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[bookmark: Session1]Introduction
In this course, you will explore the exotic end-points in the lives of most stars – namely white dwarfs and neutron stars. To do this we consider the properties of so-called degenerate matter and how these properties govern the later stages of stellar evolution. To set the scene, we begin by outlining the life cycle of stars in general, before moving onto consider their end-points. We next look at planetary nebulae and white dwarfs, which are the end points of low- and medium-mass stars, and then see how high-mass stars end their lives as supernovae, and may produce neutron star remnants. 
This course shall refer to masses, radii and luminosities of stars in terms of the mass, radius and luminosity of the Sun (represented by M☉ = 1.99 × 1030 kg, R☉ = 6.96 × 105 km and L☉ = 3.83 × 1026 W respectively) and will sometimes refer to energies in the alternative units of electronvolts (where 1 eV = 1.60 × 10-19 J, with 1 keV = 103 eV and 1 MeV = 106 eV for convenience). 
This OpenLearn course is an adapted extract from the Open University course S384 Astrophysics of stars and exoplanets. 


[bookmark: Session2]Learning outcomes
After studying this course, you should be able to:
· appreciate how stars end their lives
· understand how planetary nebulae and supernova remnants form
· calculate the physical properties of white dwarfs and neutron stars
· understand the properties of electron-degenerate and neutron-degenerate matter
· calculate the energetics of supernovae explosions.


[bookmark: Session3]1 The life cycle of stars
Stars form from clouds of gas that collapse under the influence of gravity until their central temperatures and pressures become high enough for nuclear fusion to be initiated in their cores. At this point, the clouds stop contracting further and are maintained in hydrostatic equilibrium with a balance between the inward force of gravity and the outward force due to their internal pressure. Stars are typically initially composed of about 75% hydrogen and 25% helium, with small traces of other elements. 
Stars are observed with a wide range of masses, ranging from around one-tenth that of the Sun to over a hundred times the Sun’s mass. Other characteristics of stars include their radii, surface temperature and luminosity. Usually it is only stars’ surface temperatures (characterised by their colour) and luminosities (characterised by their brightness) that are directly observable. When these two quantities are plotted against each other for a population of stars, on a so-called Hertzsprung–Russell diagram (see Figure 1), certain patterns emerge in the stars’ locations. 
Start of Figure
[bookmark: Session3_Figure1][image: Displayed image]
Figure 1 A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated. 
View description - Figure 1 A schematic H–R diagram indicating the locations of four regions ...
End of Figure
Most stars are found in a band running from the top left to bottom right of the H–R diagram, known as the mainsequence. This is where all stars spend most of their lives as they undergo nuclear fusion in their cores, converting hydrogen into helium, and releasing energy. On the main sequence, the hottest, most luminous stars sit at the top left; these stars are the most massive and the largest. The coolest, least luminous stars sit at the bottom right; these stars are the least massive and the smallest. The most massive stars have relatively short main-sequence lifetimes of only a few tens of millions of years, whilst the least massive ones have main-sequence lifetimes of hundreds of billions of years (longer than the current age of the Universe). 
When most of the hydrogen in the core of a star is depleted, its outer layers will expand and the star will move towards the right of the main sequence, such that its surface appears cooler. This is the region known as the red giant branch. To begin with, hydrogen fusion occurs in a shell around the inert helium core, but as the central temperature and pressure rise further, helium fusion is initiated in the centre of the star. The star then moves back down to somewhat lower luminosities and hotter temperatures, at the lower end of the red giant branch. This new fusion process converts helium into carbon and oxygen in the star’s core, again releasing energy. Low mass stars (< 3 M☉) and intermediate mass stars (in the range 3–8 M☉) ultimately begin a second ascent of the red giant branch (known as the asymptotic giant branch, or AGB) when core helium is exhausted and helium fusion only continues in a shell surrounding an inert carbon/oxygen core. 
Massive stars (> 8 M☉) leave the upper main sequence when their core hydrogen is exhausted and then track back and forth along the supergiant branch as new sources of fusion in turn become active and are then depleted. Unlike lower mass stars whose fusion ends with carbon and oxygen, they can initiate further fusion reactions, converting carbon and oxygen into elements such as neon, magnesium, silicon and ultimately iron. They will end up with an ‘onion-like’ structure with shells of less massive elements surrounding shells of heavier elements towards the core. Once the core is composed of iron, no further fusion reactions are possible as reactions to produce nuclei heavier than iron require more energy to be put in than is released. 
The subsequent evolution of stars once all nuclear reactions cease is the main topic of this course, which will be explored in the following sections.


[bookmark: Session4]2 Planetary nebulae
As a low-mass or intermediate-mass star ascends the AGB, mass loss from the star becomes more and more significant. A strong stellar wind may develop in which a substantial fraction of the mass is carried away from the star. This usually corresponds to most of the hydrogen envelope! One consequence of extreme mass loss can be the formation of a planetary nebula, described below. Another effect is that even intermediate-mass stars, which had main-sequence masses in the range 3–8 M☉, end up with a mass < 1.4 M☉. The significance of this final mass will become clear when white dwarfs are discussed later. 
The mass lost from stars at the end of their AGB phase is not immediately visible in optical light, because dust grains in the cool ejecta obscure the star (although it may be seen in the infrared). The underlying helium-rich star – with a carbon and oxygen core – gets smaller and hotter, and a fast, radiation-driven stellar wind develops. Once the central star’s surface temperature reaches ~ 10 000 K it ionises the ejected envelope, which is then seen as a planetary nebula, expanding at ~ 30–60 km s-1. (Note: the term planetary nebula is a misnomer originating from when these objects were first observed as fuzzy planet-like objects through 18th century telescopes.) 
Start of Figure
[bookmark: Session4_Figure1][image: Displayed image]
Figure 2(a) Hubble Space Telescope (HST) image of the bipolar planetary nebula NGC 6302. (b) A composite of data from the Chandra X-ray Observatory and HST showing the multipolar planetary nebula NGC 6543. (c) A composite view of the AGB star L2 Puppis in visible light (blue) and radio (orange) revealing a giant planet shaping the outflow from the star. (d) ALMA radio observations reveal a spiral structure in the material around the AGB star R Sculptoris. 
View description - Figure 2(a) Hubble Space Telescope (HST) image of the bipolar planetary ...
End of Figure
The majority of planetary nebulae are asymmetric, with a small fraction being largely spherical or elliptical. Most are bipolar (with lobes either side of a central star) or multipolar (with at least two axes of symmetry), as shown in Figures 2a and 2b. The origin of these asymmetries has been the subject of considerable debate over recent decades. However, recent observations with the ALMA radio telescope and the SPHERE coronagraphic adaptive optics system on the Very Large Telescope (VLT) show that many of the asymmetries in planetary nebulae derive from structures that first formed while the star was on the AGB. They appear to be the result of orbiting companions, either a binary companion star or a massive planet (see Figure 2c). These can either transfer angular momentum to the ejecta and form a constraining torus, leading to a bipolar nebula, or create an orbital motion of the AGB star around the system’s centre of mass, giving rise to a spiral pattern in the ejecta (see Figure 2d). 
The physical diameter of a planetary nebula can be derived from its angular extent and distance. Because the expansion velocity of the nebula gas can be measured by its Doppler shift, the duration of the expansion – and hence of the post-AGB phase – can be calculated. By extrapolating the observed expansion of the nebula backwards, it can be shown that the whole evolution of a planetary nebula lasts only about 20,000 years. 
The star at the centre of the planetary nebula continues to get smaller and hotter. Its hydrogen-burning shell is extinguished when it gets too close to the surface and hence too cool, and the same happens eventually to the helium-burning shell. What remains is a hot carbon-and-oxygen core, surrounded by thin shells of helium and hydrogen, with a surface temperature of ~ 100,000 K. All nuclear burning has been extinguished by this stage, and there is no prospect of thermonuclear reactions being re-ignited. Observations show that, although the nebula continues to expand, the central star now begins a long slide to lower luminosity and temperature at almost-constant radius. The star has become a cooling white dwarf. 


[bookmark: Session5]3 Degeneracy
Before considering the physics of white dwarfs, let’s pause to look at the concept of degeneracy. In this context, degeneracy means that there is more than one quantum state with the same energy. 
In quantum mechanics, all particles display wave-like behaviour. In particular, any particle has a characteristic wavelength, known as the de Broglie wavelength, defined by 
Start of $1
[bookmark: Session5_Equation1](1)
[image: lamda sub dB equals h divided by p]
View alternative description - Uncaptioned Equation
End of $1
where h is Planck’s constant ([image: equals 6.63 multiplication 10 super negative 34 cap j s] or [image: 4.14 multiplication 10 super negative 15 eV Hz super negative one]) and p is the particle’s momentum. 
Now, inside a star, a particle’s kinetic energy can be written as [image: cap e sub k equals three divided by two times k sub cap b times cap t], where T is the temperature and kB is Boltzmann’s constant ([image: equals 1.38 multiplication 10 super negative 23 cap j cap k super negative one]). Another expression for the kinetic energy of a particle (with mass m and speed v) is simply [image: cap e sub k equals one divided by two times m times v squared]. So equating these two we obtain [image: three times k sub cap b times cap t equals m times v squared] or [image: v equals left parenthesis three times k sub cap b times cap t solidus m right parenthesis super one solidus two]. (Strictly, particles exist with a range of speeds, but [image: left parenthesis three times k sub cap b times cap t solidus m right parenthesis super one solidus two] is close to the average.) The momentum of a particle is given by [image: p equals m times v], so [image: p equals left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two]. Hence the de Broglie wavelength of a particle may be written as 
Start of $1
[bookmark: Session5_Equation2](2)
[image: lamda sub dB equals h divided by left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
Degeneracy becomes relevant when particles are packed so closely together that their separation is similar to their de Broglie wavelength. It turns out to be important at various stages in the lives of stars. Firstly, it determines the lower mass limit for stars: below a certain mass (about 0.075 times that of the Sun) matter in the star’s core becomes degenerate as the star collapses and hydrogen fusion cannot begin. Such a star will instead become a brown dwarf. Secondly, degeneracy also determines how helium fusion begins: for stars with a mass below about 2.25 times that of the Sun, after hydrogen fusion finishes in the core, matter in the star’s core becomes degenerate and helium fusion begins explosively in an event called a helium flash. Both these phenomena are therefore due to degeneracy. This concept will now be explored in detail as we consider the compact remnants left behind at the end of a star’s life. 
[bookmark: Session5_Section1]3.1 The de Broglie wavelength of electrons and nucleons
Let’s begin by thinking in terms of the quantum mechanical properties of particles. A volume of space containing a gas may be considered to be occupied by particles whose wave properties give rise to standing waves that fit neatly within that volume. They therefore have quantised values of wavelength, and also of energy and momentum. This quantisation means that there is a discrete (rather than continuous) distribution of possible particle energies. 
The number of possible quantum states available to particles below some energy is finite; often it is very large, but nevertheless it is finite. In the very dense interiors of some astronomical objects, such a finite number of available quantum states, though large, can be insufficient for the huge number of particles squeezed into the confined volume. Under these circumstances, physics then takes new twists, giving rise to some remarkable properties. 
The critical point of having too few available quantum states for the number of particles present is reached when the separations of the gas particles become smaller than their de Broglie wavelength. At that point, the wave properties of the gas dominate its classical properties, and a quantum gas is said to exist. The following activity explores how the de Broglie wavelengths for protons and electrons compare in the core of the Sun. 
Start of Activity
[bookmark: Session5_Activity1]Activity 1
Start of Question
a. [bookmark: Session5_Question1]The de Broglie wavelength of non-relativistic particles is given by Equation (2) as [image: lamda sub dB equals h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two] where m is the particle’s mass, kB is Boltzmann’s constant ([image: equals 1.38 multiplication 10 super negative 23 cap j cap k super negative one]) and T is the temperature. Calculate the de Broglie wavelength, in the core of the Sun at a temperature of [image: cap t sub c comma circled dot operator equals 15.6 multiplication 10 super six cap k], of: 
i. a proton (with mass [image: m sub p equals 1.67 multiplication 10 super negative 27] kg) 
ii. an electron (with mass [image: m sub e equals 9.11 multiplication 10 super negative 31] kg) 
b. Which has the larger de Broglie wavelength, and by what factor?
c. How does this ratio vary from star to star?
End of Question
View discussion - Activity 1
End of Activity
Note that neutrons have a similar de Broglie wavelength to protons because both types of particle have similar mass. Since the de Broglie wavelength of electrons is roughly 40 times longer than that of nucleons (i.e. protons or neutrons), then as the stellar core contracts and its density increases, electrons run out of space and hence reach the quantum limit corresponding to degeneracy sooner than nucleons. 
[bookmark: Session5_Section2]3.2 Conditions for degeneracy
Degeneracy can be described in two equivalent ways:
1. The separation between particles is less than their de Broglie wavelength, 
Start of $1
[bookmark: Session5_Equation6](3)
[image: multirelation l less than lamda sub dB equals h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two]
View alternative description - Uncaptioned Equation
End of $1
2. The number of particles per unit volume, n, is greater than the number of available quantum states nQ known as the quantum concentration, 
Start of $1
[bookmark: Session5_Equation7](4)
[image: multirelation n greater than n sub cap q equals left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two]
View alternative description - Uncaptioned Equation
End of $1
Before going further, complete the following activity to confirm to yourself that these two conditions are equivalent.
Start of Activity
[bookmark: Session5_Activity2]Activity 2
Start of Question
[bookmark: Session5_Question2]Beginning with the second statement of the condition for degeneracy, [image: n greater than n sub cap q], use the definition of the quantum concentration to derive an expression for the mean separation of the particles, in terms of the de Broglie wavelength. Show that this leads to the first statement for the condition of degeneracy. 
Hint: if the mean separation of particles is [image: l], then the number of particles per unit volume is [image: n equals one solidus l cubed]. 
End of Question
View discussion - Activity 2
End of Activity
You have now shown that the two conditions for degeneracy are actually equivalent; they are merely alternative expressions of the same physics. In the following activity, you will see how a third such expression is derived, which is also equivalent. 
Start of Activity
[bookmark: Session5_Activity3]Activity 3 
Start of Question
a. [bookmark: Session5_Question3]Rewrite the second description of degeneracy, [image: n greater than n sub cap q], to find a limit for the thermal energy [image: k sub cap b times cap t]. State a third, equivalent condition for degeneracy as a limit on the temperature. 
b. Calculate values of the quantity [image: h squared times n super two solidus three solidus left parenthesis two times pi times m times k sub cap b right parenthesis] in the core of the Sun for (i) protons and (ii) electrons. Assume that the mass fractions of hydrogen and helium are [image: equation sequence part 1 cap x sub cap h equals part 2 cap x sub He equals part 3 0.5] and that the core density of the Sun is [image: rho sub c comma circled dot operator equals 1.48 multiplication 10 super five kg m super negative three]. Note that in the solar core, all atoms are fully ionised and that the number density is [image: n equals rho times cap x solidus m] for each type of particle. 
The mass of an electron is [image: m sub e equals 9.11 multiplication 10 super negative 31] kg, the mass of a hydrogen nucleus is [image: m sub p equals 1.67 multiplication 10 super negative 27] kg and the mass of a helium nucleus is [image: m sub He equals four times u] where u is the atomic mass unit given by [image: u equals 1.66 multiplication 10 super negative 27] kg. As usual Planck’s constant is [image: h equals 6.63 multiplication 10 super 34 cap j s] and Boltzmann’s constant is [image: k sub cap b equals 1.38 multiplication 10 super negative 23 cap j cap k super negative one]. 
c. Consider the results to part (b), and state whether (i) protons and (ii) electrons are degenerate in the Sun’s core. Assume that the core temperature of the Sun is [image: cap t sub c comma circled dot operator equals 15.6 multiplication 10 super six cap k]. 
End of Question
View answer - Activity 3
End of Activity
You have seen in the previous activity that a third equivalent expression for the condition of degeneracy can be written as follows: 
Start of $1
[bookmark: Session5_Equation12](5)
[image: cap t less than h squared times n super two solidus three solidus left parenthesis two times pi times m times k sub cap b right parenthesis]
View alternative description - Uncaptioned Equation
End of $1
Sometimes, this third condition is used to describe a degenerate gas as cold, because its temperature falls below some limit. However, this can be misleading because electrons may become degenerate at temperatures of millions of kelvins, which is obviously not cold in the common usage of the word. 
[bookmark: Session5_Section3]3.3 Fermions
Electrons, along with protons and neutrons, are fermions, which means they have particle spin [image: equals prefix plus minus of one solidus two]. The occupation of quantum states by fermions is restricted by the Pauli exclusion principle, which says that no more than one identical fermion can occupy a given quantum state. The only way to distinguish one fermion from another of the same particle is its spin, and because this has only two possible values, +1/2 or –1/2, at most two fermions of opposite spin can occupy a given quantum state, so that the number of fermions per quantum state is gs = 2. 
At low temperatures, all quantum states with energy less than their chemical potential are filled, and all quantum states with energy greater than their chemical potential are empty. In a cold electron gas, the energy of the most energetic degenerate electron is called the Fermi energy, EF, and the momentum of particles with this energy is called the Fermi momentum, pF. The Fermi energy is the sum of a particle’s kinetic energy and rest-mass energy. At low speeds, in the so-called non-relativistic limit, the Fermi kinetic energy and Fermi momentum for electrons are related by 
Start of $1
[bookmark: Session5_Equation13](6)
[image: cap e sub cap f equals p sub cap f squared solidus two times m sub e]
View alternative description - Uncaptioned Equation
End of $1
where me is the electron mass. The total number of degenerate electrons in the gas is evaluated as 
Start of $1
[bookmark: Session5_Equation14](7)
[image: cap n sub e equals four times pi times g sub s times cap v divided by three times h cubed times p sub cap f cubed full stop]
View alternative description - Uncaptioned Equation
End of $1
Because the number density of degenerate electrons is simply the total number of electrons per unit volume, [image: n sub e equals cap n sub e solidus cap v], and there are two spin states for electrons (gs = 2), this equation can be rearranged to express the magnitude of the Fermi momentum as 
Start of $1
[bookmark: Session5_Equation15](8)
[image: p sub cap f equals left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h full stop]
View alternative description - Uncaptioned Equation
End of $1
Start of ITQ
· [bookmark: Session5_ITQ1][bookmark: Session5_Question4]Combine Equations (6) and (8) to express the Fermi kinetic energy in terms of the electron number density.
· [bookmark: Session5_Answer2]For electrons we have
Start of $1
[bookmark: Session5_Equation16][image: equation sequence part 1 cap e sub cap f equals part 2 p sub cap f squared divided by two times m sub e equals part 3 left parenthesis three times n sub e divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub e full stop]
View alternative description - Uncaptioned Equation
End of $1
End of ITQ
Fermi energies are conveniently expressed in units of eV, keV or MeV. For comparison, the gap between atomic energy levels in a hydrogen atom is a few eV, the rest mass energy of an electron is 511 keV and that of a proton or neutron is about 940 MeV. 
[bookmark: Session5_Section4]3.4 The pressure of a non-relativistic degenerate gas
In the non-relativistic limit (i.e. when v << c), the total energy of the gas may be expressed as 
Start of $1
[bookmark: Session5_Equation17](9)
[image: cap e sub NR equals cap n sub e times left parenthesis three times p sub cap f squared divided by 10 times m sub e plus m sub e times c squared right parenthesis]
View alternative description - Uncaptioned Equation
End of $1
The second term in the brackets in Equation (9) is simply the rest-mass energy per particle, and the first term is the kinetic energy per particle. Furthermore, the kinetic energy per unit volume is the kinetic energy per particle multiplied by the number of particles per unit volume. So the kinetic energy per unit volume is [image: three times p sub cap f squared times n sub e solidus left parenthesis 10 times m sub e right parenthesis]. 
Now, the pressure provided by non-relativistic particles is 2/3 of the kinetic energy per unit volume, so
Start of $1
[bookmark: Session5_Equation18][image: equation sequence part 1 cap p sub NR equals part 2 two divided by three multiplication three times p sub cap f squared times n sub e divided by 10 times m sub e equals part 3 n sub e times p sub cap f squared divided by five times m sub e full stop]
View alternative description - Uncaptioned Equation
End of $1
Then, using Equation (8), we have
Start of $1
[bookmark: Session5_Equation19][image: equation sequence part 1 cap p sub NR equals part 2 n sub e divided by five times m sub e multiplication left parenthesis three times n sub e divided by eight times pi right parenthesis super two solidus three times h squared equals part 3 h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three times n sub e super five solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
The equation of state for non-relativistic degenerate electrons may therefore be written as follows: 
Start of $1
[bookmark: Session5_Equation20](10)
[image: cap p sub NR equals cap k sub NR times n sub e super five solidus three where cap k sub NR equals h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
[bookmark: Session5_Section5]3.5 The pressure of an ultra-relativistic degenerate gas
We can also develop a similar expression for the equation of state for ultra-relativistic particles (i.e. when v ~ c). In this case, the total energy of the gas may be expressed as 
Start of $1
[bookmark: Session5_Equation21](11)
[image: cap e sub UR equals three divided by four times cap n sub e times p sub cap f times c full stop]
View alternative description - Uncaptioned Equation
End of $1
Because, in this case, the rest-mass energy is negligible, the kinetic energy per particle is [image: three times p sub cap f times c solidus four]. Furthermore, the kinetic energy per unit volume is (once again) the kinetic energy per particle multiplied by the number of particles per unit volume. So the kinetic energy per unit volume is [image: three times p sub cap f times n sub e times c solidus four]. 
Now, it turns out that the pressure provided by ultra-relativistic particles is 1/3 of the kinetic energy per unit volume, so 
Start of $1
[bookmark: Session5_Equation22][image: equation sequence part 1 cap p sub UR equals part 2 one divided by three multiplication three times p sub cap f times n sub e times c divided by four equals part 3 n sub e times p sub cap f times c divided by four full stop]
View alternative description - Uncaptioned Equation
End of $1
Then using Equation (8) we have
Start of $1
[bookmark: Session5_Equation23][image: equation sequence part 1 cap p sub UR equals part 2 n sub e times c divided by four multiplication left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h equals part 3 h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three times n sub e super four solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
The equation of state for ultra-relativistic degenerate electrons may therefore be written as follows:
Start of $1
[bookmark: Session5_Equation24](12)
[image: cap p sub UR equals cap k sub UR times n sub e super four solidus three where cap k sub UR equals h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Notice that the equations of state for degenerate electrons, whether non-relativistic or ultra-relativistic (or, indeed, somewhere in between), show that the pressure is independent of temperature and depends in each case only on the number density of electrons. In both the non-relativistic and ultra-relativistic cases, it is the independence of the pressure from the temperature that helps give a degenerate gas its interesting properties. 
Start of ITQ
· [bookmark: Session5_ITQ2][bookmark: Session5_Question5]What is the key difference between the equation of state for a non-relativistic electron-degenerate gas and that of an ultra-relativistic electron-degenerate gas? 
· [bookmark: Session5_Answer3]The pressure of an ultra-relativistic electron-degenerate gas has a weaker dependence on density than that of a non-relativistic gas (i.e. [image: cap p sub UR proportional to n sub e super four solidus three] compared to [image: cap p sub NR proportional to n sub e super five solidus three]). So as the density increases, the pressure in an ultra-relativistic gas increases less markedly. 
End of ITQ
Whether the gas of electrons is considered to be non-relativistic or ultra-relativistic, it is clear that white dwarfs are supported against further collapse by electron degeneracy pressure. Notice that the equations of state for a degenerate gas (whether non-relativistic or ultra-relativistic) show that the electron degeneracy pressure does not depend on temperature. This is quite different from a so-called ideal gas (which is a good approximation for most normal gases) where the equation of state is [image: cap p equals n times k sub cap b times cap t], where n is the particle number density, kB is Boltzmann’s constant and T is the temperature. This decoupling of pressure and temperature in a degenerate gas is what is responsible for many of the unusual properties of white dwarfs. 


[bookmark: Session6]4 White dwarfs
We now have all the tools in place to consider the physics of white dwarfs – the end points in the evolution of low- and intermediate-mass stars. 
[bookmark: Session6_Section1]4.1 The electron density
Because we will be considering electron degeneracy, we begin by deriving a new way of expressing the electron density. The general equation for the number density n of some type of particle is [image: n equals rho times cap x solidus m], where ρ is the gas density, X is the mass fraction and m is the particle mass. 
We can write this for electrons just as easily as for nucleons: [image: n sub e equals rho times cap x sub e solidus m sub e]. However, it is more convenient to write [image: cap x sub e identical to cap y sub e times m sub e solidus m sub cap h] where Ye is the number of electrons per nucleon. This leads to the expression 
Start of $1
[bookmark: Session6_Equation1](13)
[image: n sub e equals rho times cap y sub e solidus m sub cap h full stop]
View alternative description - Uncaptioned Equation
End of $1
Start of ITQ
· [bookmark: Session6_ITQ1][bookmark: Session6_Question1]What is the value of Ye in: (a) pure ionised hydrogen; (b) pure ionised helium? 
· [bookmark: Session6_Answer1](a) Hydrogen has one electron and one nucleon (its proton), so Ye = 1; (b) helium has two electrons and four nucleons (two protons and two neutrons), so Ye = 0.5. 
End of ITQ
You can readily convince yourself that Ye = 0.5 for the dominant isotopes of carbon-12 and oxygen-16 also (since carbon-12 has 12 nucleons and 6 electrons, while oxygen-16 has 16 nucleons and 8 electrons). For white dwarfs, the amount of hydrogen is negligible – it has all been burnt to helium or on to carbon and/or oxygen – so Ye = 0.5 for white dwarfs also. 
For an electron-degenerate gas, you know that the pressure is independent of temperature, and is given by a constant multiplied by some power of the electron density. Using Equation 13, we can therefore write: 
· for non-relativistic gas, [image: cap p sub NR equals cap k sub NR times left parenthesis rho times cap y sub e solidus m sub cap h right parenthesis super five solidus three]. 
· for ultra-relativistic gas, [image: cap p sub UR equals cap k sub UR times left parenthesis rho times cap y sub e solidus m sub cap h right parenthesis super four solidus three]
The so-called Clayton model for the internal structure of a star gives the core pressure required to support a star in terms of its core density as: 
Start of $1
[bookmark: Session6_Equation2](14)
[image: cap p sub c almost equals left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Here G is Newton’s gravitational constant ([image: equals 6.67 multiplication 10 super negative 11 cap n m super two kg super negative two]). By saying that degenerate electrons provide the required internal pressure to support the star, that is, by equating this to the degenerate-electron pressure, it is possible to write these equations purely in terms of the mass and core density, which therefore allows us to write one variable in terms of the other, as the following activity demonstrates. 
Start of Activity
[bookmark: Session6_Activity1]Activity 4 
Start of Question
a. [bookmark: Session6_Question2]By equating the core pressure in a star to the degenerate pressure of non-relativistic electrons, derive an expression for the core density in terms of its mass M and the number of electrons per nucleon, Ye. Leave physical constants unevaluated. 
b. Using the relation between electron number density ne and gas density ρc in the core of the star, express the core electron density as a function of stellar mass. 
End of Question
View answer - Activity 4
End of Activity
Activity 4 shows that in the non-relativistic case, the density in the core of a star may be written as 
Start of $1
[bookmark: Session6_Equation9](15)
[image: rho sub c equals left parenthesis 16 times pi cubed divided by 81 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five times cap m squared]
View alternative description - Uncaptioned Equation
End of $1
or, in terms of the degenerate-electron number density, as
Start of $1
[bookmark: Session6_Equation10](16)
[image: n sub e equals left parenthesis 16 times pi cubed divided by 81 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super four times cap m squared full stop]
View alternative description - Uncaptioned Equation
End of $1
[bookmark: Session6_Section2]4.2 The Chandrasekhar limit
We have now derived an expression for the electron number density inside a star in the non-relativistic case, but is the material inside a white dwarf really non-relativistic? In the non-relativistic limit, the Fermi kinetic energy of degenerate electrons is given by [image: cap e sub cap f equals p sub cap f squared solidus left parenthesis two times m sub e right parenthesis] (Equation 6), where pF is the Fermi momentum given by [image: p sub cap f equals left parenthesis three times n sub e solidus eight times pi right parenthesis super one solidus three times h] (Equation 8). Therefore, the Fermi kinetic energy of the degenerate, non-relativistic electrons in the core of a white dwarf is 
Start of $1
[bookmark: Session6_Equation11][image: cap e sub cap f equals left square bracket left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h right square bracket squared times one divided by two times m sub e]
View alternative description - Uncaptioned Equation
End of $1
So, using Equation 16, this becomes
Start of $1
[bookmark: Session6_Equation12][image: cap e sub cap f equals left square bracket three divided by eight times pi times left parenthesis 16 times pi cubed divided by 81 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super four times cap m squared right square bracket super two solidus three times h squared divided by two times m sub e]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation13](17)
[image: cap e sub cap f equals 25 divided by two times left parenthesis two times pi squared divided by 27 right parenthesis super two solidus three times left parenthesis cap g divided by h right parenthesis squared times left parenthesis m sub cap h divided by cap y sub e right parenthesis super eight solidus three times cap m super four solidus three times m sub e full stop]
View alternative description - Uncaptioned Equation
End of $1
The expression above relates the Fermi kinetic energy to a set of physical constants and the mass of the white dwarf, M. Substituting for these values therefore we have [image: cap e sub cap f equals 364 times left parenthesis cap m solidus cap m sub circled dot operator right parenthesis super four solidus three] keV. Evaluating this expression for a white dwarf with mass 0.4 M☉ reveals that the Fermi kinetic energy in this case is about 107 keV which is already more than 20% of the electron rest-mass energy ([image: m sub e times c squared equals 511] keV). This makes it doubtful that the non-relativistic treatment is reliable for such a white dwarf. In more massive white dwarfs, the Fermi kinetic energy is even higher (because [image: cap e sub cap f proportional to cap m super four solidus three]) and the non-relativistic treatment will be progressively less reliable. Equation 17 implies that [image: cap e sub cap f almost equals m sub e times c squared] when M = 1.3 M☉, indicating that the ultra-relativistic treatment is certainly required instead when masses become this large. 
Start of Activity
[bookmark: Session6_Activity2]Activity 5
Start of Question
a. [bookmark: Session6_Question3]By equating the core pressure in a star to the degenerate pressure of ultra-relativistic electrons, derive an expression for the mass of a star supported by ultra-relativistic electrons. 
b. Evaluate the mass, assuming Ye = 0.5, in SI units and solar masses. Note that [image: cap g equals 6.67 multiplication 10 super negative 11 cap n m super two kg super negative two], [image: h equals 6.63 multiplication 10 super negative 34 cap j s], [image: c equals 3.00 multiplication 10 super eight m s super negative one] and [image: m sub cap h equals 1.67 multiplication 10 super negative 27 kg full stop]
End of Question
View discussion - Activity 5
End of Activity
The mass of a star when the ultra-relativistic limit is reached may be viewed as the maximum stellar mass that can be supported by degenerate electron pressure. The approximate calculation in the previous activity shows that this maximum mass is of the order of the mass of the Sun. 
The maximum mass for a white dwarf is called the Chandrasekhar limit; the most realistic computations estimate it as [image: cap m sub Ch almost equals 1.4 times cap m sub circled dot operator]. 
If the mass is increased further, then the pressure required to support the star also increases. But the ultra-relativistic degenerate electrons will not be able to increase their pressure to support it. Something has to give.... That something is the material supporting the star. There is a stable configuration of material at higher mass, but it does not consist of degenerate electrons. Rather, the electrons and protons of higher-mass objects are forced to combine as neutrons, and the stable object above the maximum white-dwarf mass is called a neutron star. Such objects will be studied later in this course. 
[bookmark: Session6_Section3]4.3 The white dwarf mass-radius relationship
The mean density of a star is equal to its mass divided by its volume, [image: rho macron equals three times cap m solidus left parenthesis four times pi times cap r cubed right parenthesis]. It can be related to the core density if the density profile of the star is known. So-called polytropic stellar models are ones in which the pressure at some radius is proportional to the density at that radius to some power. For a star described by a polytropic model with [image: cap p of r proportional to rho times left parenthesis r right parenthesis super five solidus three] (a reasonable approximation), the mean density turns out to be one-sixth of the core density: [image: rho macron equals rho sub c solidus six]. It is therefore possible to write a relation between the radius, mass and core density of a star. 
Where the core density is dictated by non-relativistic degenerate electrons, we have already seen how the core density and mass are related (Equation 15). We can eliminate the density from this equation and find an expression for the radius of the object as a function of its mass, as shown by the following activity. 
Start of Activity
[bookmark: Session6_Activity3]Activity 6
Start of Question
a. [bookmark: Session6_Question4]Rearrange the definition of the mean density [image: rho macron equals three times cap m solidus left parenthesis four times pi times cap r cubed right parenthesis] to get an expression for the radius in terms of the mass and mean density. 
b. Use the result for a polytropic model with [image: cap p proportional to rho super five solidus three] (i.e. [image: rho macron equals rho sub c solidus six]) to re-express the radius in terms of mass and core density. 
c. Substitute in the expression for the core density of non-relativistic degenerate electrons (Equation 15) to derive an expression for the radius of a white dwarf as a function of mass. Give your final answer in units normalised to the solar mass and solar radius. Note that [image: cap g equals 6.67 multiplication 10 super negative 11 cap n m super two kg super negative two], [image: h equals 6.63 multiplication 10 super negative 34 cap j s], [image: m sub e equals 9.11 multiplication 10 super negative 31 kg] and [image: m sub cap h equals 1.67 multiplication 10 super negative 27 kg full stop]
d. Re-express the final result in solar masses and Earth radii, where the Earth’s radius is [image: cap r sub circled plus equals 6.37 multiplication 10 super six] m. 
End of Question
View discussion - Activity 6
End of Activity
The result of the previous activity
Start of $1
[bookmark: Session6_Equation33](18)
[image: cap r sub WD equals cap r sub circled dot operator divided by 74 multiplication left parenthesis cap m sub WD divided by cap m sub circled dot operator right parenthesis super negative one solidus three]
View alternative description - Uncaptioned Equation
End of $1
is remarkable for two reasons. First, it shows that the radius of a white dwarf with the same mass as the Sun is two orders of magnitude smaller, comparable in radius to the Earth, as illustrated in Figure 3. 
Start of Figure
[bookmark: Session6_Figure1][image: Displayed image]
Figure 3 An artist’s impression showing the relative sizes of the white dwarf Sirius B and the Earth. 
View description - Figure 3 An artist’s impression showing the relative sizes of the white ...
End of Figure
Second, notice the mass-dependence of the radius: [image: cap r sub WD proportional to cap m sub WD super negative one solidus three]. Unlike low-mass main-sequence stars fusing hydrogen in helium, where [image: cap r sub MS proportional to cap m sub MS super two solidus five], note the important result that the sign of the exponent is negative for white dwarfs! 
While the more massive a main-sequence star is, the larger its radius, the more massive a white dwarf is, the smaller its radius! 
The derivation above of the white dwarf mass-radius relationship was based on the assumption that the electrons are non-relativistic. We showed this to be incorrect as the mass increases and it would imply infinite density (zero radius) at the Chandrasekhar limit, 1.4 M☉. There is another formula which gives a more accurate picture of the radius of white dwarfs, but it is an empirical formula, simply fitted to observed data. This formula, derived by Michael Nauenberg in 1972, is 
Start of $1
[bookmark: Session6_Equation34](19)
[image: cap r sub WD almost equals 7.8 multiplication 10 super six m prefix multiplication of left square bracket left parenthesis 1.4 times cap m sub circled dot operator divided by cap m sub WD right parenthesis super two solidus three minus left parenthesis cap m sub WD divided by 1.4 times cap m sub circled dot operator right parenthesis super two solidus three right square bracket super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
The formula derived in Equation 18, while unable to correctly describe white dwarfs near the Chandrasekhar limit, does encapsulate real physical ideas that are valid for low-mass stars. There is a place in science for both formulae! 
[bookmark: Session6_Section4]4.4 White dwarf composition and cooling
The simplest type of white dwarf, resulting from the collapse of a star of very low main-sequence mass ([image: cap m sub MS less than or equivalent to 0.5 times cap m sub circled dot operator]) in which no helium burning has occurred, would be composed entirely of helium. Such objects are referred to as He white dwarfs, with masses [image: cap m sub He comma WD less than or equivalent to 0.4 times cap m sub circled dot operator]. However we are unlikely to find isolated He white dwarfs in the Galaxy for the following reason. The He white dwarfs form from stars with very low mass. Such stars have main-sequence lifetimes of ~ 1011 years, or around 10 times the age of the Universe, so have not had time to evolve into white dwarfs yet. Any He white dwarfs that are seen must have formed as part of a binary star system that has undergone a phase of mass transfer which has altered the mass and composition of one or both of its components. 
Low-mass stars, with [image: 0.5 times cap m sub circled dot operator less than or equivalent to cap m sub MS less than or equivalent to three times cap m sub circled dot operator], undergo helium burning, producing carbon and oxygen in their cores. They lose some mass while on the AGB and so typically end their lives with masses of [image: tilde operator 0.4 minus 0.8 times cap m sub circled dot operator]. Even intermediate-mass stars, with [image: three times cap m sub circled dot operator less than or equivalent to cap m sub MS less than or equivalent to eight times cap m sub circled dot operator], lose so much mass as giants that only [image: less than or equivalent to 1.2 times cap m sub circled dot operator] remains to form the white dwarf. These carbon/oxygen cores are supported against further collapse by degenerate electrons, and hence do not attain the temperatures required to initiate carbon burning. The remnants of low- and intermediate-mass stars are therefore CO white dwarfs, with masses [image: 0.4 times cap m sub circled dot operator less than or equivalent to cap m sub CO comma WD less than or equivalent to 1.2 times cap m sub circled dot operator]. 
There is a narrow range of massive stars, with [image: eight times cap m sub circled dot operator less than or equivalent to cap m sub MS less than or equivalent to 11 times cap m sub circled dot operator], whose remaining cores are massive enough to collapse and ignite carbon (forming oxygen, neon and magnesium), but which ultimately fall below the Chandrasekhar limit owing to continued mass loss. When this carbon burning terminates, these stars will be supported by degenerate electrons again and will contract no further, leaving ONeMg white dwarfs, with masses typically in the range [image: 1.2 times cap m sub circled dot operator less than or equivalent to cap m sub ONeMg comma WD less than or equivalent to 1.4 times cap m sub circled dot operator]. 
Stars with [image: cap m sub MS greater than or equivalent to 11 times cap m sub circled dot operator] retain enough of their mass during mass loss that their cores continue to exceed the Chandrasekhar limit; at the end of each burning phase, their cores contract and heat up more. These stars complete all of the advanced burning phases, including silicon burning to form iron. Their endpoints will be explored in later sections of this course. 
As there are no nuclear energy sources active in a white dwarf, its luminosity is due solely to the slow leakage of thermal energy into space, as radiation. It takes ~ 109 y for white dwarfs to fade to [image: cap l tilde operator 10 super negative three times cap l sub circled dot operator]. As white dwarfs fade, they also cool. The luminosity of white dwarfs is provided by thermal leakage rather than slow gravitational contraction because white dwarfs are degenerate, so their temperature and pressure are decoupled. As they cool, the pressure remains constant so the radius is unchanged. Hence there is no release of gravitational potential energy. As white dwarfs cool and fade in the H–R diagram, they do so along lines of constant radius (see Figure 1). 
Start of Figure
[bookmark: Session6_Figure2][image: Displayed image]
Figure 1 (repeated) A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated. 
View description - Figure 1 (repeated) A schematic H–R diagram indicating the locations ...
End of Figure


[bookmark: Session7]5 Supernovae
In this section, you’ll see what happens to a star whose final core mass exceeds the Chandrasekhar limit, and subsequently, discover what remnant it may leave behind. 
A star with a main-sequence mass [image: greater than or equivalent to 11 times cap m sub circled dot operator] will complete all the stages of nuclear fusion that are available. Silicon burning will result in a core composed mainly of iron-56, surrounded by concentric shells of silicon, oxygen, neon, carbon, helium and hydrogen. No energy can be released by the thermonuclear fusion of iron, so the core collapses and the degenerate electrons within it become more and more relativistic. When the mass of the core exceeds the Chandrasekhar limit (about [image: 1.4 times cap m sub circled dot operator]), the degenerate electrons are no longer able to support the core, and a catastrophic collapse follows. The core will essentially collapse on a free-fall timescale, liberating gravitational potential energy. 
Start of ITQ
· [bookmark: Session7_ITQ1][bookmark: Session7_Question1]The free-fall timescale is given by [image: tau sub ff equals left parenthesis three times pi solidus left parenthesis 32 times cap g times rho right parenthesis right parenthesis super one solidus two]. Calculate the free-fall timescale for a stellar core with a density of [image: rho equals 10 super 14 kg m super negative three]. 
· [bookmark: Session7_Answer1]Putting in the numbers to the equation above, 
Start of $1
[bookmark: Session7_Equation1][image: multirelation tau sub ff equals left parenthesis three multiplication pi divided by 32 multiplication 6.67 multiplication 10 super negative 11 cap n m super two times kg super negative two multiplication 10 super 14 kg m super negative three right parenthesis super one solidus two almost equals 0.007 s full stop]
View alternative description - Uncaptioned Equation
End of $1
End of ITQ
Start of ITQ
· [bookmark: Session7_ITQ2][bookmark: Session7_Question2]The gravitational potential energy released in the collapse of a stellar core of mass M, from an initial radius R1 to a final radius R2, is [image: cap e sub g equals left parenthesis cap g times cap m squared solidus cap r sub two right parenthesis minus left parenthesis cap g times cap m squared solidus cap r sub one right parenthesis]. Calculate the gravitational potential energy released when a stellar core of mass [image: 1.4 times cap m sub circled dot operator] collapses to a radius of about 10 km. 
· [bookmark: Session7_Answer2]In this case, the final radius is very small, so [image: cap r sub two much less than cap r sub one], and we can neglect the initial gravitational potential energy as it is so small. Therefore the gravitational potential energy released is [image: cap e sub g almost equals cap g times cap m squared solidus cap r sub two]. So the energy released by the collapse of a [image: 1.4 times cap m sub circled dot operator]stellar core is 
Start of $1
[bookmark: Session7_Equation2][image: equation sequence part 1 cap e sub g almost equals part 2 6.67 multiplication 10 super negative 11 cap n m super two times kg super negative two multiplication left parenthesis 1.4 multiplication 1.99 multiplication 10 super 30 kg right parenthesis squared divided by 10 super four m almost equals part 3 five multiplication 10 super 46 cap j full stop]
View alternative description - Uncaptioned Equation
End of $1
End of ITQ
As the previous two questions show, the collapse of the core is very rapid and it liberates a vast amount of energy. 
The initiation of exothermic (energy-liberating) fusion reactions provides pressure support for stars during their long-lasting burning phases. However, the initiation of endothermic (energy-absorbing) reactions draws kinetic energy out of the material and hence eliminates the pressure support. There are two processes that can absorb energy in the collapsing core: photodisintegration of nuclei by high-energy gamma rays and electron capture processes. In the first, the energy is used to unbind the nuclei, while in the second, energy is converted into the kinetic energy of neutrinos, which stream out of the star largely unhindered. Let’s consider each of these two processes in more detail. 
[bookmark: Session7_Section1]5.1 Nuclear photodisintegration
There are many ways in which high-energy gamma rays can disintegrate nuclei of iron-56, but as an illustration of the physics involved, and the amount of energy that may be absorbed by this photodisintegration process, consider the situation in which a nucleus of iron-56 is broken down into helium nuclei: 
Start of $1
[bookmark: Session7_Equation3][image: gamma plus super 56 Fe long left right arrow 13 times super four He prefix plus of four n full stop]
View alternative description - Uncaptioned Equation
End of $1
The amount of energy absorbed by this process in the forward direction is [image: normal cap delta times cap q equals negative 124.4 MeV]. At the temperature and density of a stellar core, the result is that about three-quarters of the iron nuclei are dissociated. 
Start of Activity
[bookmark: Session7_Activity1]Activity 7 
Start of Question
[bookmark: Session7_Question3]If each iron nucleus absorbs 124.4 MeV of energy by photodisintegration, and three-quarters of a core of mass 1.4 M☉ is dissociated in this way, calculate the total energy absorbed by this process. (The mass of an iron-56 nucleus is 56u, where [image: u equals 1.66 multiplication 10 super negative 27] kg is the atomic mass unit.) 
End of Question
View answer - Activity 7
End of Activity
At still higher temperatures, helium nuclei will also undergo photodisintegration as follows:
Start of $1
[bookmark: Session7_Equation7][image: gamma plus super four He long left right arrow two p prefix plus of two n full stop]
View alternative description - Uncaptioned Equation
End of $1
The energy absorbed by this process in the forward direction is [image: normal cap delta times cap q equals negative 28.3 MeV]. At the temperature and density of a stellar core, the result is that about half of the helium-4 nuclei are dissociated. 
Start of Activity
[bookmark: Session7_Activity2]Activity 8
Start of Question
[bookmark: Session7_Question4]If each helium-4 nucleus absorbs 28.3 MeV of energy by photodisintegration, and half of the core of mass 1.4 M☉ is dissociated in this way, calculate the total energy absorbed by this process. (The mass of a helium-4 nucleus is 4u, where [image: u equals 1.66 multiplication 10 super negative 27] kg is the atomic mass unit.) 
End of Question
View discussion - Activity 8
End of Activity
Therefore, the total amount of energy absorbed by nuclear photodisintegration is [image: 4.5 multiplication 10 super 44 cap j] from the dissociation of iron-56 plus [image: 9.5 multiplication 10 super 44 cap j] from the dissociation of helium-4, or about [image: 1.4 multiplication 10 super 45 cap j] in total. 
[bookmark: Session7_Section2]5.2 Electron capture
The second mechanism by which energy is absorbed in the iron core of a star is that of electron capture, allowing energy to be carried away by neutrinos. The conversion of protons (in nuclei) to neutrons by electron capture is possible if the gas is sufficiently dense for degenerate electrons to have an energy greater than the 1.29 MeV mass-energy excess of neutrons relative to protons ([image: m sub n times c squared equals 939.56 MeV], while [image: m sub p times c squared equals 938.27 MeV]). Actually, the energy excess required for electron capture by bound nuclear protons, rather than free protons, is usually somewhat higher and depends on the nucleus, but is nevertheless usually just a few MeV. 
The general reaction may be written as
Start of $1
[bookmark: Session7_Equation11][image: e super minus postfix plus p long right arrow n prefix plus of nu sub e]
View alternative description - Uncaptioned Equation
End of $1
and is sometimes referred to as neutronisation. 
At densities above about 1012 kg m-3, iron-56 nuclei will capture electrons in the following reaction which produces a neutron-rich manganese nucleus: 
Start of $1
[bookmark: Session7_Equation12][image: e super minus plus super 56 Fe long right arrow super 56 Mn prefix plus of nu sub e full stop]
View alternative description - Uncaptioned Equation
End of $1
where [image: nu sub e] is a neutrino. Following this, further electron-capture reactions occur in successive nuclei, converting more and more protons into neutrons. 
Because electrons are rapidly used up by these reactions, the pressure support provided by degenerate electrons quickly disappears, and the core collapses rapidly, as noted earlier. The neutrinos produced by the electron-capture reactions carry away most of the energy. Although the passage of the neutrinos is hindered by the high densities in the core, which raises the likelihood of interactions, all of the neutrinos are still able to escape within a few seconds. 
Start of Activity
[bookmark: Session7_Activity3]Activity 9
Start of Question
[bookmark: Session7_Question5]If each neutrino produced in the reactions described above carries away 10 MeV of energy, how much energy (in joules) is removed by neutrinos if the whole core (comprising 1.4 M☉ of iron-56) undergoes neutronisation? (The mass of an iron-56 nucleus is 56u, where [image: u equals 1.66 multiplication 10 super negative 27] kg is the atomic mass unit.) 
End of Question
View discussion - Activity 9
End of Activity
As the result of the previous activity shows, neutronisation, like nuclear photodisintegration, can also remove ~ 1045 J of energy from the collapsing stellar core within a few seconds! 
[bookmark: Session7_Section3]5.3 Supernovae explosions
Over its lifetime, a high-mass star is supported against collapse by the thermal energy derived from converting hydrogen to iron, via intermediate species. Some of this energy is radiated away by the surface of the star over its long lifetime. Then, at the end of its life, it reverses that entire process by breaking apart the iron nuclei into their constituents. At the end of its life, a high-mass star will emit a similar amount of energy in a few seconds to that which it has emitted over its entire main-sequence lifetime! 
Therefore, in a stellar core composed largely of iron, photodisintegration and neutronisation reactions trigger a rapid collapse, which will continue until the core reaches a density comparable to that of an atomic nucleus. 
Start of ITQ
· [bookmark: Session7_ITQ3][bookmark: Session7_Question6]Given that a nucleus of mass number A has a radius [image: cap r almost equals 1.2 multiplication 10 super negative 15 m prefix multiplication of cap a super one solidus three], what is its density? 
· [bookmark: Session7_Answer4]The density [image: rho equals cap m solidus cap v] where the mass [image: cap m equals cap a times u] and the volume [image: cap v equals four times pi times cap r cubed solidus three]. Hence [image: rho equals three times cap a times u solidus left parenthesis four times pi multiplication left parenthesis 1.2 multiplication 10 super negative 15 m right parenthesis cubed multiplication cap a right parenthesis] and therefore 
Start of $1
[bookmark: Session7_Equation14][image: equation sequence part 1 rho almost equals part 2 three multiplication 1.66 multiplication 10 super negative 27 kg divided by four times pi multiplication left parenthesis 1.2 multiplication 10 super negative 15 m right parenthesis cubed almost equals part 3 two multiplication 10 super 17 kg m super negative three]
View alternative description - Uncaptioned Equation
End of $1
End of ITQ
This is equivalent to around 200 million tonnes per cubic centimetre! When the core approaches nuclear densities, nuclear forces resist any further compression and the collapsing core will rebound. This sends a shockwave through the infalling material, which causes much of the stellar envelope to be ejected. This is a supernova explosion (see Figure 4). 
Start of Figure
[bookmark: Session7_Figure1][image: Displayed image]
Figure 4 Two images of the same galaxy taken 41 days apart, with the location of a supernova highlighted by the white lines in the right-hand image. 
View description - Figure 4 Two images of the same galaxy taken 41 days apart, with the ...
End of Figure
Over the course of a year or so, the optical light output of a supernova is typically about 1042 J. However, it can also be observed that a further 1044 J of energy is carried away as the kinetic energy of the exploding debris, at velocities of tens of thousands of kilometres per second, to form a supernova remnant. These are certainly vast amounts of energy, but it turns out that they do not tell the whole story of the energy release during a supernova. 
As you saw earlier, the gravitational potential energy released in the collapse of a stellar core is [image: almost equals five multiplication 10 super 46 cap j]. This is 100 times greater than the observed energy carried away by the expanding debris, and it is at least 10 times the energy required to photodisintegrate the iron core, and 10 times the energy that can be carried away by neutronisation. So where does all the gravitational potential energy released by a supernova actually go? 
In fact, there is an intermediate stage between the iron core and the production of a compact remnant. This takes the form of a hot, dense plasma of neutrons, protons, electrons, neutrinos and photons. At a temperature of 1011 K and a density of 1014 kg m-3 this plasma is opaque to electromagnetic radiation, but not to neutrinos; it is believed that neutrino/antineutrino pairs are produced in the plasma, and carry away most of the gravitational binding energy of the collapsing core. 
Start of ITQ
· [bookmark: Session7_ITQ4][bookmark: Session7_Question7]Quantify the ways in which energy is carried away from a supernova.
· [bookmark: Session7_Answer5]Photons provide the least effective means of removing the energy: only ~ 1042 J over the first year or so after the explosion. The expansion of the ejected material carries 100 times as much as kinetic energy, ~ 1044 J. However, the binding energy of the neutron star is [image: almost equals five multiplication 10 super 46 cap j], so much more energy must be removed than is carried by the photons and kinetic energy. The majority is thought to be carried away by neutrinos. 
End of ITQ


[bookmark: Session8]6 Neutron stars
The mass range of progenitor stars that collapse to form neutron stars is uncertain, but it is possible that all single progenitor stars with main-sequence masses in the range [image: cap m sub MS almost equals 11 minus 25 times cap m sub circled dot operator] will do so. However, in some binary systems, neutron stars can also form from stars that were initially even more massive than [image: 25 times cap m sub circled dot operator], where mass transfer between the two stars influences their evolution significantly. Whatever their origin, a newly formed neutron star will have a temperature of 1011–1012 K, but it will cool quickly to around 109 K on a timescale of a day, and to around 108 K within a hundred years. 
Neutron stars are commonly observed as rapidly spinning radio pulsars. The youngest of these, such as the Crab pulsar which formed only ~ 1000 years ago, are seen to still reside in the centre of an expanding supernova remnant. Some so-called millisecond radio pulsars are observed in binary systems with a white dwarf or non-pulsar neutron star companion. Other neutron stars are seen in binary systems with a main-sequence or supergiant companion star from which they accrete large amounts of material. The accreting matter gives rise to strong X-ray emission, and such objects are known as X-ray binary stars. 
The neutron stars in radio pulsars and X-ray binaries are measured to have masses in the range [image: cap m sub NS almost equals 1.2 minus 2.2 times cap m sub circled dot operator], contained within a sphere of radius [image: cap r sub NS almost equals 10 minus 15 km]; hence they have a density of [image: 10 super 17 minus 10 super 18 kg m super negative three]. These extreme temperatures and densities give rise to some extraordinary consequences for the neutron star’s properties. 
[bookmark: Session8_Section1]6.1 Neutron star composition
For normal matter, the most stable configurations, with the lowest binding energy per nucleon, are nuclei around iron-56. However, when the density approaches [image: 10 super 14 kg m super negative three], the most stable nuclei are actually far more neutron-rich, such as nickel-78 and iron-76. At still higher densities, above [image: four multiplication 10 super 14 kg m super negative three], a phenomenon called neutron drip occurs, whereby neutrons ‘leak out’ of nuclei and an equilibrium mixture of nuclei, neutrons and electrons exists. When the density exceeds that of nuclear matter (at about [image: two multiplication 10 super 17 kg m super negative three]), the nuclei begin to merge and a dense gas of protons, neutrons and electrons is produced. Under these conditions there are complicated and uncertain interactions between nuclei, so the equation of state for neutron stars is not known. 
Despite this, a reasonable idea of the composition of a neutron star can be gained by considering a crude model in which the neutron star is treated as an ideal gas of degenerate electrons, protons and neutrons. In this situation, the normal beta decay of free neutrons is blocked because of the Pauli exclusion principle: there are no available quantum states left for the protons and electrons to occupy, so the neutrons are not able to decay. In particular, neutrons cannot decay if their Fermi energy is less than the sum of the Fermi energies of the electrons and protons, but they can decay if their Fermi energy is greater than that of the protons plus the electrons. An equilibrium will therefore exist when 
Start of $1
[bookmark: Session8_Equation1][image: cap e sub cap f of n equals cap e sub cap f of p plus cap e sub cap f of e full stop]
View alternative description - Uncaptioned Equation
End of $1
The neutrons and protons can be considered to be non-relativistic; hence their Fermi energies are given in each case by the sum of a rest-mass energy term and a kinetic energy term: 
Start of $1
[bookmark: Session8_Equation2][image: neutrons colon cap e sub cap f of n equals m sub n times c squared plus p sub cap f times left parenthesis n right parenthesis squared divided by two times m sub n]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session8_Equation3][image: protons colon cap e sub cap f of p equals m sub p times c squared plus p sub cap f times left parenthesis p right parenthesis squared divided by two times m sub p comma]
View alternative description - Uncaptioned Equation
End of $1
where mn and mp are the masses of the neutron and proton, and pF(n) and pF(p) are their Fermi momenta. Conversely, the electrons are much less massive than the protons and neutrons, so they can be considered ultra-relativistic. Their Fermi energy is simply 
Start of $1
[bookmark: Session8_Equation4][image: electrons colon cap e sub cap f of e equals p sub cap f of e times c comma]
View alternative description - Uncaptioned Equation
End of $1
where pF(e) is the electron’s Fermi momentum. 
Now, because the Fermi momentum is [image: p sub cap f equals left parenthesis three times n solidus eight times pi right parenthesis super one solidus three times h] (Equation 8), we can write the equilibrium condition as 
Start of $1
[bookmark: Session8_Equation5][image: m sub n times c squared plus left parenthesis three times n sub n divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub n equals sum with 3 summands m sub p times c squared plus left parenthesis three times n sub p divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub p plus left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h times c full stop]
View alternative description - Uncaptioned Equation
End of $1
Because the gas will be electrically neutral, the number densities of the protons and electrons must be equal: np = ne. Furthermore, the mass-energy difference between the neutron and proton is [image: m sub n times c squared minus m sub p times c squared equals 1.29 MeV], so we can rearrange this as 
Start of $1
[bookmark: Session8_Equation6][image: left parenthesis three times n sub p divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub p plus left parenthesis three times n sub p divided by eight times pi right parenthesis super one solidus three times h times c minus left parenthesis three times n sub n divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub n equals 1.29 MeV full stop]
View alternative description - Uncaptioned Equation
End of $1
This equation can be solved numerically to find the ratio of neutrons to protons (nn / np) at a given density. For instance, for a typical neutron star density of [image: 2.5 multiplication 10 super 17 kg m super negative three], the equation predicts a neutron-to-proton ratio of about 200 to 1. So, as long as there is one proton and one electron for every 200 neutrons, the neutrons are prevented from decaying, and the neutron star remains supported, essentially by the pressure of degenerate neutrons. Whereas white dwarfs are supported by electron degeneracy pressure, neutron stars are supported against further collapse by neutron degeneracy pressure. 
Start of Activity
[bookmark: Session8_Activity1]Activity 10
Start of Question
[bookmark: Session8_Question1]Suppose that the neutron star is so dense that the protons and neutrons (as well as the electrons) are ultra-relativistic. What is the ratio of neutrons to protons in this case? 
End of Question
View discussion - Activity 10
End of Activity
[bookmark: Session8_Section2]6.2 The radius and mass of neutron stars
When deriving equations to describe neutron stars, we should be wary of oversimplifying the assumptions about conditions inside them. In reality, Newtonian gravity should be replaced by Einstein’s general relativistic treatment, because for a neutron star of mass MNS and radius RNS, a neutron’s gravitational potential energy, [image: cap g times cap m sub NS times m sub n solidus cap r sub NS], is comparable to its rest-mass energy, mnc2. 
The momenta of neutrons also approach the relativistic limits, requiring special relativity. Nevertheless, the non-relativistic approximation can lead to useful insights into the size of the star, and an understanding of the dominant physics. In particular, it is interesting to compare calculations of the radius of a white dwarf, supported by degenerate electrons, and a neutron star, supported by degenerate neutrons. 
It turns out that the radius of a degenerate star scales according to the mass of the particle whose degenerate pressure supports the star. (The mass of the particle also determines its de Broglie wavelength, so you could also say that the de Broglie wavelength determines the radius of the star.) Because the pressure in a neutron star is provided by neutrons that are almost 2000 times heavier than an electron, neutron stars are a factor of almost 2000 smaller in radius. That is, while white dwarfs are comparable in size to the Earth, neutron stars have radii of only a few km! The typical masses and radii of different types of compact object are shown in Figure 5. 
Start of Figure
[bookmark: Session8_Figure1][image: Displayed image]
Figure 5 The mass-radius relationship for degenerate stellar remnants. 
View description - Figure 5 The mass-radius relationship for degenerate stellar remnan ...
End of Figure
In principle, neutron stars have a minimum stable mass of [image: cap m sub NS almost equals 0.1 times cap m sub circled dot operator], although in practice the minimum mass observed is around 1.2 M☉. An absolute upper mass limit of [image: cap m sub NS almost equals 2.9 times cap m sub circled dot operator] is set by the requirement that the sound speed inside a neutron star is less than the speed of light. However, it is more difficult to specify the actual upper mass limit for neutron stars than for white dwarfs for a couple of reasons. 
First, interactions between neutrons are significant. They repel one another at close separations ([image: less than 1.4 multiplication 10 super negative 15 m]), which makes them less compressible, but their energies are also so high that they produce baryons, containing one or more strange quarks, and pions, which reduce the pressure and make them more compressible. The net effect is to enable neutron stars that are more massive than one might expect on the basis of simpler assumptions. 
Second, the gravitational fields are so strong that Einstein’s theory of gravity – general relativity – must be used instead of Newtonian gravity and, under general relativity, gravity also depends on pressure. Whereas, in a normal star, internal pressure resists gravity, under general relativity it strengthens the gravity, which reduces the maximum mass that will be stable. 
The competing mechanisms of these two effects mean that it is extremely difficult to calculate the actual upper mass limit for neutron stars, and no consensus exists on the matter. Various calculations and theories suggest that the maximum mass is [image: cap m sub TOV almost equals 2.2 minus 2.5 times cap m sub circled dot operator]; this is referred to as the Tolman–Oppenheimer–Volkoff (TOV) limit. 


[bookmark: Session9]7 Black holes
Although this course is about white dwarfs and neutron stars, we cannot end without a brief mention of black holes. Black holes are the end point of a star’s evolution if the mass of the degenerate stellar core exceeds the TOV limit. They have infinite density and are characterised by their Schwarzschild radius. This radius marks the event horizon of the black hole, within which the escape velocity exceeds the speed of light, meaning that nothing can escape from it or be observed within it. For a non-rotating black hole of mass MBH, the Schwarzschild radius [image: cap r sub Sch equals two times cap g times cap m sub BH solidus c squared], which is ~ 3 km per solar mass. 
If the main-sequence mass of a star is in the range [image: cap m sub MS almost equals 16 minus 25 times cap m sub circled dot operator], it may be that neutron degeneracy pressure is insufficient to halt the core collapse, and a black hole forms directly (instead of a neutron star) with no accompanying supernova explosion. Such an event may result in the formation of a black hole of mass [image: cap m sub BH almost equals five minus eight times cap m sub circled dot operator]. The apparent absence of compact objects between the upper mass limit observed for a neutron star (~ 2.2 M☉) and the lower mass limit observed for a black hole (~ 5 M☉) is referred to as the mass gap. However, recent observations of gravitational wave sources have found hints of objects in this mass range, thereby challenging our understanding of their nature and formation. 
Single stars with main-sequence masses [image: cap m sub MS greater than or equivalent to 25 times cap m sub circled dot operator] will generally undergo a core-collapse supernova and produce a black hole with a mass of [image: cap m sub BH greater than or equivalent to 10 times cap m sub circled dot operator]. At the lower end of the mass range, the black hole will form by fallback of material onto an initially created neutron star, while for stellar masses of [image: cap m sub MS greater than or equivalent to 40 times cap m sub circled dot operator], the black hole forms directly. 


[bookmark: Session10]8 Quiz
Answer the following questions in order to test your understanding of the key ideas that you have been learning about.
In the following questions you may use the following values of physical constants, as necessary:
· [image: cap g equals 6.67 multiplication 10 super negative 11 cap n m super two kg super negative two]
· [image: h equals 6.63 multiplication 10 super negative 34 cap j s]
· [image: k sub cap b equals 1.38 multiplication 10 super negative 23 cap j cap k super negative one]
· [image: c equals 3.00 multiplication 10 super eight m s super negative one]
· [image: m sub e equals 9.11 multiplication 10 super negative 31 kg]
· [image: m sub cap h equals 1.67 multiplication 10 super negative 27 kg]
· [image: u equals 1.66 multiplication 10 super negative 27 kg]
Start of SAQ
[bookmark: Session10_SAQ1]Question 1
Start of Question
[bookmark: Session10_Question1]Which of the following statements about stellar evolution are true? 
End of Question
Red giant stars are undergoing fusion of helium into carbon and oxygen.
On the mainsequence, stars convert hydrogen into helium.
Stars spend less of their lives as red giants than they do on the main sequence.
Supergiant stars have higher luminosities than red giant stars.
More massive stars have shorter lives than less massive stars.
High mass stars are more common than low mass stars.
View answer - Question 1
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ2]Question 2
Start of Question
[bookmark: Session10_Question2]A stellar core has a density of 3.0 × 107 kg m-3 and a composition comprising fully ionised helium-4, carbon-12 and oxygen-16 with relative amounts XHe = 0.40, XC = 0.30 and XO = 0.30. What is the limiting temperature, below which the electrons in the core would be degenerate? 
End of Question
110 million K
240 million K
320 million K
550 million K
630 million K
View answer - Question 2
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ3]Question 3
Start of Question
[bookmark: Session10_Question3]Match the following equations of state with the correct dependence on particle number density and temperature. 
End of Question
[image: cap p proportional to n super four solidus three]
[image: cap p proportional to n super five solidus three]
[image: cap p proportional to n times cap t]
ultra-relativistic degenerate gas 
non-relativistic degenerate gas
ideal gas
View answer - Question 3
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ4]Question 4
Start of Question
[bookmark: Session10_Question4]A stellar core has a density of 6.9 × 108 kg m-3 and a composition comprising fully ionised helium-4, carbon-12 and oxygen-16 with relative amounts XHe = 0.70, XC = 0.15 and XO = 0.15. What is the Fermi kinetic energy of the electrons as a percentage of the electron rest-mass energy, assuming them to be non-relativistic? 
End of Question
13%
18%
25%
37%
52%
View answer - Question 4
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ5]Question 5
Start of Question
[bookmark: Session10_Question5]According to Nauenberg’s formula (Equation 19), what is the radius of a white dwarf (in Earth radii) whose mass is 1.0 M☉? (The radius of the Earth is R⊕ = 6370 km.) 
End of Question
0.25 R⊕
0.36 R⊕
0.58 R⊕
0.82 R⊕
0.93 R⊕
View answer - Question 5
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ6]Question 6
Start of Question
[bookmark: Session10_Question6]Match the following compact remnants with the progenitor single star main-sequence mass. 
End of Question
M MS = 0.15 M☉
M MS = 1.5 M☉
M MS = 15 M☉
He white dwarf
CO white dwarf
neutron star
View answer - Question 6
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ7]Question 7
Start of Question
[bookmark: Session10_Question7]The core of a massive star on the verge of collapse has a mass of 1.6 M☉ and is comprised of 20% helium-4 nuclei and 80% iron-56 nuclei, by mass. Assume (somewhat artificially) that all of the helium in the core undergoes photodisintegration, absorbing 28.3 MeV for each nucleus disintegrated; all of the iron in the core experiences electron capture, releasing a neutrino with energy 10 MeV for each neutronisation. 
How much energy in total would be removed from the collapsing core by the combined effects of photodisintegration and neutronisation?
You may assume mHe = 6.6447 × 10-27 kg and mFe = 9.3480 × 10-26 kg. A nucleus of helium-4 contains two protons and two neutrons; a nucleus of iron-56 contains 26 protons and 30 neutrons. 
End of Question
1.4 × 1045 J 
1.6 × 1045 J 
1.8 × 1045 J 
1.4 × 1046 J 
1.6 × 1046 J 
1.8 × 1046 J 
View answer - Question 7
End of SAQ
Start of SAQ
[bookmark: Session10_SAQ8]Question 8
Start of Question
[bookmark: Session10_Question8]Which of the following statements about white dwarfs and neutron stars are true? 
End of Question
White dwarfs are always less massive than neutron stars.
White dwarfs are smaller than neutron stars.
White dwarfs are more dense than neutron stars.
White dwarfs are supported by electron degeneracy pressure.
Neutron stars are supported by proton degeneracy pressure.
ONeMg white dwarfs are more common than CO white dwarfs.
Neutron stars can have masses up to 3 times that of the Sun.
View answer - Question 8
End of SAQ


[bookmark: Session11]Conclusion
1. Stars spend most of their lives fusing hydrogen into helium in the cores, sitting on the main sequence of the Hertzsprung–Russell diagram. When hydrogen in the core is depleted, low-mass (MMS < 3 M☉) and intermediate-mass (MMS = 3–8 M☉) stars evolve into red giants and undergo helium fusion, producing carbon and oxygen in their cores. Massive stars (MMS > 8 M☉) undergo further fusion reactions, evolving as supergiant stars, and those with the highest masses (MMS > 11 M☉) can eventually develop an iron core. 
2. As asymptotic giant branch (AGB) stars become very luminous, a strong stellar wind removes most of the hydrogen envelope. The underlying helium-rich star gets smaller and hotter, developing a fast, radiation-driven wind. Bipolar outflows and other asymmetries are shaped by orbiting planetary- or stellar-mass companions of the AGB star. Once the central star’s surface temperature reaches T ~ 104 K, it ionises the ejected envelope, which is then seen as an expanding planetary nebula. The star’s H- and He-burning shells are extinguished, leaving a degenerate CO core with T ~ 105 K, which subsequently cools and fades to produce a white dwarf. 
3. Degeneracy can be described in three equivalent ways:
· (i) when the separation of particles is less than the de Broglie wavelength for their momentum, [image: multirelation l less than lamda sub dB equals h solidus p equals h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two] (Equation 3). 
· (ii) when the number of particles per unit volume is higher than the number of available quantum states at their energy, given by the quantum concentration, [image: multirelation n greater than n sub cap q equals left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two] (Equation 4). 
· (iii) when the temperature of the particles is less than the limiting value given by [image: cap t less than h squared times n super two solidus three solidus left parenthesis two times pi times m times k sub cap b right parenthesis] (Equation 5). 
4. Electrons, protons and neutrons are fermions. The Pauli exclusion principle dictates that no more than one identical fermion can occupy a given quantum state. So, at most two fermions (with spins +1/2 and –1/2, respectively) can occupy the same quantum state. In a cold electron gas, the energy of the most energetic degenerate electron is called the Fermi energy. The Fermi kinetic energy is [image: cap e sub cap f equals p sub cap f squared solidus two times m sub e] (Equation 6), and its momentum [image: p sub cap f equals left parenthesis three times n sub e solidus eight times pi right parenthesis super one solidus three times h] (Equation 8) is called the Fermi momentum. 
5. Whereas the equation of state for an ideal gas, [image: cap p equals n times k sub cap b times cap t], depends on the number density of particles nand the temperature T, for a degenerate gas it depends only on the number density: [image: cap p sub NR equals cap k sub NR times n sub e super five solidus three] (Equation 10) or [image: cap p sub UR equals cap k sub UR times n sub e super four solidus three] (Equation 12), where KNR and KUR are constants for non-relativistic and ultra-relativistic conditions, respectively. This decoupling of pressure and temperature in a degenerate gas disables thermostatic regulation. An ideal gas responds to an increased temperature by increasing pressure and hence expanding and cooling slightly; in a degenerate gas, a thermonuclear runaway can develop. 
6. The number density n of some type of particle can be written in terms of its mass fraction X, mass m and the gas density ρ, as [image: n equals rho times cap x solidus m]. Hence, for electrons, [image: n sub e equals rho times cap y sub e solidus m sub cap h] (Equation 13), where Ye is the number of electrons per nucleon. For pure hydrogen, Ye = 1, whereas for helium-4, carbon-12 and oxygen-16 (and hence for all types of white dwarf), Ye = 0.5. 
7. White dwarfs are supported against further collapse by electron degeneracy pressure. When degenerate electrons provide the pressure support of a star, the Fermi energy, EF, may be expressed in terms of the mass. For non-relativistic degenerate electrons, [image: cap e sub cap f proportional to cap m super four solidus three] (Equation 17), so degenerate electrons become more relativistic in more-massive white dwarfs. For ultra-relativistic degenerate electrons, the core density approaches infinity as the mass increases towards the Chandrasekhar limit, ~ 1.4 M☉. 
8. For non-relativistic degenerate electrons, a white dwarf mass-radius relationship can be derived: [image: cap r sub WD almost equals left parenthesis cap r sub circled dot operator solidus 74 right parenthesis times left parenthesis cap m sub WD solidus cap m sub circled dot operator right parenthesis super negative one solidus three] (Equation 18). This is comparable to the radius of the Earth and implies that more-massive white dwarfs have smaller radii. 
9. Different types (He, CO and ONeMg) of white dwarf (WD) are the end points of low- and intermediate-mass main-sequence (MS) stars of different masses. They fade and cool along lines of constant radius in the H–R diagram. 
Start of Table
White dwarfs
	[bookmark: Session11_Table1]M MS / M☉
	Final core fusion
	M WD / M☉
	WD composition

	< 0.5
	H burning
	< 0.4
	He white dwarf 

	0.5–8 
	He burning
	0.4–1.2
	CO white dwarf 

	8–11 
	C burning
	1.2–1.4
	ONeMg white dwarf 


End of Table
1. Stars with MMS > 11 M☉ form an iron core supported by ultra-relativistic degenerate electrons. When the Chandrasekhar limit is reached, the electrons can no longer support the star. Nuclear photodisintegration by thermal photons and electron capture by nuclear protons (neutronisation) remove energy so efficiently that they send the core into free fall. The total amount of energy lost in a few seconds is comparable to the energy previously liberated via nuclear burning over the star’s entire main-sequence lifetime! 
0. (i) Photodisintegration of iron proceeds as [image: gamma plus super 56 Fe long right arrow 13 times super four He prefix plus of four n], and then [image: gamma plus super four He long right arrow two p prefix plus of two n]. This can break down about 75% of the iron core, followed by 50% of the helium, and thus can absorb of order ~ 1045 J of energy. 
0. (ii) Neutronisation is the conversion of nuclear protons into neutrons via electron capture: [image: e super minus postfix plus p long right arrow n prefix plus of nu sub e]; the neutrinos produced also carry away of order ~ 1045 J of energy. 
1. The collapse of a stellar core halts when the density reaches that of nuclear matter, and then rebounds. This sends a shock wave through the rest of the star that partially reverses the collapse, leading to the ejection of the outer layers as a supernova. Its typical luminous energy is ~ 1042 J, and the kinetic energy of the ejecta is ~ 1044 J. The gravitational binding energy released (~ 5 × 1046 J) is 10 times more than the energy required to photodisintegrate the iron core or that is lost by neutronisation; it is also 100 times more than the kinetic energy of the ejecta. Thus most of the liberated energy is probably lost in an intense burst of neutrinos from the resulting neutron star. 
1. When the density of a neutron star’s core reaches ~ 4 × 1014 kg m-3, neutrons drip from the nuclei and once the density exceeds that of normal nuclear matter, ~ 2 × 1017 kg m-3 , nuclei merge into a dense gas of electrons, protons and neutrons. Neutron stars survive because the beta decay of free neutrons is blocked by the Pauli exclusion principle and so neutrons greatly outnumber protons, typically with nn ~ 200 np. They are supported against further collapse by neutron degeneracy pressure. 
1. Neutron stars have masses in the range MNS ~ 1.2–2.2 M☉ and radii RNS ~ 10–15 km. Their maximum mass – the Tolman–Oppenheimer–Volkoff (TOV) limit – corresponds to the neutrons becoming ultra-relativistic, but is difficult to calculate because of neutron interactions and the need to use general relativity. They form from single stars with main-sequence masses MMS ~ 11–16 M☉. 
1. Single stars with MMS ~ 16–25 M☉ may form neutron stars too or they may form low-mass (MBH ~ 5–8 M☉) black holes instead, without a supernova. An apparent dearth of compact objects between the most massive neutron stars and the least massive black holes is referred to as the mass gap. Stars with initial masses MMS > 25 M☉ may also form neutron stars if they are in a binary system, because mass transfer between the two stars can significantly influence their evolution. Otherwise, such massive stars will form black holes with masses MBH > 10 M☉ and Schwarzschild radii (which mark the event horizon of the black hole) of RSch ~ 3 km per solar mass. 
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[bookmark: Glossary1]Glossary
asymptotic giant branch
(AGB) The region of the Hertzsprung–Russell diagram occupied by stars that are powered by a mixture of shell-hydrogen burning and shell-helium-burning, with a carbon and oxygen core. Shell-helium burning causes the outer envelope of the star to expand and cool further, so that stars lie above and to the right of the red giant stars in the Hertzsprung–Russell diagram in this phase. 
black hole
In the general theory of relativity, an object whose density is so high that nothing that comes within a certain distance of it, crossing a boundary called the event horizon, can subsequently emerge. This includes light (photons) and other massless particles, giving the black hole its name. 
brown dwarf
Objects similar to stars, but with a temperature too low for hydrogen burning to begin. Brown dwarfs contract from protostars in the same way as stars, but their low mass means that electron degeneracy sets in before the temperature required for thermonuclear reactions is attained. 
Chandrasekhar limit
The theoretical upper limit to the mass of a white dwarf, about [image: 1.4 times cap m sub circled dot operator], also called the Chandrasekhar mass. Contrast with Tolman–Oppenheimer–Volkoff (TOV) limit. 
Chandrasekhar mass
The maximum stellar mass that can be supported by electron degeneracy pressure: hence an upper limit on the mass of a white dwarf. The limit arises when the electrons at the centre of the star become fully relativistic. The value of the Chandrasekhar mass depends on the model used for the internal structure of the white dwarf and on its composition, but is around [image: 1.4 times cap m sub circled dot operator]. 
chemical potential
A quantity used to describe the energy that each particle in an ensemble brings to the total.
CO white dwarf
A white dwarf composed chiefly of carbon and oxygen, formed from the core of a star whose initial mass was between about [image: 0.5 times cap m sub circled dot operator] and [image: eight times cap m sub circled dot operator]. They will have masses from [image: 0.5 times cap m sub circled dot operator] to [image: 1.2 times cap m sub circled dot operator]. 
de Broglie wavelength
According to quantum mechanics, any force-free particle can be described by a sinusoidal de Broglie wave. The wavelength of the wave is known as the de Broglie wavelength [image: lamda sub dB] and is related to the particle’s momentum [image: p] by [image: lamda sub dB equals h solidus p] where [image: h] is the Planck constant. 
degeneracy
The phenomenon whereby more than one quantum state is associated with a particular energy level in a given system. Any energy level that corresponds to more than one quantum state is said to be degenerate. 
degeneracy pressure
A pressure that arises in degenerate matter as a result of the Pauli exclusion principle, which forbids two fermions in a system from occupying the same quantum state. This means that a degenerate system always has a non-zero kinetic energy density and therefore a non-zero pressure, independent of its temperature. 
degenerate matter
Matter that is so dense that the laws of quantum mechanics must be used to describe the behaviour of the particles that it consists of. The critical density for degeneracy is the quantum concentration: if the density exceeds this value then the system will be degenerate. 
electron
A type of elementary particle with charge [image: negative 1.602 multiplication 10 super negative 19 cap c], mass [image: 9.109 multiplication 10 super negative 31 kg] (or about [image: 0.511 MeV c super negative two]) and spin [image: one solidus two]. The electron is a stable lepton. As far as is known, it has no internal structure, and is therefore regarded as a truly fundamental particle. Electrons are constituents of all atoms. 
electron capture
A form of beta decay in which a nucleus absorbs one of its own electrons, causing a proton to become a neutron and a neutrino to be emitted. 
electron degeneracy
A condition in which the quantum nature of electrons cannot be ignored. If electrons are packed so densely that their separations are comparable to their de Broglie wavelength, then the Pauli exclusion principle prohibits the overlapping of electrons with the same energy. 
electron degeneracy pressure
Pressure due to degenerate electrons.
equation of state
An equation that relates the variables of pressure, volume and temperature for a macroscopic system in an equilibrium state. (1) For an ideal gas, the equation of state is [image: cap p times cap v equals cap n times k sub cap b times cap t] or [image: cap p equals n times k sub cap b times cap t], where [image: k sub cap b] is the Boltzmann constant. (2) For non-relativistic degenerate electrons, [image: cap p sub NR equals cap k sub NR times n sub e super five solidus three] where [image: cap k sub NR equals h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three]. (3) For ultra-relativistic degenerate electrons, [image: cap p sub UR equals cap k sub UR times n sub e super four solidus three] where [image: cap k sub UR equals h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three]. 
Fermi energy
The energy of the highest occupied state is called the Fermi energy, [image: cap e sub cap f]. A degenerate gas may be regarded as very cold, the available energy levels being much higher than those corresponding to the temperature of the material. For this reason, the Fermi energy is useful in considering the state of degenerate matter in the cores of low-mass giant stars or in compact stellar remnants. 
Fermi kinetic energy
The kinetic energy [image: p sub cap f squared solidus left parenthesis two times m right parenthesis] (in the non-relativistic case) of a particle whose momentum is the Fermi momentum [image: p sub cap f]. 
Fermi momentum
The momentum magnitude [image: p sub cap f] of a particle whose energy is the Fermi energy [image: cap e sub cap f] where [image: cap e sub cap f equals p sub cap f squared solidus left parenthesis two times m right parenthesis] (in the non-relativistic case). 
fermion
A subatomic particle with spin [image: prefix plus minus of one solidus two]. Electrons, protons and neutrons are all fermions. 
free-fall time
The time it would take for a body to collapse under the influence of gravity alone.
gravitational potential energy
The potential energy of a particle or body that arises from its interaction with other particles or bodies via the (conservative) gravitational force. The gravitational potential energy of a test mass [image: m], placed at a point with gravitational potential [image: cap phi] due to a central body of mass [image: cap m], is given by [image: equation sequence part 1 cap e sub g equals part 2 m times cap phi equals part 3 negative cap g times cap m times m solidus r], where [image: cap m] is the mass of the central body. 
helium burning
A nuclear fusion process in which helium nuclei react with one another to produce carbon, via the triple-alpha process. The process is initiated at temperatures of around [image: 10 super eight cap k], and can, for a time, be the dominant means of energy production in the cores of post-main-sequence stars. 
helium flash
A runaway thermonuclear reaction that takes place in the centres of low-mass ([image: less than 2.25 times cap m sub circled dot operator]) stars when they initiate helium burning. Because the electrons in the centres of these stars are degenerate when helium burning starts, and because the electron pressure in the centre is dominant, the cores do not respond to the increased energy supply by expanding. 
Hertzsprung–Russell diagram
(H-R diagram) A graph showing the relationship between temperature and luminosity for a group of stars.
He white dwarf
A helium white dwarf would form from a main-sequence star whose mass is less than [image: 0.5 times cap m sub circled dot operator]. Such a star will have a main-sequence lifetime of order 100 billion years, hence no such stars have yet evolved to become white dwarfs. 
hydrogen burning
A nuclear fusion process in which hydrogen nuclei react with one another (possibly with the involvement of other nuclei) to produce helium. The process occurs in the cores of main-sequence stars, where it is the dominant form of energy production. It can also be responsible for shell burning in post-main-sequence stars. 
hydrostatic equilibrium
A situation in which the forces acting on a fluid (normally gravitational forces) are balanced by the internal pressure of the fluid (including thermal, degeneracy and radiation pressure), so that the fluid neither collapses nor expands. 
main sequence
A well-defined region in the Hertzsprung–Russell diagram, showing a positive correlation between temperature and luminosity, in which stars in their (core) hydrogen-burning phase can be found. Protostars evolve onto the main sequence and spend most of their lifetime as stars there until core hydrogen burning ceases and they evolve towards the red giant branch. 
mass fraction
The number fraction weighted by the mass of each type of particle. The mass fraction [image: cap x] of a particular type of particle in a sample may be expressed as [image: cap x equals m times n solidus rho], where [image: m] is the mass per particle, [image: n] is the number density, and [image: rho] is the overall mass density of the sample. 
mass gap
The apparent absence of compact objects between the upper mass limit for neutron stars and the observed lower mass limit for black holes. 
neutrino
A spin [image: one solidus two] uncharged lepton of very small mass. Three different types of neutrino are known: electron neutrino, muon neutrino and tau neutrino. 
neutron
An uncharged elementary particle with mass [image: 1.675 multiplication 10 super negative 27 kg] (about 0.1% greater than that of the proton), and spin [image: one solidus two]. Neutrons are baryons, composed of up and down quarks, and (when free) are unstable, with a mean lifetime of about 15 minutes. 
neutron degeneracy
A condition in which the quantum nature of neutrons cannot be ignored. If neutrons are packed so densely that their separations are comparable to their de Broglie wavelength, then the Pauli exclusion principle prohibits the overlapping of neutrons with the same energy. 
neutron degeneracy pressure
Pressure due to degenerate neutrons.
neutron drip
Under conditions of extremely high density ([image: tilde operator 10 super 14 kg m super negative three]), the most stable nuclei are those with large neutron excesses compared to normal. At still higher densities, ([image: tilde operator four multiplication 10 super 14 kg m super negative three]), free neutrons ‘drip’ from the nuclei, giving rise to a sea of nuclei, electrons and free neutrons. 
neutronisation
The fusion of an electron with a proton in a nucleus to produce a neutron, thus reducing the atomic number [image: cap z] of the nucleus by 1 and increasing the neutron number [image: cap n] by 1. Neutronisation occurs in the high density of compact stellar remnants, and produces neutron-rich isotopes prior to neutron drip occurring. 
neutron star
A stellar-mass object supported against gravitational collapse by the degeneracy pressure of neutrons. A neutron star is expected to form in the final stages of the life of a massive star; at extremely high densities and pressures it becomes energetically favourable for protons and electrons to merge (inverse beta decay). 
nucleon
A term used to mean either a proton or a neutron.
number density
The number of particles per unit volume, usually represented by the symbol [image: n]. The SI unit of number density is [image: m super negative three]. 
number of electrons per nucleon
The quantity [image: cap y sub e] used to define the electron number density as [image: n sub e equals rho times cap y sub e solidus m sub cap h]. For pure hydrogen it is equal to 1, whereas for helium-4, carbon-12 and oxygen-16 it is equal to 0.5. 
ONeMg white dwarf
A white dwarf composed chiefly of oxygen, neon and magnesium, formed from the core of a star whose initial mass was between about [image: eight times cap m sub circled dot operator] and [image: 11 times cap m sub circled dot operator]. ONeMg white dwarfs will have masses in the range about [image: 1.2 en dash 1.4 times cap m sub circled dot operator]. 
Pauli exclusion principle
A principle asserting that no two fermions can occupy the same quantum state.
photodisintegration
The breakup of a nucleus into small parts due to the absorption of a photon – typically a gamma ray – whose energy exceeds the binding energy of the compound nucleus. 
planetary nebula
A shell of material with a mass of a few tenths of a solar mass that has been ejected from a star in the late red giant phase of its evolution. The gas is photoionised by the remaining hot material of the star (possibly by now a white dwarf). The majority of planetary nebulae are asymmetric, with a small fraction being largely spherical or elliptical. 
polytropic stellar model
A model for the structure of a star in which the pressure and density are related by [image: cap p proportional to rho super gamma] everywhere in the star, where [image: gamma] is the adiabatic index. 
proton
A type of elementary particle found in the nucleus of every atom. Protons carry a positive charge [image: prefix plus of e equals 1.602 multiplication 10 super negative 19 cap c] and have a mass of [image: 1.673 multiplication 10 super negative 27 kg equals 938.3 MeV c super negative two]. The mass of a proton is about [image: 0.1 percent] less than the mass of a neutron and the two particles have similar sizes (about [image: 10 super negative 15 m]). 
quantum concentration
The maximum number density of particles in some material if it is to remain non-degenerate. That is, if the actual number density [image: n greater than n sub cap q], degeneracy will have set in. Quantum concentration is defined as [image: n sub cap q comma NR equals left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two] for non-relativistic particles, and [image: n sub cap q comma UR equals eight times pi times left parenthesis k sub cap b times cap t solidus h times c right parenthesis cubed] for ultra-relativistic particles. 
red giant
A star which has ceased to burn hydrogen in its core and started shell hydrogen burning. Shell hydrogen burning causes the outer layers of the star to expand, making the star more luminous but reducing its surface temperature. Consequently, red giants occupy a region of the Hertzsprung–Russell diagram above and to the right of their original position on the main sequence. 
red giant branch
(RGB) The region of the Hertzsprung–Russell diagram in which red giant stars are found.
Schwarzschild radius
The characteristic radius ([image: cap r sub cap s equals two times cap g times cap m solidus c squared]) in the general relativistic treatment of an isolated non-rotating spherically symmetric body of mass [image: cap m]. It is about [image: three km cap m sub circled dot operator super negative one]. A body all of whose mass lies within its Schwarzschild radius is a black hole. 
spin
An intrinsic form of angular momentum carried by elementary particles and also by composite particles such as hadrons, nuclei and atoms. Electrons, protons and neutrons are fermions and each have spin of either +1/2 or -1/2. 
supergiant star
An evolved massive star that has left the main sequence. Supergiants have a high luminosity and a range of temperatures, appearing as cool red supergiants and hot blue supergiants. 
supergiant branch
The region of the Hertzsprung–Russell diagram in which supergiant stars are found.
supernova
A star whose luminosity temporarily increases to very high values before fading rapidly on a timescale of weeks to months. Energy is emitted in the form of light but also as a burst of neutrinos and as kinetic energy of ejected material. There are several ways in which this can happen. 
Tolman–Oppenheimer–Volkoff (TOV) limit
The theoretical upper limit to the mass of a neutron star, about [image: 2.2 times cap m sub circled dot operator]. Contrast with Chandrasekhar limit. 
white dwarf
A stellar-mass compact object, with a mass below the Chandrasekhar mass ([image: 1.4 times cap m sub circled dot operator]) supported against gravitational collapse by the degeneracy pressure of electrons. White dwarfs are the final products of the evolution of low-mass stars, after thermonuclear reactions have ceased and the outer regions of the star have been lost in stellar winds or as a planetary nebula. 


[bookmark: Solutions1]Solutions
Activity 1
[bookmark: Session5_Discussion1]Discussion
a. (i) For a proton in the core of the Sun:
Start of $1
[bookmark: Session5_Equation3][image: multiline equation row 1 lamda sub dB of p equals h solidus left parenthesis three times m sub p times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two row 2 Blank equals 6.63 multiplication 10 super negative 34 cap j s divided by Square root of three multiplication 1.67 multiplication 10 super negative 27 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one multiplication 15.6 multiplication 10 super six cap k row 3 Blank equals 6.38 multiplication 10 super negative 13 m full stop]
View alternative description - Uncaptioned Equation
End of $1
(ii) For an electron in the core of the Sun:
Start of $1
[bookmark: Session5_Equation4][image: multiline equation row 1 lamda sub dB of e equals h solidus left parenthesis three times m sub e times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two row 2 Blank equals 6.63 multiplication 10 super negative 34 cap j s divided by Square root of three multiplication 9.11 multiplication 10 super negative 31 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one multiplication 15.6 multiplication 10 super six cap k row 3 Blank equals 2.73 multiplication 10 super negative 11 m full stop]
View alternative description - Uncaptioned Equation
End of $1
b. The ratio of their de Broglie wavelengths is therefore:
Start of $1
[bookmark: Session5_Equation5][image: multiline equation row 1 lamda sub dB of e divided by lamda sub dB of p equation sequence part 1 equals part 2 h divided by left parenthesis three times m sub e times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two multiplication left parenthesis three times m sub p times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two divided by h equals part 3 left parenthesis m sub p divided by m sub e right parenthesis super one solidus two row 2 Blank equation sequence part 1 equals part 2 left parenthesis 1.67 multiplication 10 super negative 27 kg divided by 9.11 multiplication 10 super negative 31 kg right parenthesis super one solidus two equals part 3 42.8]
View alternative description - Uncaptioned Equation
End of $1
i.e. the de Broglie wavelength of the electron is greater than that of the proton, by a factor of about 40.
c. From part (b), this ratio depends only on the mass of the particles, and hence is independent of the environment and hence of the temperature. The electron’s wavelength is about 40 times longer than the proton’s wavelength in all stars. 
Back to - Activity 1
Activity 2
[bookmark: Session5_Discussion2]Discussion
The second condition is [image: n greater than n sub cap q], i.e. [image: n greater than left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two]. 
Because [image: n equals one solidus l cubed], substituting gives [image: one solidus l cubed greater than left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two]. 
Taking the (1/3)-power and rearranging the result gives
Start of $1
[bookmark: Session5_Equation8][image: multiline equation row 1 l less than h solidus left parenthesis two times pi times m times k sub cap b times cap t right parenthesis super one solidus two row 2 Blank less than left parenthesis three solidus two times pi right parenthesis super one solidus two multiplication h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two row 3 Blank less than left parenthesis three solidus two times pi right parenthesis super one solidus two multiplication lamda sub dB row 4 Blank less than 0.7 times lamda sub dB full stop]
View alternative description - Uncaptioned Equation
End of $1
That is, from the second degeneracy condition, [image: n greater than n sub cap q], we obtain the first degeneracy condition, [image: l less than lamda sub dB]. 
Back to - Activity 2
Activity 3 
[bookmark: Session5_Answer1]Answer
a. Since [image: n sub cap q equals left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two], so the degeneracy condition [image: n greater than n sub cap q] implies that [image: n greater than left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two]. 
Taking the (2/3)-power and multiplying both sides by [image: h squared solidus left parenthesis two times pi times m right parenthesis] gives [image: h squared times n super two solidus three solidus left parenthesis two times pi times m right parenthesis greater than k sub cap b times cap t], i.e. [image: k sub cap b times cap t less than h squared times n super two solidus three solidus left parenthesis two times pi times m right parenthesis]. 
The third, equivalent condition for degeneracy, in relation to temperature, is: the gas is degenerate if its temperature [image: cap t less than h squared times n super two solidus three solidus left parenthesis two times pi times m times k sub cap b right parenthesis]. 
b. (i) For protons, [image: n sub p equals rho sub c comma circled dot operator times cap x sub cap h solidus m sub p][image: equals 1.48 multiplication 10 super five kg m super negative three multiplication 0.5 solidus 1.67 multiplication 10 super negative 27 kg][image: equals 4.43 multiplication 10 super 31 times m super negative three](i.e. hydrogen nuclei per m3). 
Therefore, for protons, the temperature-related degeneracy condition is
Start of $1
[bookmark: Session5_Equation9][image: multiline equation row 1 h squared times n sub p super two solidus three divided by two times pi times m sub p times k sub cap b equals left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared multiplication left parenthesis 4.43 multiplication 10 super 31 times m super negative three right parenthesis super two solidus three divided by left parenthesis two multiplication pi multiplication 1.67 multiplication 10 super negative 27 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one right parenthesis row 2 Blank equals 3.78 multiplication 10 cubed cap j s super two times m super negative two times kg super negative one cap k row 3 Blank almost equals 3800 cap k full stop]
View alternative description - Uncaptioned Equation
End of $1
(ii) In the solar core, all atoms are ionised. The electrons are provided by the hydrogen (1 electron per atom) and helium (2 electrons per atom), which each account for 0.5 of the composition by mass. So 
Start of $1
[bookmark: Session5_Equation10][image: multiline equation row 1 n sub e equation sequence part 1 equals part 2 n sub p plus two times n sub He equals part 3 rho sub c comma circled dot operator times cap x sub cap h divided by m sub p plus two times rho sub c comma circled dot operator times cap x sub He divided by m sub He equals part 4 rho sub c comma circled dot operator times left parenthesis cap x sub cap h divided by m sub p plus two times cap x sub He divided by four times u right parenthesis row 2 Blank equals 1.48 multiplication 10 super five kg m super negative three times left parenthesis 0.5 divided by 1.67 multiplication 10 super negative 27 kg plus two multiplication 0.5 divided by four multiplication 1.66 multiplication 10 super negative 27 kg right parenthesis row 3 Blank equals 6.66 multiplication 10 super 31 times m super negative three full stop]
View alternative description - Uncaptioned Equation
End of $1
Therefore, for electrons, the temperature-related degeneracy condition is
Start of $1
[bookmark: Session5_Equation11][image: multiline equation row 1 h squared times n sub e super two solidus three divided by two times pi times m sub e times k sub cap b equals left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared multiplication left parenthesis 6.63 multiplication 10 super 31 times m super negative three right parenthesis super two solidus three divided by left parenthesis two multiplication pi multiplication 9.11 multiplication 10 super negative 31 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one right parenthesis row 2 Blank equals 9.12 multiplication 10 super six cap j s super two times m super negative two times kg super negative one cap k row 3 Blank almost equals 9.1 multiplication 10 super six cap k full stop]
View alternative description - Uncaptioned Equation
End of $1
c. The temperature condition for degeneracy is [image: cap t less than n super two solidus three times h squared solidus left parenthesis two times pi times m times k sub cap b right parenthesis]. Since [image: cap t sub c comma circled dot operator equals 15.6 multiplication 10 super six cap k], so the temperature in the core of the Sun is (i) much too high for proton degeneracy to have set in, and (ii) marginally too high for electron degeneracy to have set in. 
Back to - Activity 3
Activity 4 
[bookmark: Session6_Answer2]Answer
a. Equating the core pressure [image: cap p sub c equals left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three] to the pressure of non-relativistic degenerate electrons [image: cap p sub NR equals cap k sub NR times left parenthesis rho sub c times cap y sub e solidus m sub cap h right parenthesis super five solidus three], where [image: cap k sub NR equals h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three], we have 
Start of $1
[bookmark: Session6_Equation3][image: cap k sub NR times left parenthesis rho sub c times cap y sub e solidus m sub cap h right parenthesis super five solidus three equals left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Collecting terms in ρ on the left-hand side, and all others on the right, we get
Start of $1
[bookmark: Session6_Equation4][image: rho sub c super one solidus three equals left parenthesis pi divided by 36 right parenthesis super one solidus three times cap g divided by cap k sub NR times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five solidus three times cap m super two solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Cubing this gives
Start of $1
[bookmark: Session6_Equation5][image: rho sub c equals left parenthesis pi divided by 36 right parenthesis times left parenthesis cap g divided by cap k sub NR right parenthesis cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five times cap m squared]
View alternative description - Uncaptioned Equation
End of $1
and substituting for KNR gives 
Start of $1
[bookmark: Session6_Equation6][image: rho sub c equals left parenthesis pi divided by 36 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times left parenthesis eight times pi divided by three right parenthesis squared times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five times cap m squared full stop]
View alternative description - Uncaptioned Equation
End of $1
Consolidating the two numerical factors, we obtain
Start of $1
[bookmark: Session6_Equation7][image: rho sub c equals left parenthesis 16 times pi cubed divided by 81 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five times cap m squared full stop]
View alternative description - Uncaptioned Equation
End of $1
b. The electron number density in the core of the star is [image: n sub e equals rho sub c times cap y sub e solidus m sub cap h], so substituting in the core density from part (a) gives 
Start of $1
[bookmark: Session6_Equation8][image: n sub e equals left parenthesis 16 times pi cubed divided by 81 right parenthesis times left parenthesis five times m sub e divided by h squared right parenthesis cubed times cap g cubed times left parenthesis m sub cap h divided by cap y sub e right parenthesis super four times cap m squared full stop]
View alternative description - Uncaptioned Equation
End of $1
Back to - Activity 4
Activity 5
[bookmark: Session6_Discussion1]Discussion
a. For the ultra-relativistic case, equating Pc to PUR gives [image: equation sequence part 1 cap p sub UR equals part 2 cap k sub UR times left parenthesis rho sub c times cap y sub e solidus m sub cap h right parenthesis super four solidus three equals part 3 left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three]where [image: cap k sub UR equals h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three]
Note that, in contrast to the non-relativistic case, the density term [image: rho sub c super four solidus three] is the same on both sides, so cancels out, leaving 
Start of $1
[bookmark: Session6_Equation14][image: cap k sub UR times left parenthesis cap y sub e divided by m sub cap h right parenthesis super four solidus three equals left parenthesis pi divided by 36 right parenthesis super one solidus three times cap g times cap m super two solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Collecting M on one side and swapping left and right sides gives 
Start of $1
[bookmark: Session6_Equation15][image: cap m super two solidus three equals left parenthesis 36 divided by pi right parenthesis super one solidus three times left parenthesis cap k sub UR divided by cap g right parenthesis times left parenthesis cap y sub e divided by m sub cap h right parenthesis super four solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Taking the (3/2)-power and substituting for KUR gives 
Start of $1
[bookmark: Session6_Equation16][image: cap m equals left parenthesis 36 divided by pi right parenthesis super one solidus two times left parenthesis left parenthesis h times c solidus four right parenthesis times left parenthesis three solidus eight times pi right parenthesis super one solidus three divided by cap g right parenthesis super three solidus two times left parenthesis cap y sub e divided by m sub cap h right parenthesis squared]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation17][image: cap m equals left parenthesis three multiplication 36 divided by four cubed multiplication eight times pi squared right parenthesis super one solidus two times left parenthesis h times c divided by cap g right parenthesis super three solidus two times left parenthesis cap y sub e divided by m sub cap h right parenthesis squared]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation18][image: cap m equals one divided by pi times left parenthesis 27 divided by 128 right parenthesis super one solidus two times left parenthesis h times c divided by cap g right parenthesis super three solidus two times left parenthesis cap y sub e divided by m sub cap h right parenthesis squared full stop]
View alternative description - Uncaptioned Equation
End of $1
b. Putting in the numbers, we have
Start of $1
[bookmark: Session6_Equation19][image: cap m equals one divided by pi times left parenthesis 27 divided by 128 right parenthesis super one solidus two times left parenthesis h times c divided by cap g right parenthesis super three solidus two times left parenthesis cap y sub e divided by m sub cap h right parenthesis squared]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation20][image: cap m equals one divided by pi times left parenthesis 27 divided by 128 right parenthesis super one solidus two times left parenthesis 6.63 multiplication 10 super negative 34 cap j s prefix multiplication of 3.00 multiplication 10 super eight m s super negative one divided by 6.67 multiplication 10 super negative 11 cap n m super two times kg super negative two right parenthesis super three solidus two multiplication left parenthesis 0.5 divided by 1.67 multiplication 10 super negative 27 kg right parenthesis squared]
View alternative description - Uncaptioned Equation
End of $1
So [image: cap m equals 2.12 multiplication 10 super 30 kg full stop] Converting to solar units, this is [image: cap m equals 2.12 multiplication 10 super 30 kg prefix solidus of left parenthesis 1.99 multiplication 10 super 30 kg cap m sub circled dot operator super negative one right parenthesis][image: equals 1.07 times cap m sub circled dot operator]. 
Back to - Activity 5
Activity 6
[bookmark: Session6_Discussion2]Discussion
a. The radius as a function of mass and average density is
Start of $1
[bookmark: Session6_Equation21][image: cap r equals left parenthesis three times cap m divided by four times pi times rho macron right parenthesis super one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
b. If the average density is 1/6 of the core density, then
Start of $1
[bookmark: Session6_Equation22][image: cap r equals left parenthesis 18 times cap m divided by four times pi times rho sub c right parenthesis super one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
c. Substituting in the core density from Equation 15 gives
Start of $1
[bookmark: Session6_Equation23][image: cap r equals left parenthesis 18 times cap m divided by four times pi right parenthesis super one solidus three times left parenthesis 16 times pi cubed divided by 81 right parenthesis super negative one solidus three times left parenthesis five times m sub e divided by h squared right parenthesis super negative one times cap g super negative one times left parenthesis m sub cap h divided by cap y sub e right parenthesis super negative five solidus three times cap m super negative two solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Rearranging the terms with negative powers:
Start of $1
[bookmark: Session6_Equation24][image: cap r equals left parenthesis nine times cap m divided by two times pi right parenthesis super one solidus three times left parenthesis 81 divided by 16 times pi cubed right parenthesis super one solidus three times left parenthesis h squared divided by five times m sub e right parenthesis times cap y sub e super five solidus three divided by cap g times m sub cap h super five solidus three times cap m super negative two solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Now consolidate the mass terms and the numerical factors:
Start of $1
[bookmark: Session6_Equation25][image: cap r equals left parenthesis 729 divided by 32 times pi super four right parenthesis super one solidus three times left parenthesis h squared divided by five times m sub e right parenthesis times cap y sub e super five solidus three divided by cap g times m sub cap h super five solidus three times cap m super negative one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Now, for convenience, express the mass in solar units:
Start of $1
[bookmark: Session6_Equation26][image: cap r equals left parenthesis 729 divided by 32 times pi super four right parenthesis super one solidus three times left parenthesis h squared divided by five times m sub e right parenthesis times cap y sub e super five solidus three divided by cap g times m sub cap h super five solidus three times cap m super negative one solidus three multiplication left parenthesis 1.99 multiplication 10 super 30 kg cap m sub circled dot operator super negative one right parenthesis super negative one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Then putting in the numbers:
Start of $1
[bookmark: Session6_Equation27][image: cap r equals left parenthesis 729 divided by 32 times pi super four right parenthesis super one solidus three multiplication left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared divided by left parenthesis five multiplication 9.11 multiplication 10 super negative 31 kg right parenthesis multiplication left parenthesis 0.5 right parenthesis super five solidus three multiplication left parenthesis 1.99 multiplication 10 super 30 kg right parenthesis super negative one solidus three divided by left parenthesis 6.67 multiplication 10 super negative 11 cap n m super two times kg super negative two right parenthesis multiplication left parenthesis 1.67 multiplication 10 super negative 27 kg right parenthesis super five solidus three multiplication left parenthesis cap m divided by cap m sub circled dot operator right parenthesis super negative one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
And so
Start of $1
[bookmark: Session6_Equation28][image: cap r equals 9.45 multiplication 10 super six times left parenthesis cap m divided by cap m sub circled dot operator right parenthesis super negative one solidus three m full stop]
View alternative description - Uncaptioned Equation
End of $1
Because [image: cap r sub circled dot operator equals 6.96 multiplication 10 super eight m], the white dwarf radius is 
Start of $1
[bookmark: Session6_Equation29][image: cap r sub WD equals left parenthesis 9.45 multiplication 10 super six m divided by 6.96 multiplication 10 super eight m cap r sub circled dot operator super negative one right parenthesis multiplication left parenthesis cap m sub WD divided by cap m sub circled dot operator right parenthesis super negative one solidus three]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation30][image: cap r sub WD equals cap r sub circled dot operator divided by 74 multiplication left parenthesis cap m sub WD divided by cap m sub circled dot operator right parenthesis super negative one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
d. Because the radius of the Earth is [image: cap r sub circled plus equals 6.37 multiplication 10 super six m], 
Start of $1
[bookmark: Session6_Equation31][image: cap r sub WD equals left parenthesis 9.45 multiplication 10 super six m divided by 6.37 multiplication 10 super six m cap r sub circled plus super negative one right parenthesis multiplication left parenthesis cap m sub WD divided by cap m sub circled dot operator right parenthesis super negative one solidus three]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session6_Equation32][image: cap r sub WD equals 1.5 times cap r sub circled plus multiplication left parenthesis cap m sub WD divided by cap m sub circled dot operator right parenthesis super negative one solidus three full stop]
View alternative description - Uncaptioned Equation
End of $1
Back to - Activity 6
Activity 7 
[bookmark: Session7_Answer3]Answer
The number of particles N in a sample of material is given by the total mass of the sample M divided by the individual masses of the particles m, i.e. N=M/m. Three-quarters of the core mass is [image: cap m equals left parenthesis three solidus four right parenthesis multiplication 1.4 times cap m sub circled dot operator], so the number of iron-56 nuclei is 
Start of $1
[bookmark: Session7_Equation4][image: cap n equals left parenthesis three solidus four right parenthesis multiplication 1.4 times cap m sub circled dot operator solidus left parenthesis 56 times u right parenthesis]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session7_Equation5][image: cap n equals 1.05 multiplication 1.99 multiplication 10 super 30 kg divided by 56 multiplication 1.66 multiplication 10 super negative 27 kg]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session7_Equation6][image: cap n equals 2.25 multiplication 10 super 55 nuclei full stop]
View alternative description - Uncaptioned Equation
End of $1
Each nucleus absorbs 124.4 MeV of energy, which is equivalent to [image: 124.4 multiplication 10 super six eV prefix multiplication of 1.60 multiplication 10 super negative 19 cap j eV super negative one equals 1.99 multiplication 10 super negative 11 cap j]. So the core absorbs [image: 2.25 multiplication 10 super 55 multiplication 1.99 multiplication 10 super negative 11 cap j equals 4.5 multiplication 10 super 44 cap j] via the photodisintegration of iron-56 nuclei. 
Back to - Activity 7
Activity 8
[bookmark: Session7_Discussion1]Discussion
The number of particles is N = M/m. Half the core mass is [image: cap m equals left parenthesis one solidus two right parenthesis multiplication 1.4 times cap m sub circled dot operator], so the number of helium-4 nuclei is 
Start of $1
[bookmark: Session7_Equation8][image: cap n equals left parenthesis one solidus two right parenthesis multiplication 1.4 times cap m sub circled dot operator solidus left parenthesis four times u right parenthesis]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session7_Equation9][image: cap n equals 0.7 multiplication 1.99 multiplication 10 super 30 kg divided by four multiplication 1.66 multiplication 10 super negative 27 kg]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session7_Equation10][image: cap n equals 2.10 multiplication 10 super 56 nuclei full stop]
View alternative description - Uncaptioned Equation
End of $1
Each nucleus absorbs 28.3 MeV of energy, which is equivalent to [image: 28.3 multiplication 10 super six eV prefix multiplication of 1.60 multiplication 10 super negative 19 cap j eV super negative one equals 4.53 multiplication 10 super negative 12 cap j full stop] So the core absorbs [image: 2.10 multiplication 10 super 56 multiplication 4.53 multiplication 10 super negative 12 cap j equals 9.5 multiplication 10 super 44 cap j] via the photodisintegration of helium-4 nuclei. 
Back to - Activity 8
Activity 9
[bookmark: Session7_Discussion2]Discussion
The number of nucleons contained in the stellar core is [image: 1.4 times cap m sub circled dot operator solidus u] where u is the atomic mass unit. Because an iron-56 nucleus contains 26 protons (and 30 neutrons), the number of protons in the core is [image: left parenthesis 26 solidus 56 right parenthesis multiplication 1.4 times cap m sub circled dot operator solidus u]. This is evaluated as 
Start of $1
[bookmark: Session7_Equation13][image: left parenthesis 26 solidus 56 right parenthesis multiplication 1.4 multiplication 1.99 multiplication 10 super 30 kg divided by 1.66 multiplication 10 super negative 27 kg almost equals 7.8 multiplication 10 super 56]
View alternative description - Uncaptioned Equation
End of $1
Assuming charge neutrality, there will also be [image: almost equals 7.8 multiplication 10 super 56] electrons. If every proton and electron undergoes neutronisation, this will produce [image: almost equals 7.8 multiplication 10 super 56] neutrinos. 
If each neutrino carries away 10 MeV of energy, then the amount of energy removed by each neutrino in joules is [image: 10 multiplication 10 super six eV prefix multiplication of 1.60 multiplication 10 super negative 19 cap j eV super negative one equals 1.6 multiplication 10 super negative 12 cap j]. So the total amount of energy removed is [image: 1.6 multiplication 10 super negative 12 cap j prefix multiplication of 7.8 multiplication 10 super 56 equals 1.2 multiplication 10 super 45 cap j]. 
Back to - Activity 9
Activity 10
[bookmark: Session8_Discussion1]Discussion
We again start by writing [image: cap e sub cap f of n equals cap e sub cap f of p plus cap e sub cap f of e], but now we have EF = pFc for each type of particle where [image: p sub cap f equals left parenthesis three times n solidus eight times pi right parenthesis super one solidus three times h]. So we can write the equilibrium condition as 
Start of $1
[bookmark: Session8_Equation7][image: left parenthesis three times n sub n divided by eight times pi right parenthesis super one solidus three times h times c equals left parenthesis three times n sub p divided by eight times pi right parenthesis super one solidus three times h times c plus left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h times c]
View alternative description - Uncaptioned Equation
End of $1
and because np = ne in a neutral gas, this reduces to [image: n sub n super one solidus three equals two times n sub p super one solidus three] or [image: equation sequence part 1 n sub n solidus n sub p equals part 2 two cubed equals part 3 eight]. Thus, even in the ultra-relativistic case, neutrons far outnumber protons, by a factor of 8 to 1. 
Back to - Activity 10
Question 1
[bookmark: Session10_Answer1]Answer
Right:
Red giant stars are undergoing fusion of helium into carbon and oxygen.
On the mainsequence, stars convert hydrogen into helium.
Stars spend less of their lives as red giants than they do on the main sequence.
Supergiant stars have higher luminosities than red giant stars.
More massive stars have shorter lives than less massive stars.
Wrong:
High mass stars are more common than low mass stars.
The first five statements are all true. The last one is false: high mass stars are much rarer than low mass stars.
Back to - Question 1
Question 2
[bookmark: Session10_Answer2]Answer
Right:
240 million K
Wrong:
110 million K
320 million K
550 million K
630 million K
Since helium-4, carbon-12 and oxygen-16 all have Ye = 0.5 electrons per nucleon, the electron number density is simply 
Start of $1
[bookmark: Session10_Equation1][image: equation sequence part 1 n sub e equals part 2 cap y sub e times rho divided by m sub cap h equals part 3 0.5 multiplication 3.0 multiplication 10 super seven times kg m super negative three divided by 1.67 multiplication 10 super negative 27 kg equals part 4 8.98 multiplication 10 super 33 times m super negative three]
View alternative description - Uncaptioned Equation
End of $1
The limiting temperature below which electrons in the core would be degenerate is
Start of $1
[bookmark: Session10_Equation2][image: cap t less than h squared times n sub e super two solidus three divided by two times pi times m sub e times k sub cap b]
View alternative description - Uncaptioned Equation
End of $1
Putting in the numbers gives
Start of $1
[bookmark: Session10_Equation3][image: cap t less than left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared multiplication left parenthesis 8.98 multiplication 10 super 33 times m super negative three right parenthesis super two solidus three divided by two times pi multiplication 9.11 multiplication 10 super negative 31 kg prefix multiplication of 1.38 multiplication 10 super negative 23 times cap j cap k super negative one]
View alternative description - Uncaptioned Equation
End of $1
Start of $1
[bookmark: Session10_Equation4][image: cap t less than 240 million cap k]
View alternative description - Uncaptioned Equation
End of $1
Back to - Question 2
Question 3
[bookmark: Session10_Answer3]Answer
The correct matches are:
[image: cap p proportional to n super four solidus three]
ultra-relativistic degenerate gas 
[image: cap p proportional to n super five solidus three]
non-relativistic degenerate gas
[image: cap p proportional to n times cap t]
ideal gas
The equations of state for degenerate matter do not depend on temperature; they only depend on the particle density to some power. The equation of state for an ideal gas depends on particle density and temperature. 
Back to - Question 3
Question 4
[bookmark: Session10_Answer4]Answer
Right:
25%
Wrong:
13%
18%
37%
52%
Since helium-4, carbon-12 and oxygen-16 all have Ye = 0.5 electrons per nucleon, the electron number density is simply 
Start of $1
[bookmark: Session10_Equation5][image: equation sequence part 1 n sub e equals part 2 cap y sub e times rho divided by m sub cap h equals part 3 0.5 multiplication 6.9 multiplication 10 super eight times kg m super negative three divided by 1.67 multiplication 10 super negative 27 kg equals part 4 2.07 multiplication 10 super 35 times m super negative three]
View alternative description - Uncaptioned Equation
End of $1
The Fermi kinetic energy can be written as 
Start of $1
[bookmark: Session10_Equation6][image: cap e sub cap f equals left parenthesis three times n sub e divided by eight times pi right parenthesis super two solidus three multiplication h squared divided by two times m sub e]
View alternative description - Uncaptioned Equation
End of $1
Putting in the numbers gives
Start of $1
[bookmark: Session10_Equation7][image: cap e sub cap f equals left parenthesis three multiplication 2.07 multiplication 10 super 35 times m super negative three divided by eight times pi right parenthesis super two solidus three multiplication left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared divided by two multiplication 9.11 multiplication 10 super negative 31 kg]
View alternative description - Uncaptioned Equation
End of $1
Therefore EF = 2.05 × 10-14 J which is about 128 keV. Since the rest-mass energy of an electron is 511 keV, this means that EF is about 25% of the rest mass energy. (So the assumption that the electrons are non-relativistic may not be appropriate.) 
Back to - Question 4
Question 5
[bookmark: Session10_Answer5]Answer
Right:
0.82 R⊕
Wrong:
0.25 R⊕
0.36 R⊕
0.58 R⊕
0.93 R⊕
The radius is given by
Start of $1
[bookmark: Session10_Equation8][image: cap r sub WD almost equals 7.8 multiplication 10 super six m prefix multiplication of left square bracket left parenthesis 1.4 times cap m sub circled dot operator divided by cap m sub WD right parenthesis super two solidus three minus left parenthesis cap m sub WD divided by 1.4 times cap m sub circled dot operator right parenthesis super two solidus three right square bracket super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
Putting in the numbers gives
Start of $1
[bookmark: Session10_Equation9][image: cap r sub WD almost equals 7.8 multiplication 10 super six m prefix multiplication of left square bracket left parenthesis 1.4 divided by 1.0 right parenthesis super two solidus three minus left parenthesis 1.0 divided by 1.4 right parenthesis super two solidus three right square bracket super one solidus two full stop]
View alternative description - Uncaptioned Equation
End of $1
So RWD = 5.25 × 106 m which is equivalent to 0.82 R⊕. 
Back to - Question 5
Question 6
[bookmark: Session10_Answer6]Answer
The correct matches are:
M MS = 0.15 M☉
He white dwarf
M MS = 1.5 M☉
CO white dwarf
M MS = 15 M☉
neutron star
Main-sequence stars with masses below 0.5 M☉ will form He white dwarfs, those with masses in the range 0.5–8 M☉ will form CO white dwarfs, and those with masses in the range 11–16 M☉ (or possibly up to 25 M☉) will form neutron stars. 
Back to - Question 6
Question 7
[bookmark: Session10_Answer7]Answer
Right:
1.6 × 1045 J 
Wrong:
1.4 × 1045 J 
1.8 × 1045 J 
1.4 × 1046 J 
1.6 × 1046 J 
1.8 × 1046 J 
First consider the helium nuclei. The number of helium-4 nuclei in the core is
Start of $1
[bookmark: Session10_Equation10][image: equation sequence part 1 cap n sub He equals part 2 left parenthesis 20 solidus 100 right parenthesis multiplication 1.6 multiplication 1.99 multiplication 10 super 30 kg divided by 6.6447 multiplication 10 super negative 27 kg equals part 3 9.58 multiplication 10 super 55 full stop]
View alternative description - Uncaptioned Equation
End of $1
The total energy absorbed by the helium-4 nuclei is therefore
Start of $1
[bookmark: Session10_Equation11][image: cap e sub He equals 9.58 multiplication 10 super 55 multiplication 28.3 MeV prefix multiplication of 1.60 multiplication 10 super negative 13 cap j MeV super negative one equals 4.34 multiplication 10 super 44 cap j]
View alternative description - Uncaptioned Equation
End of $1
Now consider the iron nuclei. The number of iron-56 nuclei in the core is
Start of $1
[bookmark: Session10_Equation12][image: equation sequence part 1 cap n sub Fe equals part 2 left parenthesis 80 solidus 100 right parenthesis multiplication 1.6 multiplication 1.99 multiplication 10 super 30 kg divided by 9.3480 multiplication 10 super negative 26 kg equals part 3 2.72 multiplication 10 super 55 full stop]
View alternative description - Uncaptioned Equation
End of $1
Note that each nucleus will contain 26 protons. Now assuming that each proton is converted into a neutron by electron capture, emitting a neutrino with energy 10 MeV, the energy removed by electron capture is 
Start of $1
[bookmark: Session10_Equation13][image: cap e sub Fe equals 2.72 multiplication 10 super 55 multiplication 26 multiplication 10 MeV prefix multiplication of 1.60 multiplication 10 super negative 13 cap j MeV super negative one equals 1.13 multiplication 10 super 45 cap j]
View alternative description - Uncaptioned Equation
End of $1
So the total energy removed is E = EHe + EFe = 1.6 × 1045 J 
Back to - Question 7
Question 8
[bookmark: Session10_Answer8]Answer
Right:
White dwarfs are supported by electron degeneracy pressure.
Wrong:
White dwarfs are always less massive than neutron stars.
White dwarfs are smaller than neutron stars.
White dwarfs are more dense than neutron stars.
Neutron stars are supported by proton degeneracy pressure.
ONeMg white dwarfs are more common than CO white dwarfs.
Neutron stars can have masses up to 3 times that of the Sun.
Only the fourth statement is true. The most massive white dwarfs can be more massive than the least massive neutron stars; white dwarfs are always larger than neutron stars and always less dense too. Neutron stars are supported by neutron degeneracy pressure because neutrons far outnumber protons in their composition. CO white dwarfs are more common than ONeMg white dwarfs because they form from lower mass progenitor stars which are more common than higher mass progenitor stars. The maximum neutron star mass is no more than about 2.5 times the mass of the Sun. 
Back to - Question 8


[bookmark: Descriptions1]Descriptions
[bookmark: Session3_Description1]Figure 1 A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated. 
The figure illustrates a schematic H–R diagram indicating the locations of four regions where most stars are found. The horizontal axis has three ranges of information: (1) T in kelvin, (2) spectral type, and (3) colour index B minus V. The following points are marked on the horizontal axis, from left to right in logarithmic spacing at unequal distances. For T in kelvin: 40000, 30000, 20000, 10000, 5000, 3000, and 2000. For spectral type: O (about 30000), B (between 20000 and 10000), A (below 10000), F (between 7000 and 6000), G (about 5000), K (below 5000), M (above 3000), and L (above 2000). Colour index: negative 0.4 (between 40000 and 30000), 0 (at about 10000), and 1.5 (above 3000). The vertical axis is labelled M subscript V and ranges from 15 (at the bottom) to negative 10 (at the top) in decrements of 5 units, and L divided by L subscript solar and ranges from 10 raised to the negative fourth power (at the bottom) to 10 raised to the sixth power (at the top) in increments of 100 units. Diagonal parallel lines of constant stellar radius labelled 0.001 R subscript solar, 0.01 R subscript solar, 0.01 R subscript solar, 1 R subscript solar, and 10 R subscript solar from the vertical axis move toward the bottom right until the horizontal axis or the right vertical axis. The main-sequence region starts from the top left end and moves toward the bottom right end. The following stars are marked on the main sequence from the top to bottom: Zeta Puppis, Achernar, Regulus, Sirius A, Procyon A, Sun, 61 Cygni A, 61 Cygni B, Barnard’s Star, Proxima Centauri, and Wolf 359. The white dwarfs region is in the bottom left corner of the graph. Some of the white dwarfs are Sirius B (top left), Procyan B (bottom right), and Van Maanen 2 (bottom right of Procyan B). The red giants are on the top right. Some of the red giants (from bottom to top) are Pollux, Arcturus, and Aldebaran A. The supergiants region is at the top of the graph. Some of the supergiants are as follows: Rigel A (top left), Betelgeuse (top right), and Canopus (below and between Rigel A and Betelgeuse). The stars in the region between 10000 K and 7000 K are bluish-white. Moving to the right, the colours become white (around 5000 K), yellowish-white (between 5000 K and 3000 K), and orangey-white (between 3000 K and 2000 K). 
Back to - Figure 1 A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated.
[bookmark: Session4_Description1]Figure 2(a) Hubble Space Telescope (HST) image of the bipolar planetary nebula NGC 6302. (b) A composite of data from the Chandra X-ray Observatory and HST showing the multipolar planetary nebula NGC 6543. (c) A composite view of the AGB star L2 Puppis in visible light (blue) and radio (orange) revealing a giant planet shaping the outflow from the star. (d) ALMA radio observations reveal a spiral structure in the material around the AGB star R Sculptoris. 
The figure consists of four parts labelled (a) to (d) that illustrate images of different astronomical sources. Part (a): Image of the nebula NGC 6302 with left and right lobes of a central star. Part (b): The multipolar planetary nebula NGC 6543 with two axes of symmetry and a blue cloud at the centre of a reddish brown cloud at the intersection of the axes. Part (c): A composite view of the AGB star L2 Puppis in the visible light (blue). A red giant is seen as a yellow dot at the centre between top and bottom light regions labelled ‘plume’. On the left of the red giant is a small reddish patch. On the right of the red giant is a larger bright orange patch labelled ‘ALMA candidate planet’. Part (d): A reddish brown spiral in the material around the AGB star R Sculptoris, as viewed tunnelling through the spiral. 
Back to - Figure 2(a) Hubble Space Telescope (HST) image of the bipolar planetary nebula NGC 6302. (b) A composite of data from the Chandra X-ray Observatory and HST showing the multipolar planetary nebula NGC 6543. (c) A composite view of the AGB star L2 Puppis in visible light (blue) and radio (orange) revealing a giant planet shaping the outflow from the star. (d) ALMA radio observations reveal a spiral structure in the material around the AGB star R Sculptoris.
[bookmark: Session5_Alternative1]Uncaptioned Equation
lamda sub dB equals h divided by p 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative12]Uncaptioned Equation
lamda sub dB equals h divided by left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative18]Uncaptioned Equation
multiline equation row 1 lamda sub dB of p equals h solidus left parenthesis three times m sub p times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two row 2 Blank equals 6.63 multiplication 10 super negative 34 cap j s divided by Square root of three multiplication 1.67 multiplication 10 super negative 27 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one multiplication 15.6 multiplication 10 super six cap k row 3 Blank equals 6.38 multiplication 10 super negative 13 m full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative19]Uncaptioned Equation
multiline equation row 1 lamda sub dB of e equals h solidus left parenthesis three times m sub e times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two row 2 Blank equals 6.63 multiplication 10 super negative 34 cap j s divided by Square root of three multiplication 9.11 multiplication 10 super negative 31 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one multiplication 15.6 multiplication 10 super six cap k row 3 Blank equals 2.73 multiplication 10 super negative 11 m full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative20]Uncaptioned Equation
multiline equation row 1 lamda sub dB of e divided by lamda sub dB of p equation sequence part 1 equals part 2 h divided by left parenthesis three times m sub e times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two multiplication left parenthesis three times m sub p times k sub cap b times cap t sub c comma circled dot operator right parenthesis super one solidus two divided by h equals part 3 left parenthesis m sub p divided by m sub e right parenthesis super one solidus two row 2 Blank equation sequence part 1 equals part 2 left parenthesis 1.67 multiplication 10 super negative 27 kg divided by 9.11 multiplication 10 super negative 31 kg right parenthesis super one solidus two equals part 3 42.8 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative21]Uncaptioned Equation
multirelation l less than lamda sub dB equals h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative22]Uncaptioned Equation
multirelation n greater than n sub cap q equals left parenthesis two times pi times m times k sub cap b times cap t solidus h squared right parenthesis super three solidus two 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative30]Uncaptioned Equation
multiline equation row 1 l less than h solidus left parenthesis two times pi times m times k sub cap b times cap t right parenthesis super one solidus two row 2 Blank less than left parenthesis three solidus two times pi right parenthesis super one solidus two multiplication h solidus left parenthesis three times m times k sub cap b times cap t right parenthesis super one solidus two row 3 Blank less than left parenthesis three solidus two times pi right parenthesis super one solidus two multiplication lamda sub dB row 4 Blank less than 0.7 times lamda sub dB full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative56]Uncaptioned Equation
multiline equation row 1 h squared times n sub p super two solidus three divided by two times pi times m sub p times k sub cap b equals left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared multiplication left parenthesis 4.43 multiplication 10 super 31 times m super negative three right parenthesis super two solidus three divided by left parenthesis two multiplication pi multiplication 1.67 multiplication 10 super negative 27 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one right parenthesis row 2 Blank equals 3.78 multiplication 10 cubed cap j s super two times m super negative two times kg super negative one cap k row 3 Blank almost equals 3800 cap k full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative57]Uncaptioned Equation
multiline equation row 1 n sub e equation sequence part 1 equals part 2 n sub p plus two times n sub He equals part 3 rho sub c comma circled dot operator times cap x sub cap h divided by m sub p plus two times rho sub c comma circled dot operator times cap x sub He divided by m sub He equals part 4 rho sub c comma circled dot operator times left parenthesis cap x sub cap h divided by m sub p plus two times cap x sub He divided by four times u right parenthesis row 2 Blank equals 1.48 multiplication 10 super five kg m super negative three times left parenthesis 0.5 divided by 1.67 multiplication 10 super negative 27 kg plus two multiplication 0.5 divided by four multiplication 1.66 multiplication 10 super negative 27 kg right parenthesis row 3 Blank equals 6.66 multiplication 10 super 31 times m super negative three full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative58]Uncaptioned Equation
multiline equation row 1 h squared times n sub e super two solidus three divided by two times pi times m sub e times k sub cap b equals left parenthesis 6.63 multiplication 10 super negative 34 cap j s right parenthesis squared multiplication left parenthesis 6.63 multiplication 10 super 31 times m super negative three right parenthesis super two solidus three divided by left parenthesis two multiplication pi multiplication 9.11 multiplication 10 super negative 31 kg prefix multiplication of 1.38 multiplication 10 super negative 23 cap j cap k super negative one right parenthesis row 2 Blank equals 9.12 multiplication 10 super six cap j s super two times m super negative two times kg super negative one cap k row 3 Blank almost equals 9.1 multiplication 10 super six cap k full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative61]Uncaptioned Equation
cap t less than h squared times n super two solidus three solidus left parenthesis two times pi times m times k sub cap b right parenthesis 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative63]Uncaptioned Equation
cap e sub cap f equals p sub cap f squared solidus two times m sub e 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative64]Uncaptioned Equation
cap n sub e equals four times pi times g sub s times cap v divided by three times h cubed times p sub cap f cubed full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative66]Uncaptioned Equation
p sub cap f equals left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative67]Uncaptioned Equation
equation sequence part 1 cap e sub cap f equals part 2 p sub cap f squared divided by two times m sub e equals part 3 left parenthesis three times n sub e divided by eight times pi right parenthesis super two solidus three times h squared divided by two times m sub e full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative68]Uncaptioned Equation
cap e sub NR equals cap n sub e times left parenthesis three times p sub cap f squared divided by 10 times m sub e plus m sub e times c squared right parenthesis 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative70]Uncaptioned Equation
equation sequence part 1 cap p sub NR equals part 2 two divided by three multiplication three times p sub cap f squared times n sub e divided by 10 times m sub e equals part 3 n sub e times p sub cap f squared divided by five times m sub e full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative71]Uncaptioned Equation
equation sequence part 1 cap p sub NR equals part 2 n sub e divided by five times m sub e multiplication left parenthesis three times n sub e divided by eight times pi right parenthesis super two solidus three times h squared equals part 3 h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three times n sub e super five solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative72]Uncaptioned Equation
cap p sub NR equals cap k sub NR times n sub e super five solidus three where cap k sub NR equals h squared divided by five times m sub e times left parenthesis three divided by eight times pi right parenthesis super two solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative73]Uncaptioned Equation
cap e sub UR equals three divided by four times cap n sub e times p sub cap f times c full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative76]Uncaptioned Equation
equation sequence part 1 cap p sub UR equals part 2 one divided by three multiplication three times p sub cap f times n sub e times c divided by four equals part 3 n sub e times p sub cap f times c divided by four full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative77]Uncaptioned Equation
equation sequence part 1 cap p sub UR equals part 2 n sub e times c divided by four multiplication left parenthesis three times n sub e divided by eight times pi right parenthesis super one solidus three times h equals part 3 h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three times n sub e super four solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session5_Alternative78]Uncaptioned Equation
cap p sub UR equals cap k sub UR times n sub e super four solidus three where cap k sub UR equals h times c divided by four times left parenthesis three divided by eight times pi right parenthesis super one solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session6_Alternative4]Uncaptioned Equation
n sub e equals rho times cap y sub e solidus m sub cap h full stop 
Back to - Uncaptioned Equation
[bookmark: Session6_Alternative7]Uncaptioned Equation
cap p sub c almost equals left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session6_Alternative12]Uncaptioned Equation
cap k sub NR times left parenthesis rho sub c times cap y sub e solidus m sub cap h right parenthesis super five solidus three equals left parenthesis pi solidus 36 right parenthesis super one solidus three times cap g times cap m super two solidus three times rho sub c super four solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session6_Alternative13]Uncaptioned Equation
rho sub c super one solidus three equals left parenthesis pi divided by 36 right parenthesis super one solidus three times cap g divided by cap k sub NR times left parenthesis m sub cap h divided by cap y sub e right parenthesis super five solidus three times cap m super two solidus three full stop 
Back to - Uncaptioned Equation
[bookmark: Session6_Alternative14]Uncaptioned Equation
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[bookmark: Session6_Description1]Figure 3 An artist’s impression showing the relative sizes of the white dwarf Sirius B and the Earth. 
An artist’s impression of the white dwarf Sirius B and the Earth shows them to be of the same size. 
Back to - Figure 3 An artist’s impression showing the relative sizes of the white dwarf Sirius B and the Earth.
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[bookmark: Session6_Description2]Figure 1 (repeated) A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated. 
The figure illustrates a schematic H–R diagram indicating the locations of four regions where most stars are found. The horizontal axis has three ranges of information: (1) T in kelvin, (2) spectral type, and (3) colour index B minus V. The following points are marked on the horizontal axis, from left to right in logarithmic spacing at unequal distances. For T in kelvin: 40000, 30000, 20000, 10000, 5000, 3000, and 2000. For spectral type: O (about 30000), B (between 20000 and 10000), A (below 10000), F (between 7000 and 6000), G (about 5000), K (below 5000), M (above 3000), and L (above 2000). Colour index: negative 0.4 (between 40000 and 30000), 0 (at about 10000), and 1.5 (above 3000). The vertical axis is labelled M subscript V and ranges from 15 (at the bottom) to negative 10 (at the top) in decrements of 5 units, and L divided by L subscript solar and ranges from 10 raised to the negative fourth power (at the bottom) to 10 raised to the sixth power (at the top) in increments of 100 units. Diagonal parallel lines of constant stellar radius labelled 0.001 R subscript solar, 0.01 R subscript solar, 0.01 R subscript solar, 1 R subscript solar, and 10 R subscript solar from the vertical axis move toward the bottom right until the horizontal axis or the right vertical axis. The main-sequence region starts from the top left end and moves toward the bottom right end. The following stars are marked on the main sequence from the top to bottom: Zeta Puppis, Achernar, Regulus, Sirius A, Procyon A, Sun, 61 Cygni A, 61 Cygni B, Barnard’s Star, Proxima Centauri, and Wolf 359. The white dwarfs region is in the bottom left corner of the graph. Some of the white dwarfs are Sirius B (top left), Procyan B (bottom right), and Van Maanen 2 (bottom right of Procyan B). The red giants are on the top right. Some of the red giants (from bottom to top) are Pollux, Arcturus, and Aldebaran A. The supergiants region is at the top of the graph. Some of the supergiants are as follows: Rigel A (top left), Betelgeuse (top right), and Canopus (below and between Rigel A and Betelgeuse). The stars in the region between 10000 K and 7000 K are bluish-white. Moving to the right, the colours become white (around 5000 K), yellowish-white (between 5000 K and 3000 K), and orangey-white (between 3000 K and 2000 K). 
Back to - Figure 1 (repeated) A schematic H–R diagram indicating the locations of four regions where most stars are found. The vertical axis shows stellar luminosity in solar units or absolute visual magnitude; the horizontal axis shows surface temperature in kelvins, spectral type, or colour index defined as the difference between B and V magnitudes. (Notice that temperature increases to the left.) Diagonal lines of constant stellar radius are also shown and some notable named stars are indicated.
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[bookmark: Session7_Description1]Figure 4 Two images of the same galaxy taken 41 days apart, with the location of a supernova highlighted by the white lines in the right-hand image. 
The figure consists of two parts labelled (a) and (b) that are images of the same galaxy taken 41 days apart, with the location of a supernova highlighted by the white lines in the right-hand image. Part (a) on the left, is an image of the galaxy with an elliptical shape. The galaxy appears blurry. Part (b) on the right, is an image of the same galaxy, but with a supernova as a bright white dot seen on its lower right region. 
Back to - Figure 4 Two images of the same galaxy taken 41 days apart, with the location of a supernova highlighted by the white lines in the right-hand image.
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[bookmark: Session8_Description1]Figure 5 The mass-radius relationship for degenerate stellar remnants. 
This graph illustrates the relationship between the mass and radius of degenerate stellar remnants. The horizontal axis is labelled ‘M over M subscript solar’ and ranges from 0 to 3 in increments of 0.5 units increasing to the right. The vertical axis is labelled ‘radius in kilometres’ and ranges from 1 to 10000 in logarithmic spacing increasing upwards. A grey curve labelled ‘Schwarzschild radius of black hole’ starts from (0.75, 3), curves up slightly, and ends at (3, 10). A blue curve labelled ‘neutron star’ starts from (0.2, 30), and ends at (2.5, 10). The blue and grey curves intersect at a point labelled ‘TOV limit’ at (2.5, 10). A red curve labelled ‘white dwarf’ starts from (0.1, 10000), and ends at (1.4, 800). (1.4, 800) is labelled ‘Chandrasekhar limit’. 
Back to - Figure 5 The mass-radius relationship for degenerate stellar remnants.
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