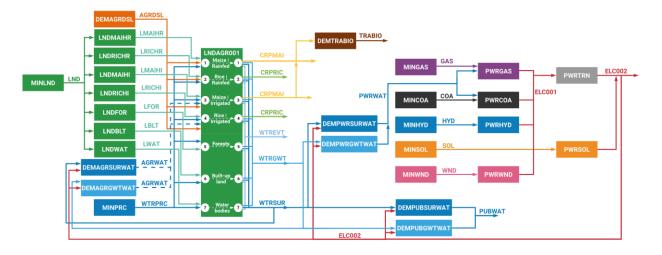


Hands-on: Creating a simple energy model with OSeMOSYS

Useful links:

- 1) Discussion forum for CLEWs
- 2) <u>Results from this Hands-on</u>

Learning outcomes


By the end of this exercise you will be able to:

- 1) Create technologies and commodities related to thermal power
- 2) Input key numerical data for the technologies and commodities
- 3) Run a simple model and observe the results

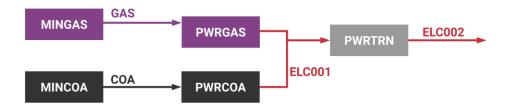
Overview

The figure gives an overview of the CLEWs model you will create by the end of all the hands-on sessions. You will build it little by little starting with this Hands-on session. The figure shows a 'Reference Energy system' (RES), but also includes the land and water systems. As discussed in Lecture 2, the boxes represent technologies, processes or physical assets. The lines represent flows of commodities.

The names of the technologies and commodities follow a specific naming convention that you will have to maintain throughout the exercise, otherwise you will not be able to visualize the results of your exercises!

The summary of the naming convention is given in the table below. You do not have to memorise it, you will be gradually introduced to it with every hands-on session. However, you can always come back to this table if you are uncertain. It includes all technologies and commodities that you will encounter through all hands-on sessions.

Name	Description
Technologies	
MINLND	Land resource
LNDAGR001	Land for agriculture and other uses
LNDMAIHR	Land representing rainfed maize cultivation
LNDRICHR	Land representing rainfed rice cultivation
LNDMAIHI	Land representing irrigated maize cultivation
LNDRICHI	Land representing irrigated rice cultivation
LNDFOR	Land representing forests
LNDBLT	Land representing built-up land
LNDWAT	Land representing water bodies
MINPRC	Precipitation water resource
MINGAS	Gas extraction
MINCOA	Coal extraction
MINHYD	Hydro resource for power
MINSOL	Solar resource for power
MINWND	Wind resource for power
PWRGAS	Gas power plant


PWRCOA	Coal power plant							
PWRHYD	Hydro power plant							
PWRSOL	Rooftop solar photovoltaic							
PWRWND	Wind turbines							
PWRTRN	Transmission and distribution network							
DEMAGRDSL	Diesel used in the agriculture sector							
DEMAGRSURWAT	Surface water supply for agriculture							
DEMAGRGWTWAT	Ground water supply for agriculture							
DEMPWRSURWAT	Surface water supply for power plants							
DEMPWRGWTWAT	Ground water supply for power plants							
DEMPUBSURWAT	Surface water supply for public use							
DEMPUBGWTWAT	Ground water supply for public use							
DEMTRABIO	Biofuel for transport							
Commodities								
LND	Land							
CRPMAI	Maize							
CRPRIC	Rice							
WTRPRC	Precipitation water							
AGRWAT	Agricultural water							
WTREVT	Evapotranspired water							
WTRGWT	Ground water							
WTRSUR	Surface water							
PWRWAT	Water for power plants							
PUBWAT	Public water							
GAS	Natural gas							
COA	Coal							
HYD	Hydro							
SOL	Solar							
WND	Wind							
ELC001	Electricity fed to transmission and distribution network							
ELC002	Electricity for final uses							
AGRDSL	Diesel used in the agriculture sector							
LMAIHR	Land representing rainfed maize cultivation							
LRICHR	Land representing rainfed rice cultivation							
LMAIHI	Land representing irrigated maize cultivation							
LRICHI	Land representing irrigated rice cultivation							
LFOR	Land representing forests							
LBLT	Land representing built-up land							
LWAT	Land representing water bodies							
TRABIO	Biofuel for transport							

Activity 1 – Introduce new technologies and commodities

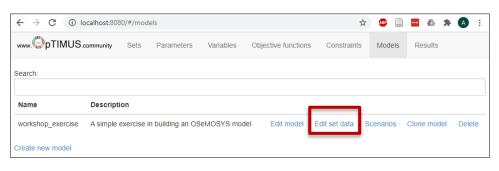
The starting point for this activity will be the template model you obtained when installing MoManl. It is called **workshop_model_v0**. If you carried out correctly Hands-on 1, you will find it by opening MoManl on your browser: <u>http://localhost:8080/#/models</u>.

In this activity, you will create the first small part of the RES shown in the figure above. The part you create is one part of the electricity supply chain and it includes a demand, the transmission and distribution network, two types of power plants and the primary supply of fuels for those power plants. This is shown in the figure below. In the coming hands-on sessions, you will add more pieces to this.

To create the above, you will add technologies and commodities to the SETs of your model and assign the first numerical parameters for each of them.

You will have to add 5 technologies (the 5 boxes in the figure above):

- **MINGAS** (supply of gas for the power sector)
- **MINCOA** (supply of coal for the power sector)
- **PWRGAS** (gas-fired power plant)
- **PWRCOA** (coal-fired power plant)
- **PWRTRN** (electricity transmission and distribution network)


And 4 commodities:

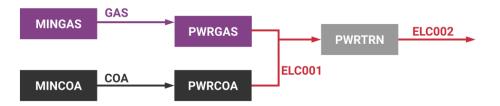
- GAS (Natural gas)
- COA (Coal)
- **ELC001** (Electricity fed to the transmission and distribution network)
- ELC002 (Final electricity, delivered by the transmission and distribution network)

For creating technologies and commodities, in the MoManI page:

- 1. Click in the top bas on **Models**
- 2. Then, click on **Edit set data**

- 3. Find the set you want to edit (i.e. **TECHNOLOGY** for adding the technologies and **COMMODITY** for adding the commodities)
- 4. Click Enter data

www. OptiMUS.comm	unity Set	s Parameters	Variables	Objective functions	Constraints	Models	Results	
Entering data for m workshop_exe								
Sets								
Search:								
Name	Deceriptic							
Name	Descriptio							
COMMODITY	only produ services a	iced if they are goin	g to be consur	I have to be produced by ned or if they feed a fina I demand would be defir	al demand. Also d	lemands for	energy	Ente data
EMISSION	The EMIS	SION to be account	ed for.					Ente data
MODE_OF_OPERATION	mix of thes	· ·	els. For exam	echnology can use varic ple, a CHP plant may va				
REGION				region and it may be effi n, e.g., by defining differ				Ente data
STORAGE	It contains	the storage facilitie	S					Ente data
TECHNOLOGY	converts o	one energy form into	another (e.g.,	tem which generates a f a coal- fired power plan I, no spacing is allowed.	nt), or consumes a			Ente data
TIMESLICE	all the wee		ummer, anothe	supply characteristics. C er one the weekday ever				Ente data
YEAR	Represent	ts the time frame of	the model.					Ente


5. Click '+' then enter the name (exactly as indicated above, with no spaces in it, nor special characters – any deviation from the names indicated above may make the model crash and/or prevent you from visualizing results later on). You do not need to enter anything in the 'Description' column.

$\leftarrow \rightarrow G$	i localhost:808	80/#/moo	dels/493f82f9-42	2e3-4e1c-99e4	l-330390a6db18/setDat	a/ef61f245	☆ 🔎		6	* (A
www.҈©рТ	IMUS.community	Sets	Parameters	Variables	Objective functions	Constraint	s Mode	els Res	sults		
	try for set TI		NOLOGY								
NameDescrip	otion GroupColor Re	emove									
Groups											
Name + Save Ca	ancel										
$\leftrightarrow \ \ \rightarrow \ \ G$	(i) localhost:8080	0/#/mode	els/493f82f9-42e3	3-4e1c-99e4-3	30390a6db18/setData/8	b1e28f 🛧	ABP	••• 🛆	* (A	:
	 Iocalhost:8080 MUS.community 	0/#/mode Sets	els/493f82f9-42es Parameters	3-4e1c-99e4-3 Variables	30390a6db18/setData/8 Objective functions	b1e28f 🕁 Constraints	ABP 📄 Models	Results	* (A	:
www.©рТІ	-	Sets	Parameters					Results	* (A	:
www.OpTI Data ent	MUS.community	Sets	Parameters					Results	* (•	

6. Click Save (always do it, at the end of any step, with any element you modify!)

With these steps, you have introduced in the model new technologies and new commodities. Now you will need to create links between them. I.e. you will define which commodities flow in and out of which technologies (and with what efficiency), in order to create and energy supply chain. The supply chain you will create is shown again in the figure below, for your convenience.

This chain indicates that (starting from the right): there is a demand for electricity (ELC002); this electricity is supplied to the consumers through the transmission and distribution network (PWRTRN); gas power plants (PWRGAS) and coal power plants (PWRCOA) are the two technologies supplying electricity to the network (for now); for supplying the electricity, the gas power plants are fed with natural gas (GAS) and the coal power plants with coal (COA); gas and coal come from extraction activities, respectively represented by MINGAS and MINCOA.

N.B. In OSeMOSYS the supply chain must always start with a technology. I.e. there must be a technology making the needed commodity available. In this case, at the start of the supply chain there are two technologies representing extraction of gas and of coal. Failing to start a supply chain with a technology will make that supply chain not work and the model, potentially, crash.

In order to define the links between technologies and commodities, it is useful to recall some concepts:

- **Activity:** it refers to any process occurring within a technology (e.g. fuel combustion, water treatment, crude oil refining, crop harvesting)
- InputActivityRatio: ratio between an input commodity and technology activity
- **OutputActivityRatio:** ratio between an output commodity and technology activity

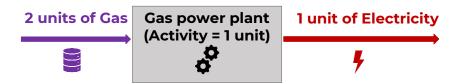
Examples follow.

Example 1: Multiple inputs, single output

- 1 unit of activity requires 3 units of commodity A and 0.5 units of commodity B
- 1 unit of activity produces 1 unit of X

Example 2: Single input, multiple outputs

- 1 unit of activity requires 2 units of commodity A
- 1 unit of activity produces 4 units of X and 1 unit of Y



Example 3: Multiple inputs, multiple outputs

- 1 unit of activity requires 1 unit of commodity A and 3 units of commodity B
- 1 unit of activity produces 0.5 units of X and 2 unit of Y

N.B. When defining the InputActivityRatio and the OutputActivityRatio, **you automatically define also the efficiency of the technology**. See the example below:

The efficiency of the process of electricity generation is the ratio between the output and the input. In this case:

$$Efficiency = \frac{1 \text{ unit of electricity}}{2 \text{ units of Gas}} = 50\%$$

If the output and the input have the same type of unit (e.g. PJ), the efficiency will be a ratio with no unit. If the output and the input have different types of units, then the efficiency will have units. The choice of the units lies with you. In MoManI you just enter numbers, you do not enter the units. Therefore, you must keep a separate account of what units the numbers are meant to have. In the hands-ons for this course, we will always indicate the exact values you need to input and in which units they are intended.

Continuing the exercise, you are now asked to introduce the InputActivityRatio and OutputActivityRatio for PWRGAS and PWRCOA so that they both produce 1 unit of electricity, with efficiency respectively of 50% and 33%. You will also enter data for the other technologies, so that they all have efficiency 100%.

Start from the **OutputActivityRatio**:

1. Click Models

- 2. Choose your model from the list
- 3. Click Scenarios
- 4. Click Enter data
- 5. Search for the parameter **OutputActivityRatio** and click **Enter data (slices)**
- 6. Fix REGION and MODE_OF_OPERATION. Then fix one COMMODITY at a time. A data table will appear for each with all the technologies in the model listed **for all years**. Enter data for each.

Data entry for parameter OutputActivityRatio

	Defa	ult valu	ie	0					
	Fix dimensions			REGIO	N	~		~	
				MODE	_OF_OPERATION	~		1	~
				COMMODITY		~		COA	~
Switch axes									
	2019	2020	2021	2022					
MINCOA									
MINGAS									
PWRCOA									
PWRGAS									
PWRTRN									
	•			Save	Cancel				
	Other pa	rameter	s	Output	ActivityRatio	~			

- 7. You will have to enter the data given in the table below, **for all years**. The table below shows which technology you give the value for, which commodity you need to fix for that technology and which value needs to be given for each year. For instance, for MINCOA, you will need to fix the commodity COA and give the value 1 for all years. By doing so, you will be defining that the technology MINCOA (coal extraction) provides 1 unit of COA (coal) for every unit of its activity. This corresponds to the figure above, where COA is drawn as an output of MINCOA
- 8. Click **Save** after entering the values for all the couples technology-commodity shown below. You do not need to save before then

Technology	Value to be given	Output commodity
MINGAS	1	GAS
MINCOA	1	COA

PWRGAS	1	ELC001
PWRCOA	1	ELC001
PWRTRN	1	ELC002

Note that we always prefer setting the output as 1. This means that, for efficiencies < 100%, the input will be a number higher than 1. The reason for setting the output as 1 is linked to the structure of OSeMOSYS and requires an advanced explanation. If you are curious, you may ask the question on the forum.

Now move to the InputActivityRatio:

- Click **Models**
- Choose your model from the list
- Click Scenarios
- Click Enter data
- Search for the parameter InputActivityRatio and click Enter data (slices)
- Fix REGION and MODE_OF_OPERATION. Then select one COMMODITY at a time. A data table will appear for each with all the technologies in the model listed **for all years**. Enter data for each
- You will have to enter the data given in the table below
- Click Save

Technology	Value to be given	Input commodity
PWRGAS	2	GAS
PWRCOA	3	COA
PWRTRN	1	ELC001

Note that the value 2 for the gas power plant comes from 1/50% and the value 3 for the coal power plant comes from 1/33%. That is, the efficiencies can be used to calculate the InputActivityRatios of power plants.

Activity 2 – Introduce a demand for electricity

Now you have set up the supply side of the energy chain. However, the power plants will supply electricity (and compete in the supply) only if there is demand for electricity. In this activity you will introduce a demand for electricity, so that, driven by the demand, the model will try and find the best supply option(s) and will suggest how much the power plants should operate.

In OSeMOSYS, demands are user-defined (exogenous) and can be set for one or more commodities. They "drive" the optimisation process, that is, the objective of the model is to minimise the cost of meeting them.

The user can introduce two types of demand in OSeMOSYS:

- AccumulatedAnnualDemand: it must be balanced by the supply on an annual basis
- **SpecifiedAnnualDemand:** it must be met based on a "time-of-use" profile such as daily fluctuations in electricity demand.

You will learn more about the difference between the two in Lecture 5 and in the following hands-on sessions. For now, you will introduce values only for the

AccumulatedAnnualDemand. In this way, you will define a value of demand for each year of the time domain. The supply chain needs to meet this demand over the year.

Introduce a value of 100 PJ as AccumulatedAnnualDemand for electricity ELC002 in every year, in the following way:

- Click **Models**
- Choose your model from the list
- Click Scenarios
- Click Enter data
- Search for the parameter **AccumulatedAnnualDemand** and click **Enter data** (slices)
- Fix the dimension 'REGION' and a data table will appear with all the commodities in the model listed. Enter data for ELC002 as suggested in the table below
- Click Save

Commodity	2019	2020	2021	2022
ELC002	100	100	100	100

Activity 3 – Run the model and visualize the results

If you have carried out all the above steps correctly, you are now ready to run the optimisation and see which technology or technologies will be chosen to meet the electricity demand. At this stage, we have given very little input. Therefore, the optimisation

will unlikely give very meaningful results. However, it is good to go through the process of running a model, checking if the run completes and understanding how to read the results. For running the model and visualizing the results, take the following steps:

1. On MoManl, next to your model, click Scenarios

← → ♂ ☆	localhost.8080/#/models			··· 🖂 🕁	± II\ ⊡ @	0 🖬 🗳
www.OpTIMUS.community Sets	Parameters Variables Objective functions Constraints Models Results					
Search:						
Name	Description					
workshop_exercise	A simple exercise in building an OSeMOSYS model	Edit model	Edit set data	Scenarios	Clone model	Delete
Create new model						

2. Click **Download executable**. This will download a zipped folder.

€ → ୯ û	0	0 Calhost.8080/#/models/493f82f9-42e3-4e1c-99e4-330390a6db18/scenarios								🖂 🕁	T	lii/	I ®	0	•	≡
www.OpTIMUS.community	Sets	Parameters	Variables	Objective functions	Constraints	raints Models Results										
Name Description Revision																
exercise_1 A simple exercise in building an OSeMOSYS model				1	Enter data	Download executable		Clone	revisio	n						

- 3. Go to the folder where this zipped folder has been just downloaded and unzip it. You may move the unzipped folder in any directory of convenience for you. Remember where you put it. The folder contains, among others, two elements of importance for you: a file called **data.txt**, with all the inputs you have provided so far; a file called **model.txt** which contains all the equations of OSeMOSYS, i.e. the linear optimisation problem. You need not do anything with them now, you will see their use in a moment.
- 4. Now, connect to https://www.osemosys-cloud.com/ and sign in with your email and password
- 5. Click on the model and then the version you created in Hands-on 1 (we named it **Workshop_Model**)

← → ♂ ŵ	https://www.osemosys-	doud.com/versions	(1196) ···· 🖾 🌣	½ III\ 🖸 ③ 📑 🗐 ≡
Osemosys Cloud (alpha)	My versions	abhishe	ek.shivakumar@desa.kth.se Admin Logout	
	Run version	n created	x	
	My ve	ersions		
	New version	1		
	ID	Name		
	95	Workshop_Model		

6. Click on **New run** to create a model run

← → C △ □ □ ▲ https://www.osemcays-doud.com/versions/95	(10%) … ♡☆ ⊻ III\ 🖸 ③ 🖬 🖕 Ξ
Osemosys Cloud (alpha) My versions	
Workshop_Model	

7. Enter a name for your model run (do not use spaces or special characters!). You may also add a short description, but that is not necessary

← → ♂ ☆	A https://www.osemosys-doud.com/runs/new?version_id=95	110% … 回 ☆	🛓 III\ 🗊 🗶 🚭 🚍 🚍
Osemosys Cloud (alpha			
	Schedule a new run Version * Werkshop_Model	.	
	Name *		
	Model file_Browse No file selected. Data file_Browse No file selected. Description		
	Server type Small server	×	
	Create run		

8. Next to the writing 'Model file', click **browse** to look for and upload the **model.txt** file that is in the unzipped folder you downloaded a minute ago

(←) → ♂ ŵ	A https://www.osemosys-doud.com/runs/new?version_id=95	(110%) … ⊘ ☆ ⊻ III\ 🖸 🗶 📑
Osemosys Cloud (alph	a) My versions	
	Schedule a new run Version * Workshop_Model Name * Model file Browse No file selected. Data file Browse No file selected.	√ -
	Description	
	Small server	~
	Run pre-processing script	
	□ Generate CSV files (run post-processing script)	
	☑ Send me an email when the run finishes	
	Create run	

9. Next to the writing 'Data file', click **browse** to look for and upload the **data.txt** file that is in the unzipped folder you downloaded a minute ago

← → ♂ ŵ	0 A https://www.osemosys-doud.com/runs/new?version_id=95	110% 🖾 🏠	½ III\ 🗊 ತ 💿 🚅 💿 ≡
Osemosys Cloud (alpha	a) My versions	abhishek.shival	umar@desa.kth.se Admin Logout
	Schedule a new run Version * Workshop_Model Name * Model file Browse No file selected. Description	4	
	Server type Small server Run pre-processing script Generate CSV files (run post-processing script) Send me an email when the run finishes Create run	v	

10. Un-check the boxes '**Run pre-processing script**' and '**Generate CSV files**' at the bottom. You may also uncheck the box '**Send me an email when the run finishes**', if you do not want to receive email notifications when the run is done.

(←) → ♂ ☆	🖸 🔺 https://www.osemosys-doud.com/runs/hew?version_id=95	110% … ♡☆ ⊻ Ⅲ\ ① ③ ◎ ≝ ◎ Ξ
Osemosys Cloud (alph	a) My versions	abhishek.shivakumar@desa.kth.se Admin Logout
	Schedule a new run	
	Workshop_Model	√ [∨]
	Name <u>*</u>	
	Model file Browse No file selected. Data file Browse No file selected.	
	Description	
		4
	Server type	
	Small server	~
	Run pre-processing script	
	Generate CSV files (run post-processing script)	
	Send me an email when the run finishes	
	Create run	

11. You will also see a drop down menu to choose the Server type. The default setting there will be **Small server**. That means that your model will be run on a small

server. That is more than sufficient for this little model, so do not change the setting.

12. Click Create run

← → ♂ ŵ	A https://www.osemosys-doud.com/runs/new?version_id=95	
Osemosys Cloud (al	pha) My versions	abhishek.shivakumar@desa.kth.se Admin Logout
	Schedule a new run	
	Version *	
	Workshop_Model	<u>√</u>
	Name <u>*</u>	
	Model file Browse No file selected. Data file Browse No file selected.	
	Description	
		#
	Server type	_
	Small server	~
	□ Run pre-processing script	
	Generate CSV files (run post-processing script)	
	Send me an email when the run finishes	
	Create run	

13. Click **Start run**

(←) → C* û	https://www.osemosys-cloud.com/versions/41	··· ⊠ ☆ ⊥ II/	▥ ◉ ◙ 💆 🚳 🗉
Osemosys Cloud (alph	a) My versions		sa.kth.se Admin Logout
	Run created	×	
	Workshop_Model New run		
	467 - test_run (New)		
	Start run		
	Files: 🛆 Model 🛆 Data		-

This will start the run, which should take a couple of seconds to complete. If the run is completed successfully, the bar of the run will be green and will show the message (Succeeded) next to the name of the run (see below). If after some time you do not see the below, you may need to refresh the page.

To view the results of this run, **click on the symbol with the little graph**.

← → ⊂ 奋	A https://www.osemosys-cloud.com/versions/41	♡☆ ⊻	II\ 🗉 🔹 💿 📑
Osemosys Cloud (alpha			odesa.kth.se Admin Logout
l	Run started	×	
Workshop_Model			
	i67 - test_run (Succeeded) ⊞ Show steps i 00:00:00 Files:		

What do you see? If there is any result shown, are you able to understand what is being shown? Answer the quiz for this hands-on!

N.B. You will have to repeat this operation for all the times you will be asked to run the model in the next hands-on sessions. Every time you will have to create a New run (we suggest you give them meaningful names, so that you are able to distinguish all steps from each other)