
Hands-on	exercise	2:	Running	MUSE
Once	MUSE	have	been	installed,	we	can	run	an	example.	To	start	with,	we	will	run	one	of	the	built-in	MUSE	examples.	If	you	are	using	MUSE	within	a
virtual	environment,	make	sure	you	have	it	activated	(refer	back	to	exercise	1	if	you	need	help	with	this).

You	should	be	able	to	run	the	default	 muse 	example	running	the	following	command	in	the	terminal:

python	-m	muse	--model	default

If	running	correctly,	your	prompt	should	output	text	similar	to	this	(https://muse-os.readthedocs.io/en/v1.3.3/example-output.html).	You	can	check	the
available	built-in	models,	as	well	as	information	on	other	input	arguments,	with:

python	-m	muse	-h

A	common	use	case	is	to	take	one	of	the	built-in	models	as	the	starting	point	to	create	your	own	model.	This	is	the	approach	we	will	take	in	the	hands-on
exercises	in	this	course.	To	copy	the	files	for	the	default	model,	run:

python	-m	muse	--model	default	--copy	path/to/copy/the/model/to

This	will	create	a	folder	called	 model 	in	the	specified	path.	Navigate	to	this	folder	using	the	 cd 	command,	and	use	 ls 	to	see	the	contents	of	this
folder.	We	can	then	run	the	simulation	using	the	following	command:

python	-m	muse	settings.toml

Results
If	the	default	MUSE	example	has	run	successfully,	you	should	now	have	a	folder	called	 Results 	in	the	current	working	directory.

This	directory	should	contain	two	files:

MCACapacity.csv :	contains	information	about	the	capacity	each	agent	has	per	technology	per	benchmark	year.	Each	benchmark	year	is	the
modelled	year	in	the	 settings.toml 	file.	In	our	example,	this	is	2020,	2025,	...,	2050.
MCAPrices.csv :	has	the	converged	price	of	each	commodity	per	benchmark	year	and	timeslice.	eg.	the	cost	of	electricity	at	night	in	2020.

Additional	files	can	be	added	by	modifying	 settings.toml ,	as	will	be	shown	in	future	exercises.

For	the	hands-on	exercises	in	this	course,	we	will	use	Python	and	Jupyter	Notebook	(https://jupyter.org)	to	visualise	these	simulation	results.	You	can,
however,	visualise	the	results	using	any	language	or	program	of	your	choice	(for	example	Excel,	R,	MATLAB),	but	will	get	the	most	out	of	these	exercises
if	you	use	Jupyter	Notebook.

Installing	Jupyter
First,	you	will	need	to	install	Jupyter	Notebook	in	your	environment,	which	you	can	do	with	the	following	command:

python	-m	pip	install	jupyter

Then,	once	this	has	been	installed,	you	can	start	Jupyter	Notebook	by	running	the	following	command:

python	-m	jupyter	notebook

A	web	browser	should	now	open	up	with	a	URL	such	as	the	following:	 http://localhost:8888/tree .	If	it	doesn't,	copy	and	paste	the	command	as
directed	in	the	terminal.	This	will	likely	take	the	form	of:

http://localhost:8888/?token=xxxxxxxxxx

With	 xxxxxxxxxx 	a	very	long	collection	of	letters	and	numbers.	Once	you	are	on	the	page,	you	will	be	able	to	navigate	to	a	location	of	your	choice	and
create	a	new	file,	by	clicking	the	 New 	button	in	the	top	right,	followed	by	 Python	3 .	You	should	then	be	able	to	proceed	and	follow	the	tutorials	in	this
documentation.

Missing	packages
If,	when	running	a	cell,	you	get	any	errors	such	as:

ModuleNotFoundError:	No	module	named	'pandas'

Then	you	are	trying	to	use	a	package	(pandas 	in	the	example)	that	is	not	available	in	the	current	environment.	It	is	possible	to	install	the	missing
packages	by	running	the	following	in	the	Jupyter	notebook:

!pip	install	pandas

The	package	will	be	installed	in	whatever	virtual	environment	Jupyter	is	running	in.

https://muse-os.readthedocs.io/en/v1.3.3/example-output.html
https://jupyter.org/

Visualisation
First,	we	need	to	load	the	appropriate	packages	required	to	load	and	visualise	the	results,	which	you	can	do	by	running	the	following	Python	commands	in
a	notebook	cell:

In	[1]:

import	matplotlib.pyplot	as	plt
import	pandas	as	pd

Next,	we	will	load	 MCACapacity.csv 	file	and	print	the	first	five	rows	of	the	table	using	the	pandas	library:

In	[2]:

mca_capacity	=	pd.read_csv("Results/MCACapacity.csv")
mca_capacity.head()

Finally,	we	will	visualise	the	data	for	each	of	the	sectors,	with	capacity	on	the	y-axis	and	year	on	the	x-axis.	Don't	worry	too	much	about	the	code	if	some	of
it	is	unfamiliar	-	we	effectively	split	the	data	into	each	sector,	sum	the	capacity	for	each	technology,	and	then	create	a	stacked	bar	chart	for	each.

In	[3]:

fig,	axes	=	plt.subplots(1,	3)
for	ax,	(sector_name,	sector_data)	in	zip(axes,	mca_capacity.groupby("sector")):
				sector_capacity	=	sector_data.groupby(["year",	"technology"]).sum().reset_index()
				sector_capacity.pivot(index="year",	columns="technology",	values="capacity").plot(
								kind="bar",	stacked=True,	ax=ax
)
				ax.set_ylabel("Capacity	(PJ)")
				ax.set_xlabel("Year")
				ax.set_title(f"{sector_name.capitalize()}	Sector:",	fontsize=10)
				ax.legend(title=None,	prop={"size":	8})
				ax.tick_params(axis="both",	labelsize=8)

fig.set_size_inches(8,	2.5)
fig.subplots_adjust(wspace=0.5)

In	this	toy	example,	we	can	see	that	the	end-use	technology	of	choice	in	the	residential	sector	becomes	a	heatpump,	which	displaces	the	gas	boiler.	To
account	for	the	increase	in	demand	for	electricity,	the	agent	invests	heavily	in	wind	turbines.

Note,	that	the	units	are	in	petajoules	(PJ).	MUSE	requires	consistent	units	across	each	of	the	sectors,	and	each	of	the	input	files	(which	we	will	see	later).
The	model	does	not	make	any	unit	conversion	internally.

Out[2]:

agent capacity dst_region installed region sector technology type year

0 A1 10.0 R1 2020 R1 residential gasboiler newcapa 2020

1 A1 1.0 R1 2020 R1 power gasCCGT newcapa 2020

2 A1 15.0 R1 2020 R1 gas gassupply1 newcapa 2020

3 A1 5.0 R1 2020 R1 residential gasboiler newcapa 2025

4 A1 19.0 R1 2025 R1 residential heatpump newcapa 2025

Summary
In	this	exercise	we	have	shown	how	to	run	the	default	model	that	comes	with	MUSE,	and	how	to	visualise	the	investment	decisions	made	in	the
simulation.	In	future	exercises	we	will	show	how	to	modify	the	input	files	to	run	different,	more	interesting,	scenarios.

