

Computer 
Programming 
in Key Stage 3 
September 2009

Editor:

John Woollard, School of Education, University of Southampton

Contributors:

Liz Crane, Head of ICT, Oaklands Roman Catholic School, Waterlooville, Hampshire

Roger Davies, Director of ICT, Queen Elizabeth School, Kirkby Lonsdale, Cumbria

Claire Johnson, Head of ICT, Westgate School, Winchester, Hampshire

David Kinsella, Head of ICT, The Nelson Thomlinson School, Wigton, Cumbria

Dan Marshall, ICT and computing teacher, Crofton School, Hampshire

Emma Wright, Head of ICT & Computer Science, Harvey Grammar School, Folkestone, Kent

Other contributions made from the CAS working group:

Roger Broadie, Roger Boyle, Luke Church, Paul Curzon, Roger Davies
Nick Efford, Mandy Honeyman, Simon Humphreys, Michael Kölling,
Jack Lang, Thomas Ng, Simon Peyton-Jones, Aaron Sloman,
John Woollard and Emma Wright.

Please address all queries to CPinKS3@computingatschool.org.uk

An electronic version is available at http://www.computingatschool.org.uk/files/CPinKS3/CPinKS3.pdf

Sample teaching unit – computer programming

2/44

Sample teaching unit – computer programming

3/44

Introduction
This document illustrates how the yearly objectives from the Framework for teaching ICT capability: Years 7,
8 and 9 can be grouped together and taught in a way that promotes and utilises knowledge and
understanding of computing. Programming is a core activity of computing because it enables the user to
access and release the potential of the computer they are using. Computer programming can be likened to
playing chess - although there is a relatively small set of simple rules, it is the strategic and sustained
application of those rules that can create interesting games between children or intellectual fights between
grand masters. The same with programming, the first applications of the rules can produce the interesting
results, fun play on graphics, numbers or words. But, there is no boundary preventing the learner moving all
the way to being the grand master of computer programs. Once you can do it, the sky's the limit over what
you can make computers do.

The following texts are direct quotes from the 2008 revision of the National Curriculum for ICT and they
relate directly to programming activities.

Capability - using a range of ICT tools in a purposeful way to tackle questions, solve problems and
create ideas and solutions of value.

Developing ideas - pupils should be able to test predictions and discover patterns and relationships,
exploring, evaluating and developing models by changing their rules and values.

Use ICT to make things happen by planning, testing and modifying a sequence of instructions,
recognising where a group of instructions needs repeating, and automating frequently used processes
by constructing efficient procedures that are fit for purpose.

Pupils should be able to review, modify and evaluate work as it progresses, reflecting critically and
using feedback.

Scope the information flow: Represent a system and identify all its parts, including inputs, outputs
and the processes used. (Processes could include manipulating data or information.)

Developing an ICT-based model to meet particular needs: this should involve testing predictions and
discovering relationships, exploring, evaluating and developing models by changing their rules and
values.

The aim of the group Computing at School (http://www.computingatschool.org.uk) and this document is to
promote the principles of “computing” into the key stage 3 curriculum. This document also celebrates,
through using them as example scenarios, the work of teachers currently engaged in teaching programming
to pupils. Particular thanks go to the staff and pupils of Harvey Grammar School, The Nelson Thomlinson
School, Oaklands (RC) School, Queen Elizabeth School and Westgate School.

Contents

Introduction 3 
Contents 3 
Rationale for computer programming in the key stage 3 curriculum 4 
Aspects of programming 6 
ICT sample teaching units – some scenarios 10 
Scenario 1 Computer Programming using Alice 12 
Scenario 2 Greenfoot and Game Design 18 
Scenario 3 Programming with Visual Basic 26 
Scenario 4 A game business using Game Maker 33 
Scenario 5 Games and game authoring 36 
Resources for programming (alphabetical) 40 
References 43 

Please address all queries to CPinKS3@computingatschool.org.uk

Sample teaching unit – computer programming

4/44

Rationale for computer programming in the key stage 3 curriculum
In this basic example, pupils are introduced to the concept of sequencing instructions that will be followed
by the computer to control the lights at a pedestrian/cyclist crossing (Toucan).

IF INPUT 1 ON THEN
SWITCH OFF 3 [traffic green light]
SWITCH ON 2 [traffic amber light]
WAIT 3
SWITCH OFF 2 [traffic amber light]
SWITCH ON 1 [traffic red light]
WAIT 2
SWITCH OFF 4 [pedestrian/cyclist red light]
SWITCH ON 5 [pedestrian/cyclist green light]
WAIT 20
SWITCH OFF 5 [pedestrian/cyclist green light]
SWITCH ON 4 [pedestrian/cyclist red light]
WAIT 5
SWITCH ON 2 [traffic amber light]
WAIT 5
SWITCH OFF 1 [traffic red light]
SWITCH OFF 2 [traffic amber light]
SWITCH ON 3 [traffic green light]
ENDIF

This type of program is just a plan-of-action a machine can follow and everything the computer does is
based upon the plan-of-action. There are different ways in which computer programming can be approached,
there are different forms that computer programs can take and there are different resources/software
available to create programs in particular forms.

The program (procedure) above is called whenever the button (INPUT 1) is pressed. Whenever, a pedestrian
walks up to the crossing and presses the button. Even a simple sequence of events such as this can
introduce the pupils to the vocabulary of programming such as:

sequence

algorithm

input

output

command

operator operand

condition / decision

repetition (iteration)

The first example is an imperative, high level, third generation approach to programming (common in
schools in the form of Flowol, LOGO, BASIC, etc.) The alternative in commercial computing is object
orientated programming (OOP) exemplified by JAVA, Greenfoot, Scratch, etc. and declarative languages,
exemplified in schools by Prolog.

Why teach programming?
We believe that teaching programming is important for two core reasons:

firstly, it is a form of digital literacy that is of growing importance within society; and

secondly, it promotes intellectual development and the development of problem-solving skills in a way that
is applicable to many other subjects and in many other areas of life.

The first point relates closely to the Every Child Matters agenda and the core principles of “enjoy and
achieve”, “make a positive contribution” and “achieve economic well-being”.
http://www.dcsf.gov.uk/everychildmatters/about/aims/aims

The second point relates to the current initiatives in PLTS (Personal Learning and Thinking Skills)
http://curriculum.qcda.gov.uk/key-stages-3-and-4/skills/plts/index.aspx

http://www.direct.gov.uk/en/
TravelAndTransport/Highwaycode

Sample teaching unit – computer programming

5/44

Programming as digital literacy
Computers are now instrumental to our society and the need for pupils to attain a form of ‘digital literacy’ is
now generally accepted. This is currently interpreted as the need to be able to use standard applications,
such as office-type software within a windows environment interface, proficiently. We agree that this is
important.

However, the use of computers is changing rapidly. They are now as much mechanisms for social
communication, as they are office tools. As this connectivity expands to every aspect of our lives, the ability
to exercise control over the information becomes crucial. Controlling information is one of the fundamental
skills of programming. If students master this skill, they will be able to engage successfully, not just with
today’s applications, but also with uses of technology that have yet to be devised. Academic support for this
comes from Church and Whitten (2009) and Blackwell’s Attention investment (1999).

Programming offers the ability to create new uses for computers. Whereas a competence in office-type
software allows the production of new documents, programming allows the creation of new behaviours,
rather than just the consumption of behaviours provided for us by others. Wing (2006) argues really what is
involved is the act of ‘Computational Thinking’, which is fundamental to many branches of both art and
science.

Computer programming is carried out by many people and is a hobby, pastime, leisure pursuit, interest,
diversion, relaxation… For our pupils, it could be a way of enabling them to “enjoy and achieve” - an aim of
the Every Child Matters agenda http://www.everychildmatters.gov.uk/aims

"In some senses, computer programming itself is one of the best computer games of all. In the ‘computer
programming game’, there are obvious goals and it’s easy to generate more. The ‘player’ gets frequent
performance feedback (that is, in fact, often tantalizingly misleading about the nearness of the goal). The
game can be played at many different difficulty levels, and there are many levels of goals available, both in
terms of the finished product (whether it works, how fast it works, how much space it requires, etc.) and in
terms of the process of reaching it (how long it takes to program, etc.). Self-esteem is crucially involved in
the game, and there is probably the occasional emotional or fantasy aspects involved in controlling so
completely, yet often so ineffectively, the behaviour of this responsive entity. Finally the process of
debugging a program is perhaps unmatched in its ability to raise expectations about how the program will
work, only to have the expectations surprisingly disappointed in ways that reveal the true underlying
structure of the program" (Malone, 1980).

Computer programming is also a vocational pursuit and may enable our pupils to “achieve economic well-
being”, another aim of Every Child Matters. Pupils discovering their proficiency in handling syntax, algorithm,
logic and analysis may find they can enter an industry in which those skills are highly valued.

This teaching resource is designed to bring computer programming to every pupils’ experience because it
contributes in a powerful way to their ability to learn, conceptualise and understand. Computer
programming is a subset of a computing curriculum and, together with other knowledge, experience, skills
and understanding of computing, it exercises skills that are valuable in other aspects of learning, work and
leisure. It also gives an insight into why computers behave as they do and therefore puts an understanding
into the ICT curriculum.

Hence, programming:

 enables pupils to enjoy and achieve;
 develops problem-solving skills through both individual endeavour and team work;
 provides experience of a powerful way to "learn, conceptualise, and understand".
The next section identifies six aspects of programming that bring wider benefits to the way pupils think and
learn.

Commentary
“I'd add that programming is a tremendous *motivator* for students, because it makes computers ‘come
alive’ and ‘dance to their tune’. Maybe the language of "computational thinking" belongs here? One way to
put it is this is ‘programming makes abstraction concrete’. ‘Abstraction’ is a tremendously powerful idea
that we use again and again but it is, by definition, abstract. Programming gives tangible, concrete form to
the act of abstraction, and repeatedly shows how useful it is. You don't have to say ‘we're going to learn
about abstraction’. You just do it, repeatedly, and then afterwards say ‘look at the common pattern that we
have used over and over’” Simon Peyton-Jones. Teaching Programming for Cognitive Benefits

Teaching this key skill of computational thinking, through teaching programming, allows pupils to develop a
new cognitive tool.

Sample teaching unit – computer programming

6/44

Aspects of programming

This analysis of the pedagogic value of programming identifies 6 important areas: accuracy
of expression, understanding algorithms, visual representation of concepts and procedures,
analysis of situations, data structures and application of logic.

Accuracy of expression
Through computer programming we can insist upon and, importantly, demonstrate the need for accuracy
and precision in what we do. However, this does not prevent creativity. Like a chess player has to obey the
rules of the game, the imaginative and thoughtful implementation of rules can create structures and
procedures that are unique and valued.

At the character level it is akin to spelling in the English curriculum - color and colour are significantly
different.

To change the colour of text to red use [HTML]

But the accuracy at character level is more than just an Americanisation of spelling; it is also “paying
attention to detail” and realising that spaces, punctuation marks and the case of letters are important. In
many areas, computer programming is case sensitive.

At the syntax level the pupils become aware of the structures of instructions with operands and operators
and the need to match each with the other in much the same way as there is an object-verb relationship. For
example, FORWARD 10, WAIT 20, REPEAT 5, PRINT “hello world”.

Structures such as IF THEN ELSE ENDIF emphasise the importance of accuracy at a level higher than the
individual character. In science, pupils would be expected to know the symbols of reactants in an experiment
and use the correct syntax when representing them, for example,

At the instruction level the pupils have to be aware of structure in the same way as the grammar of an
English sentence has rules of structure. All sentences begin with a capital letter and end with a full stop,
exclamation or question mark. They follow the rules of grammar and punctuation. Each sentence has a
subject and a verb. In the same way, computer instructions have a precise structure with common rules
called syntax. For example, in many languages the end of a line of code is indicated by a semi-colon.

if (aName == bName) {System.out.println('== the same')};
At the module, procedure or program level the concept of wholeness is introduced. The computer
program is complete within itself and usable. When pupils are asked in history to write about the reason for
the rise of nationalism in the 1930s, they are expected to present their ideas as a sequence of connected
statements that follow each other logically to build a sustained argument, frequently as a paragraph of text.
In the same way, pupils develop the skills of coherent thought through sequencing the instructions,
beginning by setting the context, carrying out the operation and concluding in a formal manner. Writing a
complete module, procedure or program is like writing a formal essay, poster, recipe or invitation. The
product has a wholesomeness or completeness.

Two examples, the first is a simple program in BASIC to print out a “times table”,

10 A=7
20 M=12
30 FOR K = 1 TO M
40 P=K*A
50 PRINT A;” times “; K;” equals “; P
60 NEXT K
70 END

Lines 10 and 20 set the context; 30 to 60 carry out the repeated operation to print 1 times 7 equals 7, 2
times 7 equals 14, etc. and the final line formally ends the program releasing the computer to do other
things.

The second example completes the same task in Pascal

a := 7;
m :=12;
for k := 1 to m do begin
 p := p * a;
 writeln(a, " times ", k, " equals ", p);
end;

Sample teaching unit – computer programming

7/44

Commentary
“The rigorous nature of programming and the need for absolute precision seem to surprise a fair few of our
[undergraduate] students when they encounter programming in the first few weeks of their Computing/CS
degrees, and some of them clearly struggle to come to terms with it. Perhaps this need for discipline and
precision is something we should be promoting more strongly and at a much earlier stage in their education
- but do we then risk stifling the creative element and making programming seem that much more dull and
difficult?” Nick Efford

“For many years there have been interactive programming development environments (including several
developed by Artificial Intelligence researchers, as well as others) that support incremental development and
testing, and are perfectly capable of giving sensible feedback if the programmer makes a trivial mistake, for
example, and allowing the programmer (e.g. a learner) to find out what went wrong, correct it and continue -
- without having to start all over again. Of course, deep mistakes, where your program runs, but does the
wrong thing, are another matter. Experiencing that is an important form of education. Having devices that
prevent all such errors is the last thing we need in our educational environments.” Aaron Sloman

“To me programming at that stage [key stage 2] is a way of exploring the virtual world. It’s practical
mathematics. Theory is fine, but it needs a base of experience to build on and be relevant. I still remember
the thrill of writing a program that actually (eventually) did something, even if only to print Hello World.” Jack
Lang

Understanding algorithms
Algorithm can be considered a sequence of instructions, a finite set of commands or a method of working.
Algorithm can be considered synonymous with program but algorithm encompasses the whole domain of
carrying out instructions in a predefined and accurate way. Algorithm is to computer program as writing is
to story. It is not limited to programming. However, through computer programming, pupils can gain a
better understanding of the value of predefined sequences of action to more efficiently and effectively
achieve an outcome.

Two initial definitions for pupils are:

an algorithm can be represented as a sequence of instructions to be carried out until an end point is
reached;

algorithms are the rules, conditions or sequence by which the computer or people tackle a problem or
situation.

Other keywords to be used when discussing algorithm are:

steps, instructions, commands

sequence, flow,

decisions, branches, jumps, if then, conditional, if then else, true false

repeat, until, condition, iteration

Algorithm takes many forms. It can be the rules by which you drive a car. It can be the way in which you eat
from a buffet. It can be the way in which you carry out a science procedure.

“You are approaching a traffic queue: which lane do you take? Always going to the shortest line is a greedy
algorithm. You might consider the shortest queue but always err to the right because you think that the
fastest drivers are there. That algorithm is more strategic or refined. You may rely upon local knowledge of
the road and queues and make different decisions in different places. The algorithm is very specialised and
contains or makes reference to information. In a similar way, we program the computers to obey a set of
predetermined rules - the algorithm.” John Woollard

Analysis of situations
The act of creating a computer program usually requires a deeper and more rigorous analysis of the context
of the program than a pupil might otherwise undertake, for example, the sequence of traffic lights or the
input/output requirements of a heating system or the data requirements of a video shop. The use of
techniques such as systems analysis gives pupils an insight into the ways in which precision can be
obtained. The analysis of system diagrams help pupils to understand how complex systems work. Those
systems may be anything from biological population, mechanical devices, businesses, through to the impact
of social policy and regulations. The synthesis of system diagrams for familiar situations helps the pupils
understand the detail and the complexity of systems – for instance, the school as a system. At the highest
level (simplest) view of a system it is similar to a block diagram, showing its inputs, outputs and processes.
System diagrams and data flow are particularly helpful in showing how a change in one factor may impact
elsewhere. Importantly, a good diagram might show how changing a factor may feed back to affect itself!

Drawing a system or data flow diagram is a good way of starting to build a computer model. The technique
helps you to map out the structure of the system to be modelled. It shows the factors and relationships that
are important, and helps you to start quantifying the linkages between factors.

Sample teaching unit – computer programming

8/44

Visual representation of concepts and procedures
The skills of visual representation of pupils’ understanding are acknowledged in many areas of the
curriculum. In English there is the story board, in mathematics is the chart, in science the symbolic
representation of atomic and subatomic particles, in geography is the map at different levels of scale and
symbolism and in humanities are the icons of religion, consumerism and politics. In computing there are
visual representations of what the computer is doing when running a program: flow diagram, variables table
and structured English instructions. Each aids the computer programmer but also, each is a tool that
learners can apply in other areas of study to help them more efficiently and effectively represent their
knowledge and understanding.

The following illustrates different representations of “making a cup of tea” – the structured English versions
reflect the rigour and precision required when preparing to program a computer.

http://www.guardian.co.uk/Archive/
Article/0,4273,3908389,00.html

A picture tells a thousand
words

A flow diagram Pedantic English

Structured English

Data structures
In computing, a data structure is a particular way of storing and organising information so that it can be
accessed efficiently. Different kinds of data structures are suited to different kinds of applications and
different types of data. Three examples that pupils will be familiar with are: classification keys, indexes and
labels. In science, classification keys in biology or chemicals are often based on a tree structure. Paper-based
shopping catalogues use indexing and sequencing of the information. Car registration number plates
represent the systematic labelling of items. Pupils can learn to interpret (decode) a number plate and begin
to understand the process of labelling for computerised systems such as the bar codes on goods for sale,
the structure of URLs or the unique identifiers such as National Insurance numbers and the use of check
digits.

Sample teaching unit – computer programming

9/44

Some data structures are specifically designed for efficient computer processing, for example, B-trees are
particularly well-suited for implementation of databases, while compiler implementations usually use hash
tables to look up identifiers. Data structures are used in almost every program or software system. Specific
data structures are essential ingredients of many efficient algorithms, and make possible the management
of huge amounts of data, such as large databases and internet indexing services. Some formal design
methods and programming languages emphasize data structures, rather than algorithms, as the key
organizing factor in software design.

Application of logic
Logic as a topic encompasses the understanding and application of the Boolean algebra AND, OR, NOT truth
values in keyword searching, electronic circuits, logic circuits and truth tables. This rigorous application of
rules again supports the need for accuracy of expression and clear thinking around novel concepts. Logic is
the application of methods and criteria of validity of inference, reasoning and knowledge. The following are
examples of the application of logic.

Boolean logic is used in search engines to retrieve items on the web, for example, when searching in Google,
if you enter words adjacent to each other, say monty python, the interface automatically inserts an AND
operator between the words and returns documents or items which contain both of these words, not
necessarily adjacent to each other. The search for monty OR python would give many more hits whereas the
search for “monty python” would give much fewer hits.

Logic is used in the construction of electronic
circuits and represented in truth tables.

Dan Buzan, University of Boston http://cs-
people.bu.edu

An important concept in the
computing curriculum is
“logical device” in which
devices are names logically (A,
B, C…) and not by their
physical name.

Comment
As an alternative analysis, Roger Broadie observes, “I believe ICT [computing] has a unique contribution to
offer in that it brings ways of thinking that are not provided for or by any other areas of the curriculum…
These ways of thinking certainly include (and there may be others):

 Programming; analysis of processes in order to produce complete and correct programs that will provide
the desired result. This is an important skill whether or not ICT is involved.

 Interface design; this is about human interactions with information and other humans, and the ways in
which information and the development of the interaction are presented to stimulate and guide the
interaction. Other subjects touch on this but none with the depth and effectiveness that ICT can.

 Information structuring; this includes hierarchical, relational and hyper-linked structures, and while
some of these are covered in say science with biological keys, relational and hyper info structures can
only be satisfactorily worked on with ICT.

 Networked communication; even simple examples such as how to use the asynchronous nature of email
effectively are hardly covered in the English subject curriculum, and where social networking is taking us
most certainly is not.

 Language structure and semantics; while this is shared with human language studies when they look at
grammar, there is a broad range of semantic structures used in programming languages that human
language does not use.

 Data; including coding of data, data redundancy and issues around compression of data.
 Search and information validation.
While some of these might be beyond the school curriculum except for the brightest who specialise in ICT, I
would maintain that the first four at least should be studied to some level by all, as they are vital to how life
and work will operate this century. And ICT as a separate subject is the way to do this.”

Sample teaching unit – computer programming

10/44

ICT sample teaching units – some scenarios
The way in which computer programming can be introduced in the classroom is illustrated through
scenarios. These scenarios are not comprehensive in nature but illustrative of good and successful practice
in UK schools. Each scenario is described by the opportunities to support particular forms of computer
programming. The outcomes of the pupils’ activities are described in terms of the attainment target levels.
Alternative resources are also described.

The following sections are adopted directly from a sample teaching unit. “The ICT Framework recommends
that schools offer one hour each week, or 38 hours per year, for discrete ICT lessons. The sample teaching
units for a year, if taught without amendment, need less teaching time than 38 hours. This leaves time for
lessons of your own design at suitable points” (DfES, 2002a). Now updated:
http://nationalstrategies.standards.dcsf.gov.uk/secondary/secondaryframeworks/ictframework

There is no requirement to use the DfES units but they have been adopted and adapted in many schools.
They normally contain sample lesson plans that you can amend to suit your local circumstances and the
needs of your pupils. This unit, Computer Programming in Key Stage 3, is different in that it presents
alternative scenarios that can be taught with one of several different resources.

The units contain outline plans for lessons of 60 minutes although the nature of the pupils, their prior
experience, their aptitude to take on new ideas and the resources available will determine the rate by which
pupils can progress through the activities.

The scenarios introduce some of the ICT Framework objectives for Year 7 in the theme ‘Developing ideas
and making things happen’. The scenarios focus upon the National Curriculum (QCA, 2007) key processes of
developing ideas, communicating information and evaluating. In particular, the activities support curriculum
requirements that pupils should be able to:

2.2e use ICT to make things happen by planning, testing and modifying a sequence of instructions,
recognising where a group of instructions needs repeating, and automating frequently used processes by
constructing efficient procedures that are fit for purpose;

2.3c use technical terms appropriately and correctly;

2.4a review, modify and evaluate work as it progresses, reflecting critically and using feedback.

These statements are taken from the “new” National Curriculum introduced in September 2008 to Year 7
pupils.

“Reflecting critically could include self-review, peer evaluation and user or audience feedback. Pupils should
judge both the quality of their work and how effectively they have used ICT.” In computer programming this
can be reflected in the minimum use of code, the fastest processing time or the shortest development time.

“They use appropriate evaluation criteria to critically evaluate the fitness for purpose of their work as it
progresses.” The curriculum offers the opportunity for the pupils to learn about efficiency of coding and
algorithm and the need to add remarks/comments to aid future development.

Aspects of control and monitoring are taught in both science and design and technology. You might find it
helpful to ask these departments what they have covered with pupils before you teach this unit. You could
then refer to the work pupils have done in these other subjects at appropriate points in the lessons. For
example, pupils may have created sequences of instructions in control software. The following statements
are drawn from the DCSF publication Assessing pupils’ progress in ICT at Key Stage 3 (DCSF, 2008). They
illustrate AF2 - Handling data, sequencing instructions and modelling at the different levels of attainment.

Level 3

Sample teaching unit – computer programming

11/44

Level 4

Level 5

Level 6

Level 7 and Level 8

Sample teaching unit – computer programming

12/44

Scenario 1 Computer Programming using Alice
This unit is designed to introduce programming to pupils through the open source programming package
Alice (http://www.alice.org). Alice contains a library of images and backgrounds for pupils to use. The
tutorials referred to in this teaching unit are also accessible from within the software.

The unit is designed and used by Emma Wright, Head of ICT & Computer Science, Harvey Grammar School,
Folkestone, Kent.

Alice is a tool that is designed to introduce programming concepts without the need to launch directly into
learning code. This project focuses upon the use and creation of events and methods that enable the user to
create their own virtual world, complete with animated characters. A feature of this project is that it also
introduces the pupil to problem solving techniques that will help them to progress their skills by breaking
down problems using Hierarchy Charts, Stepwise Refinement and a State Transition Diagrams (see glossary).

This project covers 7 lessons, which are approximately 50-60 minutes in duration, and are structured as:

1 Introduction to Alice & vocabulary; Inputs, Processes & Outputs

2 Creation of new methods; Hierarchy Charts

3 Events; Stepwise refinement

4/5/6 Project: Design, Development, Evaluation

7 State transition Diagrams Presentation of work for display.

The activities and curriculum content are mapped against aspects of the National Curriculum for ICT (2007).

National Curriculum mapping

1.1a 

1.1b 

1.1c 

1.2a

1.3a 

1.3b

1.3c

1.4a 

1.4b

1.5a

1.5b 

2.1a 

2.1b

2.1c

2.1d 

2.2a 

2.2b 

2.2c 

2.2d 

2.2e

2.2f 

2.3a 

2.3b

2.3c 

2.4a

2.4b 

2.4c

3a

3b

3c

3d

3e

4a

4b

4c 

4d

4e

4f

The Alice environment resources for this module are in the Gallery of the installed copy of Alice and should
be directly accessible. An online gallery is available at: http://www.alice.org/gallery

Other resources for this module are available at

http://computingatschool.org.uk/files/CPinKS3/Alice

Sample teaching unit – computer programming

13/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

1/7

Know that a
computer program is
a series of
instructions
programmed in to
automate a sequence
to achieve a useful
result.

Know that an object
can perform a
process or a series of
steps and that
methods can be
applied to an object
and that a computer
can change an array
of inputs, process
them into something
new.

Understand that a
process consists of
working with a range
of inputs which when
processed create a
given output.

How to apply
methods to an object
within a
programming
environment.

Assessed
deliverables:

completion of

Tutorial 4

completion of

Tutorial 1

completion of

IPO diagram.

Importance
of computer
program-
ming to
make
computers
do what we
wish them to
do.

In this order:

Gallery - Tutorial 4 –
Beach House

Gallery - Tutorial 1 –
Ice Skater

Key words include:

Method

Object

Detail

Event

Editor

Property

Input

Process

Output

1.1a
1.1b

2.2a

2.3c

 Starter: How do you make a cup of coffee? What are the inputs, process, and output?

Talk: ALICE environment. Describe that the software enables animations to work.

Hands on: Understand the concepts of a ‘World’ and ‘actors’ within that world. Introduction –
tutorial 4.

Hands on: Introduction to Alice. Introduce the dancer as an ‘Object’. Pupils to run through the first
tutorial: Change the dancer’s sequence.

Talk: What are the inputs/process/outputs? Present this in diagrammatic form using a whiteboard.
Use some examples.

Activity: Pupils to complete this process as an activity for the movement of the dancer.

Talk: Explain that everything we do on a computer needs a purpose. An end result.

Extension: To experiment moving actors in the library.

Plenary: Oral quiz of the keywords.

Homework: Download and install the ALICE software or gain access to Alice in out-of-school/study
time.

Sample teaching unit – computer programming

14/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

2/7

Know that new
‘methods’ are being
created all the time
in the world – and
that Computer
Science is
responsible for some
of them!

Understand how to
create a new method
and what these
methods can be.

Relate movement
back to the overall
purpose of the
animation.

Know that a
hierarchy chart can
be used to represent
a numbered list of
steps. Thus enabling
problems to be
broken down into
logical steps.

To create a new
method using
ALICE as a tool
and to create a
hierarchy chart to
represent the
decisions you
took to create
this new method.

Understand that a
problem can be
broken down into
smaller ones and
that a hierarchy
chart can be used
to
diagrammatically
represent steps.

Assessed
deliverables:

Tutorial 2

Creation of a
hierarchy chart.

Program-
ming
enables
boundaries
to be broken
and new
things to be
created.

Gallery - Tutorial 2 –

Defending Nap time

Hierarchy Chart
example

1.1a
1.1b

2.2a

 Starter: Recap: Quiz on keywords of last lesson.

Discussion: Are new objects and new methods being created all the time in the real word? Discuss
advances in technology. E.g. iPod generations.

Hands on: ALICE: Creation of a new method ‘to make the bunny jump’.

Discussion: How do we diagrammatically represent solutions to problems? (The Hierarchy Chart).

Hands on: Pupils to create their own hierarchy chart to the bunny jump.

Discussion: Does breaking down a problem into sub problems help make them easier to solve?

Homework: Think of new method that can be applied to a technological gadget of your choice.
Explain what the new method will do and how the user might benefit.

Sample teaching unit – computer programming

15/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

3/7

That programming
enables events to be
created that can be
controlled by the
user.

Those events
comprise of logical
steps that can be
broken down.

That objects can
be manipulated
by the user in the
form of a key
press or mouse
click.

That the process
of stepwise
refinement is
used to create
algorithm, which
is the description
of a process that
achieves some
task.

Assessed
deliverables:

Tutorial 3

Stepwise
Refinement task.

Programmin
g enables us
to control
what we can
do on screen
– something
we can all
take for
granted.

Headphones

Gallery – Tutorial 3 –

Penguin Song

Stepwise refinement
example.

1.1a
1.1b

2.2a

 Starter: Discussion about homework. Pupils are encouraged to talk about their ideas.

Hands on: ‘Go through tutorial ‘Penguin Song’.

Discussion: Pupils to think about the steps that they went through to create the effect.

Talk about Stepwise refinement. Show an example to explain and discuss. E.g. Making a burger.
Toast bun, grill burger, add toppings etc.

Hands on: Students using MS Word to write a stepwise refinement plan for their Penguin Song. (May
require help and guidance from teacher).

Plenary: When we use Office software, what are the ‘events’ that we produce and what controls are
at our disposal?

Homework: Use stepwise refinement to create a set of instructions to travel from Birmingham to
Marseille.

Sample teaching unit – computer programming

16/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

4/7

5/7

6/7

That objects can
move via pre-
existing methods
and newly created
ones.

The importance of
designing a system
prior to its
development. The
importance of user
requirements.

Know that events
need to relate back
to the overall
purpose of the use
of the model.

Be imaginative
and develop a
virtual world that
is to then be used
by another user
for a predefined
purpose.

Know how to
document a
project.

Assessed
deliverables:

Design

Technical
Evidence

Evaluation

Homework tasks

All programs
developed
need to have
a useful
purpose and
a demand.

That
commercial
programs
have a value.

Writing frame for the
design of the project.

Writing frame for the
evaluation.

Example projects for
the less and more
able.

1.1a
1.1c

1.3a

1.5b

2.1a

2.1d

2.2a

2.2b

2.2c

2.2f

4c

2.4b

 Starter: What do you think you could create using Alice – in two lessons that would a) have a
purpose and b) be useful?

One example is to have a keyboard that could teach the user what each note sounds like.

Discussion: Of ideas generated, write best ideas on board to share with the class.

Hands on: Write up plan with a simple writing frame. *Pupils can work in groups should they wish.

Hands on: Pupils to then start to produce their own virtual world making sure that they work from
their own plan.

When completed:

Pupils then test out each others virtual world on the basis of a) fit for purpose, and b) usefulness to
other users – I.e. would there be a demand for the product?

The winner is the group/student with the best peer-assessed mark.

Plenary: What projects did you like? What made you like them? Draw upon good design principles.

Homework: (use previous examples from lessons 2 & 3 to help).

Week 4: Create a hierarchy chart for your project.

Week 5: Use stepwise refinement to show how your project can be broken down into a series of
smaller steps.

Week 6: Ensure all project work is completed by either using the software at home or using the
facilities in school.

Sample teaching unit – computer programming

17/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

7/7 Introduction to Finite
state automata

Presentation of work
for display.

That work of a
computer scientist is
unique, and focuses
upon the
development of the
system.

That processes
change the state
of inputs to
produce an
output.

Presentation of
work for
display/e-
portfolio/folders.

Assessed
deliverables:

12. State
Transition table.

There are
differences
between ICT
and
Computing
which need
to be made
apparent.

Resources: Display
boards, backing paper,
stapler etc.

Example of a state
transition diagram.

Video

1.1a

2.3a

2.3c

1.4a

 Starter: Identify any particular processes that cause an/or many inputs to change state.

Hands on: Teacher to discuss Finite State Automata and ask pupils to create one state transition
diagram for a chosen event that can change state.

Students to ensure they have compiled:

Hierarchy Chart.

Stepwise Refinement.

State Transition Diagram.

Annotated print screens of virtual world project & design/evaluation documentation.

Any task that has not been completed or needs to be improved can be given extra opportunity
during this lesson.

Plenary: What is the difference between ICT & Computer Science? What have been the sole
characteristics of using Alice that have made the two disciplines different? How does Computer
Science affect our every day lives?

Other useful resources o support programming in Key Stage 3 are available on the Computing at School
website:

http://www.computingatschool.org.uk/files/CPinKS3/Alice

Sample teaching unit – computer programming

18/44

Scenario 2 Greenfoot and Game Design
This unit is designed to introduce programming to pupils who have experienced other pre-coding
programming activities such as the visual interfaces of Scratch or Game Maker. It is based upon the open
source programming application Greenfoot (http://www.greenfoot.org). Greenfoot combines the
sophistication and power of coding in a mainstream, commercial programming language (Java) with activities
based on a visual two-dimensional grid. The development environment uses class browser, editor, compiler,
execution, etc. (see glossary) but is suitable for novice programmers.

The unit is designed and used by Emma Wright, Head of ICT & Computer Science, Harvey Grammar School,
Folkestone, Kent.

This project covers a minimum of 7 lessons, which are approximately 50-60 minutes in duration, but the
final “game authoring” task may be extended over a number of lessons.

1 Introduction to programming in Java

2 Moving objects, using a Mover class

3 Integrating image editing with programming

4 Interactivity – using the mouse click event

5 Considering game design

6 Logic and status

7 Creating a game

The activities and curriculum content can be mapped against many aspects of the National Curriculum for
ICT (2007).

National Curriculum mapping

1.1a 

1.1b 

1.1c 

1.2a

1.3a 

1.3b

1.3c

1.4a 

1.4b

1.5a

1.5b 

2.1a 

2.1b

2.1c

2.1d 

2.2a 

2.2b 

2.2c 

2.2d 

2.2e

2.2f 

2.3a 

2.3b

2.3c 

2.4a

2.4b 

2.4c

3a

3b

3c

3d

3e

4a

4b 

4c 

4d

4e

4f

Please note:

The Greenfoot website has a large range of alternative approaches. In particular, the video resources are
extremely useful for the independent learner. They can enable the more able pupils to progress
independently.

http://www.greenfoot.org

The Introduction to Programming with Greenfoot by Michael Kölling is an entry-level introduction that
systematically takes the learner through the basics of Object Oriented Programming in a clearly illustrated
and pedagogically sound way and is suited to key stage 3 teaching.

http://astore.amazon.co.uk/pgce-21/detail/0136037534

Resources for this module are available at

http://computingatschool.org.uk/files/CPinKS3/Greenfoot.zip

They include: Tutorial1, Tutorial2 and debris.png.

Sample teaching unit – computer programming

19/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

1/7

That a computer
program is a series
of instructions
designed to
automate a
sequence to
achieve a useful
result.

That an object can
perform a process
or a series of steps
and that methods
can be applied to
an object.

Begin to
understand the
principles of object
oriented (OO)
programming.

What is a high level
language?

Understanding that
a process consists
of working with a
range of inputs
which when
processed create a
given output.

How to apply
methods to an
object within a
programming
environment.

Assessed
deliverables:

Changing
backgrounds and
adding actors.

Computer
programmin
g presents
the user with
the power to
make the
computer do
what they
want it to
do.

In this order:

Opening software

Creating a blank
scenario

Changing the
background

Creating an actor

Tutorial1 pp2-6

Key words include:

Scenario

World

Actor

Classes

1.1a
1.1b

2.2a

2.3a

2.3c

 Introduction to Java Programming - review: what is a high level language and discuss OO
programming

Introduction to Project - pupils will be expected to design their own game, using skills learned
throughout the course. Show them the Asteroids game, as an indicator of what they could
accomplish given hard work and dedication!

Introduction to Greenfoot and introduce keywords.

Pupils are to place a ladybug on their world that has a wall as a background, save for the next
lesson.

Talk: Explain that everything we do on a computer needs a purpose. An end result.

Plenary: Oral quiz of the keywords.

Sample teaching unit – computer programming

20/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

2/7

Know that a Java
class is a group of
Java methods and
variables and a Java
method is a set of
Java statements
that can be
included inside a
Java class.

Understand the
development of
code with a Mover
class and inheriting
methods from a
class.

Use a code editor
to add code to
make actors move.

Level 5: They
create sequences
of instructions and
understand the
need to be precise
when framing and
sequencing
instructions.

Level 6: They
develop, try out
and refine
sequences of
instructions.

Level 7: They
develop, test and
refine sequences of
instructions as part
of an ICT system to
solve problems.

Programmin
g enables
boundaries
to be broken
and new
things to be
created.

Good
programmin
g is efficient
– it uses
resources
(code)
already
prepared.

Tutorial1 pp9-18

Making things move

Teacher resources:
http://www.tech-
faq.com/java.shtml

Keywords include:

class

method

code

http://www.greenfoot.o
rg

1.1a
1.1b

1.3a

2.2a

2.2e

 Starter: Quiz on keywords of last lesson.

Pupils here, focus on the movement of an actor, in this case a ladybird and continue their learning
with a copy of their previous work.

Pupils make the bug move forward, backward, left, right, rotate, use a Mover class to that the bug
can move in a circle, the bug around when it hits the edge of the world.

Extension: Add a few static actors to the world, and make the bug go around the screen missing the
other actors.

Plenary: Oral quiz of the keywords.

Download software to use at home from the downloads page http://www.greenfoot.org

Sample teaching unit – computer programming

21/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

3/7

That programming
can determine the
graphical user
interface through
using images.

That events
comprise of logical
steps that can be
broken down.

Integrate image-
editing software
into the Greenfoot
environment.

Use the
getbackground()
method and
importing a class.
java.awt.color; use
a loop to make
decisions;
repeating creating
an oval to draw the
stars.

Level 5: They use
ICT to structure,
refine and present
information in
different forms and
styles for specific
purposes and
audiences

Level 6: They
combine
information from a
variety of ICT-
based and other
sources for
presentation to
different
audiences.

Level 7: They
design ICT-based
models and
procedures with
variables to meet
particular needs.

Assessed
deliverables:

Tutorial 3

Stepwise
Refinement task.

Programmin
g enables us
to control
what we can
do on screen
– something
we can all
take for
granted.

Teacher resources:
http://www.tech-
faq.com/java.shtml

Tutorial1 pp19-28

About Backgrounds

Keywords include:

image-editing software

class

loop

graphical user interface

GUI

Look at the Java
documentation on the
Greenfoot website:
http://www.greenfoot.o
rg/doc/javadoc

1.1a
1.1b

2.2a

2.2e

 Starter: discuss the successes in using Greenfoot at home; view successful projects from the
previous lesson.

Pupils experiment with different ways in which to apply a background to their world.

Pupils use Photoshop to draw an image for their background.

Pupils are then expected to set this background image in Greenfoot.

Actors can then be added to this background image.

Pupils are also shown how to program their own background image, in this case, a black sky with
stars.

Pupils are required to go through each method of 1) creating and 2) programming an image, as they
will need to select which to use for their own project.

Identify and list some of the methods you have used in your code so far.

Sample teaching unit – computer programming

22/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

4/7

That programming
enables events to
be created that can
be controlled by
the user.

Name, use and
explain the events:

Mouseclicked

MousedragEnded

MouseDragged

MouseMoved

MousePressed

getmouseinfo()

Understand the
concept of “event”.

Level 5: They
create sequences
of instructions and
understand the
need to be precise
when framing and
sequencing
instructions.

Level 6: They
develop, try out
and refine
sequences of
instructions and
show efficiency in
framing these
instructions, using
sub-routines where
appropriate. They
assess the validity
of these models by
comparing their
behaviour with
information from
other sources.

Level 7: They
develop, test and
refine sequences of
instructions as part
of an ICT system to
solve problems.
They design ICT-
based models and
procedures with
variables to meet
particular needs.

The windows
operating
system is
programmin
g based
upon events
(mouse
clicks).

Interactive
programs
require event
driven pro-
gramming.

Teacher resources:
http://www.tech-
faq.com/java.shtml

Tutorial1 pp29-37

Reacting to Mouse
Clicks

Keywords include:

(note – raising the level
of computing concepts
and language)

Event

Mouseclicked

MousedragEnded

MouseDragged

MouseMoved

MousePressed

getmouseinfo()

Look at the Java
documentation on the
Greenfoot website:
http://www.greenfoot.o
rg/doc/javadoc

1.1a
1.1b

1.3a

2.2a

2.2e

 Starter: Teacher demonstrates duplicating and moving an image. Placing images at locations, and
changing images upon a mouse click.

Introduce the concept of an ‘event’. What is an event? In what different ways can we react to an
event?

Activities for pupils: duplicating an image of a frog, when it is clicked upon; moving an image when
it is clicked upon; clicking on a frog will make it jump, and if you click on the background you get a
new frog; placing a frog at the location of a click; moving an image around with the mouse; when
mouse is pressed change the image, when mouse is released change the image back to its original
image.

Experiment with a mouse click event and program one of your own event.

Plenary: Oral quiz of the keywords.

Sample teaching unit – computer programming

23/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

5/7 That programming
enables events to
be created that can
be controlled by
the user.

And that, the
computer output
resulting from an
event can trigger
other events.

Understanding that
complex
programmes are
created by
combining simple
activities.

Programmes of
Study - as previous
session.

Introduction to two
‘helper classes’:
vector class and
smoothmover
class.

Experimentation
with the method,
GetKey().

Handling
exceptions.

Preparing the world
to start at an initial
state.

Writing a new
method from
scratch.

Computer
programs
are not
written as a
single
complete
entity but
they are
designed to
utilise code
already
developed.

Teacher resources:
http://www.tech-
faq.com/java.shtml

Tutorial2 pp2-20

Debris.png

Information about
support classes on the
Greenfoot website
http://www.greenfoot.o
rg/programming/classe
s.html

Keywords include:

Helper classes
Vector
Parameter
Exception errors

1.1a
1.1b

1.3a

2.2a

2.2e

 Starter: discuss types of reactions in games, explosions, getting ‘gobbled up’ etc. Are there any
others? Explanation of parameter.

At this level of programming, it is advised that pupils work in 2s or 3s to support each other’s
understanding.

Creating the scene - adding a rock and the debris to a scene.

Making debris move by using the helper classes - make a piece of debris fall to the floor and make
the debris fly in all directions.

From making the debris explode, make the rock explode by invoking voidexplode() and then
invoking the explosion with a key press.

By changing the code the force of the explosion and the shape of the debris can be modified.

Exception messages are also covered in this section, so that the pupil is introduced to errors and
how to fix them.

The world can also be prepared so that it starts at an existing state, for example, with some rock
already there.

To read up on support classes on the Greenfoot website. Found at
http://www.greenfoot.org/programming/classes.html

*note it is not required that the student understands each line, but that they become familiar with
what these helper classes do.

Sample teaching unit – computer programming

24/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

6/7 That objects can
move via pre-
existing methods
and newly created
ones.

Use Boolean logic
in the code so that
actors appear to
behave in response
to other objects.

Programmes of
Study - as previous
sessions.

Using variables to
represent the
properties of actors
and objects.

Create new
methods. For
example, (fall),
checkfall(), jump().

Modify methods
and variables. For
example, vspeed
and acceleration to
change the fall
effect.

All programs
developed
need to have
a useful
purpose and
a demand.

That
commercial
programs
have a value.

Teacher resources:
http://www.tech-
faq.com/java.shtml

Tutorial2 pp39-50

Debris.png

Information about
support classes on the
Greenfoot website
http://www.greenfoot.o
rg/programming/classe
s.html

Keywords include:

Variable
Boolean
Boolean values: TRUE
and FALSE

1.1a
1.1b

1.3a

2.2a

2.2e

4b

 Starter: discussion of variables and Boolean logic.

Pupils will be given an initial world to work with here. This consists of a cloud background, and an
actor called ‘Pengu’, and another actor, which is the ‘ground’.

Running the scenario, with the actors in the world enables Pengu to move the left and right, which
have been covered in a previous lesson on movement.

Create a fall method. Here Pengu will not take any notice of the ground, we will just make him fall.
Use of the constant vspeed and acceleration which changes the speed of the fall,

Make Pengu check whether he is on the ground by use of a Boolean method. If he is, (Boolean true),
then speed is set to 0. If Pengu is not on ground, (Boolean false) and so the Pengu falls. Adding
more ground will enable Pengu to move from ground to ground.

Create a jump method. Make Pengu react to the space bar to enable him to jump. Also change the
height of the jump.

Plenary: Oral quiz of the keywords and celebrate the work of some pupils.

Sample teaching unit – computer programming

25/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

7/7
+

Understand the
development life
cycle.

Develop own
graphics.

Integrate code and.
graphics and apply
to new methods.

Create own game.

Submit to
CodePoint
competition run by
Sun Microsystems
and University of
Kent

http://www.greenf
oot.org/codepoint

A well researched,
designed and
executed
programming task.

Evidence of:

Research

Design

Development

Presentation

Evaluation

Game writing
is a
vocational
opportunity.

Game writing
reflects the
processes of
all product
development
in the
computing
world.

Example scenarios

http://www.greenfoot.
org/scenarios

Keywords:

Design cycle

Research

Design

Development

Presentation

Evaluation

Criteria

Functionality

Playability

1.1a
1.1c

1.2a

1.3a

1.5b

2.1a

2.1d

2.2a

2.2b

2.2c

2.2f

4c

2.4b

 Starter: demonstration of a scenario to stimulate ideas, for example Asteroid

Research using http://www.greenfoot.org/scenarios to view scenarios.

Design ideas based upon pupil ability and knowledge of code evidenced by simple descriptions and
drawings.

Development of game making use of features and skills learned throughout the unit.

Presentation, both formal to the class and informal; playing with other pupils’ games.

Evaluation including self-assessments and peer assessments. Pupils to judge the game based upon
the competition evaluation criteria:

Originality / creativity (Is the submission a new idea, or have we seen it before?)

Technical difficulty (How technically challenging is the implementation?)

Quality (including quality of appearance/graphics; functionality; correctness)

Entertainment value (How much does your entry amuse us? For games, this may be called
'playability'. For simulations or other scenarios, this is 'interest')

Competition http://www.greenfoot.org/codepoint

Sample teaching unit – computer programming

26/44

Scenario 3 Programming with Visual Basic

This unit is designed to introduce programming to pupils who have experienced other pre-coding
programming activities. It is based upon the use of VB 2008 Express, which can be downloaded free at
http://www.microsoft.com/Express/VB/. The scheme of work is supported by resources which are available
from http://computingatschool.org.uk/files/CPinKS3

The unit is designed, resourced and used by Emma Wright, Head of ICT & Computer Science, Harvey
Grammar School, Folkestone, Kent.

Reference is also made in the scheme of work to a book called “An introduction to programming using
VB2005” by David Schneider. A selection of these programs has been used which can be downloaded from
http://www.pearsonhighered.com/schneider/details2.html . “You will need to buy the book to gain access to
the ‘instructor resources’. This book is a fantastic resource for teachers and also contains teacher
presentations and working answers to all exercises you wish the students to be guided through.” Emma
Wright.

This project covers a minimum of 7 lessons, which are 60 minutes in duration. You may also decide to
extend the duration of the project to accommodate an extended piece of work. For example, pupils
developing a pizza point-of-sale (POS) program using the knowledge from previous lessons to create a
solution.

*Please note: To protect the school network, schools might choose to run the VB 2008 Express software in a
Virtual Machine and disable the pupils’ ability to run executables from their computer.

1 Introduction to programming using VB2008 Express.

2 Fundamentals of programming: Events

3 Fundamentals of programming: Procedures

4 Logical Programming Constructs: IF Statements

5 Logical Programming Constructs: CASE

6 The Do..While Loop

7 The For.Next Loop

Extension project Pizza POS.

The activities and curriculum content can be mapped against many aspects of the National Curriculum for
ICT (2007).

National Curriculum mapping

1.1a 

1.1b

1.1c

1.2a

1.3a 

1.3b

1.3c

1.4a 

1.4b

1.5a

1.5b

2.1a 

2.1b

2.1c 

2.1d

2.2a 

2.2b 

2.2c

2.2d 

2.2e 

2.2f

2.3a 

2.3b

2.3c 

2.4a 

2.4b 

2.4c 

3a

3b

3c

3d

3e

4a

4b 

4c

4d

4e

4f

The resources can be downloaded from http://computingatschool.org.uk/files/CPinKS3/VBasic.zip

Sample teaching unit – computer programming

27/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

1/7

Know and
understand the
term Object
Oriented
Programming.

Become familiar
with the VB
programming
environment.

- Solution Explorer

- Control Box &
Push Pin

- Properties window

- Form Window

- Main area

- Code Window

- Menu/Tool Bar

To open, run and
close a project.

Become familiar
with design and
code view, objects
and properties.

Familiarity lesson.
Pupils will not be
assessed here on
anything created.

Students need
an
understanding
of the
programming
environment.

Program Planning 2.2
p31. Schneider.

Resources at

http://computingatscho
ol.org.uk/files/CPinKS3/
VBasic.zip

1_Introduction

Sample

Teacher guidance:

1_Introducing_VB_Expre
ss.doc

2_The_Design_Envirome
nt.doc

3_Your_first_VBE_Project
.doc

1.1b

1.1c

2.3c

 Introduction to programming: What is a high level language? What is OO Programming? Describe the
pictorial representation of the problem solving process. Describe the art of program planning.

Pupil Task 1 Pupils to describe each of the processes, of problem solving and program planning
above, using MS Word. Pupils are to open up the software, and get an understanding for the
environment. This will include:

Visual basic controls Toolbox Common controls.

Pupils are to open up the sample program experiment and learn how to open, run and close a
project. Pupils can create their own project and experiment with adding basic controls such as:

Text boxes Labels Buttons

Pupils can be shown how to change properties.

Extension: Open up the sample code view and discuss with students. Look at the comments and see
if any parts of the code can be understood.

Plenary

What can be produced using visual basic express? Why does Microsoft give it away for free? Test key
terms in lesson.

Sample teaching unit – computer programming

28/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

2/7 The visual basic
window consists of
a form holding a
collection controls
for which various
properties can be
set.

An event procedure
is executed when
something happens
to a specified
object.

To write desired
event procedures.

The modification
of Form Fun Code
to develop new
events.

We need to
show that by
modifying
code, students
can very easily
get used to a
new
programming
language and
experience
success in
making new
things
happen.

Resources at

http://computingatscho
ol.org.uk/files/CPinKS3

2_Fundamentals

(2) FormFun1 (not a
Schneider resource).

(3) FormFun2: Example
of how FormFun1 can
be modified.

1.1a

1.3a

2.2a

2.2b

2.3c

Fundamentals of programming: Events

Pupils are introduced to the ‘Event’. They can use their previous knowledge here and see how, using
the program ‘Form Fun’ how events can be actioned.

Pupil Task 2

Using Form Fun, on board only, pupils are to recreate the program to simulate their own events
which include:

Adding a new button

Changing background colour

Changing foreground colour

Making the form increase and decrease in size, by more than the original.

Extension: Pupils are to explore other common controls using the toolbox. Try and add a picture to
your form! (hint: PictureBox Control)

Plenary: Pupils are to recap the code for an event procedure, and to learn the syntax:
ControlName.PropertyName = PropertyValue by looking at further examples.

Sample teaching unit – computer programming

29/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

3/7 To learn what is
meant by a general
and a sub
procedure.

A variable declared
is class level and is
available to every
procedure in the
forms code.

Variables declared
with a Dim
statement inside a
procedure, are
local to the
procedure.

That a pupil can
use a procedure
and get a
program working.

That they
understand the
role of variables.

That a program
can be given an
output that uses
the result of a
process.

That variables
are used to
make
programs
efficient.

That
procedures
are used to
deal with a
smaller part of
what might be
a larger
problem.

Resources at

http://computingatscho
ol.org.uk/files/CPinKS3

3_Procedures

(4) 4-1-5 Add two
numbers together.
(Teacher task)

(5) 4-1-5 extension
(pupil task)

1.1a

1.3a

2.2a

2.2b

2.3c

General & Sub Procedures

Pupils are introduced to a way in which a complex problem can be broken down into small
problems. This is by using a sub procedure.

Demonstrate and Discuss: Program 4-1-5, and explain to the pupils the structure of the program
and how it is broken down, step by step. Students are to understand why we use variables.

Task: Pupils are to code this example of adding two numbers together, which outputs the result in a
sentence.

Extension : Pupils are then to modify this, to multiply three numbers together.

(Answer is (5)4-1-5 extension provided).

Sample teaching unit – computer programming

30/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

4/7

5/7

The relational
operators are <,>,
=, <>, <=,>=.

A condition is an
expression
involving literals,
variables,
functions, and
operators
(arithmetic or
logical) that can be
evaluated as either
true or false.

The value of a
variable or
expression of
Boolean data type
is either true or
false.

An IF block decides
what action to take
depending on the
truth values of one
or more conditions.

A Select CASE block
selects from one of
several actions,
depending on the
value of an
expression, called
the selector.

Pupils can create
programs using
either IF or CASE.

Pupils know when
to use either IF or
CASE in their
programming.

IF and CASE
are important
constructs
which in
programming
are necessary
to understand
as part of an
introductory
course.

Pupils can also
build upon
this
knowledge in
later courses.

Resources at

http://computingatscho
ol.org.uk/files/CPinKS3

 4_Decisions

(9) 5-2-1 Find large
number

(10) 5-2-2 Profit/Loss
(pupil)

(11) 5-3-6 Weather
beacon

(12) 5-3-7 Seasons

1.1a

1.3a

2.2a

2.2b

2.3c

Logical Programming Constructs: IF Statements & CASE

IF (5-2)

Allows a program to decide on a course of action based upon whether certain conditions are true or
false.

Introduce pupil to the pseudo code and flowchart for an IF block. (p201)

Lead pupils through the task (9)

Pupil to complete task (10).

CASE (5-3)

Introduce pupil to the pseudocode and flowchart for a CASE block. (p221)

Lead pupils through the task (11)

Extension: Pupil to attempt Seasons program. (12) Deciding which code structure they need to
select (IF or CASE).

Homework: To write your own program using IF or CASE. The program can do anything you wish.
Print screens of code and output required.

Sample teaching unit – computer programming

31/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

6/7

7/7

A Do Loop
repeatedly
executes a block of
statements either
as long as or until
a certain condition
is true. The
condition can be
checked at the top
end or at the
bottom end of the
loop. As various
items of data are
processed by a
loop, a counter can
be used to keep
track of the
number of items. A
flag is a Boolean
variable, used to
indicate whether a
certain event has
occurred. A For
Next Loop repeats
a block of
statements a fixed
number of times.
The control
variable assumes
an initial value and
increments by one
after each pass
through the loop
until it reaches it
terminating value.

Completion of
programs which
illustrate a Do
Loop and a For
Next Loop.

That pupils
understand the
difference
between the two
varieties of loops
and know in what
circumstances to
implement either
variety.

Do Loops and
a For Next
Loops are
important
constructs
which in
programming
are necessary
to understand
as part of an
introductory
course.

Pupils can also
build upon
this
knowledge in
later courses.

Resources at

http://computingatscho
ol.org.uk/files/CPinKS3

 5_Repetition

 (13) 6-2-2 Phone
number

(14) Food Prices (pupil)

(15) 6-3-4 Multiplication
table.

6_Arrays

(16), (17) and (18)

1.1a

1.3a

2.2a

2.2b

2.3c

 A loop, one of the most important structures in Visual Basic, is used to repeat a sequence of
statements a number of times. At each repetition, or pass, the statements act upon variables whose
values are changing.

The Do…While Loop

Introduce pupil to the Pseudocode and flowchart for a Do…While Loop. (p248/251)

Lead pupils through the task (13) Pupils to attempt on their own (14)

The For… Next Loop

Introduce pupil to the Pseudocode and flowchart for a For … Next Loop. (p278)

Lead pupils through the task (15)

Extension: Change the multiplication table to make calculations of your choice.

Plenary: Introduce the concept of nested For-Next Loops (multiplication example is one of these),
and discuss implications for structure of programs – see p283.

Homework: When is it best to use a Do …While Loop as opposed to a For Next Loop?

Write answer in Word giving examples of when to use each.

Sample teaching unit – computer programming

32/44

Le
ss

o
n
 N

u
m

b
er

 Learning objective

We are learning to

WALT

Learning
outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

8+

To work through
the development
an application
unaided.

To use existing
skills and learn
how to apply them.

Pupils to develop
their own
program (fully or
part working)
using the
concepts learned
in previous
lessons.

Pupils need to
experience
software
development
first hand, and
be creative.

2.1a

2.1c

2.2b

2.2d

2e

2.3a

2.4a

2.4b

2.4c

4b

Project Brief

Pupils are expected to use the programming skills they have developed to create their own solution
for a Pizza Point of Sale Software. This may include an adding function as well as a simple receipt
for the more able (see examples 6 & 7 above.

Design

Pupils need to think about their design before programming. How could skills learned previously
help them in creating this application?

Pupils are to draw on paper what their application is going to look like. The teacher might like to
check this prior to the dev elopement stage.

Level 7 pupils are required to document flow charts for specific processes within their system.

L7 Also requires an evaluation and re-development based on assessment.

Level 8: Create a user guide and systems manual ensuring coverage of areas in which the user
might find some operations difficult.

Development

Pupils are expected to then develop their solution, subject to their teachers’ approval.

Output

Pupils are to print screen and annotate their work, also printing out their code (with comments).

Extension: To look at teacher example, and reverse engineer some new skills into their own work.

Sample teaching unit – computer programming

33/44

Scenario 4 A game business using Game Maker
This unit is designed to introduce programming to pupils through the open source game scripting package
Game Maker (http://www.yoyogames.com/gamemaker).

“Using easy to learn drag-and-drop actions, you can create professional looking games within very little time.
You can make games with backgrounds, animated graphics, music and sound effects, and even 3D games!
And when you've become more experienced, there is a built-in programming language, which gives you the
full flexibility of creating games with Game Maker. What is best, is the fact that Game Maker can be used
free of charge.” (Game Maker website, 2009)

Game Maker has a standard windows interface which allows you to make exciting computer games, using
easy to learn drag-and-drop actions. A beginner can create professional looking games with no programming
knowledge within very little time. You can make games with backgrounds, animated graphics, music and
sound effects. Within the advanced facility there is a built-in programming language, which gives the more
experienced student flexibility of creating games with Game Maker. The standard version allows you to do
anything you want with the games you produce, you can even sell them! Also, if you register your copy of
Game Maker, you can unlock extra functions, which extend the capabilities of the program. Game Maker
comes preloaded with a collection of freeware images and sounds to get you started.

This scheme of work was created by Liz Crane for Oaklands Catholic School, Waterlooville, Hampshire. It
combines the game authoring activities and business related skills and knowledge activities to form a 15-
lesson structure that enables pupils to experience many aspects of ICT and focus upon those elements that
interest them the most. The intention is to offer level 5 opportunities for all with extension opportunities for
some.

Over the 7 lessons of the modules pupils experience the cycle of activities that include the design,
production, business planning, marketing and sales management. It requires pupils to have experienced
each of those activities in a teaching module. This module focuses upon the combination of applications and
is most suitable for year 9 as it prepares pupils for project work associated with accredited courses in key
stage 4.

“Forget about Flowol and creating a simulation to operate a Flume Ride, use Game Maker for students to
create their own game. Creating a game satisfies the criteria for students to be able to sequence events and
put commands in right order. The assignment is written for students to set up their own business and it
incorporates cash flow, database, web pages and online form. The students practically enjoyed the
challenge and even worked on it at home. The less able pupils were able to access it and the girls came top
when completing the game as they took it at a slower pace and worked out the commands methodically. You
can download the simple version of Game Maker free of charge.” Liz Crane, Oaklands Catholic School.

WALT

We are learning to…
should be the skills, knowledge and understanding of
the lesson
(perhaps also “attitudes”);

WILF

What I’m looking for…
the assessment for learning or assessment for teaching
statements
(supports Assessment for Learning);

TIB

This is because… the rationale for teaching
how to copy using absolute cell referencing, the essence
of “computing”.

Oaklands Catholic School,
Waterlooville, Hampshire

Sample teaching unit – computer programming

34/44

Le
ss

o
n

N
u
m

b
er

Learning objective

We are learning to

WALT

Learning outcomes

What I am looking
for

WILF

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher and
resources

N
C

,
St

ra
te

g
y

an
d
 Q

C
A

re

fe
re

n
ce

s

1/7 Creating a game –
introducing Game
Maker.

 Game
making
introduces
ideas
relating to
story-
boarding,
design
specification

Game Maker

http://www.yoyogame
s.com/gamemaker

1.1a
1.1b

2.2a

2.3c

2/7 Create a game that
has interest
(audience) and
sophistication (of
algorithm)

a sequence, loop
and different
things happen
depending on
changes in
variables;

more efficiency
through adding a
loop, sub routine

Effective
programmin
g meets the
needs of the
audience;

efficient
programmin
g uses
structures

3/7 Creating a cash
flow – introducing
the business model

 Entrepreneur
-ship

4/7 Create a
spreadsheet model.
Consider the layout
and content of the
model. Use a set
of rules to predict
values and solve
problems

solving problems
by posing and
answering “what if”
questions;

predicting
outcomes

Computer
models form
the basis of
many
businesses

5/7 Creating a
Database

prepare a flat file;
using a data
capture as a
planning tool; test
the data set; plan
and then create a
data entry form

6/7 Creating a Web
page and an online
form

website to meet the
needs of the
audience;

a specific purpose

7/7 Create a set of
criteria to judge
their own work and
that of their peers.

agree the criteria;
evaluate others’
work; reflect on
evaluations

 Prompt sheet
GoodGame.doc

Sample teaching unit – computer programming

35/44

Game Maker in Key Stage 3
The following review describes the use of Game Maker to support pupils’ independent work in a computing
environment in Key Stage 3, written by Claire Johnson, ICT Subject Leader, Westgate School, Winchester.

Game Maker is a game development tool which is increasingly used in UK schools, because of its
accessibility to beginners, while allowing more advanced users scope to create more complex games. This
makes it a useful addition to the Key Stage 3 ICT curriculum, where it can be used to cover the sequencing
instructions strand of the National Curriculum Programme of Study.

“In Game Maker, users add events and drag and drop actions to control objects to create 2D games. Game
Maker allows the creation of many types of games, including maze and platform games, first and third
person shooters and even simple 3D games. It takes about 10 hours to learn the program and then to create
a reasonably satisfying game (including the creation of graphics, audio, splash screen, and player
instructions).

Users select from a set of standard action libraries for movement, control structures, drawing, scoring and
so on. Advanced users can extend the drag and drop functionality of Game Maker by creating new actions,
or by using the built in Game Maker Language (GML), which allows users to write and add scripts as actions.
Even if users do not learn GML, they still learn about basic syntax and OOP.

There is a popular on line community where games can be uploaded and shared – and this real audience is
motivating to users, as well as giving them access to forums, resources and tutorials. A lite version is freely
downloadable from http://www.yoyogames.com. A registered version is £20, or sold as educational site
licences in 5 user packs (£50). Alongside Scratch, Game Maker seems to be the game authoring program of
choice featured in recently published school textbooks (ICT4Life Book 1 (Year 7); ICT Interact (Year 8) . A
scheme of work supported by video tutorials, lesson plans and pupil resources is available from www.teach-
ict.com. Payne-Gallway’s ‘Basic Projects: Game Maker’ [ISBN: 9781905292578] includes accessible and
reasonably challenging tutorials for a breakout game and a space invaders game. Here pupils are shown
how to write a simple script and attach it to an action. As always, teachers need to skill themselves up to a
reasonable level before they can really start to use this tool to develop a more challenging ‘programming’
experience for KS3/4 pupils.’ The Game Makers Apprentice’ by Mark Overmars and Jake Habgood is
recommended reading.”

Claire Johnson, June 2009

Sample teaching unit – computer programming

36/44

Scenario 5 Games and game authoring
Games can be classified in a number of different ways, work conducted by Futurelabs (2005) categorised
games in education based upon their characteristics. The works by Appleby, T (2005) classified games based
on their genre, like any typical taxonomy, a game genre must have certain constants, that is, things that
remain the same. Globally, all games have obstacles to overcome. Therefore one can define their genres
within the way that these obstacles are completed. While not a comprehensive list computer games can
normally be described by one of the following classifications: action; adventure; simulation; role play; and
strategy.

Action games are perhaps the most basic of gaming genres, and certainly one of the broadest. In an action
game, players use quick reflexes and timing to overcome visual obstacles. Common examples include Pin
Ball where the action of a player moves the ball and Pac Man where the success of the game is dependent
upon the quick reactions of the Game Player.

Adventure games were some of the earliest games created, originally text based stories. Over time,
graphics have been introduced to the genre and the interface has evolved. Adventure games usually
normally require the player to solve various puzzles by interacting with people or the environment, most
often in a non-confrontational way. It is considered a "purist" genre. Because they put little pressure on the
player in the form of action-based challenges or time constraints, adventure games have had the unique
ability to appeal to people who do not normally play video games. Examples include Zore and Ace Attorney.

Simulation games can control a number of different situations the most Common are Building, Management
and Transport. In a Simulation Game the player needs to build, develop, create or manage projects or
communities with little of few resources. Sim games have evolved considerably over recent years and with
easy access to the internet many Sim games allow you to compete against real competitors or groups
through game networks. Examples include Sim City, Populous and Theme Hospital.

Role Play games cast the player in one or more adventure roles. The adventure will then have a skills set
which the player will use a range of different situations and scenarios. As games have evolved from simple
RPG to highly graphical interfaces many of the games include locations such as towns, buildings and castles.
Role play games include Dragon Quest, Kingdom Hearts and with the emergence of the internet online role-
playing games such as World of Warcraft.

Strategy games require careful and skilful planning from the game player. Many strategy games originate
from the concept of board games. As games have evolved there are now many different types of strategy
games, including artillery, war tactical and defence. Similar to other games the evolution of the internet has
led to a range of real time games where players can play with others over the internet. Examples of strategy
games include Scorched Earth and Close Combat.

The classification of a game can be subjective while It is also possible to have a hybrid where the games
cross a number of different classifications an example of this is a SIM game where there is an aspect of
collaboration, challenge and identity within the one game. Other examples include web based games such
where there is an additional collaboration and communication aspect to the game.

Keywords
Keywords that will be encountered within this teaching unit include:

Plan Control Implement Process

Script Programming Sequence Automate

Authoring Genre Interface Platform

Classification Scenario Audience

The scenario is based upon: students have been asked by Nintendo to create a computer game for young
children that has an educational value. Students will identify the initial problem, analyse the problem, design
a solution, implement a computer game and evaluate the game against the original objectives.

Sample teaching unit – computer programming

37/44

Le
ss

o
n

N
u
m

b
er

Learning
objective

Learning
outcomes

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher,
resources and

N
C

 S
tr

at
eg

y
re

fe
re

n
ce

s
(2

0
0
8

)

1

Introduction &
Problem

Identify the
problem and
explore possible
solutions.

Identify the initial
problem – what
are the objectives
of the game.

That you can
arrange a
sequence of
instructions for a
set of traffic
lights into the
correct order

Importance of
game
authoring to
make
computers do
what we wish
them to do.

Lesson 1

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b, c

1.3a

1.4a,
b

2.1a

2.2a

2.3a,
b, c

3a

4a,b,
e

2 Analysis Lesson 1

Analyse the
inputs, processes
and outputs of
the computer
game.

That a computer
game is a system
and has Inputs
Processes and
Outputs.

Recognise the
advantages of ICT
systems over
manual systems.

To understand
how computer
games are
designed
written and
work.

Lesson 2

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b, c

1.3a,
b

2.1a,
b,d

2.2b,
e

2.3a,
b,c

3 Analysis Lesson 2

Analyse the
inputs, processes
and outputs of
the computer
game.

Indentify Inputs
Processes and
Outputs.

Recognise the
advantages of ICT
systems over
manual systems.

To understand
how computer
games are
designed
written and
work.

Lesson 3

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b, c

1.3a,
b

2.1a,
b,d

2.2b,
e

2.3a,
b,c

Sample teaching unit – computer programming

38/44

Le
ss

o
n

N
u
m

b
er

Learning
objective

Learning
outcomes

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher,
resources and

N
C

 S
tr

at
eg

y
re

fe
re

n
ce

s
(2

0
0
8

)

4 Initial Designs

Create/design the
stages of your
computer game.

Paper based
designs of game
environment.

Storyboard of
main game
events.

To design a
game that
meets the
user’s needs.

Structured
approach to
games
development.

Lesson 4

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b, c

1.3a,
b

1.5a,
b

2.1a

2.2a,c
, d, e

2.3a,
b,c

5 Design – Test
Plan

Create a test plan
to test the
computer game.

Plan at least 4
tests, reason,
example data and
predicted
outcome.

To understand
that all
computer
programmes
and games
need to be
fully tested.

Lesson 5

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.3a,
b,c

1.5a,
b

2.1d

2.2c,e

2.3a

6 Implementation

Start to
implement your
computer game

Create a number
of game objects.

Attach events to
the objects

To understand
that objects
require events.

Structured
approach to
games
development.

Lesson 6

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b,c

1.3b,
c

2.2a,
b,c,d,
e,f

2.3a

3a

Sample teaching unit – computer programming

39/44

Le
ss

o
n

N
u
m

b
er

Learning
objective

Learning
outcomes

Rationale

This is
because

TIB

Prerequisite skills of
pupil and teacher,
resources and

N
C

 S
tr

at
eg

y
re

fe
re

n
ce

s
(2

0
0
8

)

7/8/
9

Implementation

Continue to
Implement your
computer game

(Lessons 7/8 and
9 are optional)

Create a number
of game objects.

Attach events to
the objects

To understand
that objects
require events.

Structured
approach to
games
development.

Lesson 7/8/9

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

1.1a,
b,c

1.3b,
c

2.2a,
b,c,d,
e,f

2.3a

3a

10 Evaluation

Evaluate your
game against the
original
objectives

To evaluate the
game against the
initial
problem/objectiv
es.

Computer
programmes
and games
have
objectives
which they
have been
designed to
meet.

Lesson 10

(http://dmarshall.moo
dle4free.com/course/v
iew.php?id=14)

Keywords display

Teacher’s dictionary.

2.4a,
b,c

Homework Tasks

Task 1 Evaluate your favourite Computer Game
Students are asked to evaluate their favourite computer game these can be on any platform, students are
asked what target audience the game is designed for, what is good and what can be improved students are
given a template to help them organise their thoughts and ideas.

Task 2 Invent your own computer game
Students are asked to think about designing a new computer game. They need to think carefully about
whom their game is for and their chosen genre. They are then to think about the characters in their game
and are given a template to help them organise their thoughts and ideas.

Task 3 Scenario Mind Map
Students should create a Mind Map about their chosen scenario or theme. The concept of Mind Maps should
be demonstrated with the main ‘areas’ being the roots of the tree. Those who have access to a computer
may wish to use a Mind Map package such as Inspiration or Bubble.

Sample teaching unit – computer programming

40/44

 Resources for programming (alphabetical)

Alice: This is a really deep learning environment from Carnegie Mellon.
Can be used from an early age up to University level.
http://www.alice.org/

Computer Science Unplugged: Wonderful set of exercises from
Canterbury University in New Zealand. http://csunplugged.com/

CS Inside: Lots of downloadable exercises demonstrating a variety of
computing concepts from Glasgow University.
http://csi.dcs.gla.ac.uk/index.php

CS4Fn: Free magazine and excellent supporting website from Queen
Mary College, London. http://www.cs4fn.org/ Recently launched
another free magazine Audio, looking at computing technology in
music. CS4Fn editor, Paul Curzon has written a series of excellent
articles demonstrating basic computing concepts, downloadable from
http://www.dcs.qmul.ac.uk/%7Epc/research/education/puzzles/readin
g/

Details of Manchester University animation competition for schools
using Alice, Scratch or Flash are at
http://www.cs.manchester.ac.uk/Animation09/

FreePascal: http://www.freepascal.org/

Functional Programming: If you wish to introduce a different
programming paradigm
http://web2.comlab.ox.ac.uk/geomlab/index.html is a wonderful
introduction to functional programming, developed as part of the
gifted and talented initiative. It can make an excellent project for an
immersion / extension activity. The environment and worksheets can
be downloaded from the site.

GameMaker: Kids love it! http://www.yoyogames.com/gamemaker

Details of the supporting book: http://book.gamemaker.nl/

An excellent introductory site with school level tutorials is
http://www.mindtools.tased.edu.au/gamemaker/default.htm

GameStar Mechanic: Another site worth keeping an eye on, particularly
if you are interested in the notion of gaming as a vehicle to teach
computing is Robert Torres GameStar Mechanic. Currently in private
beta but due for public release soon. “In Gamestar Mechanic, players
learn the fundamentals of game design. Within the game, players take
the role of “game mechanics” in a steampunk world where the rules
and elements of games have come to life as creatures. Players use
these creatures to repair broken games and create new ones. As an
apprentice game mechanic, players prove their expertise by
completing a series of increasingly complex game design
challenges….” http://www.instituteofplay.org/node/162/

Sample teaching unit – computer programming

41/44

Greenfoot: Environment for introducing object oriented programming
from the University of Kent. http://www.greenfoot.org/index.html

The Introduction to Programming with Greenfoot by Michael Kölling is
an entry-level introduction that systematically takes the learner
through the basics of Object Oriented Programming in a clearly
illustrated and pedagogically sound way and is suited to key stage 3
teaching.

http://astore.amazon.co.uk/pgce-21/detail/0136037534

Kara: An alternative approach to teaching programming via a language
or a ‘microworld’ is Kara. What makes Kara special is that its
programs are finite state machines created in a graphical program
editor. The program does not include commands in the sense of a high
level language but rather a series of instructions based on the inputs
from the grid and the next state in the program. Developed by
SwissEduc they explain the approach thus: “Two characteristics make
Kara attractive for introductory courses: Finite state machines are easy
to understand, which means the time needed to get started is minimal.
And with Kara, you work in a simple, easy-to-use environment without
having to deal with the complexities of modern programming
environments.” http://www.swisseduc.ch/compscience/karatojava/
The approach is elaborated in this thesis:
http://www.asiplease.net/computing/kara/index.htm

Kodu: Microsoft’s 3D Game Creator for the Xbox, released earlier this
year can be found at http://research.microsoft.com/en-
us/projects/kodu/ A version for the PC is being developed which could
provide an excellent resource for early secondary pupils. Input is via
an Xbox controller. Blog
http://community.research.microsoft.com/blogs/kodu/default.aspx

LightBot can be found on lots of game sites. A marvellous game for
challenging pupils to develop logical and sequencing skills involving
just a couple of functions. Levels get increasingly complex.
http://armorgames.com/files/games/light-bot-2205.swf A version is
now available for download onto iPhones.

Logo: The language that started it all! Various free versions available.
Here is one - http://www.numeracysoftware.com/freeMSWlogo.html

An excellent resource for introducing basic computing structures.
From Andrew Scott and colleagues at Glamorgan University. A web
based resource that allows you to construct flowcharts and watch as
the computer executes your commands. Code is automatically
generated in 3 languages allowing comparison with the flowchart
whilst avoiding the problem of initial syntax errors.
http://www.comp.glam.ac.uk/pages/staff/asscott/progranimate/

Sample teaching unit – computer programming

42/44

Python: http://www.python.org/ Good entry level language with
minimal syntax problems. Various projects to introduce this to pupils.
Look at the course http://www.livewires.org.uk/python/home, the free
book http://www.briggs.net.nz/log/writing/snake-wrangling-for-kids/

and the robot environment RUR-PLE http://rur-ple.sourceforge.net/

Raptor: Developed by the US Air Force Academy to help visualise
algorithms and minimize syntax baggage.
http://www.usafa.af.mil/df/dfcs/bios/mcc_html/raptor.cfm

Rapunsel: A project due to come to fruition shortly, developed by a
team lead by Ken Perlin of New York University is Rapunsel
(http://rapunsel.org/) A single-player dance game designed to teach
computer programming to 10-12 year olds. It will be a cross platform,
downloadable game. More info at
http://www.maryflanagan.com/rapunsel/about.htm

RoboMind: Wonderful programmable robot environment from
University of Amsterdam. Easy entry level for young children.
http://www.robomind.net/en/index.html

Scratch: Great resource from MIT for introducing programming
http://scratch.mit.edu/ Fast becoming the standard introductory
programming environment in schools. Developed by Mitch Resnick’s
team Scratch builds on the approach pioneered by Lego Mindstorms,
using colour coded snap together blocks to create sequences of
instructions. It thus makes programming accessible to children who
have limited literacy skills in that it removes the syntax barrier. See
http://info.scratch.mit.edu/Educators for further resources to support
teaching.

Small Basic: http://msdn.microsoft.com/en-us/devlabs/cc950524.aspx
For those who want to teach programming using 3rd generation BASIC
– it’s simplicity is compelling

Squeak: Alan Kay’s original educational software
http://www.squeakland.org/. Installed on the OLPC and the software
behind developments such as Scratch. See Alan Kay demonstrate it in
this TED Talk:
http://www.ted.com/talks/lang/eng/alan_kay_shares_a_powerful_idea
_about_ideas.html

StarLogo TNG: Fantastic for creating models, with lots of samples to
use in other subjects too. Simply the best free resource for introducing
modelling in the ICT curriculum. Some great potential for cross
curricular work. Another development from Mitch Resnick and MIT’s
Media Lab, this new version introduces snap together blocks and 3D
For a ready to use resource, including presentation and sample code
based on a StarLogo Tutorial for modelling the spread of an epidemic
see: http://www.computingatschool.org.uk/files/conference2009/
epidemic.pdf and http://www.computingatschool.org.uk/files/
conference2009/davies.zip

Sample teaching unit – computer programming

43/44

VB.Net: Code Rules, a course to introduce pupils to programming in
VB.Net is available from http://msdn.microsoft.com/en-
us/beginner/bb308755.aspx There is a link there to download VB.Net
Express

References

Alice http://www.alice.org [April 2009]

Blackwell, AF and Green, TRG (1999) Investment of Attention as an Analytic Approach to Cognitive
Dimensions in T. Green, R. Abdullah & P. Brna (Eds.) Collected Papers of the 11th Annual Workshop of the
Psychology of Programming Interest Group (PPIG-11), pp. 24-35
http://www.cl.cam.ac.uk/~afb21/publications/PPIG99.html [April 2009]

Computer Science for Fun http://www.cs4fn.org [April 2009]

Church, L and Whitten, A (2009) Generative Usability; Security and User Centered Design beyond the
Appliance Oxford, UK: New Security Paradigms Workshop (to be published)

DCSF (2008) Assessing pupils’ progress in ICT at Key Stage 3 London, UK: Department for Children, Schools
and Families

DfES (2002a) Sample Teaching Unit for ICT: Year 7, Unit 3 London, UK: Department for Education and Skills
http://nationalstrategies.standards.dcsf.gov.uk/node/156743 [April 2009]

DfES (2002b) Key Stage 3 National Strategy Framework for teaching ICT capability: Years 7, 8 and 9 London,
UK: Department for Education and Skills

Game Maker http://www.yoyogames.com [April 2009]

Greenfoot http://www.greenfoot.org [April 2009]

Kölling, M (2009) Introduction to Programming with Greenfoot New York, US: Pearson
http://www.greenfoot.org/book [April 2009]

Malone, TW (1980) What Makes Things Fun to Learn? Heuristics for Designing Instructional Computer
Games. Paper presented at the Association for Computing Machinery Symposium on Small and Personal
Computer Systems, Pal Alto, California.

Overmars, M and Habgood, J (2006) The Game Maker's Apprentice: Game Development for Beginners
Technology in Action http://book.gamemaker.nl [April 2009]

QCA (2007) The National Curriculum 2007 ICT Programme of study for key stage 3 London, UK:
Qualifications and Curriculum Authority http://curriculum.qca.org.uk/key-stages-3-and-
4/subjects/ict/keystage3 [April 2009]

Wing, J (2006) Computational Thinking Communications of the ACM 49 3
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf [April 2009]

Sample teaching unit – computer programming

44/44

Appendix 1

Level descriptors for the National Curriculum ICT (2008 onward)

Level 4
Pupils combine and refine different forms of information from various sources… …they exchange
information and ideas with others in a variety of ways, including using digital communication. They
understand the risks associated with communicating digitally, including the security of personal information.
They plan and test sequences of instructions. They use ICT-based models and simulations to explore
patterns and relationships, and make predictions about the consequences of their decisions. They use ICT to
organise, store and retrieve information. They compare their use of ICT with other methods and with its use
outside school.

Level 5
Pupils combine ICT tools within the overall structure of an ICT solution. They select the information… …they
exchange information and ideas with others in a variety of ways, including using digital communications.
They create sequences of instructions and understand the need to be precise when framing and sequencing
instructions. They explore the effects of changing the variables in an ICT-based model. They use ICT to
organise, store and retrieve information using logical and appropriate structures. They use ICT safely and
responsibly. They discuss their knowledge and experience of using ICT and their observations of its use
outside school. They assess the use of ICT in their work and are able to reflect critically in order to make
improvements in subsequent work. They use appropriate evaluation criteria to critically evaluate the fitness
for purpose of their work as it progresses.

Level 6
Pupils plan and design ICT-based solutions to meet a specific purpose and audience, demonstrating
increased integration and efficiency in their use of ICT tools. They develop and refine their work to enhance
its quality, using a greater range and complexity of information. Where necessary, they use complex lines of
enquiry to test hypotheses. They present their ideas in a variety of ways and show a clear sense of audience.
They develop, try out and refine sequences of instructions and show efficiency in framing these instructions,
using sub-routines where appropriate. They use ICT-based models to make predictions and vary the rules
within the models. They assess the validity of these models by comparing their behaviour with information
from other sources. They plan and review their work, creating a logically structured portfolio of digital
evidence of their learning. They discuss the impact of ICT on society.

Level 7
Pupils design and implement systems. They are able to scope the information flow required to develop an
information system. They combine information from a variety of ICT-based and other sources for
presentation to different audiences. They identify the advantages and limitations of different information-
handling applications. They select and use information to develop systems suited to work in a variety of
contexts, translating enquiries expressed in ordinary language into the form required by the system. They
develop, test and refine sequences of instructions as part of an ICT system to solve problems. They design
ICT-based models and procedures with variables to meet particular needs. They consider the benefits and
limitations of ICT tools and information sources and of the results they produce, and they use these results
to inform future judgements about the quality of their work. They make use of audience and user feedback
to refine and enhance their ICT solutions. They take part in informed discussions about the use of ICT and
its impact on society.

Level 8
Pupils independently select appropriate information sources and ICT tools for specific tasks, taking into
account ease of use and suitability. They design successful ways to collect and prepare information for
processing. They design and implement systems for others to use. They take part in informed discussions
about the social, economic, ethical and moral issues raised by ICT.

Exceptional performance
Pupils evaluate software packages and ICT-based models, analysing the situations for which they were
developed and assessing their efficiency, ease of use and appropriateness. They suggest refinements to
existing systems and design, implement and document systems for others to use, predicting some of the
consequences that could arise from the use of such systems. When discussing their own and others’ use of
ICT, they use their knowledge and experience of information systems to inform their views on the social,
economic, political, legal, ethical and moral issues raised by ICT.

