

CCG 2023 Page | 1

Input-Output analysis

and modelling with MARIO
Hands-on 8 – Parsing, exploring & aggregating

Please, be aware that all the supporting materials required for this hands-on session is

available on Zenodo at the following link: https://doi.org/10.5281/zenodo.8308515

Please use the following citation for:

• MARIO Software

Mohammad Amin Tahavori, Lorenzo Rinaldi, & Nicolò Golinucci. (2022). SESAM-

Polimi/MARIO: MARIO v0.1.0 (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.5879382

https://doi.org/10.5281/zenodo.8308515
https://doi.org/10.5281/zenodo.5879382

CCG 2023 Page | 2

Learning outcomes

By the end of this exercise, you will learn how to:

1) Parse/export tables as .txt (Excel parsing and exporting are shown in Lecture8, 9, & 10)

2) Aggregate a SUT (IOT case is shown in Lecture 8)

3) Navigate indices and matrices for a SUT (IOT case is shown in Lecture 8)

4) Calculate additional matrices

__

Important requirement

If your PC is not equipped with at least 8 GB RAM (16 GB recommended!), we suggest

you do not parse the table in the first step, while you start by parsing the table after

the aggregation!

Please make sure you have Microsoft Excel (or an equivalent alternative) installed on your

PC.

__

CCG 2023 Page | 3

Step 0: the Zenodo repository

All the supporting files for this and other Hands-ons and Lectures are available in the Zenodo

repository associated to this course.

You find the repository at the following link: XXX

CCG 2023 Page | 4

Parsing an EEMRSUT table

The table adopted in this hands-on session is an Environmentally-Extended Multi-Regional

Supply and Use Table (EEMRSUT).

The table is saved into the Databases\Exiobase - MRSUT_2019_with extensions\flows of

the course Zenodo repository.

In particular it comes from Exiobase 3.8.2 version referred to year 2019 (link to the

Exiobase database: https://doi.org/10.5281/zenodo.5589597)

The table is not directly available for download from the Exiobase Zenodo repository, since

environmental extensions (also-known-as satellite accounts) are available for Exiobase

IOT tables and not for SUT tables. However, given the perfect overlapping between

Activities in Exiobase MRSUTs and Sectors in Exiobase industry-by-industry IOTs, it is

possible to get the satellite accounts (E matrix) from the latter and add them to the

former, making it an EEMRSUT.

The Figure below represents the process, while this tutorial shows the coding to obtain the

table we are adopting from now on by using MARIO.

N.B. satellite accounts are defined only by activity! The section of E_SUT “by commodity”

is null.

U

S

V_SUT
E_SUT MISSING

Z

V
E_IOT

Sectors == Activities

S
e

ct
o

rs
=

=
 A

ct
iv

it
ie

s

IOT industry by industry

ActivitiesCommodities

C
o

m
m

o
d

it
ie

s
A

ct
iv

it
ie

s

MRSUT

0 E_IOT

EEMRSUT

U

S

V_SUT

C
o

m
m

o
d

it
ie

s
A

ct
iv

it
ie

s

ActivitiesCommodities

https://doi.org/10.5281/zenodo.5589597
https://mario-suite.readthedocs.io/en/latest/htmls/addextension.html

CCG 2023 Page | 5

Moving to the object of this Hands-on, first of all we start by parsing the table, as follows

(please have a look at the important requirements section before).

We are using here the parse_from_txt method, which works very similar to the

parse_from_excel one: it needs a path, in this case directing to a folder (since MARIO-

readable .txt tables are split into multiple files), the type of table (SUT or IOT) and the

mode (absolute values, then flows, or coefficients)

Aggregating the table

In order to better manage this very large table, we proceed performing an aggregation.

First of all, use the ‘get_aggregation_excel’, to save the MARIO Excel template for

aggregation. The path we are passing is “Hands-on8 - Aggregation.xlsx”.

Opening the Excel file, we can fill it by aggregating regions, factors of production,

consumption categories, satellite accounts and commodities (only “electricity”

commodities). We are not aggregating activities.

The “Hands-on8 – Aggregation – Filled.xlsx” file is ready with the desired aggregation,

however we suggest you to do it yourself.

You can see the aggregation is basically the same we performed in Lecture 8, however on

a SUT instead of on an IOT.

https://mario-suite.readthedocs.io/en/latest/api_document/mario.parse_from_txt.html#mario-parse-from-txt
https://mario-suite.readthedocs.io/en/latest/api_document/mario.parse_from_excel.html#mario.parse_from_excel

CCG 2023 Page | 6

We can now proceed to aggregate the SUT by reading back the aggregation template once

you fill it. You can use the same method shown in Lecture8 or alternatively, specify on

which level (or set) you want to perform an aggregation, based on the information you

filled in the template.

Exporting a table

The aggregated table can be now exported.

We decide to export it to a desired path variable we name export_path and we are using the

‘to_txt’ method, to save it in .txt extensions, since it is much less computationally

intensive.

In case you had to skip the previous passages due to computational reasons, you can start

now by parsing the aggregated table as follows (you find the code in the supporting script

as well):

https://mario-suite.readthedocs.io/en/latest/api_document/mario.Database.to_txt.html

CCG 2023 Page | 7

Exploring the table

As shown in the Lecture8, you can explore any MARIO Database object by using basic

functions such as:

• ‘get_index’, to get a list of any set of the table (sectors, regions…)

• ‘search’, to search for sets’ labels containing specific strings.

• Get accounts’ units of measures by exploring the ‘units’ dictionary

Double click on ‘units’

CCG 2023 Page | 8

We can see, for instance, that commodities are measured in EUR, while CO2 in kg, by opening

the Commodity and Satellite account Pandas DataFrames respectively.

• Explore matrices by getting the ‘matrices’ dictionary

Double click
on ‘matrices’

Double click
on ‘baseline’

CCG 2023 Page | 9

Calculate matrices

As for the IOT case in Lecture 8, it is possible to calculate new matrices, such as the specific

footprint matrix f by running world.f

It would be interesting to get a footprint value. For example, the specific CO2 footprint of

electricity in China (expressed in kg/EUR, given the units explored before) is given by the

following:

To get familiar with this kind of dataframes parsing and slicing, become familiar with Pandas

Dataframe.loc function, especially in the case of MultiIndexed Dataframes.

Here the link to a useful guide: https://pandas.pydata.org/docs/user_guide/advanced.html

https://pandas.pydata.org/docs/user_guide/advanced.html

