

Model for Analysis of Energy Demand (MAED)

Hands-on 7: Entering Scenario Data for the case study

Learning outcomes

By the end of this exercise, you will be able to:

- 1. Enter Scenario Data
- 2. View Results

Activity 1: Adding Scenario Data

Let us move on to the scenario data. We shall start with the population and other parameters of the demographic data. The base year data have already been entered. We are now going to enter data for future years; these are referred to as the scenario data.

To add population scenario data in MAED-D, we need to enter the assumed population average annual growth rates for future years.

If we do not enter any data, the model interprets the growth rate as zero and assumes that the population remains constant.

MAED Model for Analysis of Energy I	Demand						MAED D 🗸
En Es Fr	Social economic data						
Manage case studies	Demography GDP						
General information							
Social economic data	Demography						dt < > 🛓 f
Energy intensities ~	Item	Unit	2030	2035	2040	Chart	
Industry	Population *	Million	19.50000	19.50000	19.50000		
Tunnent	Population growth rate *	% per annum		0.00000	0.00000		
Transport	Urban Population	%	41.50000	0.00000	0.00000		
Household	Person/ urban Household	cap	6.00000	0.00000	0.00000		
Services	Number of urban Households	Million	1.34875	0.00000	0.00000		
Calculate	Rural Population	%	58.50000	100.00000	100.00000		
Calculate	Person/ rural Household	cap	7.00000	0.00000	0.00000		
Results	Number of rural Households	Million	1.62964	0.00000	0.00000		
\leftrightarrow	Potential Labour Force	%	49.00000	0.00000	0.00000		
	Participating Labour Force	%	40.00000	0.00000	0.00000		
	Active Labour Force	Million	3.82200	0.00000	0.00000		
	Population in cities with public transp	%	22.00000	0.00000	0.00000		

Note that the growth values for each interval are the average growth rates. In our case, the values are the average growth rates over the 5-year intervals. The model calculates the total population in the future.

Columns for the years 2035 and 2040 will contain the scenario data for the corresponding parameters. For example, according to this scenario, the size of the households in the urban area will be reduced, from 6 persons per dwelling in the base year, to 5.2 persons per dwelling at the end of the study period. At the same time, the proportion of potential labour is considered constant in this scenario.

Please, enter all these data shown below.

	mand						MAED D N
n Es Fr	Social economic data						
	Name of the case study Demo MAEDD 2						
fanage case studies							
	Demography GDP						
eneral information							
ocial economic data	Demography						ılı < > 生
nergy intensities	Item	Unit	2030	2035	2040 Chart		
lustry	Population *	Million	19.50000	20.20215	20.81553		
	Population growth rate *	% per annum	-	0.71000	0.60000		
ansport	Urban Population	%	41.50000	42.70000	44 00000		
ousehold	Person/ urban Household	cap	6.00000	5.40000	5.20000		
ervices	Number of urban Households	Million	1.34875	1.59747	1.76131		
Calculate	Rural Population	%	58.50000	57.30000	56.00000		
	Person/ rural Household	cap	7.00000	6.50000	6.00000		
lesults	Number of rural Households	Million	1.62964	1.78090	1.94278		
0	Potential Labour Force		49.00000	49.00000	49.00000		
	Anthus Labour Force	Million	40.00000	40.00000	40.00000		
	Regulation in cities with public transp	million	22.00000	27.00000	33.00000		
	Population in cities with public transp	10 11	1.00000	27.00000	33.00000		

We are now going to enter the scenario data for GDP growth and structure. Just like with the population, future GDP data is introduced using annual average GDP growth rates.

The data corresponding to the future GDP structure must be introduced in their respective blank cells. Enter the following data in the GDP and Distribution of GDP by Subsectors tables.

En Es Fr	Social economic data Name of the case study Demo MAEDD 2						
Manage case studies	Domography CDD						
General information	Jeniography GDP						
Social economic data	GDP						ılı < 🔸 👱 🗃
Energy intensities	Item	Unit	2030	2035	2040	Chart	
Industry	GDP	US\$ Million	1230.00000	1725.13863	2308.62464		
Transport	GDP Growth rate	% p.a.	-	7.00000	6.00000		
Household	GDP per capita Sectorial shares of GDP	US\$/Cap	63.07692	85.39381	110.90876		
Services	Agriculture	%	10.00000	10.00000	10.00000		
0.1	Construction	%	10.00000	10.00000	10.00000		
Calculate	Mining	%	10.00000	10.00000	10.00000		
Results	Manufacturing	%	38.37398	38.37398	38.37398		
(Energy	%	11.62602	11.62602	11.62602		
	Service	%	20.00000	20.00000	20.00000		
	Total	%	100.00000	100.00000	100.00000		

Growth									
ED									
MAED Model for Analysis of Energy D	venand							MAED D 🗸	
En Es Fr	Data notes								
Manage case studies									_
	Distribution of GDP by subsectors					<u></u>	di 🗠	> ≛ ∎	a
General information	Item	Unit	2030	2035	2040	Chart			
Social economic data	Agriculture					(e)			
Energy intensities	Farming	%	100.00000	100.00000	100.00000				
Industry	Total	%	100.00000	100.00000	100.00000	· 🖶			
maaaty	Construction					- P			
Transport	Buildings	%	100.00000	100.00000	100.00000				
Household	Total	%	100.00000	100.00000	100.00000				
Services	Mining								
	Metal ores	%	30.0000	40.00000	50.00000				
Calculate	Non-metal ores	56	70.0000	60.00000	50.00000				
Results	Total	%	100.00000	100.00000	100.00000				
	Manufacturing	6							
	Tatel	75	100.00000	100.00000	100.00000				
	Energy	76	100.00000	100.00000	100.00000				
	Eperar	· · · · ·	100.00000	100.00000	100.00000				
	Total	5	100.00000	100.00000	100.00000				
	Service								
	Commercial and turism	5	30.00000	28.00000	25.00000	T			
	Public administration	%	10.00000	10.00000	10.00000				
	Finance and Buss	%	5.00000	10.00000	15.00000	Б			
	Personal Services and others	%	55.00000	52.00000	50.00000				
			100 00000	100 00000	100 00000				

We shall now enter the scenario data for the **energy intensities** of motive power, specific electricity use and thermal use for all the sectors. As done in the previous Hands-on we will have to calculate these data for the future years. To do so you can use a support Excel template.

Once you are done repeating the same steps of the previous Hands-on for the future years, you will be able to enter the data <u>that you have calculated</u> where shown below. However, as this is a time consuming and more advanced skill, we will not ask you to do in this online course. It will be useful for you to know when you will work on your real country case-study.

MAED Meddel for Analysis of Energy D	Energy intensities								MAED D 🗸 At
nage case studies	El-Motive El-Specific Electricity use	El-Thermal use	Penetratio ACM	n of Energy Fo	orms in	Efficiencies in ACM	Temperature level in Manufacturing	Penetration of Energy Forms in Manufacturing	Efficiencies in Manufacturing
sial economic data	Energy intensities of Motive Power (fil	nal energy per ur	it of value a	dded)					di < > 🛓 🔂
rgy intensities 🗳	Itam	Linit	2020	2025	20.40	Chart			
stry 📢	Agriculture	Unit	2030	2035	2040				
sport	Farming	kWh/US\$	1.50000	1.50000	1.50000				
sehold	Construction								
ces	Buildings	kWh/US\$	0.10000	0.10000	0.10000				
	Mining								
culate	Metal ores	kWh/US\$	0.3000	0.30000	0.30000				
ults	Non-metal ores	kWh/US\$	0.2000	0.20000	0.20000	-			
⇔	Rasic materials	kwb/US\$	0.1500	0.15000	0.15000				
	<u>Data notes</u>					~			

N.B. Therefore, remember to take advantage and use the Data Collection and Manipulation template EXTENDED to reconstruct the Base Year for each sector and to calculate scenario data. This template is available here and has a similar structure that the previous template you have used:

https://doi.org/10.5281/zenodo.7717393

You will now be able to calculate and look at the results for the years 2035 and 2040.

Congratulations, you now know how to enter data into the MAED-D model.