tg

where 75 = 1opwk (Equation 12) is called the Stokes number. The Stokes number

is related to the stopping time

Pm 8 (Equation 14)

Tstop —
Pgas Cs

17/12/24
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where p., is the material density of the particles and s is their radius. The maximum
radial drift speed occurs when 15 = 1 which corresponds to roughly metre-sized
rocks. In this case, v,,q (max) = —nuk /2 ~ —Aw.

5. Once planetesimals have formed, their mass M, grows through collisions with other
planetesimals at a rate:

2

dM, .
> = ngwKz‘<1 + v) = TRiwk D Fy, (Equation 17)

dt

2
vrel

where R, is the planetesimal’s radius, ves is its escape velocity, v, is the relative
velocity between the two impacting bodies, 5 is the surface density of the disc and Fg
is the gravitational focusing.

6. Planetary embryos continue growing into planetary cores by accreting leftover
planetesimals within a feeding zone that extends a distance Aa either side of the
core, such that Aa = CRy;;- Here, C is a constant and Ry, is the Hill radius that is

defined as the distance from the planetary core at which its gravitational force
dominates over the gravitational force of the star of mass M., which it orbits at a
distance a:

M 1/3 .
Ry = (3]\;*> a. (Equation 20)

7. The total mass of material within the feeding zone is called the isolation mass and
represents the final mass of the planetary core:
8 3/2 (13 .
Mo = — (7 XC)°** ———. (Equation 21)
V3 M

8. Once the mass of the core reaches a few Earth masses, it starts to build up a gas
envelope. This can lead to the formation of gas giant planets, ice giant planets or
terrestrial planets, depending on the amount of gas accreted by the time the critical
mass for hydrostatic equilibrium is reached. Many observed protoplanetary discs
show gaps, bright rings, asymmetries, spirals and other structures where planets are
forming within them.

9. The disc-instability scenario provides an alternative way to form gas giants. In this
model, a cold and/or massive disc fragments into clumps due to gravitational
instabilities, and these clumps eventually evolve into gas giants. Two conditions
need to be satisfied for disc fragmentation: the Toomre criterion:

WK Cs

<1, (Equation 22)
TGX

Q=

where cg is the speed of sound, wk is the Keplerian angular speed and 2 is the gas
surface density; and the cooling criterion:

1

- (Equation 24)
3wK

Tecool S



5 Conclusion 17/12/24

10.

1.

12.

The fact that both conditions need to be satisfied for fragmentation effectively limits
the mass and semimajor axis values of the planets forming via the disc-instability
scenario.

The typical mass of a planet formed via fragmentation can be estimated from the
Jeans mass, which may be expressed as

H\? .
Mjeans = 47TM*<—> . (Equation 25)
T

The Jeans mass is of order 1-2 times the mass of Jupiter for typical discs.

Once formed, the planets interact with the disc and with each other, undergoing
migration in some cases, until the system reaches its final configuration. Factors
influencing the final composition and orbital configuration of planets can include
interactions with the remaining gas in the disc, interactions with remaining
planetesimals, planet—planet interactions and interactions with additional stellar
companions.

Neither the core-accretion nor disc-instability scenarios can explain all of the
observed exoplanet population. Therefore, it is plausible that both scenarios play a
role in planet formation, where different mechanisms are at play at different
distances from the parent star.
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Glossary

angular momentum
The momentum associated with the rotational motion of a body.
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aspect ratio
The ratio of the height H to the radius r for a two-dimensional structure such as a
protoplanetary disc or an accretion disc. Typically H/r = ¢, /vg where ¢; is the

sound speed and vi is the Keplerian speed.

coagulation

The process by which small (micron-sized) particles in a protoplanetary disc collide
with each other gently enough that they stick together to form millimetre-sized
aggregates.

cooling criterion

The condition necessary for a protoplanetary disc to undergo self-regulation when
forming planets via the disc-instability scenario. It is satisfied if the cooling time
obeys 7,0 < 1/(3wk) Where wy is the Keplerian angular speed.

cooling time

The characteristic timescale for a system to reduce its temperature to some previous
level.

core-accretion scenario

A model for planet formation in which planets form by accumulation of solids into a
core, on which an atmosphere is accreted once a critical value of the core mass is
achieved. Initially, micron-sized dust grains in a protoplanetary disc coagulate to form
metre-sized rocks, then kilometre-sized planetesimals, Mercury-sized planetary
embryos and eventually planetary cores. Contrast with disc-instability scenario.

critical mass

In relation to planet formation, the limiting mass of a planetary core above which the
gas surrounding it cannot maintain hydrostatic equilibrium and starts contracting.
Exceeding the critical mass triggers a phase of rapid accretion onto the core until the
gas in the protoplanetary disc is dispersed.

disc-instability scenario

A model for planet formation in which planets form directly from gravitational
instabilities within a protoplanetary disc. It may be responsible for the formation of
massive planets that lie at large distances from their star. Contrast with core-accretion
scenario.

disc scale height
The scale height of an accretion disc or protoplanetary disc. It is generally given by
Cs
H=

where ¢, is the sound speed and wi is the Keplerian angular speed.
WK

escape velocity

A quantity that gives the minimum speed required for an object to escape the
gravitational influence of a massive body. In Newtonian gravity, the magnitude of the

escape velocity is given by ve,. = (2GM /r)'/? where G is the universal gravitational
constant, M is the mass of the gravitating body and r is the initial distance from its
centre.

exoplanet

A planet orbiting a star other than the Sun. According to the International Astronomical
Union (IAU), an exoplanet has a mass that is below the limiting mass for nuclear fusion
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of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the
same isotopic abundance as the Sun) and orbits a star or stellar remnant. This
definition takes no account of how the object formed, so it is possible that the definition
may include objects that would otherwise be classified as brown dwarfs.

feeding zone
The distance Aa either side of the core from within which further planetesimals are

accreted during the growth of planetary cores in a protoplanetary disc. Typically
Aa = CRyy; where C is a small constant and Ry, is the Hill radius.

fragmentation

The process by which a contracting interstellar cloud breaks up into a number of
separate cloudlets as energy is radiated from the cloud and the Jeans mass
decreases.

gravitational focusing

A dimensionless parameter that describes how the gravitational attraction between two

2
Vesc

bodies increases their collision probability. It is expressed as F, = 1 + where vgg.

vrel

is the escape velocity and v, is the relative velocity between the two impacting
bodies.
Hill radius

M 1/3
The radius of the Hill sphere defined by Ry = a<3]\; > where a is the semimajor

*

axis of the planet’s orbit around a star, M,, is the mass of the planet and M, is the mass

of the star.
hot Jupiter

A giant exoplanet in an extremely close orbit around a star.
hydrostatic equilibrium

A situation in which the forces acting on a fluid (normally gravitational forces) are
balanced by the internal pressure of the fluid (including thermal, degeneracy and
radiation pressure), so that the fluid neither collapses nor expands.

isolation mass

During the growth of a planetary core, this is the total mass of planetesimals within
the feeding zone.

Jeans mass

In a disc geometry (such as a protoplanetary disc undergoing planet formation via the

1 (2T’
disc-instability scenario), the Jeans mass is Mjeans = E( GB‘ ) where X is the
m
surface density of the disc.
Kepler’s first law

One of three laws of planetary motion stated by Johannes Kepler. The first law states
that planets orbit stars in elliptical orbits with the star at one focus of the ellipse.

Kepler’s laws
Three laws summarising the nature of planetary motion.



Glossary

Kepler’s second law

One of three laws of planetary motion stated by Johannes Kepler. The second law
states that a line joining a planet and its star sweeps out equal areas in equal times.
The consequence of this is that planets move fastest when they are closest to their star.

Kepler’s third law

One of three laws of planetary motion stated by Johannes Kepler. The third law states

that the square of a planet’s orbital period is proportional to the cube of the semimajor
3

. . . GM .
axis of its orbit P2, o a®. More generally: ;T =z where M is the total mass of

orb 4

the star and planet.
Keplerian

A term used to denote quantities that relate to properties of a (circular) Keplerian orbit,
e.g. Keplerian speed, Keplerian angular speed.

Keplerian angular speed
The angular speed of a body in a Keplerian orbit, i.e. wx = (GM/R?)'/? where M is

the mass of the central body and R is the orbital radius.

Keplerian orbit

The orbit a point mass executes if it is subject only to the gravitational force from
another point-like mass. Quite often this term is used in a stricter sense to denote a
circular orbit with constant angular speed that obeys Kepler’s third law.

Keplerian orbital speed
The tangential speed of a body in a Keplerian orbit, i.e. vx = (GM/R)'/? where M is

the mass of the central body and R is the orbital radius.

Keplerian speed
The tangential speed of a body in a Keplerian orbit, i.e. vx = (GM/R)'/>where M is

the mass of the central body and R is the orbital radius. Contrast with Keplerian
angular speed.
Kozai-Lidov effect

Synchronised changes in the eccentricity and inclination of an orbit such that one
increases while the other decreases, in a cyclic manner, caused by the presence of a
third, more distant companion.

migration

The process by which protoplanets move away from their place of formation in a
protoplanetary disc.

minimum-mass solar nebula

A hypothetical protoplanetary disc with a surface density profile defined as the
minimum value of the surface density that a protoplanetary disc would need to have
to form our Solar System.

molecular cloud
A cloud of dense cold gas containing molecules, principally molecular hydrogen (H,),

together with dust. Molecular clouds are generally detected through emission lines of
molecular species at radio frequencies; important species include CO, OH and CN.

17/12/24
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Because molecular clouds are cold and dense, they are important sites for star
formation.

oligarchic growth

In planetary formation, this describes the situation where the largest planetary
embryos grow quickly while the smallest grow slowly.

planetary core

A solid body resulting from a planetary embryo that will accumulate further material to
form the core of a planet.

planetary embryo

An object that will likely grow into a planet. Planetary embryos comprise roughly
Mercury-sized bodies formed from planetesimals and may grow into planetary cores.

planetesimal

Solid, roughly kilometre-sized bodies that are intermediate in size between rocks and
planetary embryos during the growth of planets in protoplanetary discs.

protoplanet

A planet growing by a process of accretion in the protoplanetary disc of a
young star or protostar. Small inhomogeneities in the disc are thought to lead to the
growth of protoplanets.

protoplanetary disc

A protoplanetary disc consists of cold gas and dust, and is left over from the material
that formed the central protostar. Small inhomogeneities in the disc are thought to lead
to the growth of protoplanets. Radiation pressure and the solar wind compete against
the gravity of the protoplanets and eventually drive off the remaining material of the
protoplanetary disc.

radial drift speed

The speed with which particles in a disc move radially through it. It depends on the
n

Stokes number 7g typically according to vy,q = —vk -
Ts +Tg

where vk is the

Keplerian speed and n = n(H /r)? where n is a dimensionless constant and H /r is the

aspect ratio of the disc.
runaway growth

An accelerated phase in the growth of planetesimals.
self-regulation

In relation to the disc-instability scenario for planet formation, the situation where, as
a protoplanetary disc becomes unstable (due to the Toomre Q parameter falling
below 1), shock waves are generated in the disc. These heat up the disc, so increasing



