

Energy and Flexibility Modelling

Hands-on 6 (macOS)

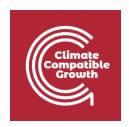
Please use the following citation for:

This exercise

Cannone, C., Tan, N., Kell, A., Howells, M. (2022, January). Hands-on 6 (macOS): Energy and Flexibility Modelling. http://doi.org/10.5281/zenodo.5920560

clicSANDMac Software

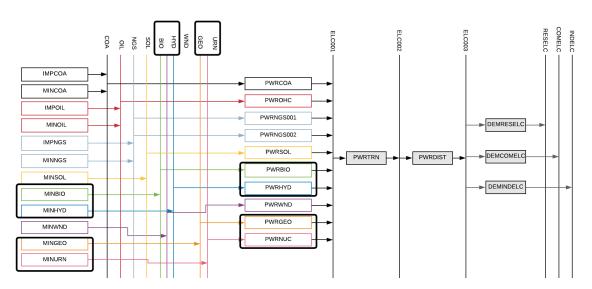
Cannone, C., Tan, N., Kell, A., de Wet, N., Howells, M., Yeganyan, R. (2021). clicSANDMac [computer software]. http://doi.org/10.5281/zenodo.5879056


OSeMOSYS Google Forum

Please sign up to the help Google forum <u>here</u>. If you are stuck, please ask questions here. If you get ahead, please answer questions in the same forum. Please state that you are using the 'clicSAND' Interface.

Learning outcomes

By the end of this exercise, you will be able to represent the following in OSeMOSYS:


- 1) Biomass-fueled power plants and biomass primary supply
- 2) Geothermal power plants and geothermal energy primary supply
- 3) Hydropower technologies and hydropower primary supply
- 4) Nuclear power plants and uranium primary supply

Define the Hydropower Primary Supply Technology

In Lecture 7 we learnt how to represent a technology in OSeMOSYS and which parameters characterize biomass-fueled, geothermal, hydropower, and nuclear power plants. In this Hands-On, we will focus on an example for Hydropower Plants. The same process should be used for Biomass, Geothermal, and Nuclear power plants.

In this Hands-on, we will add 8 technologies in total: 4 power plants (PWRBIO, PWRHYD, PWRGEO, PWRNUC) and 4 primary supply technologies (MINBIO, MINHYD, MINGEO and MINURN). Four new fuels will be added to the model: BIO (Biomass), HYD (Hydro), GEO (Geothermal) and URN (Uranium). We will build the highlighted parts of the RES:

In order to represent a primary supply technology, remember that the following **parameters** must be considered:

- OutputActivityRatio: defines the fuel provided (i.e. Biomass)
- CapacityToAcitivityUnit: used to convert data related to the Capacity of technology into the Activity it can generate. For primary supply technology, this value should be set to 1.
- Fixed Cost: defines the fixed Operation & Maintenance cost (\$/kW)
- CapitalCost: defines the overnight investment cost of the plant (\$/kW)
- OperationalLife: defines the lifetime of the technology (in years)

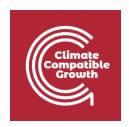
Let's add MINHYD - the technology representing the primary supply of water MINHYD (Hydro Potential) and the correspondent fuel HYD (Hydro) following the steps explained in Hands-On 4.

Repeat the same steps for:

- 1) MINBIO Biomass Extraction
- 2) MINGEO Geothermal Potential
- 3) MINURN Uranium Extraction

using the data provided in the <u>DataPrep file</u>.

You have now added 4 primary supply technologies (MINBIO, MINHYD, MINGEO, MINURN) and 4 fuels (BIO, HYD, GEO, URN) to your model.


Add a Hydropower plant

In order to represent a power plant, remember that the following **parameters** must be considered:

- InputActivityRatio: defines the rate of fuel consumed (i.e. Hydro)
- OutputActivityRatio: defines the fuel provided (i.e. Electricity)
- CapacityToAcitivityUnit: used to convert data related to the Capacity of technology into the Activity it can generate. For primary supply technology, this value should be set to 1
- Fixed Cost: defines the fixed Operation & Maintenance cost (\$/kW)
- CapitalCost: defines the overnight investment cost of the plant (\$/kW)
- OperationalLife: defines the lifetime of the technology (in years)
- ResidualCapacity: defines the existing capacity of the technology (in GW) and its expected decommissioning
- Capacity Factors: represents the variability in generation at each point in time.

Let's add **PWRHYD** - the technology representing a hydro power plant, following the steps presented in **Hands-On 5**.

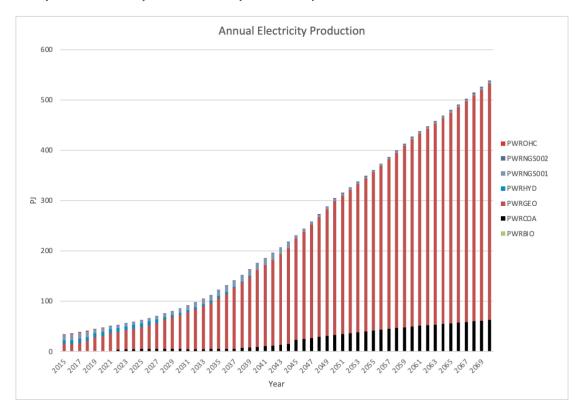
The only new parameter that needs to be added compared to those instructions in **Hands-On 5** is the **Capacity Factor**. This represents the variability in generation at each point in time. You need to define capacity factors values for all the modelling years from 2015 to

2070. Therefore, copy-paste the 96 values available in the <u>Data Prep file</u> for year 2015 to **Cell K1797 of SAND**. You will see that those values change depending on the time slice. Then copy paste the **same** values for all the years until **column BN** correspondent to 2070.

4	Parameter		 ▼ TECHNOLOGY	TIMESLICE -	2015 -	2016 -	2017 -	2018
1697	CapacityFactor		PVRBIO	S421	0.5	0.5	0.5	
1698	CapacityFactor		PVRBIO	S422	0.5	0.5	0.5	
1699	CapacityFactor		PWRBIO	S423	0.5	0.5	0.5	
1700	CapacityFactor		PVRBIO	S424	0.5	0.5	0.5	
1797	CapacityFactor		PRVHYD	S101	0.396239	0.396239	0.396239	0.396
1798	CapacityFactor		PRVHYD	S102	0.396239	0.396239	0.396239	0.396
			PRWHYD	S103	0.396239	0.396239	0.396239	0.396
1799	CapacityFactor		PRVHYD	S104	0.396239	0.396239	0.396239	0.396
1800	CapacityFactor			S105				0.396
1801	CapacityFactor		PRVHYD		0.396239	0.396239	0.396239	
1802	CapacityFactor		PRVHYD	S106	0.396239	0.396239	0.396239	0.396
1803	CapacityFactor		PRVHYD	S107	0.396239	0.396239		0.396
1804	CapacityFactor		PRVHYD	S108	0.396239	0.396239	0.396239	0.396
1805	CapacityFactor		PRVHYD	S109	0.396239	0.396239	0.396239	0.396
1806	CapacityFactor		PRVHYD	S110	0.396239	0.396239	0.396239	0.396
1807	CapacityFactor		PRVHYD	S111	0.396239	0.396239	0.396239	0.396
1808	CapacityFactor		PRVHYD	S112	0.396239	0.396239	0.396239	0.396
1809	CapacityFactor		PRVHYD	S113	0.396239	0.396239	0.396239	0.396
1810	CapacityFactor		PRVHYD	S114	0.396239	0.396239	0.396239	0.396
1811	CapacityFactor		PRVHYD	S115	0.396239	0.396239	0.396239	0.396
1812	CapacityFactor		PRVHYD	S116	0.396239	0.396239	0.396239	0.396
1813	CapacityFactor		PRVHYD	S117	0.396239	0.396239	0.396239	0.396
1814	CapacityFactor		PRVHYD	S118	0.396239	0.396239	0.396239	0.396
1815	CapacityFactor		PRVHYD	S119	0.396239	0.396239	0.396239	0.396
1816	CapacityFactor		PRVHYD	S120	0.396239	0.396239	0.396239	0.396
1817	CapacityFactor		PRVHYD	S121	0.396239	0.396239	0.396239	0.396
1818	CapacityFactor		PRVHYD	S122	0.396239	0.396239	0.396239	0.396
1819	CapacityFactor		PRVHYD	S123	0.396239	0.396239	0.396239	0.396
1820	CapacityFactor		PRVHYD	S124	0.396239	0.396239	0.396239	0.396
1821	CapacityFactor		PRVHYD	S201	0.672067	0.672067	0.672067	0.672
1822	CapacityFactor		PRVHYD	S202	0.672067	0.672067	0.672067	0.672
1823	CapacityFactor		PRVHYD	S203	0.672067	0.672067	0.672067	0.672
1824	CapacityFactor		PRVHYD	S204	0.672067	0.672067	0.672067	0.672
1825	CapacityFactor		PRVHYD	S205	0.672067	0.672067	0.672067	0.672
1826	CapacityFactor		PRVHYD	S206	0.672067	0.672067	0.672067	0.672
1827	CapacityFactor		PRVHYD	S207	0.672067	0.672067	0.672067	0.672
1828	CapacityFactor		PRVHYD	S208	0.672067	0.672067	0.672067	0.672
1829	CapacityFactor		PRVHYD	S209	0.672067	0.672067	0.672067	0.672
1830	CapacityFactor		PRVHYD	S210	0.672067	0.672067	0.672067	0.672
1831	CapacityFactor		PRVHYD	S211	0.672067	0.672067	0.672067	0.672
1832	CapacityFactor		PRVHYD	S212	0.672067	0.672067	0.672067	0.672
1833	CapacityFactor		PRVHYD	S213	0.672067	0.672067	0.672067	0.672
1834	CapacityFactor		PRVHYD	S214	0.672067	0.672067	0.672067	0.672
1835	CapacityFactor		PRVHYD	S215	0.672067	0.672067	0.672067	0.672
1836	CapacityFactor		PRVHYD	S216	0.672067	0.672067	0.672067	0.672
1837	CapacityFactor		PRVHYD	S217	0.672067	0.672067	0.672067	0.672
1838	CapacityFactor		PRVHYD	S218	0.672067	0.672067	0.672067	0.672
1839	CapacityFactor		PRVHYD	S219	0.672067	0.672067	0.672067	0.672
1840			PRVHYD	S220	0.672067	0.672067	0.672067	0.672
1841	CapacityFactor							
	CapacityFactor		PRWHYD	S221	0.672067	0.672067	0.672067	0.672
1842	CapacityFactor		PRVHYD	S222	0.672067	0.672067	0.672067	0.672
1843	CapacityFactor		PRVHYD	S223	0.672067	0.672067	0.672067	0.672
1844	CapacityFactor		PRVHYD	S224	0.672067	0.672067	0.672067	0.672
1845	CapacityFactor		PRVHYD	S301	0.29054	0.29054	0.29054	0.28
1846	CapacityFactor		PRVHYD	S302	0.29054	0.29054	0.29054	0.28
1847	CapacityFactor		PRVHYD	S303	0.29054	0.29054	0.29054	0.29
1848	CapacityFactor		PRVHYD	S304	0.29054	0.29054	0.29054	0.28
1849	CapacityFactor		PRVHYD	S305	0.29054	0.29054	0.29054	0.28
1850	CapacityFactor		PRVHYD	S306	0.29054	0.29054	0.29054	0.28
1851	CapacityFactor		PRVHYD	S307	0.29054	0.29054	0.29054	0.28
1852	CapacityFactor		PRVHYD	S308	0.29054	0.29054	0.29054	0.29
1853	CapacityFactor		PRVHYD	S309	0.29054	0.29054	0.29054	0.29
•	←→	Naming S	ETS Parameters	ToDataFile	€)		

Repeat the same steps for:

- 1) PWRBIO Biomass Power Plant
- 2) PWRGEO Geothermal Power Plant
- 3) PWRNUC Nuclear Power Plant


using the data provided in the **DataPrep file**.

You have now added 4 primary supply technologies (**PWRBIO**, **PWRHYD**, **PWRGEO**, **PWRNUC**) to your model.

Run the model and check the results

This is the graph of Annual Production by Technology in PJ that you should obtain at the end of this Hands-On exercise.

Remember to filter for the Technologies modelled in this Hands-On – **PWRHYD**, **PWROHC**, **PWRNGS002**, **PWRNGS001**, **PWRCOA**, and **PWRGEO**.

