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Introduction
In this course, you will explore the exotic end-points in the lives of most stars – namely
white dwarfs and neutron stars. To do this we consider the properties of so-called
degenerate matter and how these properties govern the later stages of stellar evolution.
To set the scene, we begin by outlining the life cycle of stars in general, before moving
onto consider their end-points. We next look at planetary nebulae and white dwarfs, which
are the end points of low- and medium-mass stars, and then see how high-mass stars end
their lives as supernovae, and may produce neutron star remnants.
This course shall refer to masses, radii and luminosities of stars in terms of the mass,
radius and luminosity of the Sun (represented by M☉ = 1.99 × 1030 kg, R☉ = 6.96 × 105 km
and L☉ = 3.83 × 1026 W respectively) and will sometimes refer to energies in the
alternative units of electronvolts (where 1 eV = 1.60 × 10-19 J, with 1 keV = 103 eV and 1
MeV = 106 eV for convenience).
This OpenLearn course is an adapted extract from the Open University course
S384 Astrophysics of stars and exoplanets.
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Learning outcomes
After studying this course, you should be able to:

● appreciate how stars end their lives
● understand how planetary nebulae and supernova remnants form
● calculate the physical properties of white dwarfs and neutron stars
● understand the properties of electron-degenerate and neutron-degenerate matter
● calculate the energetics of supernovae explosions.
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1 The life cycle of stars
Stars form from clouds of gas that collapse under the influence of gravity until their central
temperatures and pressures become high enough for nuclear fusion to be initiated in their
cores. At this point, the clouds stop contracting further and are maintained in hydrostatic
equilibrium with a balance between the inward force of gravity and the outward force due
to their internal pressure. Stars are typically initially composed of about 75% hydrogen
and 25% helium, with small traces of other elements.
Stars are observed with a wide range of masses, ranging from around one-tenth that of
the Sun to over a hundred times the Sun’s mass. Other characteristics of stars include
their radii, surface temperature and luminosity. Usually it is only stars’ surface
temperatures (characterised by their colour) and luminosities (characterised by their
brightness) that are directly observable. When these two quantities are plotted against
each other for a population of stars, on a so-called Hertzsprung–Russell diagram (see
Figure 1), certain patterns emerge in the stars’ locations.

Figure 1 A schematic H–R diagram indicating the locations of four regions where most
stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual
magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or
colour index defined as the difference between B and V magnitudes. (Notice that
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temperature increases to the left.) Diagonal lines of constant stellar radius are also shown
and some notable named stars are indicated.

Most stars are found in a band running from the top left to bottom right of the H–R
diagram, known as the main sequence. This is where all stars spend most of their lives
as they undergo nuclear fusion in their cores, converting hydrogen into helium, and
releasing energy. On the main sequence, the hottest, most luminous stars sit at the top
left; these stars are the most massive and the largest. The coolest, least luminous stars sit
at the bottom right; these stars are the least massive and the smallest. The most massive
stars have relatively short main-sequence lifetimes of only a few tens of millions of years,
whilst the least massive ones have main-sequence lifetimes of hundreds of billions of
years (longer than the current age of the Universe).
When most of the hydrogen in the core of a star is depleted, its outer layers will expand
and the star will move towards the right of the main sequence, such that its surface
appears cooler. This is the region known as the red giant branch. To begin with,
hydrogen fusion occurs in a shell around the inert helium core, but as the central
temperature and pressure rise further, helium fusion is initiated in the centre of the star.
The star then moves back down to somewhat lower luminosities and hotter temperatures,
at the lower end of the red giant branch. This new fusion process converts helium into
carbon and oxygen in the star’s core, again releasing energy. Low mass stars (< 3 M☉)
and intermediate mass stars (in the range 3–8 M☉) ultimately begin a second ascent of
the red giant branch (known as the asymptotic giant branch, or AGB) when core helium
is exhausted and helium fusion only continues in a shell surrounding an inert carbon/
oxygen core.
Massive stars (> 8 M☉) leave the upper main sequence when their core hydrogen is
exhausted and then track back and forth along the supergiant branch as new sources of
fusion in turn become active and are then depleted. Unlike lower mass stars whose fusion
ends with carbon and oxygen, they can initiate further fusion reactions, converting carbon
and oxygen into elements such as neon, magnesium, silicon and ultimately iron. They will
end up with an ‘onion-like’ structure with shells of less massive elements surrounding
shells of heavier elements towards the core. Once the core is composed of iron, no further
fusion reactions are possible as reactions to produce nuclei heavier than iron require
more energy to be put in than is released.
The subsequent evolution of stars once all nuclear reactions cease is the main topic of
this course, which will be explored in the following sections.
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2 Planetary nebulae
As a low-mass or intermediate-mass star ascends the AGB, mass loss from the star
becomes more and more significant. A strong stellar wind may develop in which a
substantial fraction of the mass is carried away from the star. This usually corresponds to
most of the hydrogen envelope! One consequence of extreme mass loss can be the
formation of a planetary nebula, described below. Another effect is that even intermediate-
mass stars, which had main-sequence masses in the range 3–8 M☉, end up with a mass <
1.4 M☉. The significance of this final mass will become clear when white dwarfs are
discussed later.
The mass lost from stars at the end of their AGB phase is not immediately visible in optical
light, because dust grains in the cool ejecta obscure the star (although it may be seen in
the infrared). The underlying helium-rich star – with a carbon and oxygen core – gets
smaller and hotter, and a fast, radiation-driven stellar wind develops. Once the central
star’s surface temperature reaches ~ 10 000 K it ionises the ejected envelope, which is
then seen as a planetary nebula, expanding at ~ 30–60 km s-1. (Note: the term planetary
nebula is a misnomer originating from when these objects were first observed as fuzzy
planet-like objects through 18th century telescopes.)

Figure 2(a) Hubble Space Telescope (HST) image of the bipolar planetary nebula
NGC 6302. (b) A composite of data from the Chandra X-ray Observatory and HST
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showing the multipolar planetary nebula NGC 6543. (c) A composite view of the AGB star
L2 Puppis in visible light (blue) and radio (orange) revealing a giant planet shaping the
outflow from the star. (d) ALMA radio observations reveal a spiral structure in the material
around the AGB star R Sculptoris.

The majority of planetary nebulae are asymmetric, with a small fraction being largely
spherical or elliptical. Most are bipolar (with lobes either side of a central star) or
multipolar (with at least two axes of symmetry), as shown in Figures 2a and 2b. The origin
of these asymmetries has been the subject of considerable debate over recent decades.
However, recent observations with the ALMA radio telescope and the SPHERE
coronagraphic adaptive optics system on the Very Large Telescope (VLT) show that many
of the asymmetries in planetary nebulae derive from structures that first formed while the
star was on the AGB. They appear to be the result of orbiting companions, either a binary
companion star or a massive planet (see Figure 2c). These can either transfer angular
momentum to the ejecta and form a constraining torus, leading to a bipolar nebula, or
create an orbital motion of the AGB star around the system’s centre of mass, giving rise to
a spiral pattern in the ejecta (see Figure 2d).
The physical diameter of a planetary nebula can be derived from its angular extent and
distance. Because the expansion velocity of the nebula gas can be measured by its
Doppler shift, the duration of the expansion – and hence of the post-AGB phase – can be
calculated. By extrapolating the observed expansion of the nebula backwards, it can be
shown that the whole evolution of a planetary nebula lasts only about 20,000 years.
The star at the centre of the planetary nebula continues to get smaller and hotter. Its
hydrogen-burning shell is extinguished when it gets too close to the surface and hence too
cool, and the same happens eventually to the helium-burning shell. What remains is a hot
carbon-and-oxygen core, surrounded by thin shells of helium and hydrogen, with a
surface temperature of ~ 100,000 K. All nuclear burning has been extinguished by this
stage, and there is no prospect of thermonuclear reactions being re-ignited. Observations
show that, although the nebula continues to expand, the central star now begins a long
slide to lower luminosity and temperature at almost-constant radius. The star has become
a cooling white dwarf.
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3 Degeneracy
Before considering the physics of white dwarfs, let’s pause to look at the concept of
degeneracy. In this context, degeneracy means that there is more than one quantum
state with the same energy.
In quantum mechanics, all particles display wave-like behaviour. In particular, any particle
has a characteristic wavelength, known as the de Broglie wavelength, defined by

(1)

where h is Planck’s constant (
0

or
0

) and p is the

particle’s momentum.

Now, inside a star, a particle’s kinetic energy can be written as
0

, where T is the

temperature and kB is Boltzmann’s constant (
0

). Another expression

for the kinetic energy of a particle (with mass m and speed v) is simply
0

. So

equating these two we obtain
0

or
0

. (Strictly, particles exist

with a range of speeds, but
0

is close to the average.) The momentum of a

particle is given by
0

, so
0

. Hence the de Broglie wavelength of a

particle may be written as

(2)

Degeneracy becomes relevant when particles are packed so closely together that their
separation is similar to their de Broglie wavelength. It turns out to be important at various
stages in the lives of stars. Firstly, it determines the lower mass limit for stars: below a
certain mass (about 0.075 times that of the Sun) matter in the star’s core becomes
degenerate as the star collapses and hydrogen fusion cannot begin. Such a star will
instead become a brown dwarf. Secondly, degeneracy also determines how helium
fusion begins: for stars with a mass below about 2.25 times that of the Sun, after hydrogen
fusion finishes in the core, matter in the star’s core becomes degenerate and helium
fusion begins explosively in an event called a helium flash. Both these phenomena are
therefore due to degeneracy. This concept will now be explored in detail as we consider
the compact remnants left behind at the end of a star’s life.

3.1 The de Broglie wavelength of electrons and
nucleons
Let’s begin by thinking in terms of the quantum mechanical properties of particles. A
volume of space containing a gas may be considered to be occupied by particles whose
wave properties give rise to standing waves that fit neatly within that volume. They
therefore have quantised values of wavelength, and also of energy and momentum. This
quantisation means that there is a discrete (rather than continuous) distribution of
possible particle energies.
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The number of possible quantum states available to particles below some energy is finite;
often it is very large, but nevertheless it is finite. In the very dense interiors of some
astronomical objects, such a finite number of available quantum states, though large, can
be insufficient for the huge number of particles squeezed into the confined volume. Under
these circumstances, physics then takes new twists, giving rise to some remarkable
properties.
The critical point of having too few available quantum states for the number of particles
present is reached when the separations of the gas particles become smaller than their de
Broglie wavelength. At that point, the wave properties of the gas dominate its classical
properties, and a quantum gas is said to exist. The following activity explores how the de
Broglie wavelengths for protons and electrons compare in the core of the Sun.

Activity 1

a. The de Broglie wavelength of non-relativistic particles is given by Equation (2)
as

0

where m is the particle’s mass, kB is Boltzmann’s

constant (
0

) and T is the temperature. Calculate the de

Broglie wavelength, in the core of the Sun at a temperature of

0

, of:

i. a proton (with mass
0

kg)

ii. an electron (with mass
0

kg)

b. Which has the larger de Broglie wavelength, and by what factor?
c. How does this ratio vary from star to star?

Discussion

a. (i) For a proton in the core of the Sun:

(ii) For an electron in the core of the Sun:

b. The ratio of their de Broglie wavelengths is therefore:
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i.e. the de Broglie wavelength of the electron is greater than that of the proton,
by a factor of about 40.

c. From part (b), this ratio depends only on the mass of the particles, and hence is
independent of the environment and hence of the temperature. The electron’s
wavelength is about 40 times longer than the proton’s wavelength in all stars.

Note that neutrons have a similar de Broglie wavelength to protons because both types of
particle have similar mass. Since the de Broglie wavelength of electrons is roughly 40
times longer than that of nucleons (i.e. protons or neutrons), then as the stellar core
contracts and its density increases, electrons run out of space and hence reach the
quantum limit corresponding to degeneracy sooner than nucleons.

3.2 Conditions for degeneracy
Degeneracy can be described in two equivalent ways:
1. The separation between particles is less than their de Broglie wavelength,

(3)

2. The number of particles per unit volume, n, is greater than the number of available
quantum states nQ known as the quantum concentration,

(4)

Before going further, complete the following activity to confirm to yourself that these two
conditions are equivalent.

Activity 2

Beginning with the second statement of the condition for degeneracy,
0

, use

the definition of the quantum concentration to derive an expression for the mean
separation of the particles, in terms of the de Broglie wavelength. Show that this
leads to the first statement for the condition of degeneracy.
Hint: if the mean separation of particles is

0
, then the number of particles per unit

volume is
0

.

Discussion

The second condition is
0

, i.e.
0

.
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Because
0

, substituting gives
0

.

Taking the (1/3)-power and rearranging the result gives

That is, from the second degeneracy condition,
0

, we obtain the first

degeneracy condition,
0

.

You have now shown that the two conditions for degeneracy are actually equivalent; they
are merely alternative expressions of the same physics. In the following activity, you will
see how a third such expression is derived, which is also equivalent.

Activity 3

a. Rewrite the second description of degeneracy,
0

, to find a limit for the

thermal energy
0

. State a third, equivalent condition for degeneracy as a

limit on the temperature.

b. Calculate values of the quantity
0

in the core of the Sun for (i)

protons and (ii) electrons. Assume that the mass fractions of hydrogen and
helium are

0

and that the core density of the Sun is

0

. Note that in the solar core, all atoms are fully ionised

and that the number density is
0

for each type of particle.

The mass of an electron is
0

kg, the mass of a hydrogen

nucleus is
0

kg and the mass of a helium nucleus is

0

where u is the atomic mass unit given by
0

kg. As

usual Planck’s constant is
0

and Boltzmann’s constant

is
0

.

c. Consider the results to part (b), and state whether (i) protons and (ii) electrons
are degenerate in the Sun’s core. Assume that the core temperature of the Sun
is

0

.
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Answer

a. Since
0

, so the degeneracy condition
0

implies

that
0

.

Taking the (2/3)-power and multiplying both sides by
0

gives

0

, i.e.
0

.

The third, equivalent condition for degeneracy, in relation to temperature, is:
the gas is degenerate if its temperature

0

.

b. (i) For protons,

0 0

-

0

(i.e. hydrogen nuclei per m3).

Therefore, for protons, the temperature-related degeneracy condition is

(ii) In the solar core, all atoms are ionised. The electrons are provided by the
hydrogen (1 electron per atom) and helium (2 electrons per atom), which each
account for 0.5 of the composition by mass. So

Therefore, for electrons, the temperature-related degeneracy condition is

c. The temperature condition for degeneracy is
0

. Since

0

, so the temperature in the core of the Sun is (i) much too

high for proton degeneracy to have set in, and (ii) marginally too high for
electron degeneracy to have set in.
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You have seen in the previous activity that a third equivalent expression for the condition
of degeneracy can be written as follows:

(5)

Sometimes, this third condition is used to describe a degenerate gas as cold, because its
temperature falls below some limit. However, this can be misleading because electrons
may become degenerate at temperatures of millions of kelvins, which is obviously not cold
in the common usage of the word.

3.3 Fermions
Electrons, along with protons and neutrons, are fermions, which means they have
particle spin

0

. The occupation of quantum states by fermions is restricted by the

Pauli exclusion principle, which says that no more than one identical fermion can
occupy a given quantum state. The only way to distinguish one fermion from another of
the same particle is its spin, and because this has only two possible values, +1/2 or –1/2,
at most two fermions of opposite spin can occupy a given quantum state, so that the
number of fermions per quantum state is gs = 2.
At low temperatures, all quantum states with energy less than their chemical potential
are filled, and all quantum states with energy greater than their chemical potential are
empty. In a cold electron gas, the energy of the most energetic degenerate electron is
called the Fermi energy, EF, and the momentum of particles with this energy is called the
Fermi momentum, pF. The Fermi energy is the sum of a particle’s kinetic energy and
rest-mass energy. At low speeds, in the so-called non-relativistic limit, the Fermi kinetic
energy and Fermi momentum for electrons are related by

(6)

where me is the electron mass. The total number of degenerate electrons in the gas is
evaluated as

(7)

Because the number density of degenerate electrons is simply the total number of
electrons per unit volume,

0

, and there are two spin states for electrons (gs = 2),

this equation can be rearranged to express the magnitude of the Fermi momentum as

(8)

■ Combine Equations (6) and (8) to express the Fermi kinetic energy in terms of the
electron number density.

■ For electrons we have
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Fermi energies are conveniently expressed in units of eV, keV or MeV. For comparison,
the gap between atomic energy levels in a hydrogen atom is a few eV, the rest mass
energy of an electron is 511 keV and that of a proton or neutron is about 940 MeV.

3.4 The pressure of a non-relativistic degenerate gas
In the non-relativistic limit (i.e. when v << c), the total energy of the gas may be
expressed as

(9)

The second term in the brackets in Equation (9) is simply the rest-mass energy per
particle, and the first term is the kinetic energy per particle. Furthermore, the kinetic
energy per unit volume is the kinetic energy per particle multiplied by the number of
particles per unit volume. So the kinetic energy per unit volume is

0

.

Now, the pressure provided by non-relativistic particles is 2/3 of the kinetic energy per unit
volume, so

Then, using Equation (8), we have

The equation of state for non-relativistic degenerate electrons may therefore be written
as follows:

(10)

3.5 The pressure of an ultra-relativistic degenerate gas
We can also develop a similar expression for the equation of state for ultra-relativistic
particles (i.e. when v ~ c). In this case, the total energy of the gas may be expressed as

(11)

Because, in this case, the rest-mass energy is negligible, the kinetic energy per particle is

0

. Furthermore, the kinetic energy per unit volume is (once again) the kinetic energy
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per particle multiplied by the number of particles per unit volume. So the kinetic energy
per unit volume is

0

.

Now, it turns out that the pressure provided by ultra-relativistic particles is 1/3 of the kinetic
energy per unit volume, so

Then using Equation (8) we have

The equation of state for ultra-relativistic degenerate electrons may therefore be written
as follows:

(12)

Notice that the equations of state for degenerate electrons, whether non-relativistic or
ultra-relativistic (or, indeed, somewhere in between), show that the pressure is
independent of temperature and depends in each case only on the number density of
electrons. In both the non-relativistic and ultra-relativistic cases, it is the independence of
the pressure from the temperature that helps give a degenerate gas its interesting
properties.

■ What is the key difference between the equation of state for a non-relativistic electron-
degenerate gas and that of an ultra-relativistic electron-degenerate gas?

■ The pressure of an ultra-relativistic electron-degenerate gas has a weaker dependence
on density than that of a non-relativistic gas (i.e.

0

compared to
0

).

So as the density increases, the pressure in an ultra-relativistic gas increases less
markedly.

Whether the gas of electrons is considered to be non-relativistic or ultra-relativistic, it is
clear that white dwarfs are supported against further collapse by electron degeneracy
pressure. Notice that the equations of state for a degenerate gas (whether non-relativistic
or ultra-relativistic) show that the electron degeneracy pressure does not depend on
temperature. This is quite different from a so-called ideal gas (which is a good
approximation for most normal gases) where the equation of state is

0

, where n

is the particle number density, kB is Boltzmann’s constant and T is the temperature. This
decoupling of pressure and temperature in a degenerate gas is what is responsible for
many of the unusual properties of white dwarfs.
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4 White dwarfs
We now have all the tools in place to consider the physics of white dwarfs – the end points
in the evolution of low- and intermediate-mass stars.

4.1 The electron density
Because we will be considering electron degeneracy, we begin by deriving a new way of
expressing the electron density. The general equation for the number density n of some
type of particle is

0

, where ρ is the gas density, X is the mass fraction and m is

the particle mass.
We can write this for electrons just as easily as for nucleons:

0

. However, it is

more convenient to write
0

where Ye is the number of electrons per

nucleon. This leads to the expression

(13)

■ What is the value of Ye in: (a) pure ionised hydrogen; (b) pure ionised helium?
■ (a) Hydrogen has one electron and one nucleon (its proton), so Ye = 1; (b) helium has

two electrons and four nucleons (two protons and two neutrons), so Ye = 0.5.

You can readily convince yourself that Ye = 0.5 for the dominant isotopes of carbon-12 and
oxygen-16 also (since carbon-12 has 12 nucleons and 6 electrons, while oxygen-16 has
16 nucleons and 8 electrons). For white dwarfs, the amount of hydrogen is negligible – it
has all been burnt to helium or on to carbon and/or oxygen – so Ye = 0.5 for white dwarfs
also.
For an electron-degenerate gas, you know that the pressure is independent of
temperature, and is given by a constant multiplied by some power of the electron density.
Using Equation 13, we can therefore write:

for non-relativistic gas,
0

.

for ultra-relativistic gas,
0

The so-called Clayton model for the internal structure of a star gives the core pressure
required to support a star in terms of its core density as:

(14)

Here G is Newton’s gravitational constant (
0

). By saying that

degenerate electrons provide the required internal pressure to support the star, that is, by
equating this to the degenerate-electron pressure, it is possible to write these equations
purely in terms of the mass and core density, which therefore allows us to write one
variable in terms of the other, as the following activity demonstrates.
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Activity 4

a. By equating the core pressure in a star to the degenerate pressure of non-
relativistic electrons, derive an expression for the core density in terms of its
massM and the number of electrons per nucleon, Ye. Leave physical constants
unevaluated.

b. Using the relation between electron number density ne and gas density ρc in
the core of the star, express the core electron density as a function of stellar
mass.

Answer

a. Equating the core pressure
0

to the pressure of non-

relativistic degenerate electrons
0

, where

0

, we have

Collecting terms in ρ on the left-hand side, and all others on the right, we get

Cubing this gives

and substituting for KNR gives

Consolidating the two numerical factors, we obtain

b. The electron number density in the core of the star is
0

, so

substituting in the core density from part (a) gives
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Activity 4 shows that in the non-relativistic case, the density in the core of a star may be
written as

(15)

or, in terms of the degenerate-electron number density, as

(16)

4.2 The Chandrasekhar limit
We have now derived an expression for the electron number density inside a star in the
non-relativistic case, but is the material inside a white dwarf really non-relativistic? In the
non-relativistic limit, the Fermi kinetic energy of degenerate electrons is given by

0

(Equation 6), where pF is the Fermi momentum given by

0

(Equation 8). Therefore, the Fermi kinetic energy of the degenerate,

non-relativistic electrons in the core of a white dwarf is

So, using Equation 16, this becomes

(17)

The expression above relates the Fermi kinetic energy to a set of physical constants and
the mass of the white dwarf, M. Substituting for these values therefore we have

0

keV. Evaluating this expression for a white dwarf with mass 0.4 M☉

reveals that the Fermi kinetic energy in this case is about 107 keV which is already more
than 20% of the electron rest-mass energy (

0

keV). This makes it doubtful that

the non-relativistic treatment is reliable for such a white dwarf. In more massive white
dwarfs, the Fermi kinetic energy is even higher (because

0

) and the non-

relativistic treatment will be progressively less reliable. Equation 17 implies that

0

when M = 1.3 M☉, indicating that the ultra-relativistic treatment is certainly

required instead when masses become this large.
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Activity 5

a. By equating the core pressure in a star to the degenerate pressure of ultra-
relativistic electrons, derive an expression for the mass of a star supported by
ultra-relativistic electrons.

b. Evaluate the mass, assuming Ye = 0.5, in SI units and solar masses. Note that

0

,
0

,
0

and
0

Discussion

a. For the ultra-relativistic case, equating Pc to PUR gives

0

where
0

Note that, in contrast to the non-relativistic case, the density term
0

is the

same on both sides, so cancels out, leaving

Collecting M on one side and swapping left and right sides gives

Taking the (3/2)-power and substituting for KUR gives

b. Putting in the numbers, we have
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So
0

Converting to solar units, this

is
0 0

.

The mass of a star when the ultra-relativistic limit is reached may be viewed as the
maximum stellar mass that can be supported by degenerate electron pressure. The
approximate calculation in the previous activity shows that this maximum mass is of the
order of the mass of the Sun.
The maximum mass for a white dwarf is called the Chandrasekhar limit; the most
realistic computations estimate it as

0

.

If the mass is increased further, then the pressure required to support the star also
increases. But the ultra-relativistic degenerate electrons will not be able to increase their
pressure to support it. Something has to give.... That something is the material supporting
the star. There is a stable configuration of material at higher mass, but it does not consist
of degenerate electrons. Rather, the electrons and protons of higher-mass objects are
forced to combine as neutrons, and the stable object above the maximum white-dwarf
mass is called a neutron star. Such objects will be studied later in this course.

4.3 The white dwarf mass-radius relationship
The mean density of a star is equal to its mass divided by its volume,

0

. It

can be related to the core density if the density profile of the star is known. So-called
polytropic stellar models are ones in which the pressure at some radius is proportional
to the density at that radius to some power. For a star described by a polytropic model with

0

(a reasonable approximation), the mean density turns out to be one-sixth

of the core density:
0

. It is therefore possible to write a relation between the

radius, mass and core density of a star.
Where the core density is dictated by non-relativistic degenerate electrons, we have
already seen how the core density and mass are related (Equation 15). We can eliminate
the density from this equation and find an expression for the radius of the object as a
function of its mass, as shown by the following activity.

Activity 6

a. Rearrange the definition of the mean density
0

to get an

expression for the radius in terms of the mass and mean density.

b. Use the result for a polytropic model with
0

(i.e.
0

) to re-express

the radius in terms of mass and core density.
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c. Substitute in the expression for the core density of non-relativistic degenerate
electrons (Equation 15) to derive an expression for the radius of a white dwarf
as a function of mass. Give your final answer in units normalised to the solar
mass and solar radius. Note that

0

,

0

,
0

and
0

d. Re-express the final result in solar masses and Earth radii, where the Earth’s
radius is

0

m.

Discussion

a. The radius as a function of mass and average density is

b. If the average density is 1/6 of the core density, then

c. Substituting in the core density from Equation 15 gives

Rearranging the terms with negative powers:

Now consolidate the mass terms and the numerical factors:

Now, for convenience, express the mass in solar units:

Then putting in the numbers:
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And so

Because
0

, the white dwarf radius is

d. Because the radius of the Earth is
0

,

The result of the previous activity

(18)

is remarkable for two reasons. First, it shows that the radius of a white dwarf with the
same mass as the Sun is two orders of magnitude smaller, comparable in radius to the
Earth, as illustrated in Figure 3.
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Figure 3 An artist’s impression showing the relative sizes of the white dwarf Sirius B and
the Earth.

Second, notice the mass-dependence of the radius:
0

. Unlike low-mass

main-sequence stars fusing hydrogen in helium, where
0

, note the important

result that the sign of the exponent is negative for white dwarfs!
While the more massive a main-sequence star is, the larger its radius, the more massive a
white dwarf is, the smaller its radius!
The derivation above of the white dwarf mass-radius relationship was based on the
assumption that the electrons are non-relativistic. We showed this to be incorrect as the
mass increases and it would imply infinite density (zero radius) at the Chandrasekhar
limit, 1.4 M☉. There is another formula which gives a more accurate picture of the radius
of white dwarfs, but it is an empirical formula, simply fitted to observed data. This formula,
derived by Michael Nauenberg in 1972, is

(19)

The formula derived in Equation 18, while unable to correctly describe white dwarfs near
the Chandrasekhar limit, does encapsulate real physical ideas that are valid for low-mass
stars. There is a place in science for both formulae!

4.4 White dwarf composition and cooling
The simplest type of white dwarf, resulting from the collapse of a star of very low main-
sequence mass (

0

) in which no helium burning has occurred, would be

composed entirely of helium. Such objects are referred to as He white dwarfs, with
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masses
0

. However we are unlikely to find isolated He white dwarfs in

the Galaxy for the following reason. The He white dwarfs form from stars with very low
mass. Such stars have main-sequence lifetimes of ~ 1011 years, or around 10 times the
age of the Universe, so have not had time to evolve into white dwarfs yet. Any He white
dwarfs that are seen must have formed as part of a binary star system that has undergone
a phase of mass transfer which has altered the mass and composition of one or both of its
components.
Low-mass stars, with

0

, undergo helium burning, producing carbon

and oxygen in their cores. They lose some mass while on the AGB and so typically end
their lives with masses of

0

. Even intermediate-mass stars, with

0

, lose so much mass as giants that only
0

remains to form

the white dwarf. These carbon/oxygen cores are supported against further collapse by
degenerate electrons, and hence do not attain the temperatures required to initiate carbon
burning. The remnants of low- and intermediate-mass stars are therefore CO white
dwarfs, with masses

0

.

There is a narrow range of massive stars, with
0

, whose remaining

cores are massive enough to collapse and ignite carbon (forming oxygen, neon and
magnesium), but which ultimately fall below the Chandrasekhar limit owing to continued
mass loss. When this carbon burning terminates, these stars will be supported by
degenerate electrons again and will contract no further, leaving ONeMg white dwarfs,
with masses typically in the range

0

.

Stars with
0

retain enough of their mass during mass loss that their cores

continue to exceed the Chandrasekhar limit; at the end of each burning phase, their cores
contract and heat up more. These stars complete all of the advanced burning phases,
including silicon burning to form iron. Their endpoints will be explored in later sections of
this course.
As there are no nuclear energy sources active in a white dwarf, its luminosity is due solely
to the slow leakage of thermal energy into space, as radiation. It takes ~ 109 y for white
dwarfs to fade to

0

. As white dwarfs fade, they also cool. The luminosity of

white dwarfs is provided by thermal leakage rather than slow gravitational contraction
because white dwarfs are degenerate, so their temperature and pressure are decoupled.
As they cool, the pressure remains constant so the radius is unchanged. Hence there is
no release of gravitational potential energy. As white dwarfs cool and fade in the H–R
diagram, they do so along lines of constant radius (see Figure 1).
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Figure 1 (repeated) A schematic H–R diagram indicating the locations of four regions
where most stars are found. The vertical axis shows stellar luminosity in solar units or
absolute visual magnitude; the horizontal axis shows surface temperature in kelvins,
spectral type, or colour index defined as the difference between B and V magnitudes.
(Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are
also shown and some notable named stars are indicated.
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5 Supernovae
In this section, you’ll see what happens to a star whose final core mass exceeds the
Chandrasekhar limit, and subsequently, discover what remnant it may leave behind.
A star with a main-sequence mass

0

will complete all the stages of nuclear fusion

that are available. Silicon burning will result in a core composed mainly of iron-56,
surrounded by concentric shells of silicon, oxygen, neon, carbon, helium and hydrogen.
No energy can be released by the thermonuclear fusion of iron, so the core collapses and
the degenerate electrons within it become more and more relativistic. When the mass of
the core exceeds the Chandrasekhar limit (about

0

), the degenerate electrons are

no longer able to support the core, and a catastrophic collapse follows. The core will
essentially collapse on a free-fall timescale, liberating gravitational potential energy.

■ The free-fall timescale is given by
0

. Calculate the free-fall

timescale for a stellar core with a density of
0

.

■ Putting in the numbers to the equation above,

■ The gravitational potential energy released in the collapse of a stellar core of mass M,
from an initial radius R1 to a final radius R2, is

0

.

Calculate the gravitational potential energy released when a stellar core of mass

0

collapses to a radius of about 10 km.

■ In this case, the final radius is very small, so
0

, and we can neglect the initial

gravitational potential energy as it is so small. Therefore the gravitational potential
energy released is

0

. So the energy released by the collapse of a
0

stellar core is

As the previous two questions show, the collapse of the core is very rapid and it liberates a
vast amount of energy.
The initiation of exothermic (energy-liberating) fusion reactions provides pressure support
for stars during their long-lasting burning phases. However, the initiation of endothermic
(energy-absorbing) reactions draws kinetic energy out of the material and hence
eliminates the pressure support. There are two processes that can absorb energy in the
collapsing core: photodisintegration of nuclei by high-energy gamma rays and electron
capture processes. In the first, the energy is used to unbind the nuclei, while in the
second, energy is converted into the kinetic energy of neutrinos, which stream out of the
star largely unhindered. Let’s consider each of these two processes in more detail.
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5.1 Nuclear photodisintegration
There are many ways in which high-energy gamma rays can disintegrate nuclei of iron-56,
but as an illustration of the physics involved, and the amount of energy that may be
absorbed by this photodisintegration process, consider the situation in which a nucleus of
iron-56 is broken down into helium nuclei:

The amount of energy absorbed by this process in the forward direction is

0

. At the temperature and density of a stellar core, the result is that

about three-quarters of the iron nuclei are dissociated.

Activity 7

If each iron nucleus absorbs 124.4 MeV of energy by photodisintegration, and three-
quarters of a core of mass 1.4 M☉ is dissociated in this way, calculate the total
energy absorbed by this process. (The mass of an iron-56 nucleus is 56u, where

0

kg is the atomic mass unit.)

Answer

The number of particles N in a sample of material is given by the total mass of the
sample M divided by the individual masses of the particles m, i.e. N=M/m. Three-
quarters of the core mass is

0

, so the number of iron-56 nuclei is

Each nucleus absorbs 124.4 MeV of energy, which is equivalent to

0

. So the core absorbs

0

via the photodisintegration of iron-56

nuclei.

At still higher temperatures, helium nuclei will also undergo photodisintegration as follows:

The energy absorbed by this process in the forward direction is
0

. At the

temperature and density of a stellar core, the result is that about half of the helium-4 nuclei
are dissociated.
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Activity 8

If each helium-4 nucleus absorbs 28.3 MeV of energy by photodisintegration, and
half of the core of mass 1.4 M☉ is dissociated in this way, calculate the total energy
absorbed by this process. (The mass of a helium-4 nucleus is 4u, where

0

kg is the atomic mass unit.)

Discussion

The number of particles is N = M/m. Half the core mass is
0

, so

the number of helium-4 nuclei is

Each nucleus absorbs 28.3 MeV of energy, which is equivalent to

0

So the core absorbs

0

via the photodisintegration of helium-4

nuclei.

Therefore, the total amount of energy absorbed by nuclear photodisintegration is

0

from the dissociation of iron-56 plus
0

from the dissociation of

helium-4, or about
0

in total.

5.2 Electron capture
The second mechanism by which energy is absorbed in the iron core of a star is that of
electron capture, allowing energy to be carried away by neutrinos. The conversion of
protons (in nuclei) to neutrons by electron capture is possible if the gas is sufficiently
dense for degenerate electrons to have an energy greater than the 1.29 MeV mass-
energy excess of neutrons relative to protons (

0

, while

0

). Actually, the energy excess required for electron capture by bound

nuclear protons, rather than free protons, is usually somewhat higher and depends on the
nucleus, but is nevertheless usually just a few MeV.
The general reaction may be written as

and is sometimes referred to as neutronisation.
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At densities above about 1012 kg m-3, iron-56 nuclei will capture electrons in the following
reaction which produces a neutron-rich manganese nucleus:

where
0

is a neutrino. Following this, further electron-capture reactions occur in

successive nuclei, converting more and more protons into neutrons.
Because electrons are rapidly used up by these reactions, the pressure support provided
by degenerate electrons quickly disappears, and the core collapses rapidly, as noted
earlier. The neutrinos produced by the electron-capture reactions carry away most of the
energy. Although the passage of the neutrinos is hindered by the high densities in the
core, which raises the likelihood of interactions, all of the neutrinos are still able to escape
within a few seconds.

Activity 9

If each neutrino produced in the reactions described above carries away 10 MeV of
energy, how much energy (in joules) is removed by neutrinos if the whole core
(comprising 1.4 M☉ of iron-56) undergoes neutronisation? (The mass of an iron-56
nucleus is 56u, where

0

kg is the atomic mass unit.)

Discussion

The number of nucleons contained in the stellar core is
0

where u is the

atomic mass unit. Because an iron-56 nucleus contains 26 protons (and 30
neutrons), the number of protons in the core is

0

. This is

evaluated as

Assuming charge neutrality, there will also be
0

electrons. If every proton

and electron undergoes neutronisation, this will produce
0

neutrinos.

If each neutrino carries away 10 MeV of energy, then the amount of energy removed
by each neutrino in joules is

0

.

So the total amount of energy removed
is

0

.

As the result of the previous activity shows, neutronisation, like nuclear photodisintegra-
tion, can also remove ~ 1045 J of energy from the collapsing stellar core within a few
seconds!
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5.3 Supernovae explosions
Over its lifetime, a high-mass star is supported against collapse by the thermal energy
derived from converting hydrogen to iron, via intermediate species. Some of this energy is
radiated away by the surface of the star over its long lifetime. Then, at the end of its life, it
reverses that entire process by breaking apart the iron nuclei into their constituents. At the
end of its life, a high-mass star will emit a similar amount of energy in a few seconds to
that which it has emitted over its entire main-sequence lifetime!
Therefore, in a stellar core composed largely of iron, photodisintegration and
neutronisation reactions trigger a rapid collapse, which will continue until the core reaches
a density comparable to that of an atomic nucleus.

■ Given that a nucleus of mass number A has a radius
0

, what

is its density?
■ The density

0

where the mass
0

and the volume
0

. Hence

0

and therefore

This is equivalent to around 200 million tonnes per cubic centimetre! When the core
approaches nuclear densities, nuclear forces resist any further compression and the
collapsing core will rebound. This sends a shockwave through the infalling material, which
causes much of the stellar envelope to be ejected. This is a supernova explosion (see
Figure 4).

Figure 4 Two images of the same galaxy taken 41 days apart, with the location of a
supernova highlighted by the white lines in the right-hand image.

Over the course of a year or so, the optical light output of a supernova is typically about
1042 J. However, it can also be observed that a further 1044 J of energy is carried away as
the kinetic energy of the exploding debris, at velocities of tens of thousands of kilometres
per second, to form a supernova remnant. These are certainly vast amounts of energy,
but it turns out that they do not tell the whole story of the energy release during a
supernova.
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As you saw earlier, the gravitational potential energy released in the collapse of a stellar
core is

0

. This is 100 times greater than the observed energy carried away by

the expanding debris, and it is at least 10 times the energy required to photodisintegrate
the iron core, and 10 times the energy that can be carried away by neutronisation. So
where does all the gravitational potential energy released by a supernova actually go?
In fact, there is an intermediate stage between the iron core and the production of a
compact remnant. This takes the form of a hot, dense plasma of neutrons, protons,
electrons, neutrinos and photons. At a temperature of 1011 K and a density of 1014 kg m-3

this plasma is opaque to electromagnetic radiation, but not to neutrinos; it is believed that
neutrino/antineutrino pairs are produced in the plasma, and carry away most of the
gravitational binding energy of the collapsing core.

■ Quantify the ways in which energy is carried away from a supernova.
■ Photons provide the least effective means of removing the energy: only ~ 1042 J over

the first year or so after the explosion. The expansion of the ejected material carries
100 times as much as kinetic energy, ~ 1044 J. However, the binding energy of the
neutron star is

0

, so much more energy must be removed than is carried by

the photons and kinetic energy. The majority is thought to be carried away by neutrinos.
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6 Neutron stars
The mass range of progenitor stars that collapse to form neutron stars is uncertain, but it
is possible that all single progenitor stars with main-sequence masses in the range

0

will do so. However, in some binary systems, neutron stars can also

form from stars that were initially even more massive than
0

, where mass transfer

between the two stars influences their evolution significantly. Whatever their origin, a
newly formed neutron star will have a temperature of 1011–1012 K, but it will cool quickly to
around 109 K on a timescale of a day, and to around 108 K within a hundred years.
Neutron stars are commonly observed as rapidly spinning radio pulsars. The youngest of
these, such as the Crab pulsar which formed only ~ 1000 years ago, are seen to still
reside in the centre of an expanding supernova remnant. Some so-called millisecond
radio pulsars are observed in binary systems with a white dwarf or non-pulsar neutron star
companion. Other neutron stars are seen in binary systems with a main-sequence or
supergiant companion star from which they accrete large amounts of material. The
accreting matter gives rise to strong X-ray emission, and such objects are known as X-ray
binary stars.
The neutron stars in radio pulsars and X-ray binaries are measured to have masses in the
range

0

, contained within a sphere of radius
0

;

hence they have a density of
0

. These extreme temperatures and

densities give rise to some extraordinary consequences for the neutron star’s properties.

6.1 Neutron star composition
For normal matter, the most stable configurations, with the lowest binding energy per
nucleon, are nuclei around iron-56. However, when the density approaches

0

,

the most stable nuclei are actually far more neutron-rich, such as nickel-78 and iron-76. At
still higher densities, above

0

, a phenomenon called neutron drip occurs,

whereby neutrons ‘leak out’ of nuclei and an equilibrium mixture of nuclei, neutrons and
electrons exists. When the density exceeds that of nuclear matter (at about

0

), the nuclei begin to merge and a dense gas of protons, neutrons and

electrons is produced. Under these conditions there are complicated and uncertain
interactions between nuclei, so the equation of state for neutron stars is not known.
Despite this, a reasonable idea of the composition of a neutron star can be gained by
considering a crude model in which the neutron star is treated as an ideal gas of
degenerate electrons, protons and neutrons. In this situation, the normal beta decay of
free neutrons is blocked because of the Pauli exclusion principle: there are no available
quantum states left for the protons and electrons to occupy, so the neutrons are not able
to decay. In particular, neutrons cannot decay if their Fermi energy is less than the sum of
the Fermi energies of the electrons and protons, but they can decay if their Fermi energy
is greater than that of the protons plus the electrons. An equilibrium will therefore exist
when
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The neutrons and protons can be considered to be non-relativistic; hence their Fermi
energies are given in each case by the sum of a rest-mass energy term and a kinetic
energy term:

where mn and mp are the masses of the neutron and proton, and pF(n) and pF(p) are their
Fermi momenta. Conversely, the electrons are much less massive than the protons and
neutrons, so they can be considered ultra-relativistic. Their Fermi energy is simply

where pF(e) is the electron’s Fermi momentum.

Now, because the Fermi momentum is
0

(Equation 8), we can write the

equilibrium condition as

Because the gas will be electrically neutral, the number densities of the protons and
electrons must be equal: np = ne. Furthermore, the mass-energy difference between the
neutron and proton is

0

, so we can rearrange this as

This equation can be solved numerically to find the ratio of neutrons to protons (nn / np) at
a given density. For instance, for a typical neutron star density of

0

, the

equation predicts a neutron-to-proton ratio of about 200 to 1. So, as long as there is one
proton and one electron for every 200 neutrons, the neutrons are prevented from
decaying, and the neutron star remains supported, essentially by the pressure of
degenerate neutrons. Whereas white dwarfs are supported by electron degeneracy
pressure, neutron stars are supported against further collapse by neutron degeneracy
pressure.

Activity 10

Suppose that the neutron star is so dense that the protons and neutrons (as well as
the electrons) are ultra-relativistic. What is the ratio of neutrons to protons in this
case?
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Discussion

We again start by writing
0

, but now we have EF = pFc for

each type of particle where
0

. So we can write the equilibrium

condition as

and because np = ne in a neutral gas, this reduces to
0

or

0

. Thus, even in the ultra-relativistic case, neutrons far outnumber

protons, by a factor of 8 to 1.

6.2 The radius and mass of neutron stars
When deriving equations to describe neutron stars, we should be wary of oversimplifying
the assumptions about conditions inside them. In reality, Newtonian gravity should be
replaced by Einstein’s general relativistic treatment, because for a neutron star of mass
MNS and radius RNS, a neutron’s gravitational potential energy,

0

, is

comparable to its rest-mass energy, mnc2.
The momenta of neutrons also approach the relativistic limits, requiring special relativity.
Nevertheless, the non-relativistic approximation can lead to useful insights into the size of
the star, and an understanding of the dominant physics. In particular, it is interesting to
compare calculations of the radius of a white dwarf, supported by degenerate electrons,
and a neutron star, supported by degenerate neutrons.
It turns out that the radius of a degenerate star scales according to the mass of the particle
whose degenerate pressure supports the star. (The mass of the particle also determines
its de Broglie wavelength, so you could also say that the de Broglie wavelength
determines the radius of the star.) Because the pressure in a neutron star is provided by
neutrons that are almost 2000 times heavier than an electron, neutron stars are a factor of
almost 2000 smaller in radius. That is, while white dwarfs are comparable in size to the
Earth, neutron stars have radii of only a few km! The typical masses and radii of different
types of compact object are shown in Figure 5.
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Figure 5 The mass-radius relationship for degenerate stellar remnants.

In principle, neutron stars have a minimum stable mass of
0

, although in

practice the minimum mass observed is around 1.2 M☉. An absolute upper mass limit of

0

is set by the requirement that the sound speed inside a neutron star is less

than the speed of light. However, it is more difficult to specify the actual upper mass limit
for neutron stars than for white dwarfs for a couple of reasons.
First, interactions between neutrons are significant. They repel one another at close
separations (

0

), which makes them less compressible, but their energies

are also so high that they produce baryons, containing one or more strange quarks, and
pions, which reduce the pressure and make them more compressible. The net effect is to
enable neutron stars that are more massive than one might expect on the basis of simpler
assumptions.
Second, the gravitational fields are so strong that Einstein’s theory of gravity – general
relativity – must be used instead of Newtonian gravity and, under general relativity, gravity
also depends on pressure. Whereas, in a normal star, internal pressure resists gravity,
under general relativity it strengthens the gravity, which reduces the maximum mass that
will be stable.
The competing mechanisms of these two effects mean that it is extremely difficult to
calculate the actual upper mass limit for neutron stars, and no consensus exists on the
matter. Various calculations and theories suggest that the maximum mass is

0

; this is referred to as the Tolman–Oppenheimer–Volkoff (TOV)

limit.
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7 Black holes
Although this course is about white dwarfs and neutron stars, we cannot end without a
brief mention of black holes. Black holes are the end point of a star’s evolution if the
mass of the degenerate stellar core exceeds the TOV limit. They have infinite density and
are characterised by their Schwarzschild radius. This radius marks the event horizon of
the black hole, within which the escape velocity exceeds the speed of light, meaning that
nothing can escape from it or be observed within it. For a non-rotating black hole of mass
MBH, the Schwarzschild radius

0

, which is ~ 3 km per solar mass.

If the main-sequence mass of a star is in the range
0

, it may be that

neutron degeneracy pressure is insufficient to halt the core collapse, and a black hole
forms directly (instead of a neutron star) with no accompanying supernova explosion.
Such an event may result in the formation of a black hole of mass

0

. The

apparent absence of compact objects between the upper mass limit observed for a
neutron star (~ 2.2 M☉) and the lower mass limit observed for a black hole (~ 5 M☉) is
referred to as the mass gap. However, recent observations of gravitational wave sources
have found hints of objects in this mass range, thereby challenging our understanding of
their nature and formation.
Single stars with main-sequence masses

0

will generally undergo a core-

collapse supernova and produce a black hole with a mass of
0

. At the lower

end of the mass range, the black hole will form by fallback of material onto an initially
created neutron star, while for stellar masses of

0

, the black hole forms

directly.
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8 Quiz
Answer the following questions in order to test your understanding of the key ideas that
you have been learning about.
In the following questions you may use the following values of physical constants, as
necessary:

0

0

0

0

0

0

0

Question 1

Which of the following statements about stellar evolution are true?
o Red giant stars are undergoing fusion of helium into carbon and oxygen.
o On the main sequence, stars convert hydrogen into helium.
o Stars spend less of their lives as red giants than they do on the main sequence.
o Supergiant stars have higher luminosities than red giant stars.
o More massive stars have shorter lives than less massive stars.
o High mass stars are more common than low mass stars.

Answer

The first five statements are all true. The last one is false: high mass stars are much
rarer than low mass stars.

Question 2

A stellar core has a density of 3.0 × 107 kg m-3 and a composition comprising fully
ionised helium-4, carbon-12 and oxygen-16 with relative amounts XHe = 0.40, XC =
0.30 and XO = 0.30. What is the limiting temperature, below which the electrons in
the core would be degenerate?
¡ 110 million K
¡ 240 million K
¡ 320 million K
¡ 550 million K
¡ 630 million K
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Answer

Since helium-4, carbon-12 and oxygen-16 all have Ye = 0.5 electrons per nucleon,
the electron number density is simply

The limiting temperature below which electrons in the core would be degenerate is

Putting in the numbers gives

Question 3

Match the following equations of state with the correct dependence on particle
number density and temperature.

ultra-relativistic degenerate gas

non-relativistic degenerate gas

ideal gas

Match each of the items above to an item below.

0

0

0

Answer

The equations of state for degenerate matter do not depend on temperature; they
only depend on the particle density to some power. The equation of state for an
ideal gas depends on particle density and temperature.

8 Quiz 07/01/25



Question 4

A stellar core has a density of 6.9 × 108 kg m-3 and a composition comprising fully
ionised helium-4, carbon-12 and oxygen-16 with relative amounts XHe = 0.70, XC =
0.15 and XO = 0.15. What is the Fermi kinetic energy of the electrons as a
percentage of the electron rest-mass energy, assuming them to be non-relativistic?
¡ 13%
¡ 18%
¡ 25%
¡ 37%
¡ 52%

Answer

Since helium-4, carbon-12 and oxygen-16 all have Ye = 0.5 electrons per nucleon,
the electron number density is simply

The Fermi kinetic energy can be written as

Putting in the numbers gives

Therefore EF = 2.05 × 10-14 J which is about 128 keV. Since the rest-mass energy of
an electron is 511 keV, this means that EF is about 25% of the rest mass energy. (So
the assumption that the electrons are non-relativistic may not be appropriate.)

Question 5

According to Nauenberg’s formula (Equation 19), what is the radius of a white dwarf
(in Earth radii) whose mass is 1.0 M☉? (The radius of the Earth is R⊕ = 6370 km.)
¡ 0.25 R⊕
¡ 0.36 R⊕
¡ 0.58 R⊕
¡ 0.82 R⊕
¡ 0.93 R⊕

Answer

The radius is given by
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Putting in the numbers gives

So RWD = 5.25 × 106 m which is equivalent to 0.82 R⊕.

Question 6

Match the following compact remnants with the progenitor single star main-
sequence mass.

He white dwarf

CO white dwarf

neutron star

Match each of the items above to an item below.

MMS = 0.15 M☉

MMS = 1.5 M☉

MMS = 15 M☉

Answer

Main-sequence stars with masses below 0.5 M☉ will form He white dwarfs, those
with masses in the range 0.5–8 M☉ will form CO white dwarfs, and those with
masses in the range 11–16 M☉ (or possibly up to 25 M☉) will form neutron stars.

Question 7

The core of a massive star on the verge of collapse has a mass of 1.6 M☉ and is
comprised of 20% helium-4 nuclei and 80% iron-56 nuclei, by mass. Assume
(somewhat artificially) that all of the helium in the core undergoes photodisinte-
gration, absorbing 28.3 MeV for each nucleus disintegrated; all of the iron in the
core experiences electron capture, releasing a neutrino with energy 10 MeV for
each neutronisation.
How much energy in total would be removed from the collapsing core by the
combined effects of photodisintegration and neutronisation?
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You may assumemHe = 6.6447 × 10-27 kg andmFe = 9.3480 × 10-26 kg. A nucleus of
helium-4 contains two protons and two neutrons; a nucleus of iron-56 contains 26
protons and 30 neutrons.
¡ 1.4 × 1045 J
¡ 1.6 × 1045 J
¡ 1.8 × 1045 J
¡ 1.4 × 1046 J
¡ 1.6 × 1046 J
¡ 1.8 × 1046 J

Answer

First consider the helium nuclei. The number of helium-4 nuclei in the core is

The total energy absorbed by the helium-4 nuclei is therefore

Now consider the iron nuclei. The number of iron-56 nuclei in the core is

Note that each nucleus will contain 26 protons. Now assuming that each proton is
converted into a neutron by electron capture, emitting a neutrino with energy 10
MeV, the energy removed by electron capture is

So the total energy removed is E = EHe + EFe = 1.6 × 1045 J

Question 8

Which of the following statements about white dwarfs and neutron stars are true?
o White dwarfs are always less massive than neutron stars.
o White dwarfs are smaller than neutron stars.
o White dwarfs are more dense than neutron stars.
o White dwarfs are supported by electron degeneracy pressure.
o Neutron stars are supported by proton degeneracy pressure.
o ONeMg white dwarfs are more common than CO white dwarfs.
o Neutron stars can have masses up to 3 times that of the Sun.
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Answer

Only the fourth statement is true. The most massive white dwarfs can be more
massive than the least massive neutron stars; white dwarfs are always larger than
neutron stars and always less dense too. Neutron stars are supported by neutron
degeneracy pressure because neutrons far outnumber protons in their composition.
CO white dwarfs are more common than ONeMg white dwarfs because they form
from lower mass progenitor stars which are more common than higher mass
progenitor stars. The maximum neutron star mass is no more than about 2.5 times
the mass of the Sun.
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Conclusion
1. Stars spend most of their lives fusing hydrogen into helium in the cores, sitting on the

main sequence of the Hertzsprung–Russell diagram. When hydrogen in the core
is depleted, low-mass (MMS < 3 M☉) and intermediate-mass (MMS = 3–8 M☉) stars
evolve into red giants and undergo helium fusion, producing carbon and oxygen in
their cores. Massive stars (MMS > 8 M☉) undergo further fusion reactions, evolving as
supergiant stars, and those with the highest masses (MMS > 11 M☉) can eventually
develop an iron core.

2. As asymptotic giant branch (AGB) stars become very luminous, a strong stellar wind
removes most of the hydrogen envelope. The underlying helium-rich star gets
smaller and hotter, developing a fast, radiation-driven wind. Bipolar outflows and
other asymmetries are shaped by orbiting planetary- or stellar-mass companions of
the AGB star. Once the central star’s surface temperature reaches T ~ 104 K, it
ionises the ejected envelope, which is then seen as an expanding planetary nebula.
The star’s H- and He-burning shells are extinguished, leaving a degenerate CO core
with T ~ 105 K, which subsequently cools and fades to produce a white dwarf.

3. Degeneracy can be described in three equivalent ways:
(i) when the separation of particles is less than the de Broglie wavelength for
their momentum,

0

(Equation 3).

(ii) when the number of particles per unit volume is higher than the number of
available quantum states at their energy, given by the quantum concentration,

0

(Equation 4).

(iii) when the temperature of the particles is less than the limiting value given by

0

(Equation 5).

4. Electrons, protons and neutrons are fermions. The Pauli exclusion principle
dictates that no more than one identical fermion can occupy a given quantum state.
So, at most two fermions (with spins +1/2 and –1/2, respectively) can occupy the
same quantum state. In a cold electron gas, the energy of the most energetic
degenerate electron is called the Fermi energy. The Fermi kinetic energy is

0

(Equation 6), and its momentum
0

(Equation 8) is

called the Fermi momentum.
5. Whereas the equation of state for an ideal gas,

0

, depends on the number

density of particles n and the temperature T, for a degenerate gas it depends only on
the number density:

0

(Equation 10) or
0

(Equation

12), where KNR and KUR are constants for non-relativistic and ultra-relativistic
conditions, respectively. This decoupling of pressure and temperature in a
degenerate gas disables thermostatic regulation. An ideal gas responds to an
increased temperature by increasing pressure and hence expanding and cooling
slightly; in a degenerate gas, a thermonuclear runaway can develop.

6. The number density n of some type of particle can be written in terms of its mass
fraction X, mass m and the gas density ρ, as

0

. Hence, for electrons,

0

(Equation 13), where Ye is the number of electrons per nucleon. For

pure hydrogen, Ye = 1, whereas for helium-4, carbon-12 and oxygen-16 (and hence
for all types of white dwarf), Ye = 0.5.
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7. White dwarfs are supported against further collapse by electron degeneracy
pressure. When degenerate electrons provide the pressure support of a star, the
Fermi energy, EF, may be expressed in terms of the mass. For non-relativistic
degenerate electrons,

0

(Equation 17), so degenerate electrons become

more relativistic in more-massive white dwarfs. For ultra-relativistic degenerate
electrons, the core density approaches infinity as the mass increases towards the
Chandrasekhar limit, ~ 1.4 M☉.

8. For non-relativistic degenerate electrons, a white dwarf mass-radius relationship can
be derived:

0

(Equation 18). This is comparable to

the radius of the Earth and implies that more-massive white dwarfs have smaller
radii.

9. Different types (He, CO and ONeMg) of white dwarf (WD) are the end points of low-
and intermediate-mass main-sequence (MS) stars of different masses. They fade
and cool along lines of constant radius in the H–R diagram.

White dwarfs

MMS / M☉ Final core fusion MWD / M☉ WD composition

< 0.5 H burning < 0.4 He white dwarf

0.5–8 He burning 0.4–1.2 CO white dwarf

8–11 C burning 1.2–1.4 ONeMg white dwarf

10. Stars with MMS > 11 M☉ form an iron core supported by ultra-relativistic degenerate
electrons. When the Chandrasekhar limit is reached, the electrons can no longer
support the star. Nuclear photodisintegration by thermal photons and electron
capture by nuclear protons (neutronisation) remove energy so efficiently that they
send the core into free fall. The total amount of energy lost in a few seconds is
comparable to the energy previously liberated via nuclear burning over the star’s
entire main-sequence lifetime!

(i) Photodisintegration of iron proceeds as
0

, and then

0

. This can break down about 75% of the iron core,

followed by 50% of the helium, and thus can absorb of order ~ 1045 J of energy.
(ii) Neutronisation is the conversion of nuclear protons into neutrons via electron
capture:

0

; the neutrinos produced also carry away of order ~

1045 J of energy.
11. The collapse of a stellar core halts when the density reaches that of nuclear matter,

and then rebounds. This sends a shock wave through the rest of the star that partially
reverses the collapse, leading to the ejection of the outer layers as a supernova. Its
typical luminous energy is ~ 1042 J, and the kinetic energy of the ejecta is ~ 1044 J.
The gravitational binding energy released (~ 5 × 1046 J) is 10 times more than the
energy required to photodisintegrate the iron core or that is lost by neutronisation; it
is also 100 times more than the kinetic energy of the ejecta. Thus most of the
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liberated energy is probably lost in an intense burst of neutrinos from the resulting
neutron star.

12. When the density of a neutron star’s core reaches ~ 4 × 1014 kg m-3, neutrons drip
from the nuclei and once the density exceeds that of normal nuclear matter, ~ 2 ×
1017 kg m-3, nuclei merge into a dense gas of electrons, protons and neutrons.
Neutron stars survive because the beta decay of free neutrons is blocked by the
Pauli exclusion principle and so neutrons greatly outnumber protons, typically with nn
~ 200 np. They are supported against further collapse by neutron degeneracy
pressure.

13. Neutron stars have masses in the range MNS ~ 1.2–2.2 M☉ and radii RNS ~ 10–15
km. Their maximum mass – the Tolman–Oppenheimer–Volkoff (TOV) limit –
corresponds to the neutrons becoming ultra-relativistic, but is difficult to calculate
because of neutron interactions and the need to use general relativity. They form
from single stars with main-sequence masses MMS ~ 11–16 M☉.

14. Single stars with MMS ~ 16–25 M☉ may form neutron stars too or they may form low-
mass (MBH ~ 5–8 M☉) black holes instead, without a supernova. An apparent dearth
of compact objects between the most massive neutron stars and the least massive
black holes is referred to as the mass gap. Stars with initial masses MMS > 25 M☉
may also form neutron stars if they are in a binary system, because mass transfer
between the two stars can significantly influence their evolution. Otherwise, such
massive stars will form black holes with masses MBH > 10 M☉ and Schwarzschild
radii (which mark the event horizon of the black hole) of RSch ~ 3 km per solar mass.
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Glossary
asymptotic giant branch

(AGB) The region of the Hertzsprung–Russell diagram occupied by stars that are
powered by a mixture of shell-hydrogen burning and shell-helium-burning, with a
carbon and oxygen core. Shell-helium burning causes the outer envelope of the star to
expand and cool further, so that stars lie above and to the right of the red giant stars in
the Hertzsprung–Russell diagram in this phase.

black hole
In the general theory of relativity, an object whose density is so high that nothing that
comes within a certain distance of it, crossing a boundary called the event horizon, can
subsequently emerge. This includes light (photons) and other massless particles,
giving the black hole its name.

brown dwarf
Objects similar to stars, but with a temperature too low for hydrogen burning to begin.
Brown dwarfs contract from protostars in the same way as stars, but their low mass
means that electron degeneracy sets in before the temperature required for
thermonuclear reactions is attained.
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Chandrasekhar limit
The theoretical upper limit to the mass of a white dwarf, about

0

, also called the

Chandrasekhar mass. Contrast with Tolman–Oppenheimer–Volkoff (TOV) limit.
Chandrasekhar mass

The maximum stellar mass that can be supported by electron degeneracy pressure:
hence an upper limit on the mass of a white dwarf. The limit arises when the electrons
at the centre of the star become fully relativistic. The value of the Chandrasekhar mass
depends on the model used for the internal structure of the white dwarf and on its
composition, but is around

0

.

chemical potential
A quantity used to describe the energy that each particle in an ensemble brings to the
total.

CO white dwarf
A white dwarf composed chiefly of carbon and oxygen, formed from the core of a star
whose initial mass was between about

0

and
0

. They will have masses from

0

to
0

.

de Broglie wavelength
According to quantum mechanics, any force-free particle can be described by a
sinusoidal de Broglie wave. The wavelength of the wave is known as the de Broglie
wavelength

0

and is related to the particle’s momentum
0

by
0

where
0
is

the Planck constant.
degeneracy

The phenomenon whereby more than one quantum state is associated with a particular
energy level in a given system. Any energy level that corresponds to more than one
quantum state is said to be degenerate.

degeneracy pressure
A pressure that arises in degenerate matter as a result of the Pauli exclusion principle,
which forbids two fermions in a system from occupying the same quantum state. This
means that a degenerate system always has a non-zero kinetic energy density and
therefore a non-zero pressure, independent of its temperature.

degenerate matter
Matter that is so dense that the laws of quantum mechanics must be used to describe
the behaviour of the particles that it consists of. The critical density for degeneracy is
the quantum concentration: if the density exceeds this value then the system will be
degenerate.

electron

A type of elementary particle with charge
0

, mass
0

(or

about
0

) and spin
0

. The electron is a stable lepton. As far as is known,

it has no internal structure, and is therefore regarded as a truly fundamental particle.
Electrons are constituents of all atoms.

electron capture
A form of beta decay in which a nucleus absorbs one of its own electrons, causing a
proton to become a neutron and a neutrino to be emitted.
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electron degeneracy
A condition in which the quantum nature of electrons cannot be ignored. If electrons are
packed so densely that their separations are comparable to their de Broglie
wavelength, then the Pauli exclusion principle prohibits the overlapping of electrons
with the same energy.

electron degeneracy pressure
Pressure due to degenerate electrons.

equation of state
An equation that relates the variables of pressure, volume and temperature for a
macroscopic system in an equilibrium state. (1) For an ideal gas, the equation of state
is

0

or
0

, where
0

is the Boltzmann constant. (2) For non-

relativistic degenerate electrons,
0

where

0

. (3)

For ultra-relativistic degenerate electrons,
0

where

0

.

Fermi energy
The energy of the highest occupied state is called the Fermi energy,

0

. A degenerate

gas may be regarded as very cold, the available energy levels being much higher than
those corresponding to the temperature of the material. For this reason, the Fermi
energy is useful in considering the state of degenerate matter in the cores of low-mass
giant stars or in compact stellar remnants.

Fermi kinetic energy

The kinetic energy
0

(in the non-relativistic case) of a particle whose

momentum is the Fermi momentum
0

.

Fermi momentum
The momentum magnitude

0

of a particle whose energy is the Fermi energy
0

where
0

(in the non-relativistic case).

fermion
A subatomic particle with spin

0

. Electrons, protons and neutrons are all fermions.

free-fall time
The time it would take for a body to collapse under the influence of gravity alone.

gravitational potential energy
The potential energy of a particle or body that arises from its interaction with other
particles or bodies via the (conservative) gravitational force. The gravitational potential
energy of a test mass

0
, placed at a point with gravitational potential

0

due to a central

body of mass
0
, is given by

0

, where
0

is the mass of the

central body.
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helium burning
A nuclear fusion process in which helium nuclei react with one another to produce
carbon, via the triple-alpha process. The process is initiated at temperatures of around

0

, and can, for a time, be the dominant means of energy production in the cores of

post-main-sequence stars.
helium flash

A runaway thermonuclear reaction that takes place in the centres of low-mass
(

0

) stars when they initiate helium burning. Because the electrons in the

centres of these stars are degenerate when helium burning starts, and because the
electron pressure in the centre is dominant, the cores do not respond to the increased
energy supply by expanding.

Hertzsprung–Russell diagram
(H-R diagram) A graph showing the relationship between temperature and luminosity
for a group of stars.

He white dwarf
A helium white dwarf would form from a main-sequence star whose mass is less than

0

. Such a star will have a main-sequence lifetime of order 100 billion years, hence

no such stars have yet evolved to become white dwarfs.
hydrogen burning

A nuclear fusion process in which hydrogen nuclei react with one another (possibly with
the involvement of other nuclei) to produce helium. The process occurs in the cores of
main-sequence stars, where it is the dominant form of energy production. It can also be
responsible for shell burning in post-main-sequence stars.

hydrostatic equilibrium
A situation in which the forces acting on a fluid (normally gravitational forces) are
balanced by the internal pressure of the fluid (including thermal, degeneracy and
radiation pressure), so that the fluid neither collapses nor expands.

main sequence
A well-defined region in the Hertzsprung–Russell diagram, showing a positive
correlation between temperature and luminosity, in which stars in their (core) hydrogen-
burning phase can be found. Protostars evolve onto the main sequence and spend
most of their lifetime as stars there until core hydrogen burning ceases and they evolve
towards the red giant branch.

mass fraction
The number fraction weighted by the mass of each type of particle. The mass fraction

0
of a particular type of particle in a sample may be expressed as

0

, where
0

is the mass per particle,
0
is the number density, and

0

is the overall mass density of

the sample.
mass gap

The apparent absence of compact objects between the upper mass limit for neutron
stars and the observed lower mass limit for black holes.

neutrino
A spin

0

uncharged lepton of very small mass. Three different types of neutrino are

known: electron neutrino, muon neutrino and tau neutrino.
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neutron
An uncharged elementary particle with mass

0

(about 0.1% greater

than that of the proton), and spin
0

. Neutrons are baryons, composed of up and down

quarks, and (when free) are unstable, with a mean lifetime of about 15 minutes.
neutron degeneracy

A condition in which the quantum nature of neutrons cannot be ignored. If neutrons are
packed so densely that their separations are comparable to their de Broglie
wavelength, then the Pauli exclusion principle prohibits the overlapping of neutrons
with the same energy.

neutron degeneracy pressure
Pressure due to degenerate neutrons.

neutron drip

Under conditions of extremely high density (
0

), the most stable nuclei are

those with large neutron excesses compared to normal. At still higher densities,
(

0

), free neutrons ‘drip’ from the nuclei, giving rise to a sea of nuclei,

electrons and free neutrons.
neutronisation

The fusion of an electron with a proton in a nucleus to produce a neutron, thus reducing
the atomic number

0
of the nucleus by 1 and increasing the neutron number

0
by 1.

Neutronisation occurs in the high density of compact stellar remnants, and produces
neutron-rich isotopes prior to neutron drip occurring.

neutron star
A stellar-mass object supported against gravitational collapse by the degeneracy
pressure of neutrons. A neutron star is expected to form in the final stages of the life of
a massive star; at extremely high densities and pressures it becomes energetically
favourable for protons and electrons to merge (inverse beta decay).

nucleon
A term used to mean either a proton or a neutron.

number density
The number of particles per unit volume, usually represented by the symbol

0
. The SI

unit of number density is
0

.

number of electrons per nucleon

The quantity
0

used to define the electron number density as
0

. For pure

hydrogen it is equal to 1, whereas for helium-4, carbon-12 and oxygen-16 it is equal
to 0.5.

ONeMg white dwarf
A white dwarf composed chiefly of oxygen, neon and magnesium, formed from the core
of a star whose initial mass was between about

0

and
0

. ONeMg white dwarfs

will have masses in the range about
0

.

Pauli exclusion principle
A principle asserting that no two fermions can occupy the same quantum state.
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photodisintegration
The breakup of a nucleus into small parts due to the absorption of a photon – typically a
gamma ray – whose energy exceeds the binding energy of the compound nucleus.

planetary nebula
A shell of material with a mass of a few tenths of a solar mass that has been ejected
from a star in the late red giant phase of its evolution. The gas is photoionised by the
remaining hot material of the star (possibly by now a white dwarf). The majority of
planetary nebulae are asymmetric, with a small fraction being largely spherical or
elliptical.

polytropic stellar model
A model for the structure of a star in which the pressure and density are related by

0

everywhere in the star, where
0

is the adiabatic index.

proton
A type of elementary particle found in the nucleus of every atom. Protons carry a
positive charge

0

and have a mass of

0

. The mass of a proton is about
0

less than the

mass of a neutron and the two particles have similar sizes (about
0

).

quantum concentration
The maximum number density of particles in some material if it is to remain non-
degenerate. That is, if the actual number density

0

, degeneracy will have set in.

Quantum concentration is defined as
0

for non-relativistic

particles, and
0

for ultra-relativistic particles.

red giant
A star which has ceased to burn hydrogen in its core and started shell hydrogen
burning. Shell hydrogen burning causes the outer layers of the star to expand, making
the star more luminous but reducing its surface temperature. Consequently, red giants
occupy a region of the Hertzsprung–Russell diagram above and to the right of their
original position on the main sequence.

red giant branch
(RGB) The region of the Hertzsprung–Russell diagram in which red giant stars are
found.

Schwarzschild radius
The characteristic radius (

0

) in the general relativistic treatment of an

isolated non-rotating spherically symmetric body of mass
0
. It is about

0

. A

body all of whose mass lies within its Schwarzschild radius is a black hole.
spin

An intrinsic form of angular momentum carried by elementary particles and also by
composite particles such as hadrons, nuclei and atoms. Electrons, protons and
neutrons are fermions and each have spin of either +1/2 or -1/2.

supergiant star
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An evolved massive star that has left the main sequence. Supergiants have a high
luminosity and a range of temperatures, appearing as cool red supergiants and hot
blue supergiants.

supergiant branch
The region of the Hertzsprung–Russell diagram in which supergiant stars are found.

supernova
A star whose luminosity temporarily increases to very high values before fading rapidly
on a timescale of weeks to months. Energy is emitted in the form of light but also as a
burst of neutrinos and as kinetic energy of ejected material. There are several ways in
which this can happen.

Tolman–Oppenheimer–Volkoff (TOV) limit
The theoretical upper limit to the mass of a neutron star, about

0

. Contrast with

Chandrasekhar limit.
white dwarf

A stellar-mass compact object, with a mass below the Chandrasekhar mass (
0

)

supported against gravitational collapse by the degeneracy pressure of electrons.
White dwarfs are the final products of the evolution of low-mass stars, after
thermonuclear reactions have ceased and the outer regions of the star have been lost
in stellar winds or as a planetary nebula.
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