Research Grant writing for STEM

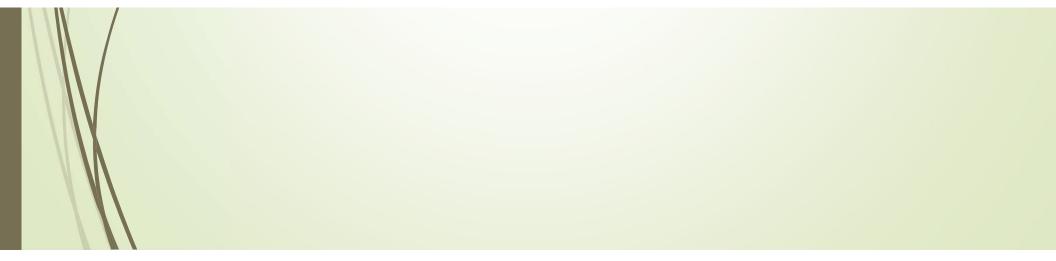
Dr. Pascal Patrick Matzler

Pontificia Universidad Católica de Valparaíso

Bio

- I have been teaching EAP/ESP in Chile since 2007
- In 2020 I completed a PhD in Applied Linguistics at the University of Auckland (NZ)
- My research combines ESP genre analysis with the ethnographic study of situated postgraduate research writing, in particular mentoring and co-authoring practices

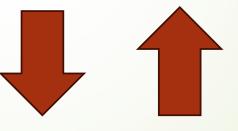
Journal of English for Academic Purposes 49 (2021) 100938


Grant proposal abstracts in science and engineering: A prototypical move-structure pattern and its variations

English for Academic Purposes

Pascal Patrick Matzler^{a, b}

^a University of Auckland, New Zealand ^b Universidad Católica Del Maule, Chile


Research grant writing

- A key, high stakes genre
- Secretive, daunting
- Detective work required
- Typical format and length
- Move structures (abstract)
- Name-dropping

Key, high-stakes genre

 Worldwide, scholars are increasingly pressured to publish high-impact research to advance their careers or to maintain their employment

A researcher's successful grant application will provide the basis for future research articles

In turn, a respectable track record of publications will then greatly enhance the chances of earning further research grants.

Research grants for emerging researchers

Country	Agency	Grant	Duration	Budget	Profile
New Zealand	Royal Society Te Aparangi	Marsden Fund Fast-Start Grant	3 years	US\$ 65.000 per year	up to 7 years after PhD
Chile	Agencia Nacional de Investigación y Desarrollo (ANID)	Fondecyt de Iniciación en Investigación	3 years	US\$ 40.000 per year	up to 7 years after PhD

Secretive, daunting

- Grant proposals tend to be classified as confidential documents by research funding agencies and not made public, making them an "occluded genre" (Swales, 1996, p. 47).
- As a result, novice researchers lack easy access to publicly available exemplars of this genre and cannot learn by imitation, as they would with more widely publicized research genres such as RAs or conference presentations.

Detective work required

- Funding agency websites
- University yearbooks
- Researchers' homepage, blog, etc.
- Ask an established colleague!

Local disciplinary ecosystems

Research articles in science and engineering are usually addressed to a global audience of highly specialized readers

But...

- Research grant proposals are mostly fed into locally controlled ecosystems, such as government-run funding agencies
- Research grant proposals are often read and evaluated by members of the general disciplinary community

Format and length of grant proposal and abstract

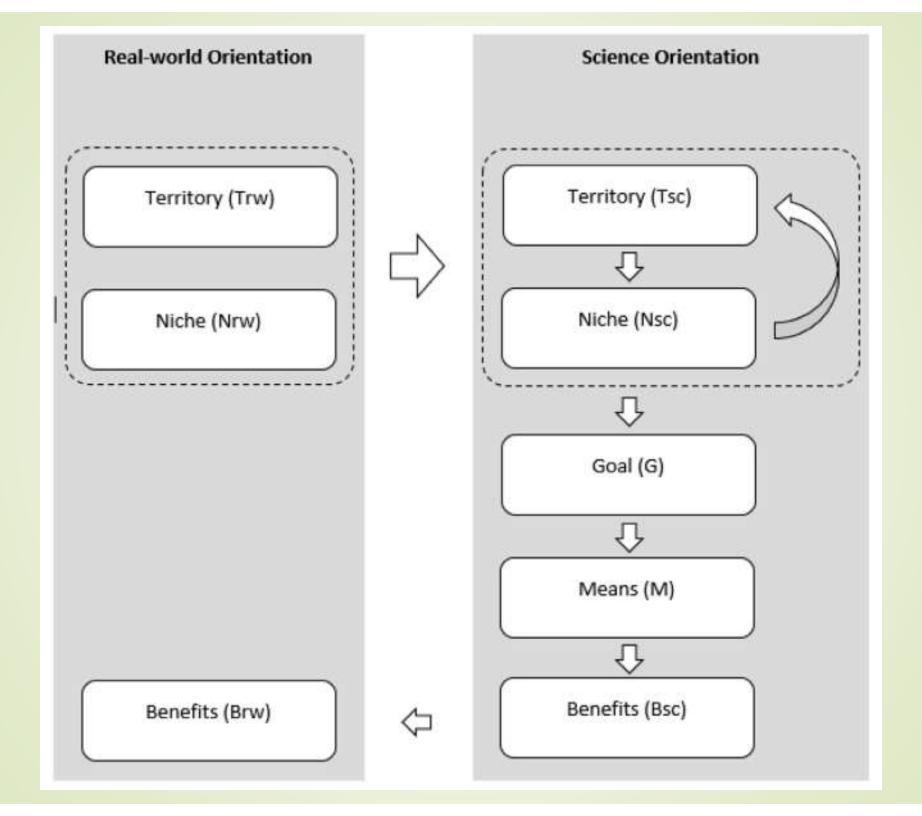
Country	Agency
New Zealand	Two stages:Single-page expression of interestFull proposal includes a 200-word abstract
Chile	 Full proposal includes a 300-word abstract Full proposal in English with bilingual abstract
Japan (KAKENHI)	 Full proposal includes a 200-word abstract Either Japanese or English
USA (National Science Foundation)	 One-page summary (approx. 600 words) "not an abstract of the proposal" but instead "suitable for dissemination to the public" prescribed headings: "Overview, Intellectual Merit, and Broader Impacts"

The abstract and the full proposal

- The relationship between the grant proposal and its abstract is similar to that found between the research article and its abstract.
- Swales (1990) already observed that the RA abstract fulfils a dual role of summary matter and front matter.
- The role of summary matter ensures the adequate representation of the RA's contents,
- The parallel role of front matter serves to catch the reader's eye and to highlight the most attractive aspect of the longer document

How to write a grant proposal abstract

Sequencing and cycling of moves

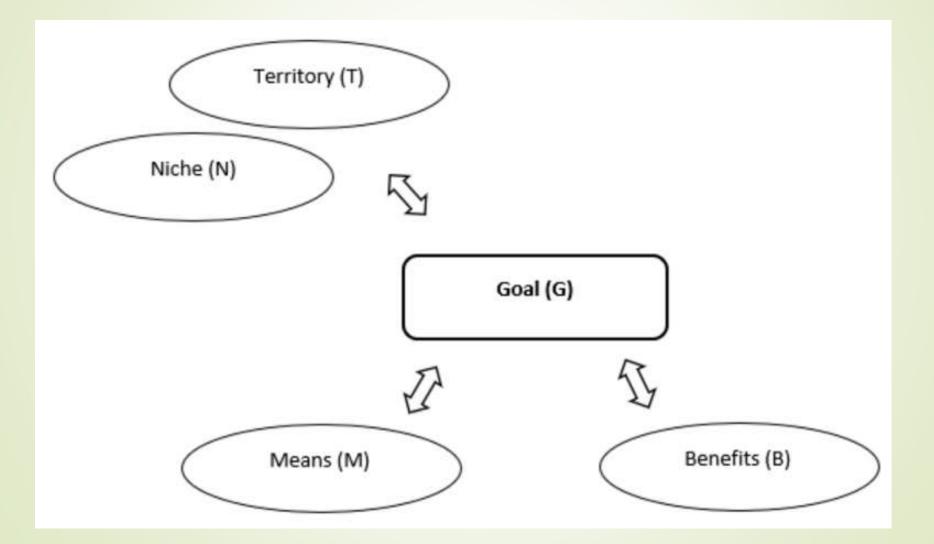

Real-world and science orientation

Prototypicality and variation

The basic ingredients of a grant proposal abstract

Move	Purpose
Territory (T)	describes existing knowledge upon which the proposal is based
Niche (N)	indicates some limitation identified in the Territory described above
Goal (G)	states the single main purpose or objective of the proposed research
Means (M)	lists more specific sub-goals, describes the research methods and materials, and predicts specific results or achievements
Benefits (B)	outlines the expected benefits of the project, usually formulated as an upshot of the overall Goal

Title: Advanced alloying Anode for Magnesium	
Rechargeable Battery System	Move structure
(n.11, Engineering, New Zealand, 197 words) Magnesium rechargeable batteries have <u>recently</u> gained much	
· · · · · · · · · · · · · · · · · · ·	Torritory
attention due to their high potential energy density and low cost. // <i>However</i> , the development of magnesium rechargeable	Territory
	Niche
batteries has been <u>severely hindered</u> even through there are	INICHE
breakthroughs in electrolytes and cathode materials. The	
current use of commercial purity magnesium anodes is one of	
the main reasons for the <i>poor</i> electrochemical performance of	
magnesium batteries. // <u>This project aims to</u> open a novel route	Coal
for developing high energy density magnesium rechargeable	Goal
batteries by investigating the new magnesium alloying and/or	
intermetallic anodes. // Electrochemical charge/discharge	Maana
behaviour studies will be conducted on Mg alloys with	Means
controlled microstructure, such as alloying elements,	
intermetallic phases, grain size and twinning density. The	
electrochemical phenomena occurring at the Mg	
alloy/electrolyte reaction interface will also be systematically	
<u>studied</u> to understand the effect of alloying elements,	
intermetallics and microstructure evolution on electrochemical	
reaction interface. Physical models <i>will be developed</i> for	
understanding the electrochemical reaction mechanisms, and	
the relationship between microstructure and magnesium anodes	
performance. // This Fast-Start Marsden project will enable	Danafita
<u>me</u> to develop my current pioneering research on engineering	Benefits
materials into a new research frontier in energy storage	
technology, and <i>further establish</i> a New-Zealand-based global	
research network in this emerging area.	



Title: Unravelling molecular details of protein interactions that drive Alzheimer's disease (n 03. Biology, New Zeeland, 176 words)	Move structure
(n.03, Biology, New Zealand, 176 words) Dementias such as Alzheimer's disease are <i>one of the leading</i>	Territory (rw) ¹
causes of death worldwide, // and despite an increasing	Territory (Tw)
incidence, there are <i>currently no effective treatments</i> against	Niche (rw)
these debilitating diseases. // Development of therapies has	
been hampered by a lack of mechanistic understanding of	Niche (sc) ²
events that underlie the disease. // Two hallmarks of the	
disease are abnormal aggregation of the protein amyloid-beta	Territory (sc)
and inflammation. // In this project we aim to link these two	Carl
key features and broaden our understanding of pathological mechanisms in Alzheimer's disease by [CONTINUES]	Goal
incentations in Alzheimer's disease by [CONTINOES]	
[CONTINUED] // This work will establish crucial	
information on the molecular pathology of Alzheimer's	Benefits (sc)
disease, // providing targets for the development of therapies	450 51
to block harmful interactions to treat Alzheimer's disease.	Benefits (rw)

1 (rw) = real-world orientation; 2 (sc) = science orientation

Title: The magnetic myocyte: applying inspiration from	
muscle physiology to electric motors	Move structure
(n.13, Engineering, New Zealand, 167 words)	move su ucture
We aim to rethink electric motor design, mimicking biological	Goal
muscle to drastically improve motor performance. // Robots	0.0012
that are intended to augment human capability, by working	Territory
together with us or by helping us when our own muscles	1
become insufficient, need actuators with muscle-like	
performance. // However, today's ubiquitous electric motors	
cannot match the combination of force output and agility	Niche
offered by biological muscle, and <i>a new approach is needed</i> to	
enable these robots to become fully useful. // We will take	
three main paths to improvement, using the architecture of	Means
muscle itself as inspiration. <i>First</i> , we will use miniature motor	
units repeated in series and parallel, like the structure of muscle	
fibres. Second, we will use fluid vessels to carry liquid metal	
"blood" that delivers energy and removes heat. Finally, we will	
use distributed control systems and power systems to act like	
the nerves and signal transducers in muscle. // This new	
actuator design approach will enable robots to truly augment	Benefits
human performance, and open a new paradigm in bioinspired	
design.	

The central role of the Goal move

Emphasize relevance for specific country / committee

Increasingly energetic swell in the Southern and Arctic Oceans can no longer be ignored from Earth System Models (ESMs) climate predictions. Their impact on sea ice erosion <u>has been</u> <u>observed</u> both in situ and remotely. // The quantification of	Territory
<u>are partly false</u> . Up to now, <u>few studies have</u> evidenced natural examples of such pressure deviations. // <u>The project proposes</u> <u>to</u> track evidences of such deviations in the metamorphic rocks of the Chilean Coast [CONTINUES]	Goal
performance. // This Fast-Start Marsden project <u>will enable</u> <u>me</u> to develop my current pioneering research on engineering materials into a new research frontier in energy storage technology, and <u>further establish</u> a New-Zealand-based global research network in this emerging area.	Benefits

Activity:

- Access the file with the sample grant proposal abstract
- Try to label the five moves: Territory (T), Niche (N), Goal (G), Means (M, and Benefits (B)
- Try to identify real-world (rw) and science (sc) orientations in the T, G, and B moves
- Try to spot language that emphasizes a specific national context

Thank you and good luck with your grant proposal!