

Energy and Flexibility Modelling Hands-on 4

Please use the following citation for:

• This exercise

Cannone, Carla, Allington, Lucy, & Howells, Mark. (2021, March). Hands-on 4: Energy and Flexibility Modelling (Version 2.0.). Zenodo. <u>https://doi.org/10.5281/zenodo.4609733</u>

• clicSAND Software

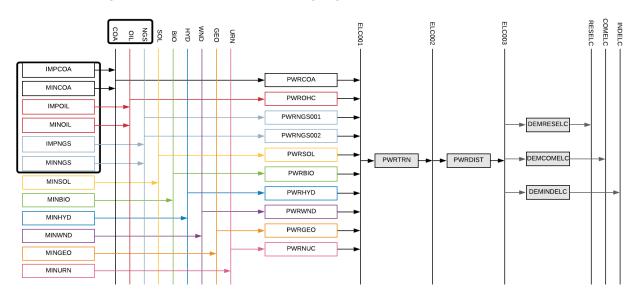
Cannone, C., Allington, L., de Wet, N., Shivakumar, A., Goynes, P., Valderamma, C., & Howells, M. (2021, March 10). ClimateCompatibleGrowth/clicSAND: v1.1 (Version v1.1). Zenodo. <u>http://doi.org/10.5281/zenodo.4593100</u>

• OSeMOSYS Google Forum

Please sign up to the help Google forum <u>here</u>. If you are stuck, please ask questions here. If you get ahead, please answer questions in the same forum. Please state that you are using the 'clicSAND' Interface.

Learning outcomes

By the end of this exercise, you will be able to:


- 1) Define technologies representing the domestic production of energy commodities
- 2) Define technologies representing the import of energy commodities

We will not run the model at the end of this exercise.

Define technologies representing the domestic production of energy commodities

In Lecture 4 we learnt how to represent a technology in OSeMOSYS and which parameters characterize the primary energy supply technologies. As said, these technologies can represent domestic production/extraction or importation of fuels such as coal, natural gas and oil. In this Hands-on, we will add 6 technologies in total: 3 for the import and 3 for the domestic production of coal, natural gas and oil. We will build the highlighted part of the RES:

In order to represent a primary supply technology, remember that the following **parameters** must be considered:

- **OutputActivityRatio**: defines the fuel provided (in this first example Coal)
- Variable Cost: defines the cost of coal extraction
- TotatTechnologyModelPeriodUpperLimit: defines the level of proven coal reserves that are available for extraction throughout the entire model period (we will express it in PJ)
- TotalAnnualMaxCapacity: defines the maximum annual rate of production of Coal

 CapacityToAcitivityUnit: It is used to convert data related to the Capacity of technology into the Activity it can generate. For primary supply technology, this value should be set to 1.

Try it: Let's add MINCOA - the technology representing the domestic extraction of coal.

- Go to SETS and in cell B4 change the name from "TEC001" to "MINCOA" and the description to "Coal Domestic Production". In this way, we added the technology which will be providing Coal (COA) to the model
- 2. Now let's add the **coal fuel** in Cell E4 following the same procedure.
- 3. Next, go to Parameters Sheet and filter out in Column C for **MINCOA** (as done in Handson 3 for the Backstop).
- 4. Add the data for **MINCOA** as for the table below and as given in the <u>DataPrep file</u>.
 - a. **OutputActivityRatio**: choose the Coal Fuel row (Cell K31373) and add 1 from 2015 to 2070

Parameter	- REGION	- TECHNOLOGY	T EMISSION	👻 FUEL 📼 2015	- 2016	= 2017	-
21262 InputActivityRatio	RE1	MINCOA		COM050	0	0	0
31124 OperationalLife	RE1	MINCOA					
31372 OutputActivityRatio	RE1	MINCOA		ELC003	0	0	0
31373 DutputActivityRatio	RE1	MINCOA		COA	1	1	1
31374 OutputActivityRatio	RE1	MINCOA		COM003	0	0	0
31375 OutputActivityRatio	RE1	MINCOA		COM004	0	0	0
31376 OutputActivityBatio	BF1	MINCOA		COM005	n	Π	Π

b. Variable Cost:

	Parameter	- REGION	TECHNOLOGY	T EMISSION	- FUEL	× 2015	× 2016	6 v 1	2017 🖃 :	2018 🖃 2	2019 👻	2020 🖃	2021 💌	2022 💌	2023	20
47220	TotalAnnualMinCapacity	RE1	MINCOA				0	0	0	0	0	0	0	0	(0
47419	TotalAnnualMinCapacityInvestment	RE1	MINCOA				0	0	0	0	0	0	0	0	(0
47618	TotalTechnologyAnnualActivityLowerLimit	RE1	MINCOA				0	0	0	0	0	0	0	0	(0
47817	TotalTechnologyAnnualActivityUpperLimit	RE1	MINCOA				9999 :	99999	99999	99999	99999	99999	99999	99999	99993	9
48016	TotalTechnologyModelPeriodActivityLowerLimi	it RE1	MINCOA													
48215	TotalTechnologyModelPeriodActivityUpperLimi	it RE1	MINCOA													
48464	VariableCost	RE1	MINCOA				3.3 3	3.5401	4.29278	4.22632	4.1601	4.09411	4.02926	3.964608	3.90017	13.

c. **TotalTechnologyModelPeriodUpperLimit** - 400 Mt of domestic coal converted to PJ is 11723 PJ.

	Parameter	- REGION	TECHNOLOGY	T EMISSION	MODE_OF_OPERATION	- FUEL	TIMESLICE	▼ STORAGE	REGION2	👻 Time indipendent variat 😴 2015 🛛 👻
47021	TotalAnnualMaxCapacityInvestment	RE1	MINCOA							99999
47220	TotalAnnualMinCapacity	RE1	MINCOA							0
47419	TotalAnnualMinCapacityInvestment	RE1	MINCOA							0
47618	TotalTechnologyAnnualActivityLowerLimit	RE1	MINCOA							0
47817	TotalTechnologyAnnualActivityUpperLimit	RE1	MINCOA							99999
48016	TotalTechnologyModelPeriodActivityLowerLimit	t RE1	MINCOA							0_
48215	TotalTechnologyModelPeriodActivityUpperLimit	t RE1	MINCOA							11723.04
48464	VariableCost	RE1	MINCOA			1				3.3

d. **TotalAnnualMaxCapacity** - we will leave the default number (99999) which, being very high, means that we are not constraining the installed capacity of this technology

4	Parameter	REGION	TECHNOLOGY	TIMESLICE	🖃 Time indipendent varial 📼	2015 🖃 3	2016 🖃	2017 🚽	2018 🖃
41574	ReserveMarginTagTechnology	RE1	MINCOA			0	0	0	0
41773	ResidualCapacity	RE1	MINCOA			0	0	0	0
46822	TotalAnnualMaxCapacity	RE1	MINCOA			99999	99999	99999	99999
47021	TotalAnnualMaxCapacityInvestment	RE1	MINCOA			99999	99999	99999	99999
47220	TotalAnnualMinCapacity	RE1	MINCOA			0	0	0	0
47419	TotalAnnualMinCapacityInvestment	RE1	MINCOA			0	0	0	0
47618	TotalTechnologyAnnualActivityLowerLimit	RE1	MINCOA			0	0	0	0
47817	TotalTechnologyAnnualActivityUpperLimit	RE1	MINCOA			99999	99999	99999	99999
48016	TotalTechnologyModelPeriodActivityLowerLimit	RE1	MINCOA		0				
48215	TotalTechnologyModelPeriodActivityUpperLimit	RE1	MINCOA		11723.04				
48464	VariableCost	RE1	MINCOA			3.3	3.5401	4.29278	4.22632

e. CapacityToActivityUnit - set to 1

▲ Parameter	- REGION	- TECHNOLOGY	TIMESLICE	~	Time indipendent vari 🛩	2015 -	2016 -
449 CapacityFactor	RE1	MINCOA	S421			1	1
450 CapacityFactor	RE1	MINCOA	S422			1	1
451 CapacityFactor	RE1	MINCOA	S423			1	1
452 CapacityFactor	RE1	MINCOA	S424			1	1
19366 CapacityOfOneTechnologyUnit	RE1	MINCOA				0	0
19565 CapacityToActivityUnit	RE1	MINCOA			1		
19764 CapitalCost	RE1	MINCOA				0.0001	0.0001
19969 EmissionActivityRatio	RE1	MINCOA				0	0
19970 EmissionActivityRatio	RF1	MINCOA				0	0

Repeat the same steps for

- 1) **MINOIL** domestic extraction/production of Oil
- 2) **MINNGS** domestic extraction/production of Natural Gas

Using the data provided in the DataPrep file.

Voilà: you now have added 3 new technologies (MINCOA, MINOIL, MINNGS) and 3 fuels (COA; OIL, NGS) to your model.

Define technologies representing the import of energy commodities

We will repeat the exercise once more giving the example of a technology which represents the **import of coal (IMPCOA)**. When representing an Import technology, the following parameters must be considered:

- **OutputActivityRatio**: defines the rate of fuel provided (in this first example Coal)
- **VariableCost**: defines the cost of importing the fuel.

- **CapacityToActivityUnit**: used to convert data related to the Capacity of technology into the Activity it can generate. For primary supply technologies, this value should be set to 1.

Try it: let's add this technology in the model.

- 1. Go to SETS and add **IMPCOA** in Cell B7 (remember that you should have previously added **MINOIL** and **MINNGS**).
- 2. You should not add any new fuel as COA, OIL and NGS were defined in the previous section.

В	с	D	E	F
	Technologies			Commodities
Code	Description		Code	Description
BACKSTOP	Backstop technology		ELC003	Final Electricity demand
MINCOA	Coal domestic production		СОА	Coal
MINOIL	Oil domestic production		OIL	Oil
MINNGS	Natural gas domestic production		NGS	Natural Gas
ІМРСОА	Import of Coal		СОМ005	Additional Fuel
IMPOIL	Import of Oil		COM006	Additional Fuel
IMPNGS	Import of Natural Gas		СОМ007	Additional Fuel

- 3. Add data for **OutputActivityRatio**, **VariableCost** and **CapacityToActivityUnit** as presented in the <u>DataPrep file</u>.
- 4. Repeat the same steps for **IMPOIL** and **IMPNGS** using the data provided in the <u>DataPrep file</u>.