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[bookmark: Session1]Introduction
The idea that our Solar System may not be unique, and that there might be planets orbiting other stars (or exoplanets), has been around for a long time. Important principles that underpin exoplanet research today were foretold by key discoveries in the eighteenth and nineteenth centuries. In 1783, an unseen companion was presented as an explanation of the peculiar periodic dimming observed for the bright star Algol, and in 1844 the observation of a periodic change in position of the bright stars Sirius and Procyon uncovered their two unseen companions. The concept of detecting and exploring an unseen object by studying its influence on a nearby astronomical source has also been applied to exoplanets and their host stars. 
However, exoplanets were expected to be extremely hard to observe in practice. Using the orbits and size of planets in our Solar System as a guide, the influence of an exoplanet on its host star was predicted to be very small. Indeed, it took until the late twentieth century for technological advancements to enable the first exoplanet to be identified, and the result was surprising: 51 Pegasi b (named after its Sun-like host star 51 Pegasi in the Pegasus constellation) was unlike anything in our Solar System. 51 Pegasi b is a hot Jupiter: a planet with a similar mass to Jupiter, but with an incredibly high surface temperature as its orbit takes it very close to its host star. The fact that a planet like 51 Pegasi b exists triggered what became a radical overhaul of theories of planet formation and evolution. But the discovery of a hot Jupiter was also encouraging, as it showed that exoplanet detection was perhaps not quite as impossible a challenge as many had assumed. All astronomers needed to do was start looking for something that is different from the planets of the Solar System. 
Since the discovery of 51 Pegasi b, thousands more exoplanets have been discovered by a variety of techniques. The main outcome of exoplanet searches and characterisation studies carried out using these techniques is a known exoplanet population with a wide variety of physical and orbital characteristics. This course explores the key astrophysical concepts involved in planet formation and how they can be used to explain the great diversity of configurations observed. 
Section 1 focuses on the birthplaces of planets: the protoplanetary discs. Section 2 describes the core-accretion scenario for planet formation. This was initially developed to explain the existence of Jupiter, but has, over the years, become a more general model of planet formation for its ability to account for a large diversity of planetary outcomes, from Earth-sized planetary cores that form first, to ice and gas giants that evolve later. Lastly, Section 3 focuses on the final stages of planet formation, and explores the core-accretion scenario further, as well as an alternative disc-instability scenario, where the formation of massive objects occurs first from the collapse of gas into clumps by self-gravity. 
This course material will refer to masses of stars in terms of the mass of the Sun (represented by M☉ = 1.99 × 1030 kg), and masses of planets in terms of the mass of the Earth (represented by M⊕ = 5.97 × 1024 kg) and the mass of Jupiter (represented by MJup = 1.90 × 1027 kg). Orbital distances from stars will be expressed in terms of the distance of the Earth from the Sun; this is 1 astronomical unit (1 au = 1.496 × 1011 m). 
This OpenLearn course is an adapted extract from the Open University course S384 Astrophysics of stars and exoplanets. 


[bookmark: Session2]Learning outcomes
After studying this course, you should be able to:
· use mathematical models to calculate properties of protoplanetary discs
· understand the core-accretion scenario for the growth of planetary cores from smaller components
· understand the disc-instability scenario for the formation of planets from a circumstellar disc
· describe how planets migrate and interact after forming
· appreciate how planet formation models can explain the observed exoplanet population.


[bookmark: Session3]1 Protoplanetary discs
The idea that planets form from initially microscopic solid material within protoplanetary discs made predominantly of gas dates back to the Enlightenment, possibly starting with the idea that the planets of the Solar System formed out of a nebula surrounding the Sun, which featured in Kant’s Universal Natural History and Theory of the Heavens. Today, our understanding of protoplanetary discs stems from experimental observations and theoretical models of the behaviour of gases in the gravitational fields of stars. 
[bookmark: Session3_Section1]1.1 Observations of protoplanetary discs
The presence of discs around newborn stars is a natural consequence of the collapse of the molecular cloud from which they form, as a mechanism to conserve angular momentum. The first evidence of the existence of protoplanetary discs came thanks to the Hubble Space Telescope (HST) in the mid-1990s, which was more or less at the same time as the first exoplanet discoveries. Figure 1 shows the HST images of the protoplanetary discs around four young stars in the Orion nebula, 1500 light-years from the Sun, compared with the much more detailed view of a protoplanetary disc in the same region obtained with the James Webb Space Telescope (JWST) in 2022. Protoplanetary discs have been observed mainly around young stars (with ages of about one to ten million years) that are close to the final stages of formation. This means that most of the material from the disc has been accreted by the central star, so the mass of the disc (Mdisc) is much lower than the mass of the star (M*). 
Start of Figure
[bookmark: Session3_Figure1][image: Displayed image]
Figure 1 (a) Some of the first images of protoplanetary discs, in the Orion nebula, taken in 1993 with HST. (b) Protoplanetary disc in Orion, imaged with JWST in 2022. The orbit of Neptune is shown for scale. 
View description - Figure 1 (a) Some of the first images of protoplanetary discs, in the Orion nebula, ...
End of Figure
The presence of planets in protoplanetary discs is strongly supported by observations, which have been supported by the development of ground-based instruments such as SPHERE. 
Start of Box
[bookmark: Session3_Box1]Box 1 SPHERE
Start of Figure
[bookmark: Session3_Figure2][image: Displayed image]
Figure 2 The SPHERE instrument (dashed--dot outline) mounted on the side of one of the four telescopes that form the VLT complex in Chile. 
View description - Figure 2 The SPHERE instrument (dashed--dot outline) mounted on the side of one of ...
End of Figure
SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) is an instrument operating at near-infrared and visible wavelengths, installed on one of the four telescopes comprising the European Southern Observatory’s (ESO) Very Large Telescope (VLT) site in Paranal (Chile). SPHERE is one of the first dedicated direct-imaging instruments and its primary science goal is to directly detect and characterise young exoplanets and the discs in which they form. 
End of Box
Recent observations using VLT/SPHERE include the direct detection of two forming planets in the disc around the young T Tauri star PDS 70 (which gets its name from the Pico dos Dias Survey for young stellar objects). One of the directly imaged planets is shown in Figure 3. 
Start of Figure
[bookmark: Session3_Figure3][image: Displayed image]
Figure 3 VLT/SPHERE image of PDS 70 with a planet in a gap in the disc. The other planet in the system is obscured by the bright region of the disc to the right of the central star. 
View description - Figure 3 VLT/SPHERE image of PDS 70 with a planet in a gap in the disc. The other ...
End of Figure
[bookmark: Session3_Section2]1.2 Modelling protoplanetary discs
Material in a protoplanetary disc will be in orbit around a central star (or protostar). A first approximation to the motion of the material is that it is in so-called Keplerian motion, that is it obeys Kepler’s laws of planetary motion. In particular Kepler’s third law, which is a consequence of Newton’s law of gravity, states that the square of the orbital period is proportional to the cube of the orbital radius (assuming circular orbits, which is generally the case), i.e. P2 ∝ a3. As long as the orbiting particle has a mass that is small compared to that of the star, this may be expressed in the following equation: 
Start of $1
[bookmark: Session3_Equation1][image: cap p squared equals four times pi squared times a cubed divided by cap g times cap m sub asterisk operator]
View alternative description - Uncaptioned Equation
End of $1
where G is the gravitational constant (6.674 × 10-11 N m2 kg-2) and M* is the mass of the star. The Keplerian orbital speed is therefore the distance travelled in an orbit (the circumference of the orbit, 2πa) divided by the orbital period, P. This is therefore 
Start of $1
[bookmark: Session3_Equation2](Equation 1)
[image: v sub cap k equals left parenthesis cap g times cap m sub asterisk operator divided by a right parenthesis super one solidus two]
View alternative description - Uncaptioned Equation
End of $1
Figure 4 shows a schematic view of a protoplanetary disc, comprised mostly of molecular hydrogen. The rest of this section will aim to derive and solve the differential equations that govern the vertical (out-of-disc plane) gas-density profile as well as the radial dependence of the orbital (in-disc plane) velocity, which turns out to differ from the pure Keplerian motion. The following two subsections therefore will look in turn at how these two properties may be quantified. 
Start of Figure
[bookmark: Session3_Figure4][image: Displayed image]
Figure 4 Schematic illustration of a protoplanetary disc. 
View description - Figure 4 Schematic illustration of a protoplanetary disc.
End of Figure
[bookmark: Session3_Section3]1.3 Vertical gas-density profile
In the direction perpendicular to the disc plane (vertically, corresponding to the z-axis in Figure 4), the profile of the gas density [image: rho sub gas] is such that the vertical pressure gradient [image: d cap p sub gas postfix solidus d z] and the vertical component of the stellar gravity [image: g sub z] are in hydrostatic equilibrium. Since, as mentioned earlier, [image: cap m sub disc much less than cap m sub asterisk operator], any disc contribution to the gravitational force can be ignored. Therefore we may write: 
Start of $1
[bookmark: Session3_Equation3][image: d cap p sub gas of z divided by d z equals negative rho sub gas of z times g sub z full stop]
View alternative description - Uncaptioned Equation
End of $1
Referring to Figure 4, the vertical component of the stellar gravity at a point A located a distance d from the star is [image: g sub z equals left parenthesis cap g times cap m sub asterisk operator solidus d squared right parenthesis times sine of theta], where G is the gravitational constant. 
Start of Figure
[bookmark: Session3_Figure5][image: Displayed image]
Figure 4 (repeated) Schematic illustration of a protoplanetary disc. 
View description - Figure 4 (repeated) Schematic illustration of a protoplanetary disc.
End of Figure
The angle θ is such that [image: sine of theta equals z solidus d], hence [image: g sub z equals cap g times cap m sub asterisk operator times z solidus d cubed]. Now, the distance d is given by [image: d squared equals r squared plus z squared] but for geometrically thin discs, [image: z much less than r], so we have simply [image: d almost equals r], and therefore 
Start of $1
[bookmark: Session3_Equation4][image: g sub z almost equals cap g times cap m sub asterisk operator times z divided by r cubed full stop]
View alternative description - Uncaptioned Equation
End of $1
Note that the Keplerian angular speed ωK at this same point in the disc is 
Start of $1
[bookmark: Session3_Equation5](Equation 2)
[image: omega sub cap k equals left parenthesis cap g times cap m sub asterisk operator divided by r cubed right parenthesis super one solidus two]
View alternative description - Uncaptioned Equation
End of $1
so [image: g sub z equals z times omega sub cap k squared] and we may write 
Start of $1
[bookmark: Session3_Equation6][image: d cap p sub gas of z divided by d z equals negative z times rho sub gas of z times omega sub cap k squared full stop]
View alternative description - Uncaptioned Equation
End of $1
This equation can be simplified by recognising that, for an ideal gas, the pressure [image: cap p sub gas] and density [image: rho sub gas] are related by the sound speed cs such that 
Start of $1
[bookmark: Session3_Equation7](Equation 3)
[image: equation sequence part 1 c sub s squared equals part 2 k sub cap b times cap t divided by m macron equals part 3 cap p sub gas divided by rho sub gas comma]
View alternative description - Uncaptioned Equation
End of $1
where kB is the Boltzmann constant, T is the temperature of the disc and [image: m macron] is the mean molecular mass. The sound speed may be assumed to be constant for a given disc. Hence, [image: d cap p sub gas equals c sub s squared d rho sub gas] and the expression of hydrostatic equilibrium becomes 
Start of $1
[bookmark: Session3_Equation8](Equation 4)
[image: d rho sub gas of z divided by d z equals negative z times rho sub gas of z times left parenthesis omega sub cap k divided by c sub s right parenthesis squared full stop]
View alternative description - Uncaptioned Equation
End of $1
This differential equation has the following solution, which gives the density in terms of the disc scale height H and the density at the midplane ρ0: 
Start of $1
[bookmark: Session3_Equation9](Equation 5)
[image: rho sub gas of z equals rho sub zero times exp of negative z squared divided by two times cap h squared comma]
View alternative description - Uncaptioned Equation
End of $1
where
Start of $1
[bookmark: Session3_Equation10](Equation 6)
[image: cap h equals c sub s divided by omega sub cap k]
View alternative description - Uncaptioned Equation
End of $1
and
Start of $1
[bookmark: Session3_Equation11](Equation 7)
[image: rho sub zero equals one divided by Square root of two times pi times cap sigma divided by cap h full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, [image: cap sigma equals integral rho sub gas of z d z] is the surface density of the disc (i.e. its mass per unit surface area). 
Start of ITQ
· [bookmark: Session3_ITQ1][bookmark: Session3_Question1]What is the gas density at a height of z = H? 
· [bookmark: Session3_Answer1]The gas density is [image: multirelation rho sub gas of cap h equals rho sub zero times exp of negative one solidus two equals rho sub zero solidus normal e super one solidus two almost equals 0.607 times rho sub zero]. 
End of ITQ
The shape of a disc can be described by its aspect ratio [image: cap h solidus r equals c sub s solidus v sub cap k], where [image: v sub cap k equals r times omega sub cap k] is the Keplerian speed at a radius r. Normally, for protoplanetary discs, 
Start of $1
[bookmark: Session3_Equation12](Equation 8)
[image: cap h divided by r proportional to r super one solidus four full stop]
View alternative description - Uncaptioned Equation
End of $1
This is because the speed of sound [image: c sub s proportional to cap t super one solidus two] (Equation 3) and the temperature profile of the disc is driven by the stellar irradiation, so that usually [image: cap t proportional to r super negative one solidus two]. (The reason for this latter dependence is that, from the Stefan-Boltzmann law, the temperature of the disc [image: cap t proportional to cap f sub asterisk operator super one solidus four] where the flux received from the star [image: cap f sub asterisk operator proportional to one solidus r squared].) Hence, [image: c sub s proportional to r super negative one solidus four] and this result, combined with the fact that [image: omega sub cap k proportional to r super negative three solidus two] (Equation 2), leads to Equation 8. 
Start of ITQ
· [bookmark: Session3_ITQ2][bookmark: Session3_Question2]How does Equation 8 explain the shape of the disc shown in Figure 4?
· [bookmark: Session3_Answer2]The aspect ratio of the disc increases with r, so the disc is expected to be thicker on the edge than in the centre, like the one in Figure 4. 
End of ITQ
[bookmark: Session3_Section4]1.4 Radial dependence of the orbital velocity
Having considered the vertical density profile of the disc, we now turn to the radial dependence of the orbital velocity [image: v sub orb of r]. In the radial direction, in addition to the gravitational force, there is also a force due to the pressure gradient. Hence, the net centripetal acceleration of a small volume of gas in the disc on an assumed circular orbit at radius r is 
Start of $1
[bookmark: Session3_Equation13][image: v sub orb squared of r divided by r equals g of r plus one divided by rho sub gas of r times d cap p sub gas of r divided by d r full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, [image: g of r almost equals cap g times cap m sub asterisk operator solidus r squared] since M* is much greater than the total mass of the disc inside the orbital radius. Therefore, the orbital speed vorb of the gas in the disc has two components: one due to the Keplerian speed [image: v sub cap k of r equals left parenthesis cap g times cap m sub asterisk operator solidus r right parenthesis super one solidus two], and one due to this extra pressure gradient. It is given by: 
Start of $1
[bookmark: Session3_Equation14](Equation 9)
[image: v sub orb squared of r equals cap g times cap m sub asterisk operator divided by r plus r divided by rho sub gas of r times d cap p sub gas of r divided by d r full stop]
View alternative description - Uncaptioned Equation
End of $1
Usually, [image: d cap p sub gas of r postfix solidus d r less than zero] in the disc, so the gas will behave as if it was feeling a slightly lower gravitational pull from the star, and its orbital speed will be sub-Keplerian, that is, [image: v sub orb of r less than v sub cap k of r]. The following activity shows how to quantify the magnitude of the deviation between the actual orbital speed of the gas and its Keplerian speed. 
Start of Activity
[bookmark: Session3_Activity1]Activity 1
Start of Question
[bookmark: Session3_Question3]Using Equation 9 and approximating the pressure gradient as [image: d cap p sub gas of r postfix solidus d r equals negative n times cap p sub gas of r solidus r], where n is a dimensionless constant: 
a. Write an approximate expression for [image: v sub orb of r] as a function of the radius, scale height and Keplerian speed, [image: v sub cap k of r equals r times omega sub cap k of r]. 
b. Calculate the difference between the orbital and Keplerian speeds, [image: normal cap delta times v equals v sub cap k minus v sub orb], at a radius of 1 au from a star of the same mass as the Sun, for a disc of constant aspect ratio H/r = 0.05 and n = 3. (You may assume 1 au = 1.496 × 1011 m, 1 M☉ = 1.99 × 1030 kg, and G = 6.674 × 10-11 N m2 kg-2.) 
End of Question
View answer - Activity 1
End of Activity


[bookmark: Session4]2 Rising from the dust
The basis of the core-accretion scenario is that planets form by accumulation of solids into a core, on which an atmosphere is accreted once a critical value of the core mass is achieved. This section explores the various stages of this process, going from sub-micron-sized dust particles to metre-sized rocks that grow into kilometre-sized planetesimals and finally into Mercury-sized planetary embryos, spanning roughly 12 orders of magnitude in size. The embryos then accumulate further matter, becoming the cores of fully formed planets. 
[bookmark: Session4_Section1]2.1 From dust grains to rocks
Consider again the protoplanetary disc from Activity 1. The fact that the velocity of the gas in a protoplanetary disc is usually sub-Keplerian has important consequences for the evolution of solid particles embedded in it. A consequence of Equation 10 is that for geometrically thin discs ([image: cap h solidus r much less than one]) the radial pressure gradient makes a negligible contribution to the orbital speed of the gas. However, as seen in Activity 1, the difference in speed can be of the order of Δv ~ 100 m s-1 at ~1 au from the star and this turns out to be important in determining how the particles in a disc behave. In particular, a finite Δv can cause particles in the disc to slow down and drift inwards towards the star. 
One of the most important parameters that determines how a particle of mass m interacts with the gas surrounding it is the stopping time, defined as 
Start of $1
[bookmark: Session4_Equation1](Equation 11)
[image: tau sub stop equals m times normal cap delta times v divided by cap f sub drag comma]
View alternative description - Uncaptioned Equation
End of $1
where Fdrag is the magnitude of the drag force that acts in the opposite direction to Δv. This stopping time may be related to the Keplerian orbital speed by 
Start of $1
[bookmark: Session4_Equation2](Equation 12)
[image: tau sub cap s equals tau sub stop times omega sub cap k comma]
View alternative description - Uncaptioned Equation
End of $1
where τS is the Stokes number, which characterises how well particles follow fluid streamlines. Large particles will generally have large Stokes numbers ([image: tau sub cap s much greater than one]), and small particles will generally have small Stokes numbers ([image: tau sub cap s much less than one]). 
Small particles of radius s will be coupled with the gas; that is, they will move at almost the same speed as the gas. Such particles experience a drag force whose magnitude is given by 
Start of $1
[bookmark: Session4_Equation3](Equation 13)
[image: cap f sub drag equals four times pi divided by three times rho sub gas times s squared times v sub th times normal cap delta times v comma]
View alternative description - Uncaptioned Equation
End of $1
where the thermal speed of the gas, vth, is roughly the same as its sound speed, cs. For spherical particles, the material density is [image: rho sub m equals three times m solidus left parenthesis four times pi times s cubed right parenthesis]. So, by combining this with Equations 11 and 13, we have 
Start of $1
[bookmark: Session4_Equation4](Equation 14)
[image: tau sub stop equals rho sub m divided by rho sub gas times s divided by c sub s full stop]
View alternative description - Uncaptioned Equation
End of $1
We can now define the radial drift speed, vrad, as the speed with which particles in the disc move radially through it, drifting inwards towards the star. To derive a general expression for the radial drift speed we write the orbital speed as 
Start of $1
[bookmark: Session4_Equation5](Equation 15)
[image: v sub orb equals v sub cap k times left parenthesis one minus eta right parenthesis super one solidus two comma]
View alternative description - Uncaptioned Equation
End of $1
where, from Equation 10, we already know that [image: eta equals n times left parenthesis cap h solidus r right parenthesis squared]. Remember that n is a dimensionless constant relating the pressure gradient to Pgas/r. After much algebra concerning the equations of motion and making appropriate approximations (the details of which are not important here), a general expression for the radial drift speed is found as: 
Start of $1
[bookmark: Session4_Equation6](Equation 16)
[image: v sub rad equals negative v sub cap k times eta divided by tau sub cap s plus tau sub cap s super negative one full stop]
View alternative description - Uncaptioned Equation
End of $1
The radial drift speed will reach its maximum value when the Stokes number is τS = 1. This corresponds to the situation when the stopping time and Keplerian orbital speed are related by [image: tau sub stop equals one solidus omega sub cap k]. In this case, Equation 16 shows that the radial drift speed is [image: v sub rad of max equals negative eta times v sub cap k solidus two]. 
Start of ITQ
· [bookmark: Session4_ITQ1][bookmark: Session4_Question1]Since η will be a small number for geometrically thin discs, make use of the approximation that [image: left parenthesis one minus eta right parenthesis super one solidus two almost equals one minus left parenthesis eta solidus two right parenthesis] to obtain a simple relation between Δv and vK. Hence write the maximum radial drift speed in terms of Δv. 
· [bookmark: Session4_Answer1]From Equation 10, the difference between the Keplerian speed and the orbital speed is 
Start of $1
[bookmark: Session4_Equation7][image: equation sequence part 1 normal cap delta times v equals part 2 v sub cap k minus v sub orb equals part 3 v sub cap k times left square bracket one minus left parenthesis one minus eta right parenthesis super one solidus two right square bracket full stop]
View alternative description - Uncaptioned Equation
End of $1
Therefore, using the approximation for small values of η, we have
Start of $1
[bookmark: Session4_Equation8][image: equation sequence part 1 normal cap delta times v almost equals part 2 v sub cap k times left square bracket one minus one plus left parenthesis eta solidus two right parenthesis right square bracket almost equals part 3 eta times v sub cap k solidus two]
View alternative description - Uncaptioned Equation
End of $1
and so [image: v sub cap k almost equals two times normal cap delta times v solidus eta]. Hence, the maximum radial drift speed is 
Start of $1
[bookmark: Session4_Equation9][image: equation sequence part 1 v sub rad of max almost equals part 2 negative left parenthesis eta solidus two right parenthesis multiplication two times normal cap delta times v solidus eta almost equals part 3 negative normal cap delta times v full stop]
View alternative description - Uncaptioned Equation
End of $1
End of ITQ
So the maximum radial drift speed is simply the difference between the Keplerian and orbital speeds.
Start of Activity
[bookmark: Session4_Activity1]Activity 2
Start of Question
a. [bookmark: Session4_Question2]For large particles, with s > 1 m, the Stokes number is very large, [image: tau sub cap s much greater than one]. Obtain an expression for the radial drift speed in this case, in terms of τS and Δv only. 
b. For small particles, with s < 1 cm, the Stokes number is very small, [image: tau sub cap s much less than one]. Obtain an expression for the radial drift speed in this case, in terms of τS and Δv only. 
End of Question
View discussion - Activity 2
End of Activity
Activity 2 showed that, in the limits of large or small particles, both values of the radial drift speed are independent of η. In each case, the radial drift speed is a small fraction of Δv. 
[bookmark: Session4_Section2]2.2 Assembling the planetesimals
Thanks to the coupling with the disc, small (sub-micron-sized) particles will collide with each other gently enough that they will always stick together. Therefore, they will efficiently form millimetre-sized aggregates, in a process referred to as coagulation, that tend to settle on the midplane of the disc. 
The simplest assumption for the formation of a planetesimal is that this process continues up to the kilometre-sized scale. As the particles grow, however, so does their speed, and the outcome of a collision no longer necessarily leads to bigger objects, as energetic impacts can be neutral (so the particles will bounce off each other) or even destructive (so the particles fragment and are broken apart once more). 
However, there is also another problem that occurs around the metre-sized scale, as illustrated by the following activity. Metre-sized particles, referred to as ‘rocks’ will have τS ~ 1, and so move with the maximum radial drift speed. 
Start of Activity
[bookmark: Session4_Activity2]Activity 3
Start of Question
a. [bookmark: Session4_Question3]Consider a thin protoplanetary disc with aspect ratio H/r = 0.05 and dimensionless pressure constant n = 3. Calculate the radial drift speed for a particle with τS = 1 at 1 au from a star of mass 1 M☉. Hint: the Keplerian speed at 1 au from a 1 M☉ star as calculated in Activity 1 is vK = 29.8 × 103 m s-1. 
b. Moving at the constant speed from part (a), how long would the particle take to travel a distance of 1 au? Express your answer in terms of the number of orbital periods at 1 au. 
End of Question
View discussion - Activity 3
End of Activity
Activity 3 showed that the radial drift for metre-sized particles can be very rapid. Radial drift therefore reduces the abundance of rocks in the outer regions of the disc, while potentially increasing it in the regions closer to the star. The fact that rocks move through the disc very rapidly gives rise to the ‘metre-sized barrier problem’ in explaining how planetesimals form: the growth to kilometre-sized planetesimals must happen fast enough to be complete before the medium-sized particles drift toward the centre, but also occur via a mechanism that avoids fragmentation. 
Figure 5 shows a schematic view of the current picture of planetesimal formation. Once smaller fragments have formed, they settle vertically into the disc: see Figure 5(a). Next, the fragments drift radially towards the centre, leading to a possible build-up of solids in the inner disc: see Figure 5(b). Over-densities of solid material form through streaming instabilities and then lead to the formation of planetesimals through gravitational collapse: see Figure 5(c). 
Start of Figure
[bookmark: Session4_Figure1][image: Displayed image]
Figure 5 Schematic illustration of the formation of planetesimals. 
View description - Figure 5 Schematic illustration of the formation of planetesimals.
End of Figure
[bookmark: Session4_Section3]2.3 The growth of planetary cores
Once kilometre-sized planetesimals have formed with a mass of ~ 1012 – 1013 kg, they are massive enough to interact significantly with their neighbours via gravity and modify their velocity, thus becoming prone to collisions. 
In the same way as for the smaller particles, collisions of planetesimals with other planetesimals need to happen at sufficiently low speed to lead to accretion. Under this assumption, the rate at which a planetesimal of mass Mp and radius Rp grows with time t can be written as: 
Start of $1
[bookmark: Session4_Equation20](Equation 17)
[image: equation sequence part 1 d cap m sub p divided by d t equals part 2 pi times cap r sub p squared times omega sub cap k times cap sigma times left parenthesis one plus v sub esc squared divided by v sub rel squared right parenthesis equals part 3 pi times cap r sub p squared times omega sub cap k times cap sigma times cap f sub g full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, Σ is the surface density of the disc, vesc is the planetesimal’s escape velocity, vrel is the relative velocity between the two impacting planetesimals and Fg is the gravitational focusing, which is a dimensionless parameter that describes how the gravitational attraction between two bodies increases their collision probability. 
Start of ITQ
· [bookmark: Session4_ITQ2][bookmark: Session4_Question4]How does dMp/dt change with the disc’s surface density Σ? 
· [bookmark: Session4_Answer2]The growth rate scales linearly with the disc’s surface density, so the growth rate will be higher for discs with a higher mass in planetesimals. 
End of ITQ
Start of ITQ
· [bookmark: Session4_ITQ3][bookmark: Session4_Question5]And how does growth rate scale with the distance from the central star?
· [bookmark: Session4_Answer3]With everything else being equal, growth is slower at large distances where the Keplerian angular speed, ωK is smaller. 
End of ITQ
The following activity shows a quantitative example of the impact of the gravitational focusing on the growth rate, considering a planetesimal in an orbit similar to that of Jupiter. 
Start of Activity
[bookmark: Session4_Activity3]Activity 4
Start of Question
a. [bookmark: Session4_Question6]Assuming that Fg is constant, starting from Equation 17 write an expression for the planetesimal’s radius growth rate dRp/dt as a function of its density ρp. 
b. Estimate the value of Fg needed for a planetesimal at the same distance as Jupiter with ωK = 0.16 y-1 to grow to a radius of Rp = 1000 km in 105 years. Use a surface density of Σ = 100 kg m-2 and a planetesimal density of ρp = 3000 kg m-3. 
End of Question
View answer - Activity 4
End of Activity
The expression that involves Fg (Equation 17) depends on the relative velocities between planetesimals, the range of which is characterised by the velocity dispersion within the disc. Hence, velocity dispersion plays a crucial role in determining the accretion rates. It turns out that there are two regimes: 
1. In cases where gravitational focusing of planetesimals is initially very strong, runaway growth occurs. This is an accelerated phase in the growth of planetesimals such that the largest bodies get larger at a rapid and increasing rate, proportional to their mass. This phase is thought to be generally quite short, and ends when the velocity dispersion of the resulting planetary embryos increases to the point where gravitational focusing is ineffective. 
2. In cases where the largest planetary embryos grow quickly while the smallest grow slowly, oligarchic growth occurs. This leads to a bimodal mass distribution with a number of embryos comparable to the mass of the Moon, Mercury or Mars (~1023 kg) embedded in a large population of smaller planetesimals. 
[bookmark: Session4_Section4]2.4 The isolation mass
Once the oligarchic growth phase is over, the resulting embryos are relatively isolated and on initially circular orbits. They continue growing into planetary cores, by accreting the nearby leftover planetesimals within a feeding zone which extends a distance Δa either side of the planetary core. We may write the radius of this feeding zone as Δa = CRHill, where C is a constant and RHill is the Hill radius, defined as: 
Start of $1
[bookmark: Session4_Equation27](Equation 20)
[image: cap r sub Hill equals left parenthesis cap m sub p divided by three times cap m sub asterisk operator right parenthesis super one solidus three times a full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, Mp is the mass of the planetary core, M* is the mass of the star and a is the radius of the orbit. The Hill radius is defined as the distance from the planetary core at which its gravitational force dominates over that of the star. 
The growth of the cores continues until all the neighbouring planetesimals have been consumed. At this point, the mass of the core reaches the isolation mass Miso, defined as the total mass of the planetesimals within the feeding zone. 
Start of $1
[bookmark: Session4_Equation28](Equation 21)
[image: cap m sub normal i times normal s times normal o equals eight divided by Square root of three times left parenthesis pi times cap sigma times cap c right parenthesis super three solidus two times a cubed divided by cap m sub asterisk operator super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
The origin of Equation 21 is explored in the next activity.
Start of Activity
[bookmark: Session4_Activity4]Activity 5
Start of Question
a. [bookmark: Session4_Question7]Write down an expression for the mass of planetesimals within the feeding zone in terms of the disc surface density Σ, distance to the central star a and feeding zone width Δa. Hence, derive Equation 21. 
b. Use Equation 21 to evaluate Miso in the terrestrial planets region at a⊕ = 1.0 au and in the Jovian planets region at aJup = 5.2 au, for M* = 1 M☉, Σ = 100 kg m-2 and C = 2√3. 
End of Question
View answer - Activity 5
End of Activity
As shown in Activity 5, the fact that Miso ∝ a3 means that more massive cores up to several Earth masses can form at larger distances from the central star. However, at a ~ 10 au the speed of the planetesimals is too high for the collisions to lead to accretion, so it becomes increasingly hard to build massive planetary cores. 
Planetary cores formed in this way will have sizes from around that of Mercury (with radius a few thousand kilometres) to several times that of the Earth (with radius a few tens of thousand kilometres). 
Start of Activity
[bookmark: Session4_Activity5]Activity 6
Start of Question
[bookmark: Session4_Question8]Summarise the typical sizes of objects involved in the various stages of the core-accretion scenario.
End of Question
View discussion - Activity 6
End of Activity


[bookmark: Session5]3 The final stages of planet formation
This section explores the possible outcomes of the final stages of planet formation, starting with the formation of giant planets via core accretion, then turning to alternative formation routes and, finally, exploring the effect of migration and planet–planet interaction on the final architectures of planetary systems. 
[bookmark: Session5_Section1]3.1 Forming giant planets via core accretion
Once the mass of a planetary core reaches a few Earth masses, it starts to build up a gas envelope. This process can lead to a variety of outcomes because, as seen in Activity 5, the speed at which a core grows and its final mass depend on where in the disc it is found. 
Start of Figure
[bookmark: Session5_Figure1][image: Displayed image]
Figure 6 Schematic view of possible outcomes of the core-accretion model. 
View description - Figure 6 Schematic view of possible outcomes of the core-accretion model.
End of Figure
Figure 6(a) shows that for Jupiter-like gas giants to form, the core needs to reach a critical mass, high enough that the gas envelope cannot maintain hydrostatic equilibrium and start contracting. (Usually, Mcrit is in the approximate range 5 – 20 Earth masses.) Exceeding the critical mass triggers a phase of rapid accretion, which continues until either the gas is dispersed or the planet opens a gap in the disc and the rate of gas accretion slows down. (In the core-accretion scenario, the gas-dispersal timescale is one of the factors that governs the lifespan of the disc and hence the final mass of gas giants.) 
Figure 6(b) shows that if the core grows in a region of the disc where accretion is slower than in (a), there will be less gas in the vicinity of the planetary core by the time the critical mass is reached. This will typically occur further out than (a). Therefore, the final mass of the gas envelope will be smaller than it is for gas giants, and the resulting planet will be a core-dominated ice giant, like Uranus and Neptune. 
Finally, Figure 6(c) shows that if the timescale for the core growth is much smaller than the gas-dispersal timescale, or if the core grows much closer to the star than gas or ice giants (where very little solid material is available) the planet will only develop a thin hydrogen-dominated atmosphere, like that of the primordial Earth. 
Many observed protoplanetary discs show gaps, bright rings, asymmetries, spirals and other structures. Figure 7 provides a stunning example of the variety of configurations that can arise from the interactions of forming planets with the disc. 
Start of Figure
[bookmark: Session5_Figure2][image: Displayed image]
Figure 7 Gallery of protoplanetary disc images obtained with the Atacama Large Millimeter Array (ALMA). 
View description - Figure 7 Gallery of protoplanetary disc images obtained with the Atacama Large Millimeter ...
End of Figure
[bookmark: Session5_Section2]3.2 Super-Jupiter exoplanets
The core-accretion scenario discussed so far has its origin in the search for an explanation for our Solar System which, until the discovery of 51 Pegasi b, was the source of all available observational data used to constrain planet-formation theories. While, in its modern form, the core-accretion scenario succeeds in explaining some of the characteristics of the observed exoplanet population, there are still some aspects of planet formation that the model struggles to describe. One such aspect is connected with the formation of giant planets and, in particular, of directly imaged planets in wide orbits. 
As briefly mentioned in Section 3.1, the main problem with the growth of giant planets via core accretion is connected with the lifetime of the discs, which appear to have gas-dissipation timescales that are too short to allow for the formation of many of the observed gas-giant exoplanet systems. This is true for Jupiter-sized exoplanets, but becomes even more crucial when considering the directly imaged super-Jupiters (exoplanets with masses several times that of Jupiter), like the one orbiting the young solar-type star YSES 2 (named after the Young Suns Exoplanet Survey). The YSES 2 planetary system, which is part of the Scorpius–Centaurus association, is shown in Figure 8. The giant exoplanet YSES 2 b, which is visible as a bright dot indicated with the arrow in the figure, has a mass of about 6 Jupiter masses and a semimajor axis of around 110 au, and is one of the few directly imaged planets around a solar-type star. 
Start of Figure
[bookmark: Session5_Figure3][image: Displayed image]
Figure 8 Near-infrared image of the planet around the young star YSES 2, obtained with the VLT/SPHERE instrument. 
View description - Figure 8 Near-infrared image of the planet around the young star YSES 2, obtained ...
End of Figure
[bookmark: Session5_Section3]3.3 The disc-instability scenario
There is, however, an alternative to the core-accretion scenario that succeeds in predicting the formation of giant planets, including those with Mp > MJup via direct collapse of the gas in the protoplanetary disc. The key idea of this disc-instability scenario is that a sufficiently cold and/or massive disc tends to be gravitationally unstable. Thus, the disc can undergo fragmentation to form gravitationally bound clumps that evolve into giant planets. For fragmentation to occur, the local surface density in the disc needs to be high enough that the self-gravity of the gas and its differential rotation (both drivers of gravitational collapse) are higher than the thermal pressure (which counteracts collapse). These competing effects are nicely summarised by the Toomre criterion, which states that, for a disc to fragment, its Toomre Q parameter must satisfy: 
Start of $1
[bookmark: Session5_Equation1](Equation 22)
[image: multirelation cap q equals omega sub cap k times c sub s divided by pi times cap g times cap sigma less than one full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, cs is the sound speed (Equation 3), ωK is the Keplerian angular speed (Equation 2) and Σ is the gas surface density. 
To understand the significance of the Toomre criterion for exoplanet systems, it is instructive to consider it in the context of a protoplanetary disc similar to the one that formed our Solar System. To that end, it is useful to introduce the concept of the minimum-mass solar nebula. This is a hypothetical protoplanetary disc with a surface density profile Σsn(r) defined as the minimum value of the surface density that a disc would need to have (as a function of radius r from a Sun-like star) to form our Solar System. The composition of this model nebula is derived from the observed mass of heavy elements in the Solar System planets, plus enough hydrogen and helium to mimic the solar composition. The distribution of this model nebula is determined by spreading the mass needed for each planet over an annulus extending over the distance between them. The accepted surface density distribution for the minimum-mass solar nebula is: 
Start of $1
[bookmark: Session5_Equation2][image: cap sigma sub sn of r equals 1.7 multiplication 10 super four times left parenthesis r divided by one au right parenthesis super negative three solidus two times kg m super negative two full stop]
View alternative description - Uncaptioned Equation
End of $1
The following activity shows how to express Q as a function of the stellar mass, disc mass and the disc aspect ratio, and compares the minimum value of Σ required for fragmentation to that of the minimum-mass solar nebula. 
Start of Activity
[bookmark: Session5_Activity1]Activity 7
Start of Question
a. [bookmark: Session5_Question1]Starting from the definition of scale height [image: cap h equals c sub s solidus omega sub cap k](Equation 6), demonstrate that for a protoplanetary disc with uniform surface density Σ, the Toomre Q parameter can be written as 
Start of $1
[bookmark: Session5_Equation3](Equation 23)
[image: cap q equals cap m sub asterisk operator divided by cap m sub disc times cap h divided by r comma]
View alternative description - Uncaptioned Equation
End of $1
where r is the distance from the star, H is the scale height, M* is the mass of the central star and Mdisc is the mass of the disc. 
b. Show that for the Toomre criterion to be satisfied, the surface density must obey: 
Start of $1
[bookmark: Session5_Equation4][image: cap sigma greater than 1.4 multiplication 10 super six times kg m super negative two times left parenthesis cap h solidus r divided by 0.05 right parenthesis times left parenthesis cap m sub asterisk operator divided by cap m sub circled dot operator right parenthesis times left parenthesis r divided by one au right parenthesis super negative two full stop]
View alternative description - Uncaptioned Equation
End of $1
c. Consider a disc with aspect ratio H/r = 0.05 around a solar-type star (M* = 1 M☉). Show that the minimum surface density at r = 1 au for the disc to fragment is roughly two orders of magnitude greater than that of the minimum-mass solar nebula at the same radius. 
End of Question
View discussion - Activity 7
End of Activity
Activity 7(c) showed that the minimum-mass solar nebula does not meet the Toomre criterion for fragmentation at r = 1 au. In fact, the Toomre criterion would only have been met at distances greater than several thousand astronomical units in the case of the minimum-mass solar nebula. So the Solar System planets probably did not form via disc instability. 
Computational simulations show that as a disc becomes unstable, due to Q falling below 1, shock waves are generated within the disc. These shock waves follow a spiral pattern and heat up the disc. Since [image: cap q proportional to c sub s proportional to cap t super one solidus two], the net effect of the shocks is for Q to increase again so the disc stabilises. This effect is known as self-regulation and because of this the disc temperature and surface density tend to reach values for which Q ~ 1. Therefore, an additional condition is necessary for fragmentation: the cooling needs to be fast enough to prevent self-regulation. This is known as the cooling criterion and it is satisfied if the cooling time obeys: 
Start of $1
[bookmark: Session5_Equation11](Equation 24)
[image: tau sub cool less than or equivalent to one divided by three times omega sub cap k full stop]
View alternative description - Uncaptioned Equation
End of $1
The fact that both the conditions in Equation 22 and Equation 24 need to be satisfied for fragmentation effectively limits the mass and semimajor axis of the planets that can form via the disc-instability scenario, as shown in Figure 9. 
Start of Figure
[bookmark: Session5_Figure4][image: Displayed image]
Figure 9 Mass and separation (semimajor axis) of possible planets forming around a solar-type star satisfying both the cooling and Toomre criteria, for a typical disc aspect ratio. 
View description - Figure 9 Mass and separation (semimajor axis) of possible planets forming around ...
End of Figure
[bookmark: Session5_Section4]3.4 The Jeans mass for fragmentation
The typical mass of a planet formed through fragmentation can be estimated starting from the definition of its Jeans mass. The Jeans criterion states that a gas cloud will collapse if the cloud’s kinetic energy is less than the magnitude of its gravitational energy; the minimum mass of a gas cloud for which the Jeans criterion is met is known as the Jeans mass. For the geometry of a protoplanetary disc, the Jeans mass in terms of the surface density is 
Start of $1
[bookmark: Session5_Equation12][image: cap m sub Jeans equals one divided by cap sigma times left parenthesis two times k sub cap b times cap t divided by cap g times m macron right parenthesis squared comma]
View alternative description - Uncaptioned Equation
End of $1
where T and [image: m macron] are the temperature and mean molecular mass of the gas. Noting that the sound speed is given by [image: c sub s squared equals k sub cap b times cap t solidus m macron] (Equation 3), so the Jeans mass may be written as 
Start of $1
[bookmark: Session5_Equation13][image: cap m sub Jeans equals four times c sub s super four divided by cap g squared times cap sigma full stop]
View alternative description - Uncaptioned Equation
End of $1
Using Q = 1 to express the surface density Σ for a disc that is just becoming unstable (Equation 22) this becomes: 
Start of $1
[bookmark: Session5_Equation14][image: equation sequence part 1 cap m sub Jeans equals part 2 four times c sub s super four divided by cap g squared times pi times cap g divided by c sub s times omega sub cap k equals part 3 four times pi times c sub s cubed divided by cap g times omega sub cap k full stop]
View alternative description - Uncaptioned Equation
End of $1
Then, recognising that [image: cap h equals c sub s solidus omega sub cap k] (Equation 6) and [image: omega sub cap k squared equals cap g times cap m sub asterisk operator solidus r cubed] (Equation 2), we have 
Start of $1
[bookmark: Session5_Equation15][image: cap m sub Jeans equals four times pi divided by cap g times omega sub cap k multiplication left parenthesis cap h times omega sub cap k right parenthesis cubed]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session5_Equation16][image: cap m sub Jeans equals four times pi divided by cap g multiplication cap h cubed multiplication cap g times cap m sub asterisk operator divided by r cubed full stop]
View alternative description - Uncaptioned Equation
End of $1
Therefore, this gives the final result:
Start of $1
[bookmark: Session5_Equation17](Equation 25)
[image: cap m sub Jeans equals four times pi times cap m sub asterisk operator times left parenthesis cap h divided by r right parenthesis cubed full stop]
View alternative description - Uncaptioned Equation
End of $1
Start of ITQ
· [bookmark: Session5_ITQ1][bookmark: Session5_Question2]Estimate the Jeans mass for a typical disc with H/r = 0.05, centred on a Sun-like star. 
· [bookmark: Session5_Answer1]Inserting values into Equation 25:
Start of $1
[bookmark: Session5_Equation18][image: cap m sub Jeans equals four times pi multiplication 1.99 multiplication 10 super 30 kg prefix multiplication of 0.05 cubed]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session5_Equation19][image: cap m sub Jeans equals 3.1 multiplication 10 super 27 kg full stop]
View alternative description - Uncaptioned Equation
End of $1
(This is about 1.6 Jupiter masses.)
End of ITQ
[bookmark: Session5_Section5]3.5 Migration and planet interaction
Regardless of the mechanism involved, once planets have managed to form, they tend to interact with each other and with the remaining gas and planetesimals in the disc. Therefore, planets often end up in a different mass and orbital configuration than the one they had at formation. There are several ways this can happen. 
[bookmark: Session5_InternalSection1]Interaction with remaining gas in the disc
The angular momentum exchange between a planet and the remaining gas in the disc causes the planet to migrate. Migration affects both Earth-sized rocky planets and giant planets, and is one possible mechanism for the formation of hot Jupiters like 51 Pegasi b, which almost certainly formed much further out and migrated inwards. 
[bookmark: Session5_InternalSection2]Interaction with the remaining planetesimals
Giant planets can interact with the leftover planetesimals in the disc. The resulting exchange in angular momentum can cause the planetesimals to be ejected from the system. 
[bookmark: Session5_InternalSection3]Planet–planet interaction
There is no guarantee that newly formed planets will be on stable orbits. Instabilities can cause the planets’ orbits to cross, and the net effect of this is usually the ejection of the smaller-mass body involved in the interaction, leaving the surviving planet on a highly eccentric orbit. This effect could explain the high eccentricities seen in many exoplanetary systems. 
[bookmark: Session5_InternalSection4]Interaction with additional stellar companions
If a distant stellar companion is present and a planet is formed on an orbit that is misaligned with that of the binary companion star, the planet’s eccentricity will change due to the Kozai-Lidov effect. This is a dynamical phenomenon that affects systems where two bodies are orbiting each other in the presence of a third, more distant companion. The presence of the third body causes the position of the inner pair’s orbital periapsis to oscillate, leading to periodic exchanges between the planet’s orbital eccentricity and inclination on a timescale of many orbital periods. This is another possible explanation for the formation of hot Jupiters. 
[bookmark: Session5_Section6]3.6 Comparing theory and observation
Figure 10 shows a snapshot of the exoplanet population (as of early 2023). While being a result of the observational biases connected to the various detection techniques, the figure highlights some interesting trends, including the existence of types of planet that are not present in our Solar System. While core accretion successfully explains the bulk of the giant planet population discovered through transit, radial-velocity and microlensing techniques (orange diamonds, red squares and green triangles, respectively, in Figure 10), and disc instability may explain some of the planets discovered by direct imaging (blue triangles in Figure 10), neither scenario is able to easily explain the characteristics of all planets shown here. 
Start of Figure
[bookmark: Session5_Figure5][image: Displayed image]
Figure 10 Masses of the known exoplanets (in units of Earth mass) plotted against their orbital period in years. The different colours and shapes represent the different detection methods. Solar System planets are plotted as open circles. The dashed-dotted line marks the position of the Earth. 
View description - Figure 10 Masses of the known exoplanets (in units of Earth mass) plotted against ...
End of Figure
In particular, the core-accretion scenario struggles to explain the formation of giant planets at orbital distances larger than a few astronomical units (corresponding to orbital periods longer than a few years), because of the extended time needed to form big enough cores at these distances. On the other hand, discs are unlikely to fragment at small orbital distances from the central star, because the stellar irradiation tends to stabilise the disc by maintaining high temperature (hence high sound speed and high Q), so the Toomre and cooling criteria cannot be satisfied simultaneously. Therefore, unless planets formed by the core-accretion scenario can migrate or be scattered outward to large distances, then the directly imaged giant planets at large orbital distances must have formed on their current orbits via another mechanism, such as the disc-instability scenario. This suggests that giant-planet formation could be bimodal, with different mechanisms dominating depending on the distance from the central star. 
Start of Activity
[bookmark: Session5_Activity2]Activity 8
Start of Question
[bookmark: Session5_Question3]A current catalogue of known exoplanets is maintained at the website exoplanet.eu. Visit the website now, and you will see two buttons labelled ‘The catalog’ and ‘The plots’. The first of these allows you to explore the current catalogue of known exoplanets, while the second allows you to plot various planet parameters against each other. Try to produce an updated version of Figure 10 by plotting the masses of known exoplanets against their orbital periods. You can click on the axis labels to change the units in which the quantities are displayed. 
End of Question
End of Activity


[bookmark: Session6]4 Quiz
Answer the following questions in order to test your understanding of the key ideas that you have been learning about.
Start of SAQ
[bookmark: Session6_SAQ1]Question 1
Start of Question
[bookmark: Session6_Question1]Consider four protoplanetary discs, with the same temperature, around stars of similar mass. One is composed entirely of molecular hydrogen, one is a mixture of molecular hydrogen and helium, one is composed entirely of helium, and one is a mixture of hydrogen, helium and other heavier elements giving a mean molecular mass of 2.3u (where u is the atomic mass unit, 1.66 × 10-27 kg). Which disc will have the largest scale height at a given radius? 
End of Question
The disc composed of molecular hydrogen only.
The disc composed of helium only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same scale height.
View answer - Question 1
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ2]Question 2
Start of Question
[bookmark: Session6_Question2]Consider the same four protoplanetary discs as in Question 1. Which disc will have the smallest difference between the orbital and Keplerian speeds at a given radius? 
End of Question
The disc composed of molecular hydrogen only.
The disc composed of helium only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same difference in speeds.
View answer - Question 2
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ3]Question 3
Start of Question
[bookmark: Session6_Question3]Consider again the same four protoplanetary discs as in Question 1. Which disc will have the largest radial drift speed at a given radius for particles with a Stokes parameter of τS = 1? 
End of Question
The disc composed of molecular hydrogen only.
The disc composed of helium only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same radial drift speed.
View answer - Question 3
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ4]Question 4
Start of Question
[bookmark: Session6_Question4]Which of the following statements about the isolation mass involved in the growth of planetesimals are true? 
End of Question
The isolation mass increases as the surface density of the protoplanetary disc increases, for a given star at a given orbital radius. 
The isolation mass increases with orbital distance from the central star, for a given star and a given disc surface density.
The isolation mass decreases as the mass of the star increases, for a given orbital distance and a given disc surface density.
For the situation described in Activity 5, the isolation mass at 0.1 au is 3.94 × 1020 kg. 
For the situation described in Activity 5, an isolation mass of 3.94 × 1026 kg corresponds to a distance of 10 au. 
The isolation mass can never be larger than the mass of the Earth.
View answer - Question 4
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ5]Question 5
Start of Question
[bookmark: Session6_Question5]Match the following core-accretion scenarios to the type of planet that results.
End of Question
Gas giant planet
Ice giant planet
Terrestrial planet
Core formation by solid accretion followed by gas accretion beyond the critical mass.
Core formation by solid accretion followed by slow core accretion.
Core formation by solid accretion followed by growth in the region of the disc with little solids.
View answer - Question 5
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ6]Question 6
Start of Question
[bookmark: Session6_Question6]A protoplanetary disc around a star of mass M* = 0.75 M☉ has a surface density of Σ = 4700 kg m-2 at a radius of r = 3.3 au. If the disc aspect ratio is H/r = 0.065, determine whether the disc satisfies the Toomre criterion for fragmentation. 
End of Question
The Toomre parameter is less than 1 and so the disc does meet the Toomre criterion.
The Toomre parameter is greater than 1 and so the disc does not meet the Toomre criterion.
View answer - Question 6
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ7]Question 7
Start of Question
[bookmark: Session6_Question7]In a protoplanetary disc around a star of mass M* = 0.45 M☉, what is the minimum value of the disc aspect ratio H/r to ensure that the Jeans mass exceeds the mass of Jupiter? 
End of Question
H/r > 0.0055 
H/r > 0.055 
H/r > 0.55 
H/r > 5.5 
H/r > 55 
View answer - Question 7
End of SAQ
Start of SAQ
[bookmark: Session6_SAQ8]Question 8
Start of Question
[bookmark: Session6_Question8]The formation of which of the following types of planets cannot be explained by the core-accretion scenario? 
End of Question
Hot Jupiter planets at very small orbital distances.
Giant planets at orbital distances larger than a few au.
Terrestrial planets in Earth-like orbits around their stars.
Mini-Neptune planets at orbital periods of a few months.
Super-Earth sized planets at orbital periods of less than a year.
View answer - Question 8
End of SAQ


[bookmark: Session7]5 Conclusion
The focus of this course has been on how planets form around stars from the material in protoplanetary discs. These were some of the key learning points: 
1. Protoplanetary discs comprised of gas and solid material are believed to be the birthplaces of planets. In hydrostatic equilibrium, the density profile ρgas(z) of the gas in a disc as a function of vertical height z can be expressed as: 
Start of $1
[bookmark: Session7_Equation1](Equation 5)
[image: rho sub gas of z equals rho sub zero times exp of negative z squared divided by two times cap h squared full stop]
View alternative description - Uncaptioned Equation
End of $1
Here, [image: cap h equals c sub s solidus omega sub cap k] (Equation 6) is the disc scale height, ρ0 is the density at the midplane (z = 0), [image: c sub s equals left parenthesis cap p sub gas solidus rho sub gas right parenthesis super one solidus two] (Equation 3) is the sound speed in the gas and [image: omega sub cap k equals left parenthesis cap g times cap m sub asterisk operator solidus r cubed right parenthesis super one solidus two] (Equation 2) is the Keplerian angular speed for an orbit at a distance r from a star of mass M*. 
2. In the radial direction, in addition to the gravitational force, there is also a force due to the pressure gradient of the gas dPgas/dr. Therefore, the orbital speed vorb(r) of the gas in the disc has two components: one due to the Keplerian speed, [image: v sub cap k of r equals left parenthesis cap g times cap m sub asterisk operator solidus r right parenthesis super one solidus two] (Equation 1), and one due to this extra pressure gradient, given by 
Start of $1
[bookmark: Session7_Equation2](Equation 9)
[image: v sub orb squared of r equals cap g times cap m sub asterisk operator divided by r plus r divided by rho sub gas of r times d cap p sub gas of r divided by d r full stop]
View alternative description - Uncaptioned Equation
End of $1
Usually, dPgas/dr < 0, so the orbital speed is sub-Keplerian, vorb(r) < vK(r). The difference between the Keplerian speed and the orbital speed is [image: normal cap delta times v equals v sub cap k minus v sub orb] and is typically ~ 100 m s-1 at 1 au from a 1 M☉ star. 
3. The core-accretion scenario predicts that planets form by accumulation of initially sub-micron-sized dust grains to form metre-sized rocks, then kilometre-sized planetesimals and Mercury-sized planetary embryos, and eventually planetary cores up to several times the size of the Earth. 
4. The relation between the orbital speed and Keplerian speed of particles in a protoplanetary disc can be expressed as [image: v sub orb equals v sub cap k times left parenthesis one minus eta right parenthesis super one solidus two] (Equation 15) where [image: eta equals n times left parenthesis cap h solidus r right parenthesis squared] with n a numerical constant. Particles in the disc experience a radial drift inwards with a speed: 
Start of $1
[bookmark: Session7_Equation3][image: v sub rad equals negative v sub cap k times eta divided by tau sub cap s plus tau sub cap s super negative one comma]
View alternative description - Uncaptioned Equation
End of $1
where [image: tau sub cap s equals tau sub stop times omega sub cap k] (Equation 12) is called the Stokes number. The Stokes number is related to the stopping time 
Start of $1
[bookmark: Session7_Equation4](Equation 14)
[image: tau sub stop equals rho sub m divided by rho sub gas times s divided by c sub s]
View alternative description - Uncaptioned Equation
End of $1
where ρm is the material density of the particles and s is their radius. The maximum radial drift speed occurs when τS = 1 which corresponds to roughly metre-sized rocks. In this case, [image: multirelation v sub rad of max equals negative eta times v sub cap k solidus two almost equals negative normal cap delta times v]. 
5. Once planetesimals have formed, their mass Mp grows through collisions with other planetesimals at a rate: 
Start of $1
[bookmark: Session7_Equation5](Equation 17)
[image: equation sequence part 1 d cap m sub p divided by d t equals part 2 pi times cap r sub p squared times omega sub cap k times cap sigma times left parenthesis one plus v sub esc squared divided by v sub rel squared right parenthesis equals part 3 pi times cap r sub p squared times omega sub cap k times cap sigma times cap f sub g comma]
View alternative description - Uncaptioned Equation
End of $1
where Rp is the planetesimal’s radius, vesc is its escape velocity, vrel is the relative velocity between the two impacting bodies, Σ is the surface density of the disc and Fg is the gravitational focusing. 
6. Planetary embryos continue growing into planetary cores by accreting leftover planetesimals within a feeding zone that extends a distance Δa either side of the core, such that [image: normal cap delta times a equals cap c times cap r sub Hill]. Here, C is a constant and RHill is the Hill radius that is defined as the distance from the planetary core at which its gravitational force dominates over the gravitational force of the star of mass M*, which it orbits at a distance a: 
Start of $1
[bookmark: Session7_Equation6](Equation 20)
[image: cap r sub Hill equals left parenthesis cap m sub p divided by three times cap m sub asterisk operator right parenthesis super one solidus three times a full stop]
View alternative description - Uncaptioned Equation
End of $1
7. The total mass of material within the feeding zone is called the isolation mass and represents the final mass of the planetary core: 
Start of $1
[bookmark: Session7_Equation7](Equation 21)
[image: cap m sub iso equals eight divided by Square root of three times left parenthesis pi times cap sigma times cap c right parenthesis super three solidus two times a cubed divided by cap m sub asterisk operator super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
8. Once the mass of the core reaches a few Earth masses, it starts to build up a gas envelope. This can lead to the formation of gas giant planets, ice giant planets or terrestrial planets, depending on the amount of gas accreted by the time the critical mass for hydrostatic equilibrium is reached. Many observed protoplanetary discs show gaps, bright rings, asymmetries, spirals and other structures where planets are forming within them. 
9. The disc-instability scenario provides an alternative way to form gas giants. In this model, a cold and/or massive disc fragments into clumps due to gravitational instabilities, and these clumps eventually evolve into gas giants. Two conditions need to be satisfied for disc fragmentation: the Toomre criterion: 
Start of $1
[bookmark: Session7_Equation8](Equation 22)
[image: multirelation cap q equals omega sub cap k times c sub s divided by pi times cap g times cap sigma less than one comma]
View alternative description - Uncaptioned Equation
End of $1
where cs is the speed of sound, ωK is the Keplerian angular speed and Σ is the gas surface density; and the cooling criterion: 
Start of $1
[bookmark: Session7_Equation9](Equation 24)
[image: tau sub cool less than or equivalent to one divided by three times omega sub cap k full stop]
View alternative description - Uncaptioned Equation
End of $1
The fact that both conditions need to be satisfied for fragmentation effectively limits the mass and semimajor axis values of the planets forming via the disc-instability scenario. 
10. The typical mass of a planet formed via fragmentation can be estimated from the Jeans mass, which may be expressed as 
Start of $1
[bookmark: Session7_Equation10](Equation 25)
[image: cap m sub Jeans equals four times pi times cap m sub asterisk operator times left parenthesis cap h divided by r right parenthesis cubed full stop]
View alternative description - Uncaptioned Equation
End of $1
The Jeans mass is of order 1–2 times the mass of Jupiter for typical discs.
11. Once formed, the planets interact with the disc and with each other, undergoing migration in some cases, until the system reaches its final configuration. Factors influencing the final composition and orbital configuration of planets can include interactions with the remaining gas in the disc, interactions with remaining planetesimals, planet–planet interactions and interactions with additional stellar companions. 
12. Neither the core-accretion nor disc-instability scenarios can explain all of the observed exoplanet population. Therefore, it is plausible that both scenarios play a role in planet formation, where different mechanisms are at play at different distances from the parent star. 
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[bookmark: Glossary1]Glossary
angular momentum
The momentum associated with the rotational motion of a body.
aspect ratio
The ratio of the height [image: cap h] to the radius [image: r] for a two-dimensional structure such as a protoplanetary disc or an accretion disc. Typically [image: cap h solidus r equals c sub s solidus v sub cap k] where [image: c sub s] is the sound speed and [image: v sub cap k] is the Keplerian speed. 
coagulation
The process by which small (micron-sized) particles in a protoplanetary disc collide with each other gently enough that they stick together to form millimetre-sized aggregates. 
cooling criterion
The condition necessary for a protoplanetary disc to undergo self-regulation when forming planets via the disc-instability scenario. It is satisfied if the cooling time obeys [image: tau sub cool less than or equivalent to one solidus left parenthesis three times omega sub cap k right parenthesis] where [image: omega sub cap k] is the Keplerian angular speed. 
cooling time
The characteristic timescale for a system to reduce its temperature to some previous level.
core-accretion scenario
A model for planet formation in which planets form by accumulation of solids into a core, on which an atmosphere is accreted once a critical value of the core mass is achieved. Initially, micron-sized dust grains in a protoplanetary disc coagulate to form metre-sized rocks, then kilometre-sized planetesimals, Mercury-sized planetary embryos and eventually planetary cores. Contrast with disc-instability scenario. 
critical mass
In relation to planet formation, the limiting mass of a planetary core above which the gas surrounding it cannot maintain hydrostatic equilibrium and starts contracting. Exceeding the critical mass triggers a phase of rapid accretion onto the core until the gas in the protoplanetary disc is dispersed. 
disc-instability scenario
A model for planet formation in which planets form directly from gravitational instabilities within a protoplanetary disc. It may be responsible for the formation of massive planets that lie at large distances from their star. Contrast with core-accretion scenario. 
disc scale height
The scale height of an accretion disc or protoplanetary disc. It is generally given by [image: cap h equals c sub s divided by omega sub cap k] where [image: c sub s] is the sound speed and [image: omega sub cap k] is the Keplerian angular speed. 
escape velocity
A quantity that gives the minimum speed required for an object to escape the gravitational influence of a massive body. In Newtonian gravity, the magnitude of the escape velocity is given by [image: v sub esc equals left parenthesis two times cap g times cap m solidus r right parenthesis super one solidus two] where [image: cap g] is the universal gravitational constant, [image: cap m] is the mass of the gravitating body and [image: r] is the initial distance from its centre. 
exoplanet
A planet orbiting a star other than the Sun. According to the International Astronomical Union (IAU), an exoplanet has a mass that is below the limiting mass for nuclear fusion of deuterium (currently calculated to be 13 times the mass of Jupiter for objects with the same isotopic abundance as the Sun) and orbits a star or stellar remnant. This definition takes no account of how the object formed, so it is possible that the definition may include objects that would otherwise be classified as brown dwarfs. 
feeding zone
The distance [image: normal cap delta times a] either side of the core from within which further planetesimals are accreted during the growth of planetary cores in a protoplanetary disc. Typically [image: normal cap delta times a equals cap c times cap r sub Hill] where [image: cap c] is a small constant and [image: cap r sub Hill] is the Hill radius. 
fragmentation
The process by which a contracting interstellar cloud breaks up into a number of separate cloudlets as energy is radiated from the cloud and the Jeans mass decreases. 
gravitational focusing
A dimensionless parameter that describes how the gravitational attraction between two bodies increases their collision probability. It is expressed as [image: cap f sub g equals one plus v sub esc squared divided by v sub rel squared] where [image: v sub esc] is the escape velocity and [image: v sub rel] is the relative velocity between the two impacting bodies. 
Hill radius
The radius of the Hill sphere defined by [image: cap r sub Hill equals a times left parenthesis cap m sub p divided by three times cap m sub asterisk operator right parenthesis super one solidus three] where [image: a] is the semimajor axis of the planet’s orbit around a star, [image: cap m sub p] is the mass of the planet and [image: cap m sub asterisk operator] is the mass of the star. 
hot Jupiter
A giant exoplanet in an extremely close orbit around a star. 
hydrostatic equilibrium
A situation in which the forces acting on a fluid (normally gravitational forces) are balanced by the internal pressure of the fluid (including thermal, degeneracy and radiation pressure), so that the fluid neither collapses nor expands. 
isolation mass
During the growth of a planetary core, this is the total mass of planetesimals within the feeding zone. 
Jeans mass
In a disc geometry (such as a protoplanetary disc undergoing planet formation via the disc-instability scenario), the Jeans mass is [image: cap m sub Jeans equals one divided by cap sigma times left parenthesis two times k sub cap b times cap t divided by cap g times m macron right parenthesis squared] where [image: cap sigma] is the surface density of the disc. 
Kepler’s first law
One of three laws of planetary motion stated by Johannes Kepler. The first law states that planets orbit stars in elliptical orbits with the star at one focus of the ellipse. 
Kepler’s laws
Three laws summarising the nature of planetary motion.
Kepler’s second law
One of three laws of planetary motion stated by Johannes Kepler. The second law states that a line joining a planet and its star sweeps out equal areas in equal times. The consequence of this is that planets move fastest when they are closest to their star. 
Kepler’s third law
One of three laws of planetary motion stated by Johannes Kepler. The third law states that the square of a planet’s orbital period is proportional to the cube of the semimajor axis of its orbit [image: cap p sub orb squared proportional to a cubed]. More generally: [image: a cubed divided by cap p sub orb squared equals cap g times cap m divided by four times pi squared] where [image: cap m] is the total mass of the star and planet. 
Keplerian
A term used to denote quantities that relate to properties of a (circular) Keplerian orbit, e.g. Keplerian speed, Keplerian angular speed. 
Keplerian angular speed
The angular speed of a body in a Keplerian orbit, i.e. [image: omega sub cap k equals left parenthesis cap g times cap m solidus cap r cubed right parenthesis super one solidus two] where [image: cap m] is the mass of the central body and [image: cap r] is the orbital radius. 
Keplerian orbit
The orbit a point mass executes if it is subject only to the gravitational force from another point-like mass. Quite often this term is used in a stricter sense to denote a circular orbit with constant angular speed that obeys Kepler’s third law. 
Keplerian orbital speed
The tangential speed of a body in a Keplerian orbit, i.e. [image: v sub cap k equals left parenthesis cap g times cap m solidus cap r right parenthesis super one solidus two] where [image: cap m] is the mass of the central body and [image: cap r] is the orbital radius. 
Keplerian speed
The tangential speed of a body in a Keplerian orbit, i.e. [image: v sub cap k equals left parenthesis cap g times cap m solidus cap r right parenthesis super one solidus two] where [image: cap m] is the mass of the central body and [image: cap r] is the orbital radius. Contrast with Keplerian angular speed. 
Kozai-Lidov effect
Synchronised changes in the eccentricity and inclination of an orbit such that one increases while the other decreases, in a cyclic manner, caused by the presence of a third, more distant companion. 
migration
The process by which protoplanets move away from their place of formation in a protoplanetary disc. 
minimum-mass solar nebula
A hypothetical protoplanetary disc with a surface density profile defined as the minimum value of the surface density that a protoplanetary disc would need to have to form our Solar System. 
molecular cloud
A cloud of dense cold gas containing molecules, principally molecular hydrogen ([image: cap h sub two]), together with dust. Molecular clouds are generally detected through emission lines of molecular species at radio frequencies; important species include [image: CO], [image: OH] and [image: CN]. Because molecular clouds are cold and dense, they are important sites for star formation. 
oligarchic growth
In planetary formation, this describes the situation where the largest planetary embryos grow quickly while the smallest grow slowly. 
planetary core
A solid body resulting from a planetary embryo that will accumulate further material to form the core of a planet. 
planetary embryo
An object that will likely grow into a planet. Planetary embryos comprise roughly Mercury-sized bodies formed from planetesimals and may grow into planetary cores. 
planetesimal
Solid, roughly kilometre-sized bodies that are intermediate in size between rocks and planetary embryos during the growth of planets in protoplanetary discs. 
protoplanet
A planet growing by a process of accretion in the protoplanetary disc of a young star or protostar. Small inhomogeneities in the disc are thought to lead to the growth of protoplanets. 
protoplanetary disc
A protoplanetary disc consists of cold gas and dust, and is left over from the material that formed the central protostar. Small inhomogeneities in the disc are thought to lead to the growth of protoplanets. Radiation pressure and the solar wind compete against the gravity of the protoplanets and eventually drive off the remaining material of the protoplanetary disc. 
radial drift speed
The speed with which particles in a disc move radially through it. It depends on the Stokes number [image: tau sub cap s] typically according to [image: v sub rad equals negative v sub cap k times eta divided by tau sub cap s plus tau sub cap s super negative one] where [image: v sub cap k] is the Keplerian speed and [image: eta equals n times left parenthesis cap h solidus r right parenthesis squared] where [image: n] is a dimensionless constant and [image: cap h solidus r] is the aspect ratio of the disc. 
runaway growth
An accelerated phase in the growth of planetesimals. 
self-regulation
In relation to the disc-instability scenario for planet formation, the situation where, as a protoplanetary disc becomes unstable (due to the Toomre Q parameter falling below [image: one]), shock waves are generated in the disc. These heat up the disc, so increasing 𝑄, and the disc stabilises. A disc will undergo self-regulation if the cooling criterion is met. 
sound speed
The speed at which the wavefronts of a sound wave propagate. In an ideal gas, the sound speed [image: c sub s] is given by [image: left parenthesis cap p solidus rho right parenthesis super one solidus two] where [image: cap p] is the gas pressure and [image: rho] is its density, or equivalently by [image: left parenthesis k sub cap b times cap t solidus m macron right parenthesis super one solidus two] where [image: cap t] is the temperature, [image: k sub cap b] is the Boltzmann constant and [image: m macron] is the mean mass of the particles involved. 
Stokes number
A dimensionless parameter which characterises how well particles embedded in a fluid flow follow streamlines. It is given by [image: tau sub cap s equals tau sub stop times omega sub cap k] where [image: tau sub stop] is the stopping time and [image: omega sub cap k] is the Keplerian angular speed. Large particles will generally have large Stokes numbers ([image: tau sub cap s much greater than one]) and will detach from the flow when it changes velocity abruptly. Small particles will generally have small Stokes numbers ([image: tau sub cap s much less than one]) and will closely follow fluid streamlines at all times. 
stopping time
A characteristic timescale that describes how a particle of mass [image: m] interacts with gas surrounding it. It is defined as [image: tau sub stop equals m times normal cap delta times v solidus cap f sub drag] where [image: cap f sub drag] is the magnitude of the drag force that acts in the opposite direction to [image: normal cap delta times v], which is the speed of the particle with respect to the gas. 
streaming instabilities
A mechanism for the formation of planetesimals in which the drag felt by solid particles orbiting in a gas disk leads to their spontaneous concentration into clumps which can gravitationally collapse. 
surface density
The density, in units of mass per unit area, of an (essentially) two-dimensional structure such as a protoplanetary disc or accretion disc. 
Toomre criterion
The necessary condition that must be satisfied for a protoplanetary disc to undergo planet formation via the disc-instability scenario. For fragmentation to occur the local surface density of the disc needs to be high enough that the self-gravity of the gas and its differential rotation are higher than the thermal pressure. 
Toomre Q parameter 
For a protoplanetary disc to fragment, and for planets to form via the disc-instability scenario, the disc must satisfy the Toomre criterion. For this to happen, the Toomre [image: cap q] parameter must satisfy [image: cap q less than one] where [image: cap q equals omega sub cap k times c sub s divided by pi times cap g times cap sigma] where [image: omega sub cap k] is the Keplerian angular speed, [image: c sub s] is the sound speed, and [image: cap sigma] is the disc surface density. 
velocity dispersion
The spread of velocities present in a given population of objects.


[bookmark: Solutions1]Solutions
Activity 1
[bookmark: Session3_Answer3]Answer
a. From Equation 3, the pressure of the gas Pgas is linked to the sound speed cs such that [image: cap p sub gas equals rho sub gas times c sub s squared]. Using this, the expression for the pressure gradient becomes: 
Start of $1
[bookmark: Session3_Equation15][image: equation sequence part 1 d cap p sub gas of r divided by d r equals part 2 negative n times cap p sub gas of r divided by r equals part 3 negative n times c sub s squared times rho sub gas of r divided by r comma]
View alternative description - Uncaptioned Equation
End of $1
then substituting this into Equation 9 gives
Start of $1
[bookmark: Session3_Equation16][image: equation sequence part 1 v sub orb squared of r equals part 2 cap g times cap m sub asterisk operator divided by r minus n times c sub s squared equals part 3 v sub cap k squared of r minus n times c sub s squared full stop]
View alternative description - Uncaptioned Equation
End of $1
Finally, using the fact that
Start of $1
[bookmark: Session3_Equation17][image: equation sequence part 1 cap h divided by r equals part 2 c sub s divided by r times omega sub cap k of r equals part 3 c sub s divided by v sub cap k of r comma]
View alternative description - Uncaptioned Equation
End of $1
the requested expression is obtained as:
Start of $1
[bookmark: Session3_Equation18](Equation 10)
[image: v sub orb of r equals v sub cap k of r times left square bracket one minus n times left parenthesis cap h divided by r right parenthesis squared right square bracket super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
b. From Equation 10, the difference in velocities is
Start of $1
[bookmark: Session3_Equation19][image: normal cap delta times v of r equals v sub cap k of r minus v sub orb of r]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session3_Equation20][image: normal cap delta times v of r equals left square bracket one minus Square root of one minus n times left parenthesis cap h divided by r right parenthesis squared right square bracket times v sub cap k of r]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session3_Equation21][image: normal cap delta times v of r equals left square bracket one minus Square root of one minus three multiplication 0.05 squared right square bracket times v sub normal cap k of r]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session3_Equation22][image: normal cap delta times v of r equals 0.00376 times v sub cap k of r]
View alternative description - Uncaptioned Equation
End of $1
So the difference is only about 0.4% of the Keplerian velocity.
To evaluate Δv at r = 1 au we need to calculate the Keplerian velocity vK at 1 au: 
Start of $1
[bookmark: Session3_Equation23][image: equation sequence part 1 v sub cap k equals part 2 Square root of cap g times cap m sub asterisk operator divided by r equals part 3 Square root of cap g multiplication one times cap m sub circled dot operator divided by one au]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session3_Equation24][image: v sub cap k equals Square root of 6.674 multiplication 10 super negative 11 times cap n m super two times kg super negative two multiplication 1.99 multiplication 10 super 30 kg divided by 1.496 multiplication 10 super 11 m]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session3_Equation25][image: v sub cap k equals 29.8 multiplication 10 cubed times m s super negative one]
View alternative description - Uncaptioned Equation
End of $1
which gives [image: equation sequence part 1 normal cap delta times v equals part 2 0.00376 times v sub cap k equals part 3 112 times m s super negative one]. So the difference between the orbital and Keplerian speeds at this radius is about 100 m s-1. 
Back to - Activity 1
Activity 2
[bookmark: Session4_Discussion1]Discussion
a. For large particles [image: tau sub cap s much greater than one] so Equation 16 becomes 
Start of $1
[bookmark: Session4_Equation10][image: v sub rad almost equals negative eta times v sub cap k solidus tau sub cap s full stop]
View alternative description - Uncaptioned Equation
End of $1
Then, substituting for vK using the approximation [image: v sub cap k almost equals two times normal cap delta times v solidus eta], we have 
Start of $1
[bookmark: Session4_Equation11][image: v sub rad almost equals negative two times normal cap delta times v solidus tau sub cap s full stop]
View alternative description - Uncaptioned Equation
End of $1
b. For small particles [image: tau sub cap s much less than one] so Equation 16 becomes 
Start of $1
[bookmark: Session4_Equation12][image: v sub rad almost equals negative eta times v sub cap k times tau sub cap s full stop]
View alternative description - Uncaptioned Equation
End of $1
Then, substituting for vK using the approximation [image: v sub cap k almost equals two times normal cap delta times v solidus eta], we have 
Start of $1
[bookmark: Session4_Equation13][image: v sub rad almost equals negative two times normal cap delta times v times tau sub cap s full stop]
View alternative description - Uncaptioned Equation
End of $1
Back to - Activity 2
Activity 3
[bookmark: Session4_Discussion2]Discussion
a. In this case, 
Start of $1
[bookmark: Session4_Equation14][image: equation sequence part 1 eta equals part 2 n times left parenthesis cap h solidus r right parenthesis squared equals part 3 three multiplication 0.05 squared equals part 4 7.5 multiplication 10 super negative three comma]
View alternative description - Uncaptioned Equation
End of $1
so with τS = 1, the radial drift speed is 
Start of $1
[bookmark: Session4_Equation15][image: v sub rad equals negative eta times v sub cap k solidus two]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session4_Equation16][image: v sub rad equals negative 7.5 multiplication 10 super negative three multiplication 29.8 multiplication 10 cubed times m s super negative one solidus two]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session4_Equation17][image: v sub rad equals negative 112 times m s super negative one full stop]
View alternative description - Uncaptioned Equation
End of $1
(Note that this is equal to Δv, calculated in Activity 1, which is as expected according to the expression for the maximum radial drift speed derived earlier for the case τS = 1.) 
b. The time t to travel a distance of 1 au radially at the speed from part (a) is 
Start of $1
[bookmark: Session4_Equation18][image: equation sequence part 1 t equals part 2 one au divided by v sub rad equals part 3 1.496 multiplication 10 super 11 m divided by 112 times m s super negative one]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session4_Equation19][image: t equals 1.34 multiplication 10 super nine s full stop]
View alternative description - Uncaptioned Equation
End of $1
Since the orbital period at a distance of 1 au from a 1 M☉ star is 1 y = 3.16 × 107 s, this timescale is only about 40 orbital periods. 
Back to - Activity 3
Activity 4
[bookmark: Session4_Answer4]Answer
a. Assuming the planetesimal to be spherical, its mass Mp can be expressed in terms of its radius Rp and density ρp as: 
Start of $1
[bookmark: Session4_Equation21](Equation 18)
[image: cap m sub p equals four divided by three times pi times cap r sub p cubed times rho sub p comma]
View alternative description - Uncaptioned Equation
End of $1
then we note that
Start of $1
[bookmark: Session4_Equation22][image: d cap r sub p divided by d t equals d cap m sub p divided by d t division d cap m sub p divided by d cap r sub p full stop]
View alternative description - Uncaptioned Equation
End of $1
Since dMp/dt is given by Equation 17, and [image: d cap m sub p postfix solidus d cap r sub p equals four times pi times cap r sub p squared times rho sub p] (by differentiation of Equation 18), this means 
Start of $1
[bookmark: Session4_Equation23](Equation 19)
[image: equation sequence part 1 d cap r sub p divided by normal d times normal t equals part 2 pi times cap r sub p squared times omega sub cap k times cap sigma times cap f sub g divided by four times pi times cap r sub p squared times rho sub p equals part 3 one divided by four times omega sub normal cap k times cap sigma divided by rho sub p times cap f sub g full stop]
View alternative description - Uncaptioned Equation
End of $1
b. Using the values provided, we obtain:
Start of $1
[bookmark: Session4_Equation24][image: d cap r sub p divided by d t equals one divided by four multiplication 0.16 times y super negative one multiplication 100 times kg m super negative two divided by 3000 times kg m super negative three times cap f sub g]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session4_Equation25][image: d cap r sub p divided by d t equals 1.33 multiplication 10 super negative three times cap f sub g times m y super negative one full stop]
View alternative description - Uncaptioned Equation
End of $1
To reach a radius of 1000 km in 105 years, the desired growth rate must be dRp/dt= 106 m / 105 = 10 m y-1. 
Hence, the gravitational focusing needs to be approximately
Start of $1
[bookmark: Session4_Equation26][image: equation sequence part 1 cap f sub g almost equals part 2 10 m y super negative one divided by 1.33 multiplication 10 super negative three m y super negative one almost equals part 3 7500 full stop]
View alternative description - Uncaptioned Equation
End of $1
Back to - Activity 4
Activity 5
[bookmark: Session4_Answer5]Answer
a. The mass of planetesimals within the feeding zone is the area of the annulus with width 2Δa at a radius a, multiplied by the surface density. Hence, 
Start of $1
[bookmark: Session4_Equation29][image: cap m sub iso equals two times pi times a multiplication two times normal cap delta times a multiplication cap sigma full stop]
View alternative description - Uncaptioned Equation
End of $1
The width of the feeding zone is defined in terms of the Hill radius of the resulting planetary core (Equation 20) as Δa = CRHill. Therefore, once this mass is all contained within a single core, its mass is given by 
Start of $1
[bookmark: Session4_Equation30][image: cap m sub iso equals four times pi times a squared times cap sigma times cap c times left parenthesis cap m sub iso divided by three times cap m sub asterisk operator right parenthesis super one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
This simplifies to 
Start of $1
[bookmark: Session4_Equation31][image: cap m sub iso super two solidus three equals four times pi times a squared times cap sigma times cap c divided by left parenthesis three times cap m sub asterisk operator right parenthesis super one solidus three comma]
View alternative description - Uncaptioned Equation
End of $1
which may be rearranged to give the requested expression.
b. In the terrestrial planets region (where a = a⊕ = 1.0 au), this gives 
Start of $1
[bookmark: Session4_Equation32][image: cap m sub iso equals eight divided by Square root of three multiplication left parenthesis pi multiplication 100 times kg m super negative two multiplication two times Square root of three right parenthesis super three solidus two multiplication left parenthesis 1.496 multiplication 10 super 11 m right parenthesis cubed divided by left parenthesis 1.99 multiplication 10 super 30 kg right parenthesis super one solidus two]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session4_Equation33][image: cap m sub iso equals 3.94 multiplication 10 super 23 kg full stop]
View alternative description - Uncaptioned Equation
End of $1
(This is about 0.066 times the mass of the Earth, or around the mass of Mercury.)
Similarly, at the distance of Jovian planets (where a = aJup = 5.2 au), Equation 21 gives an isolation mass that is (5.2)3 larger. Hence, 
Start of $1
[bookmark: Session4_Equation34][image: cap m sub iso equals 5.53 multiplication 10 super 25 kg]
View alternative description - Uncaptioned Equation
End of $1
(This is about 9.3 times the mass of the Earth, which is around half the mass of Neptune.)
Back to - Activity 5
Activity 6
[bookmark: Session4_Discussion3]Discussion
Initially, the particles are dust grains with a typical size of a micron or less which coagulate into millimetre-sized aggregates. These accumulate into rocks that are around one metre in size, which grow further into kilometre-sized planetesimals. Gravitational focusing helps these grow into planetary embryos with sizes and masses around that of the Moon, Mercury or Mars. These then become planetary cores by accreting leftover planetesimals within their feeding zone to reach a mass and size of a few times that of the Earth. 
Back to - Activity 6
Activity 7
[bookmark: Session5_Discussion1]Discussion
a. Using the scale height definition, Equation 22 becomes: 
Start of $1
[bookmark: Session5_Equation5][image: cap q equals omega sub cap k squared times cap h divided by pi times cap g times cap sigma full stop]
View alternative description - Uncaptioned Equation
End of $1
Using [image: omega sub cap k equals left parenthesis cap g times cap m sub asterisk operator solidus r cubed right parenthesis super one solidus two] (Equation 2), and noting that [image: v times a times r times cap s times i times g times m times a equals cap m sub disc solidus left parenthesis pi times r squared right parenthesis] for a disc with uniform surface density, then Q becomes 
Start of $1
[bookmark: Session5_Equation6][image: equation sequence part 1 cap q equals part 2 cap g times cap m sub asterisk operator divided by r cubed times cap h divided by pi times cap g times pi times r squared divided by cap m sub disc equals part 3 cap m sub asterisk operator divided by cap m sub disc times cap h divided by r comma]
View alternative description - Uncaptioned Equation
End of $1
as required.
b. Starting from Equation 23 and multiplying by a factor of [image: cap m sub disc solidus left parenthesis pi times r squared times cap sigma right parenthesis equals one] and the relevant normalised quantities gives 
Start of $1
[bookmark: Session5_Equation7][image: cap q equals cap m sub asterisk operator divided by cap m sub disc times cap h divided by r multiplication 0.05 divided by 0.05 times left parenthesis 1.99 multiplication 10 super 30 kg divided by cap m sub circled dot operator right parenthesis times left parenthesis cap m sub disc divided by pi times r squared times cap sigma right parenthesis times left parenthesis 1.496 multiplication 10 super 11 m divided by one au right parenthesis super negative two]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session5_Equation8][image: cap q equals 1.4 multiplication 10 super six times kg m super negative two multiplication one divided by cap sigma times left parenthesis cap h solidus r divided by 0.05 right parenthesis times left parenthesis cap m sub asterisk operator divided by cap m sub circled dot operator right parenthesis times left parenthesis r divided by one au right parenthesis super negative two full stop]
View alternative description - Uncaptioned Equation
End of $1
For the Toomre criterion to be satisfied, we need Q < 1, therefore rearranging the equation above: 
Start of $1
[bookmark: Session5_Equation9][image: cap sigma greater than 1.4 multiplication 10 super six times kg m super negative two times left parenthesis cap h solidus r divided by 0.05 right parenthesis times left parenthesis cap m sub asterisk operator divided by cap m sub circled dot operator right parenthesis times left parenthesis r divided by one au right parenthesis super negative two full stop]
View alternative description - Uncaptioned Equation
End of $1
c. Using the result from part (b), for a solar mass star with a disc whose aspect ratio is 0.05, fragmentation occurs at r = 1 au when Σ > 1.4 × 106 kg m-2. Comparing this to the surface density of the minimum-mass solar nebula at r = 1 au gives 
Start of $1
[bookmark: Session5_Equation10][image: multirelation cap sigma divided by cap sigma sub sn almost equals 1.4 multiplication 10 super six times kg m super negative two divided by 1.7 multiplication 10 super four times kg m super negative two almost equals 80 tilde operator 10 squared full stop]
View alternative description - Uncaptioned Equation
End of $1
Back to - Activity 7
Question 1
[bookmark: Session6_Answer1]Answer
Right:
The disc composed of molecular hydrogen only.
Wrong:
The disc composed of helium only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same scale height.
The scale height is given by [image: cap h equals c sub s solidus omega sub cap k]. The Keplerian angular speed at a given radius will be the same for all four discs since it depends only on the stellar mass and the radius, which are the same in all four cases. 
The sound speed is inversely proportional to the mean molecular mass of the gas in the disc. For the disc composed entirely of molecular hydrogen, [image: m macron equals two times u] and for the disc composed entirely of helium, [image: m macron equals four times u]. The disc composed of a mixture of molecular hydrogen and helium will have a mean molecular mass that is somewhere between 2u and 4u, and as noted in the question, the disc composed of molecular hydrogen, helium and other heavier elements has a mean molecular mass of 2.3u. 
The largest scale height will be for the disc with the largest sound speed, and this will be for the disc with the smallest mean molecular mass. Therefore the protoplanetary disc composed entirely of molecular hydrogen will have the largest scale height at a given radius. (Conversely, the disc composed entirely of helium will have the smallest scale height.) 
Back to - Question 1
Question 2
[bookmark: Session6_Answer2]Answer
Right:
The disc composed of helium only.
Wrong:
The disc composed of molecular hydrogen only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same difference in speeds.
The difference between the orbital and Keplerian speeds at a given radius is given by 
Start of $1
[bookmark: Session6_Equation1][image: normal cap delta times v of r equals left square bracket one minus Square root of one minus n times left parenthesis cap h divided by r right parenthesis squared right square bracket times v sub cap k of r]
View alternative description - Uncaptioned Equation
End of $1
As noted in the answer to Question 1, the Keplerian angular speed at a given radius will be the same for all four discs since it depends only on the stellar mass and the radius, which are the same in all four cases. So the difference in speeds will be smallest when the term under the square root is largest. This term will be largest when H/r is smallest. From the information in Question 1, this will be for the disc composed entirely of helium. 
Back to - Question 2
Question 3
[bookmark: Session6_Answer3]Answer
Right:
The disc composed of molecular hydrogen only.
Wrong:
The disc composed of helium only.
The disc composed of molecular hydrogen and helium.
The disc composed of molecular hydrogen, helium and heavier elements.
All four discs will have the same radial drift speed.
For particles with a Stokes parameter of τS = 1, the radial drift speed from Equation 16 is vrad = -vKη/2. As noted in the answer to Question 1, the Keplerian angular speed at a given radius will be the same for all four discs since it depends only on the stellar mass and the radius, which are the same in all four cases. So the radial drift speed will be largest for the disc with the largest value of η. Since this is given by η = n(H/r)2, and the disc aspect ratio is largest for the disc with the largest scale height, this corresponds to the disc composed entirely of hydrogen, as revealed in Question 1. 
Back to - Question 3
Question 4
[bookmark: Session6_Answer4]Answer
Right:
The isolation mass increases as the surface density of the protoplanetary disc increases, for a given star at a given orbital radius. 
The isolation mass increases with orbital distance from the central star, for a given star and a given disc surface density.
The isolation mass decreases as the mass of the star increases, for a given orbital distance and a given disc surface density.
For the situation described in Activity 5, the isolation mass at 0.1 au is 3.94 × 1020 kg. 
For the situation described in Activity 5, an isolation mass of 3.94 × 1026 kg corresponds to a distance of 10 au. 
Wrong:
The isolation mass can never be larger than the mass of the Earth.
The isolation mass is given by Equation 21: 
Start of $1
[bookmark: Session6_Equation2][image: cap m sub normal i times normal s times normal o equals eight divided by Square root of three times left parenthesis pi times cap sigma times cap c right parenthesis super three solidus two times a cubed divided by cap m sub asterisk operator super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
Therefore the first three statements are true, since Miso ∝ Σ, Miso∝ a3 and Miso∝ 1/ M*1/2. Furthermore, since the isolation mass in Activity 5 at 1.0 au is 3.94 × 1023 kg, the corresponding masses at distances 10× smaller and 10× larger are 1000× smaller and 1000× larger respectively, therefore the next two statements are also true. Hence all statements are true except the last one. 
Back to - Question 4
Question 5
[bookmark: Session6_Answer5]Answer
The correct matches are:
Gas giant planet
Core formation by solid accretion followed by gas accretion beyond the critical mass.
Ice giant planet
Core formation by solid accretion followed by slow core accretion.
Terrestrial planet
Core formation by solid accretion followed by growth in the region of the disc with little solids.
See Figure 6 for details.
Start of Figure
[bookmark: Session6_Figure1][image: Displayed image]
Figure 6 (repeated) Schematic view of possible outcomes of the core-accretion model. 
View description - Figure 6 (repeated) Schematic view of possible outcomes of the core-accretion mo ...
End of Figure
Back to - Question 5
Question 6
[bookmark: Session6_Answer6]Answer
Right:
The Toomre parameter is greater than 1 and so the disc does not meet the Toomre criterion.
Wrong:
The Toomre parameter is less than 1 and so the disc does meet the Toomre criterion.
The Toomre criterion for fragmentation is 
Start of $1
[bookmark: Session6_Equation3][image: multirelation cap q equals omega sub normal cap k times c sub normal s divided by pi times cap g times cap sigma less than one full stop]
View alternative description - Uncaptioned Equation
End of $1
The sound speed may be written cs = H ωK, where H is the scale height, so this becomes 
Start of $1
[bookmark: Session6_Equation4][image: multirelation cap q equals omega sub normal cap k squared times cap h divided by pi times cap g times cap sigma less than one full stop]
View alternative description - Uncaptioned Equation
End of $1
Then we note that the Keplerian angular speed is [image: omega sub normal cap k equals left parenthesis cap g times cap m sub asterisk operator solidus r cubed right parenthesis super one solidus two] so this now becomes 
Start of $1
[bookmark: Session6_Equation5][image: multirelation cap q equals cap g times cap m sub asterisk operator divided by r cubed times cap h divided by pi times cap g times cap sigma equals cap m sub asterisk operator divided by pi times r squared times normal cap sigma times cap h divided by r less than one full stop]
View alternative description - Uncaptioned Equation
End of $1
So, calculating in this case 
Start of $1
[bookmark: Session6_Equation6][image: cap q equals 0.75 multiplication 1.99 multiplication 10 super 30 kg divided by pi multiplication left parenthesis 3.3 multiplication 1.496 multiplication 10 super 11 times normal m right parenthesis squared multiplication 4700 kg m super negative two multiplication 0.065]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation7][image: cap q equals 27 left parenthesis two s full stop f full stop right parenthesis]
View alternative description - Uncaptioned Equation
End of $1
Since this is greater than 1, the Toomre condition is not satisfied and the disc will not fragment. 
Back to - Question 6
Question 7
[bookmark: Session6_Answer7]Answer
Right:
H/r > 0.055 
Wrong:
H/r > 0.0055 
H/r > 0.55 
H/r > 5.5 
H/r > 55 
The Jeans mass is given by Equation 25 as 
Start of $1
[bookmark: Session6_Equation8][image: cap m sub Jeans equals four times pi times cap m sub asterisk operator times left parenthesis cap h divided by r right parenthesis cubed]
View alternative description - Uncaptioned Equation
End of $1
So, if the Jeans mass exceeds the mass of Jupiter, we have 
Start of $1
[bookmark: Session6_Equation9][image: four times pi times cap m sub asterisk operator times left parenthesis cap h divided by r right parenthesis cubed greater than cap m sub Jup]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation10][image: cap h solidus r greater than left parenthesis cap m sub Jup divided by four times pi times cap m sub asterisk operator right parenthesis super one solidus three]
View alternative description - Uncaptioned Equation
End of $1
In this case 
Start of $1
[bookmark: Session6_Equation11][image: cap h solidus r greater than left parenthesis 1.90 multiplication 10 super 27 kg divided by four times pi multiplication 0.45 multiplication 1.99 multiplication 10 super 30 kg right parenthesis super one solidus three]
View alternative description - Uncaptioned Equation
End of $1
So the disc aspect ratio must be greater than 0.055 (2 s.f.).
Back to - Question 7
Question 8
[bookmark: Session6_Answer8]Answer
Right:
Giant planets at orbital distances larger than a few au.
Wrong:
Hot Jupiter planets at very small orbital distances.
Terrestrial planets in Earth-like orbits around their stars.
Mini-Neptune planets at orbital periods of a few months.
Super-Earth sized planets at orbital periods of less than a year.
The core-accretion scenario can explain the formation of most types of exoplanets. However, it struggles to explain the formation of giant planets at orbital distances larger than a few astronomical units (corresponding to orbital periods longer than a few years), because of the extended time needed to form big enough cores at these distances. These planets probably formed by the disc-instability scenario. 
Back to - Question 8


[bookmark: Descriptions1]Descriptions
[bookmark: Session3_Description1]Figure 1 (a) Some of the first images of protoplanetary discs, in the Orion nebula, taken in 1993 with HST. (b) Protoplanetary disc in Orion, imaged with JWST in 2022. The orbit of Neptune is shown for scale. 
The figure shows the following photos: Part (a) show four images of protoplanetary discs, in the Orion nebula, taken in 1993 with HST. Each image has a central glowing dot of varying size that is surrounded by a dark cloud of varying thickness. Part (b) shows a protoplanetary disc in Orion, imaged with JWST in 2022. A white clove-shaped light is seen with a central horizontal band labelled ‘disc’. 
Back to - Figure 1 (a) Some of the first images of protoplanetary discs, in the Orion nebula, taken in 1993 with HST. (b) Protoplanetary disc in Orion, imaged with JWST in 2022. The orbit of Neptune is shown for scale.
[bookmark: Session3_Description2]Figure 2 The SPHERE instrument (dashed--dot outline) mounted on the side of one of the four telescopes that form the VLT complex in Chile. 
This is a photograph of the SPHERE instrument in an industrial environment. 
Back to - Figure 2 The SPHERE instrument (dashed--dot outline) mounted on the side of one of the four telescopes that form the VLT complex in Chile.
[bookmark: Session3_Description3]Figure 3 VLT/SPHERE image of PDS 70 with a planet in a gap in the disc. The other planet in the system is obscured by the bright region of the disc to the right of the central star. 
An image is shown with scales on the axes. The horizontal axis is labelled ‘Delta R A in arcsec’ and ranges from 0.9 to negative 0.9 in decrements of 0.1 unit. The vertical axis, labelled ‘Delta Dec in arcsec’, ranges from negative 0.9 to 0.9 in increments of 0.1 unit. At the centre of the graph (0.0, 0.0), a central cavity with a star as a tiny bright dot is shown against a deep red background. A planet is shown as a bright light on the lower left of the cavity. The planet’s disc is shown as an elliptical orbit around the cavity, with an axis of 1.4 arcsec in the vertical direction and 1.0 arcsec in the horizontal direction. The disc appears as a brighter shape mostly on the right side of the star. 
Back to - Figure 3 VLT/SPHERE image of PDS 70 with a planet in a gap in the disc. The other planet in the system is obscured by the bright region of the disc to the right of the central star.
[bookmark: Session3_Alternative1]Uncaptioned Equation
cap p squared equals four times pi squared times a cubed divided by cap g times cap m sub asterisk operator 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative2]Uncaptioned Equation
v sub cap k equals left parenthesis cap g times cap m sub asterisk operator divided by a right parenthesis super one solidus two 
Back to - Uncaptioned Equation
[bookmark: Session3_Description4]Figure 4 Schematic illustration of a protoplanetary disc.
In the figure, a central yellow sphere labelled ‘M subscript asterisk’ is shown. A horizontal line is drawn across the sphere, such that the sphere lies in the middle of the line. This line is labelled ‘midplane (z equals 0)’. A right arrowhead is drawn at the right end of the line. This arrowhead is labelled ‘r-axis’. An upward arrow labelled ‘z-axis’ is drawn from the sphere. The protoplanetary disc is shown as a semicircular ring around the yellow sphere, lying on the horizontal plane facing away from the observer. The two cross-sections of the ring, lying on either side of the sphere are symmetrical about the z-axis. The height of the disc increases on either side of the horizontal line towards the periphery, forming two triangular cross-sections. A thin green layer covers the upper and lower surfaces of the disc, and the interior portion of the disc is shown as a blue region with several black dots. The black dots lying closest to the horizontal line are bigger, and the size decreases the further the dots are from the horizontal line. A point labelled ‘A’ is taken near the top-right corner of the right disc. A line of length d joins A and the centre of the sphere. This line forms an angle theta with the horizontal line. From A, a vertical line of length z is drawn to the horizontal line. 
Back to - Figure 4 Schematic illustration of a protoplanetary disc.
[bookmark: Session3_Alternative7]Uncaptioned Equation
d cap p sub gas of z divided by d z equals negative rho sub gas of z times g sub z full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Description5]Figure 4 (repeated) Schematic illustration of a protoplanetary disc.
In the figure, a central yellow sphere labelled ‘M subscript asterisk’ is shown. A horizontal line is drawn across the sphere, such that the sphere lies in the middle of the line. This line is labelled ‘midplane (z equals 0)’. A right arrowhead is drawn at the right end of the line. This arrowhead is labelled ‘r-axis’. An upward arrow labelled ‘z-axis’ is drawn from the sphere. The protoplanetary disc is shown as a semicircular ring around the yellow sphere, lying on the horizontal plane facing away from the observer. The two cross-sections of the ring, lying on either side of the sphere are symmetrical about the z-axis. The height of the disc increases on either side of the horizontal line towards the periphery, forming two triangular cross-sections. A thin green layer covers the upper and lower surfaces of the disc, and the interior portion of the disc is shown as a blue region with several black dots. The black dots lying closest to the horizontal line are bigger, and the size decreases the further the dots are from the horizontal line. A point labelled ‘A’ is taken near the top-right corner of the right disc. A line of length d joins A and the centre of the sphere. This line forms an angle theta with the horizontal line. From A, a vertical line of length z is drawn to the horizontal line. 
Back to - Figure 4 (repeated) Schematic illustration of a protoplanetary disc.
[bookmark: Session3_Alternative14]Uncaptioned Equation
g sub z almost equals cap g times cap m sub asterisk operator times z divided by r cubed full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative15]Uncaptioned Equation
omega sub cap k equals left parenthesis cap g times cap m sub asterisk operator divided by r cubed right parenthesis super one solidus two 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative17]Uncaptioned Equation
d cap p sub gas of z divided by d z equals negative z times rho sub gas of z times omega sub cap k squared full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative20]Uncaptioned Equation
equation sequence part 1 c sub s squared equals part 2 k sub cap b times cap t divided by m macron equals part 3 cap p sub gas divided by rho sub gas comma 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative23]Uncaptioned Equation
d rho sub gas of z divided by d z equals negative z times rho sub gas of z times left parenthesis omega sub cap k divided by c sub s right parenthesis squared full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative24]Uncaptioned Equation
rho sub gas of z equals rho sub zero times exp of negative z squared divided by two times cap h squared comma 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative25]Uncaptioned Equation
cap h equals c sub s divided by omega sub cap k 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative26]Uncaptioned Equation
rho sub zero equals one divided by Square root of two times pi times cap sigma divided by cap h full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative31]Uncaptioned Equation
cap h divided by r proportional to r super one solidus four full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative39]Uncaptioned Equation
v sub orb squared of r divided by r equals g of r plus one divided by rho sub gas of r times d cap p sub gas of r divided by d r full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative42]Uncaptioned Equation
v sub orb squared of r equals cap g times cap m sub asterisk operator divided by r plus r divided by rho sub gas of r times d cap p sub gas of r divided by d r full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative50]Uncaptioned Equation
equation sequence part 1 d cap p sub gas of r divided by d r equals part 2 negative n times cap p sub gas of r divided by r equals part 3 negative n times c sub s squared times rho sub gas of r divided by r comma 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative51]Uncaptioned Equation
equation sequence part 1 v sub orb squared of r equals part 2 cap g times cap m sub asterisk operator divided by r minus n times c sub s squared equals part 3 v sub cap k squared of r minus n times c sub s squared full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative52]Uncaptioned Equation
equation sequence part 1 cap h divided by r equals part 2 c sub s divided by r times omega sub cap k of r equals part 3 c sub s divided by v sub cap k of r comma 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative53]Uncaptioned Equation
v sub orb of r equals v sub cap k of r times left square bracket one minus n times left parenthesis cap h divided by r right parenthesis squared right square bracket super one solidus two full stop 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative54]Uncaptioned Equation
normal cap delta times v of r equals v sub cap k of r minus v sub orb of r 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative55]Uncaptioned Equation
normal cap delta times v of r equals left square bracket one minus Square root of one minus n times left parenthesis cap h divided by r right parenthesis squared right square bracket times v sub cap k of r 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative56]Uncaptioned Equation
normal cap delta times v of r equals left square bracket one minus Square root of one minus three multiplication 0.05 squared right square bracket times v sub normal cap k of r 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative57]Uncaptioned Equation
normal cap delta times v of r equals 0.00376 times v sub cap k of r 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative58]Uncaptioned Equation
equation sequence part 1 v sub cap k equals part 2 Square root of cap g times cap m sub asterisk operator divided by r equals part 3 Square root of cap g multiplication one times cap m sub circled dot operator divided by one au 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative59]Uncaptioned Equation
v sub cap k equals Square root of 6.674 multiplication 10 super negative 11 times cap n m super two times kg super negative two multiplication 1.99 multiplication 10 super 30 kg divided by 1.496 multiplication 10 super 11 m 
Back to - Uncaptioned Equation
[bookmark: Session3_Alternative60]Uncaptioned Equation
v sub cap k equals 29.8 multiplication 10 cubed times m s super negative one 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative2]Uncaptioned Equation
tau sub stop equals m times normal cap delta times v divided by cap f sub drag comma 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative3]Uncaptioned Equation
tau sub cap s equals tau sub stop times omega sub cap k comma 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative6]Uncaptioned Equation
cap f sub drag equals four times pi divided by three times rho sub gas times s squared times v sub th times normal cap delta times v comma 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative8]Uncaptioned Equation
tau sub stop equals rho sub m divided by rho sub gas times s divided by c sub s full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative9]Uncaptioned Equation
v sub orb equals v sub cap k times left parenthesis one minus eta right parenthesis super one solidus two comma 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative11]Uncaptioned Equation
v sub rad equals negative v sub cap k times eta divided by tau sub cap s plus tau sub cap s super negative one full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative15]Uncaptioned Equation
equation sequence part 1 normal cap delta times v equals part 2 v sub cap k minus v sub orb equals part 3 v sub cap k times left square bracket one minus left parenthesis one minus eta right parenthesis super one solidus two right square bracket full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative16]Uncaptioned Equation
equation sequence part 1 normal cap delta times v almost equals part 2 v sub cap k times left square bracket one minus one plus left parenthesis eta solidus two right parenthesis right square bracket almost equals part 3 eta times v sub cap k solidus two 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative18]Uncaptioned Equation
equation sequence part 1 v sub rad of max almost equals part 2 negative left parenthesis eta solidus two right parenthesis multiplication two times normal cap delta times v solidus eta almost equals part 3 negative normal cap delta times v full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative22]Uncaptioned Equation
v sub rad almost equals negative eta times v sub cap k solidus tau sub cap s full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative24]Uncaptioned Equation
v sub rad almost equals negative two times normal cap delta times v solidus tau sub cap s full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative26]Uncaptioned Equation
v sub rad almost equals negative eta times v sub cap k times tau sub cap s full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative28]Uncaptioned Equation
v sub rad almost equals negative two times normal cap delta times v times tau sub cap s full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative29]Uncaptioned Equation
equation sequence part 1 eta equals part 2 n times left parenthesis cap h solidus r right parenthesis squared equals part 3 three multiplication 0.05 squared equals part 4 7.5 multiplication 10 super negative three comma 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative30]Uncaptioned Equation
v sub rad equals negative eta times v sub cap k solidus two 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative31]Uncaptioned Equation
v sub rad equals negative 7.5 multiplication 10 super negative three multiplication 29.8 multiplication 10 cubed times m s super negative one solidus two 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative32]Uncaptioned Equation
v sub rad equals negative 112 times m s super negative one full stop 
Back to - Uncaptioned Equation
[bookmark: Session4_Alternative33]Uncaptioned Equation
equation sequence part 1 t equals part 2 one au divided by v sub rad equals part 3 1.496 multiplication 10 super 11 m divided by 112 times m s super negative one 
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[bookmark: Session4_Description1]Figure 5 Schematic illustration of the formation of planetesimals.
The figure has three parts: In part (a), a cross-section of a protoplanetary disc is shown. The cross-section resembles a triangle, which is broader on the right and tapers towards the left. The leftward arrow at the left end is labelled ‘to star’. A thin green layer is shown bounding the top and bottom surfaces of the disc. The interior of the disc is a blue region having two groups of black dots of varying sizes. From each of the black dots near the top surface, a downward arrow is shown. From each of the black dots near the bottom surface, an upward arrow is shown. This diagram is labelled ‘coagulation and vertical settling’. Part (b) shows the same cross-section of a protoplanetary disc. Now, the blue region is empty. A series of short leftward arrows is shown in a horizontal line passing through the middle of the disc. These arrows are labelled ‘radial drift’. The middle portion of the disc is labelled ‘possible pile-up of solids in inner disc’. A rectangular section of the middle portion of the blue region is magnified. In the magnified image, two thin green bands are shown between thick blue bands. These thin bands are labelled ‘gravitational collapse of streaming instability over-densities’. In part (c), the same cross-section is shown. Now the blue region is filled with black dots. The dots nearer to the green bands at the top and at the bottom are smaller in size, while the dots lying in the middle portion of the blue region are larger in size. The smaller dots are labelled ‘remaining solids’. This diagram is labelled ‘formation of planetesimals with a range of initial masses’. 
Back to - Figure 5 Schematic illustration of the formation of planetesimals.
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[bookmark: Session5_Description1]Figure 6 Schematic view of possible outcomes of the core-accretion model.
The figure has three parts. Each part is comprised of two stages: formation and output. In part (a), in the formation stage, two hemispheres with common centres are shown on two sides of a vertical line. The left side of the line is labelled ‘core formation by solid accretion’. Two identical smaller spheres are drawn on the left side of the left hemisphere. An arrow from each of the smaller spheres points towards the centre of the left hemisphere. The right side of the line is labelled ‘gas accretion beyond critical mass’. The hemisphere on the right is bigger in size. A blue ring is shown around the right hemisphere. A set of radial arrows points towards the ring around the right hemisphere. In the output stage, a photo of Jupiter (a gas giant) is shown. In part (b), in the formation stage, a similar diagram to that in part (a) is shown. The left side of the line is labelled ‘core formation by solid accretion’. The right side of the line is labelled ‘slow core accretion’. Here, the blue ring is thinner compared with part (a) and there are fewer radial arrows. In the output stage, a photo of Neptune (an ice giant) is shown. In part (c), in the formation stage, another similar diagram is shown. The left side of the line is labelled ‘core formation by solid accretion’. The right side of the line is labelled ‘growth in the region of the disc with little solids’. Here, both hemispheres are of the same size. The blue ring is far thinner compared with parts (a) and (b), and surrounds both hemispheres. In the output stage, a photo of Earth (a terrestrial planet) is shown. 
Back to - Figure 6 Schematic view of possible outcomes of the core-accretion model.
[bookmark: Session5_Description2]Figure 7 Gallery of protoplanetary disc images obtained with the Atacama Large Millimeter Array (ALMA).
In this figure, 21 types of protoplanetary discs are shown, arranged in five rows and four columns. Each disc appears unique with different thicknesses and orientations. Some are circular and some are elliptical, some have ring structures within them. 
Back to - Figure 7 Gallery of protoplanetary disc images obtained with the Atacama Large Millimeter Array (ALMA).
[bookmark: Session5_Description3]Figure 8 Near-infrared image of the planet around the young star YSES 2, obtained with the VLT/SPHERE instrument.
An image is shown with scales on the axes. The horizontal axis, labelled ‘Delta R A in arcsec’, ranges from 1.2 to negative 1.2 in decrements of 0.2 units. The vertical axis, labelled ‘Delta Dec in arcsec’, ranges from negative 1.2 to 1.2 in increments of 0.2 units. At the centre of the graph (0.0, 0.0), a central ring is shown with bright orange streaks and black streaks emanating radially from the ring. The intensity of the orange and black streaks reduce as they move away from the central ring. A planet is shown as an orange sphere on the lower right of the ring close to the periphery of the emanating streaks. 
Back to - Figure 8 Near-infrared image of the planet around the young star YSES 2, obtained with the VLT/SPHERE instrument.
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[bookmark: Session5_Description4]Figure 9 Mass and separation (semimajor axis) of possible planets forming around a solar-type star satisfying both the cooling and Toomre criteria, for a typical disc aspect ratio. 
The figure shows a graph. The horizontal axis is labelled ‘separation in au’ and ranges from 0 to 300 in increments of 50 units. The vertical axis is labelled ‘mass in MJup’ and ranges from 0 to 100 in increments of 10 units. In the graph, from approximately (30, 8), two curves are drawn. One curve is increases slowly towards the right, with decreasing gradient, and ends at (300, 46). The region just above this curve is labelled ‘Toomre criterion fulfilled’, and the region below this curve is labelled ‘not fulfilled’. The other curve increases rapidly with increasing gradient, and ends at (80, 100). The region just right of this curve is labelled ‘cooling criterion fulfilled’, and the region left of this curve is labelled ‘not fulfilled’. The region bounded by the two curves and the axes is shaded in red, and the remaining part is shaded in green. The central portion of the green region is labelled ‘allowed range for formation’. 
Back to - Figure 9 Mass and separation (semimajor axis) of possible planets forming around a solar-type star satisfying both the cooling and Toomre criteria, for a typical disc aspect ratio.
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[bookmark: Session5_Description5]Figure 10 Masses of the known exoplanets (in units of Earth mass) plotted against their orbital period in years. The different colours and shapes represent the different detection methods. Solar System planets are plotted as open circles. The dashed-dotted line marks the position of the Earth. 
The figure illustrates the masses of exoplanets plotted against their orbital periods as a graph. The horizontal axis is labelled ‘orbital period (in units of years)’, and ranges from 10 raised to the negative fourth power to 10 raised to the fourth power in increments of 100 units. The vertical axis is labelled ‘mass (in units of Earth Masses)’, and ranges from 10 raised to the negative second power to 10 raised to the fifth power in multiples of 10 units. In the graph, various types of entities are plotted as clusters of points. Solar System planets are plotted as white circles. Exoplanets detected via different methods are also shown. Those from the radial-velocity method are shown as a red squares, the transit method are yellow diamonds, the microlensing method are green triangles, direct imaging are blue triangles and the astrometry method are dark-blue hexagons. A dashed horizontal line is drawn from 10 raised to the zeroth power on the vertical axis. A dashed vertical line is drawn from 10 raised to the zeroth power on the horizontal axis at. At the intersection of these two lines, a white circle labelled ‘Earth’ is shown. The other planets of the Solar System are shown at the following position on the graph: Mercury at approximately (10 raised to the negative first power, 10 raised to the negative 1.2 power); Venus at approximately (10 raised to the negative 0.2 power, 10 raised to the negative 0.9 power); Mars at approximately (10 raised to the 0.3 power, 10 raised to the negative first power); Jupiter at approximately (10 raised to the 1.1 power, 10 raised to the 2.5 power); Saturn at approximately (10 raised to the 1.5 power, 10 squared); Uranus at approximately (10 raised to the 1.8 power, 10 raised to the first power); and Neptune at approximately (10 squared, 10 raised to the first power). A cluster of red squares is shown between approximately (10 raised to the negative second power, 10 raised to the zeroth power) to approximately (10 raised to the negative second power, 10 raised to the fourth power) and approximately (10 squared, 10 raised to the fourth power). A cluster of yellow diamonds is shown to the left of the dashed vertical line. A cluster of green triangles is shown to the right of the dashed vertical line. A cluster of blue triangles is shown between approximately 10 raised to the zeroth power and 10 raised to the fourth power on the horizontal axis. A small cluster of dark-blue hexagons is shown between (10 raised to the zeroth power, 10 raised to the third power) and (10 raised to the second power, and 10 raised to the fourth power). 
Back to - Figure 10 Masses of the known exoplanets (in units of Earth mass) plotted against their orbital period in years. The different colours and shapes represent the different detection methods. Solar System planets are plotted as open circles. The dashed-dotted line marks the position of the Earth.
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[bookmark: Session6_Description1]Figure 6 (repeated) Schematic view of possible outcomes of the core-accretion model.
The figure has three parts. Each part is comprised of two stages: formation and output. In part (a), in the formation stage, two hemispheres with common centres are shown on two sides of a vertical line. The left side of the line is labelled ‘core formation by solid accretion’. Two identical smaller spheres are drawn on the left side of the left hemisphere. An arrow from each of the smaller spheres points towards the centre of the left hemisphere. The right side of the line is labelled ‘gas accretion beyond critical mass’. The hemisphere on the right is bigger in size. A blue ring is shown around the right hemisphere. A set of radial arrows points towards the ring around the right hemisphere. In the output stage, a photo of Jupiter (a gas giant) is shown. In part (b), in the formation stage, a similar diagram to that in part (a) is shown. The left side of the line is labelled ‘core formation by solid accretion’. The right side of the line is labelled ‘slow core accretion’. Here, the blue ring is thinner compared with part (a) and there are fewer radial arrows. In the output stage, a photo of Neptune (an ice giant) is shown. In part (c), in the formation stage, another similar diagram is shown. The left side of the line is labelled ‘core formation by solid accretion’. The right side of the line is labelled ‘growth in the region of the disc with little solids’. Here, both hemispheres are of the same size. The blue ring is far thinner compared with parts (a) and (b), and surrounds both hemispheres. In the output stage, a photo of Earth (a terrestrial planet) is shown. 
Back to - Figure 6 (repeated) Schematic view of possible outcomes of the core-accretion model.
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